

EMI - T E S T R E P O R T

- FCC Part 15.407, 5725-5850 MHz, RSS247 -

Type / Model Name : SCALANCE W700 / ELN

Product Description : Industrial WLAN access point

Applicant : Siemens AG, Industrial Automation Division

Address : Gleiwitzer Strasse 555
90475 NUERNBERG, GERMANY

Manufacturer : Siemens AG, Sensors & Communication

Address : Oestliche Rheinbrueckenstrasse 50
76187 KARLSRUHE, GERMANY

Licence holder : Siemens AG, Industrial Automation Division

Address : Gleiwitzer Strasse 555
90475 NUERNBERG, GERMANY

Test Result according to the standards listed in clause 1 test standards:	POSITIVE
--	-----------------

Test Report No. :	T40580-03-00HS	17. May 2016
		Date of issue

Deutsche
Akkreditierungsstelle
D-PL-12030-01-01
D-PL-12030-01-02

The test report merely corresponds to the test sample.
It is not permitted to copy extracts of these test results
without the written permission of the test laboratory.

Contents

1 TEST STANDARDS	3
2 EQUIPMENT UNDER TEST	4
2.1 Photo documentation of the EUT – Detailed photos see ATTACHMENT A	4
3 TEST RESULT SUMMARY	9
3.1 Final assessment	10
4 TEST ENVIRONMENT	11
4.1 Address of the test laboratory	11
4.2 Environmental conditions	11
4.3 Statement of the measurement uncertainty	11
4.4 Measurement protocol for FCC and ISED	12
5 TEST CONDITIONS AND RESULTS	13
5.1 AC power line conducted emissions	13
5.2 Emission bandwidth and occupied bandwidth	14
5.3 Maximum conducted output power	22
5.4 Maximum power spectral density	27
5.5 Defacto limit	29
5.6 Unwanted emissions	31
6 USED TEST EQUIPMENT AND ACCESSORIES	32

ATTACHMENT A as separate supplement

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules and Regulations Part 15, Subpart A - General (September 2015)

Part 15, Subpart A, Section 15.31	Measurement standards
Part 15, Subpart A, Section 15.33	Frequency range of radiated measurements
Part 15, Subpart A, Section 15.35	Measurement detector functions and bandwidths

FCC Rules and Regulations Part 15, Subpart C - Intentional Radiators (September 2015)

Part 15, Subpart C, Section 15.203	Antenna requirement
Part 15, Subpart C, Section 15.204	External radio frequency power amplifiers and antenna modifications
Part 15, Subpart C, Section 15.205	Restricted bands of operation
Part 15, Subpart C, Section 15.207	Conducted limits
Part 15, Subpart C, Section 15.209	Radiated emission limits, general requirements
Part 15, Subpart C, Section 15.212	Modular transmitters

FCC Rules and Regulations Part 15, Subpart E – Unlicensed National Information Infrastructure Devices (December 2015)

Part 15, Subpart E, Section 15.407	Operation within the bands 5.15 - 5.25 GHz, 5.25 - 5.35 GHz, 5.47 - 5.725 GHz and 5.725 - 5.85 GHz
------------------------------------	--

ANSI C63.10: 2013	Testing Unlicensed Wireless Devices
-------------------	-------------------------------------

ETSI TR 100 028 V1.3.1: 2001-03	Electromagnetic Compatibility and Radio Spectrum Matters (ERM); Uncertainties in the Measurement of Mobile Radio Equipment Characteristics—Part 1 and Part 2
---------------------------------	--

KDB 789033 D02 v01r02	Guidance for compliance Testing of U-NII devices, April 8, 2016.
-----------------------	--

2 EQUIPMENT UNDER TEST

2.1 Photo documentation of the EUT – Detailed photos see ATTACHMENT A

2.2 General remarks:

The EUT is fully tested and approved according the “old Rules”. This test report shall show the further compliance to the “new Rules” under the premise that no operating parameter of the EUT are changed. Therefore the output power and the PSD are re-measured under the “new rules”. Spurious emissions stay the same as under the “old Rules” and are already documented with the test report T35625-00-05HS by Mikes testing partners.

2.3 Equipment category

WLAN - AP

2.4 Short description of the equipment under test (EUT)

The EUT is a 1-Port WLAN-access point for cap rail applications. The EUT provides a menu to choose the channel for data transmission, the connected antenna and the length of the antenna cable. The AP is compatible with 802.11a/b/g, 802.11n Standard. It supports the 2.4 GHz and 5 GHz frequency band.

Number of tested samples: 1
Serial number: VPH1126493
Firmware version: V5.2.0

EUT configuration:

(The CDF filled by the applicant can be viewed at the test laboratory.)

2.5 Variants of the EUT

Variant	Device-Name	WLAN-Interfaces	LAN connector	Antenna Ports	Order numbers
V01	ELN-W1-RJ-E1	1	RJ45	1	6GK5721-1FC00-xxxx 6GK5722-1FC00-xxxx 6GK5761-1FC00-xxxx

2.6 Operation frequency and channel plan

The operating frequency is 5725 MHz to 5850 MHz.

Channel plan:

Channel plan WLAN Standard 802.11a/n, HT20:

Channel	Frequency
149	5745
153	5765
157	5785
161	5805
165	5825

Channel plan WLAN Standard 802.11n, HT40 up and HT40 down mode:

Channel, HT40 up	Frequency	Channel, HT40 down	Frequency
149 up	5755 MHz	153 down	5755 MHz
157 up	5795 MHz	161 down	5795 MHz

Note: The marked frequencies are determined for final testing.

2.7 Transmit operating modes

The module use OFDM modulation and is capable to provide following data rates:

- 802.11a 54, 48, 36, 24, 18, 12, 9, 6 Mbps
- 802.11n HT20, MCS 0 - 15
- 802.11n HT40, MCS 0 - 15

HT20

MCS parameters for mandatory 20 MHz, NSS = 1, NES = 1

MCS Index	Modulation	R	$N_{BPSCS}(i_{SS})$	N_{SD}	N_{SP}	N_{CBPS}	N_{DBPS}	Data rate (Mb/s)	
								800 ns GI	400 ns GI (see NOTE)
0	BPSK	1/2	1	52	4	52	26	6.5	7.2
1	QPSK	1/2	2	52	4	104	52	13.0	14.4
2	QPSK	3/4	2	52	4	104	78	19.5	21.7
3	16-QAM	1/2	4	52	4	208	104	26.0	28.9
4	16-QAM	3/4	4	52	4	208	156	39.0	43.3
5	64-QAM	2/3	6	52	4	312	208	52.0	57.8
6	64-QAM	3/4	6	52	4	312	234	58.5	65.0
7	64-QAM	5/6	6	52	4	312	260	65.0	72.2

FCC ID: LYHELN1V1
IC: 267AA-ELN1V1
MCS parameters for optional 20 MHz, NSS = 2, NES = 1, EQM

MCS Index	Modulation	<i>R</i>	<i>N_{BPSCS}(i_{SS})</i>	<i>N_{SD}</i>	<i>N_{SP}</i>	<i>N_{CBPS}</i>	<i>N_{DBPS}</i>	Data rate (Mb/s)	
								800 ns GI	400 ns GI (see NOTE)
8	BPSK	1/2	1	52	4	104	52	13.0	14.4
9	QPSK	1/2	2	52	4	208	104	26.0	28.9
10	QPSK	3/4	2	52	4	208	156	39.0	43.3
11	16-QAM	1/2	4	52	4	416	208	52.0	57.8
12	16-QAM	3/4	4	52	4	416	312	78.0	86.7
13	64-QAM	2/3	6	52	4	624	416	104.0	115.6
14	64-QAM	3/4	6	52	4	624	468	117.0	130.0
15	64-QAM	5/6	6	52	4	624	520	130.0	144.4

NOTE—The 400 ns GI rate values are rounded to 1 decimal place.

HT40
MCS parameters for optional 40 MHz, NSS = 1, NES = 1

MCS Index	Modulation	<i>R</i>	<i>N_{BPSCS}(i_{SS})</i>	<i>N_{SD}</i>	<i>N_{SP}</i>	<i>N_{CBPS}</i>	<i>N_{DBPS}</i>	Data rate (Mb/s)	
								800 ns GI	400 ns GI
0	BPSK	1/2	1	108	6	108	54	13.5	15.0
1	QPSK	1/2	2	108	6	216	108	27.0	30.0
2	QPSK	3/4	2	108	6	216	162	40.5	45.0
3	16-QAM	1/2	4	108	6	432	216	54.0	60.0
4	16-QAM	3/4	4	108	6	432	324	81.0	90.0
5	64-QAM	2/3	6	108	6	648	432	108.0	120.0
6	64-QAM	3/4	6	108	6	648	486	121.5	135.0
7	64-QAM	5/6	6	108	6	648	540	135.0	150.0

MCS parameters for optional 40 MHz, NSS = 2, NES = 1, EQM

MCS Index	Modulation	<i>R</i>	<i>N_{BPSCS}(i_{SS})</i>	<i>N_{SD}</i>	<i>N_{SP}</i>	<i>N_{CBPS}</i>	<i>N_{DBPS}</i>	Data rate (Mb/s)	
								800 ns GI	400 ns GI
8	BPSK	1/2	1	108	6	216	108	27.0	30.0
9	QPSK	1/2	2	108	6	432	216	54.0	60.0
10	QPSK	3/4	2	108	6	432	324	81.0	90.0
11	16-QAM	1/2	4	108	6	864	432	108.0	120.0
12	16-QAM	3/4	4	108	6	864	648	162.0	180.0
13	64-QAM	2/3	6	108	6	1296	864	216.0	240.0
14	64-QAM	3/4	6	108	6	1296	972	243.0	270.0
15	64-QAM	5/6	6	108	6	1296	1080	270.0	300.0

Symbol	Explanation
N_{SS}	Number of spatial streams
R	Coding rate
N_{BPSC}	Number of coded bits per single carrier (total across spatial streams)
$N_{BPSCS}(i_{SS})$	Number of coded bits per single carrier for each spatial stream, $i_{SS} = 1, \dots, N_{SS}$
N_{SD}	Number of complex data numbers per spatial stream per OFDM symbol
N_{SP}	Number of pilot values per OFDM symbol
N_{CBPS}	Number of coded bits per OFDM symbol
N_{DBPS}	Number of data bits per OFDM symbol
N_{ES}	Number of BCC encoders for the DATA field
N_{TBPS}	Total bits per subcarrier

2.8 Antenna

Antennas intended for use are classified into 3 gain groups:

- Antenna gain group 1: Antennas 0 to 6 dBi
- Antenna gain group 2: Antennas 6 to 9 dBi
- Antenna gain group 3: Antennas 9 to 14 dBi

Number	Manufacturer Number	Characteristic	Model number	Connector	Frequency (GHz)	Gain 5GHz	Cable loss (dB)	effective Gain 5 GHz (dBi)	Group
1	6GK5793-8DK00-0AA0	Directed	ANT 793-8DK	2x N-female	5 GHz	23	8.8	14.2	9-14
2	6GK5793-8DJ00-0AA0	Directed	ANT 793-8DJ	2x N-female	5 GHz	18	4.4	13.6	9-14
3	6GK5793-8DL00-0AA0	Directed	ANT793-8DL	2x N-female	2.4 + 5	14	0	14	9-14
4	6GK5793-8DP00-0AA0	Directed	ANT793-8DP	N-female	5 GHz	13.5	0	13.5	9-14
5	6GK5795-6DC00-0AA0	Wide angle	ANT 795-6DC	N-female	2.4 + 5 GHz	9	0	9	6-9 dBi
6	6GK5793-6DG00-0AA0	Wide angle	ANT793-6DG	2x N-female	5 GHz	9	0	9	6-9 dBi
7	6GK5795-6MN10-0AA6	Omni	ANT 795-6MN	N-female	2.4 + 5 GHz	8	0	8	6-9 dBi
8	6GK5795-6MP00-0AA0	Omni	ANT795-6MP	N-female	2.4 + 5 GHz	7	0	7	6-9 dBi
9	6GK5896-6MM00-0AA0	Omni	ANT896-6MM	QMA-female	2.4 + 5 GHz	7	0	7	6-9 dBi
10	6GK5 793-4MN00-0AA6	Omni	ANT 793-4MN	N-female	5 GHz	6	0	6	0-6 dBi
11	6GK5795-4MD00-0AA3	Omni	ANT795-4MD	N-male	2.4 + 5 GHz	5	0	5	0-6 dBi
12	6GK5795-4MC00-0AA3	Omni	ANT795-4MC	N-male	2.4 + 5 GHz	5	0	5	0-6 dBi
13	6GK5795-4MA00-0AA3	Omni	ANT 795-4MA	R-SMA male	2.4 + 5 GHz	5	0	5	0-6 dBi
14	6GK5793-6MN00-0AA6	Omni	ANT 793-6MN	N-female	5 GHz	5	0	5	0-6 dBi
15	6GK5795-4MX00-0AA0	Omni	ANT795-4MX	N-male	2.4 + 5 GHz	2	0	2	0-6 dBi
16	6XV1875-2D	Omni	IWLAN Rcoax 1/2"	N-female	5 GHz	0	0	0	0-6 dBi

Note: The directed antenna number 2 may be used only with minimum 5 m antenna cable,

Type 6XV 1875-5CH50 with cable loss 4.4 dB at 5.7 GHz.

The directed antenna number 1 may be used only with minimum 10 m antenna cable,

Type 6XV 1875-5CN10 with cable loss 8.8 dB at 5.7 GHz.

2.9 Power supply system utilised

Power supply voltage, V_{nom} : 100 - 120 VAC

2.10 Peripheral devices and interface cables

The following peripheral devices and interface cables are connected during the measurements:

- LAN cable, 3m Model : CAT5
- Power supply cable, 1m Model : Self-made
- - Model : -

2.11 Determination of worst case conditions for final measurement

Measurements are made in all three orthogonal axes and the settings of the EUT are changed to locate at which position and at what setting of the EUT produce the maximum of the emissions.

The tests are carried out in the following frequency band:

5725 - 5850 MHz

Preliminary tests are performed to find the worst-case mode from all possible combinations between available modulations and data rates. The maximum output power depends on used data rate. The EUT is controlled for several tests with special test software used for testing only where continuous signals are needed. For the tests a max possible duty cycle (x) is set.

Following channels and test modes are selected for the final test as listed below:

WLAN	Available channel	Tested channels	Power setting	Modulation	Modulation type	Data rate
802.11a	149 to 165	149, 157, 165	P20, P17, P14	OFDM	BPSK	6 Mbps
802.11n; HT20	149 to 165	149, 157, 165	P20, P17, P14	OFDM	BPSK	MCS0 (BW=20 MHz)
802.11n; HT40	149up to 157up	149up, 157up	P20, P17, P14	OFDM	BPSK	MCS8 (BW=40 MHz)

- TX continuous mode, 802.11a
- TX continuous mode, 802.11n

2.11.1 Test jig

No test jig is used.

2.11.2 Test software

Test software is used to set TX continuous in device service mode. Power, channel and modulation (data rate) setting is done via network interface which is available for professional settings.

3 TEST RESULT SUMMARY

UNII device using the operating band 5725 MHz – 5850 MHz:

FCC Rule Part (new rules)	FCC Rule Part (old rules)	Description	Result
15.407(b)(6)	15.207(a)	AC power line conducted emissions	Not tested
15.407(e)	15.247(a)(2)	6 dB EBW	passed
15.407(a)(3)	15.247(b)(3)	Maximum conducted output power	passed
15.407(b)(4)	15.247(d)	Unwanted emission, radiated	Not tested
15.407(b)(7)	15.247(d)	Unwanted emissions in restricted bands	Not tested
15.407(a)(3)	15.247(e)	Maximum power spectral density	passed
15.35(c)	15.35(c)	Pulsed operation	Not tested
15.203	15.247(b)(4)	Antenna requirement	passed
15.407(g)	-	Transmitter frequency stability	Not tested
KDB 789033	-	99 % Bandwidth	passed

RSS Rule Part (new rules)	RSS Rule Part (old rules)	Description	Result
RSS-Gen, 8.8	RSS Gen, 7.2.4.	AC power line conducted emissions	Not tested
RSS247, 6.2.4(1)	RSS210, A8.2(a)	6 dB EBW	passed
RSS247, 6.2.4(1)	RSS-210, A8.4(4)	Maximum conducted output power	passed
RSS247, 6.2.4(2)	RSS-210, A8.5	Unwanted emission, radiated	Not tested
RSS-Gen, 8.9	RSS-Gen, 7.2.2	Unwanted emissions in restricted bands	Not tested
RSS247, 6.2.4(1)	RSS-210, A8.2(b)	Maximum power spectral density	passed
RSS-Gen, 6.10	RSS-Gen, 4.5	Pulsed operation	Not tested
RSS-Gen, 6.6	RSS-Gen, 7.1.2	Antenna requirement	passed
RSS-Gen, 6.11	RSS-Gen, 7.2.6	Transmitter frequency stability	Not tested
RSS-Gen, 6.6	RSS-Gen, 4.6.1	99 % Bandwidth	passed
RSS 102, 2.5.2	RSS 102, 2.5.2	MPE	Not tested

The mentioned new RSS Rule Parts in the above table are related to:

RSS Gen, Issue 4, November 2014

RSS 247, Issue 1, May 2015

RSS 102, Issue 4, March 2015

The mentioned old RSS Rule Parts in the above table are related to:

RSS Gen, Issue 3, December 2010

RSS 210, Issue 8, December 2010

RSS 102, Issue 4, March 2010

3.1 Final assessment

The equipment under test fulfills the EMI requirements cited in clause 1 test standards.

Date of receipt of test sample : acc. to storage records

Testing commenced on : 13 April 2016

Testing concluded on : 29 April 2016

Checked by:

Tested by:

Klaus Gegenfurtner
Teamleader Radio

Hermann Smetana
Radio Team

4 TEST ENVIRONMENT

4.1 Address of the test laboratory

CSA Group Bayern GmbH
Ohmstrasse 1-4
94342 STRASSKIRCHEN
GERMANY

4.2 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature: 15-35 °C

Humidity: 30-60 %

Atmospheric pressure: 86-106 kPa

4.3 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16-4-2 „Uncertainties, statistics and limit modelling – Uncertainty in EMC measurements“ and is documented in the quality system acc. to DIN EN ISO/IEC 17025. For all measurements shown in this report, the measurement uncertainty of the test laboratory, mikes-testingpartners gmbh, is below the measurement uncertainty as defined by CISPR. Therefore, no special measures must be taken into consideration with regard to the limits according to CISPR. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Measurement uncertainty table	
Measurement output power, conducted	± 1.5 dB
Measurement PSD, conducted	± 1.5 dB
Measurement spurious emissions, conducted	± 3.0 dB
Measurement spurious emissions, radiated	± 6.0 dB
Measurement frequency	$\pm 1 \times 10^{-6}$

4.1 Measurement protocol for FCC and ISED

4.1.1 General information

4.1.1.1 Test methodology

Conducted and radiated disturbance testing is performed according to the procedures set out by the International Special Committee on Radio Interference (CISPR) Publication 22, European Standard EN 55022 as shown under section 1 of this report.

The open area test site is a listed under the Canadian Test-Sites File-No:

IC 3009A-1

In compliance with RSS 247 testing for RSS compliance may be achieved by following the procedures set out in ANSI C63.10 and applying the CISPR 22 limits.

4.1.1.2 Justification

The equipment under test (EUT) is configured in a typical user arrangement in accordance with the manufacturer's instructions. A cable is connected to each available port and either terminated with a peripheral using the appropriate impedance characteristic or left without termination. Where appropriate, cables are manually manipulated with respect to each other thus obtaining maximum disturbances from the unit.

4.1.1.3 Details of test procedures

The test methods used comply with CISPR Publication 22, EN 55022 - "Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement" and with ANSI C63.10 - "American national standard of procedures testing of unlicensed wireless devices". In compliance with 47 CFR Part 15 Subpart A, Section 15.38 testing for FCC compliance may be achieved by following the procedures set out in ANSI C63.10 and applying the CISPR 22 limits.

5 TEST CONDITIONS AND RESULTS

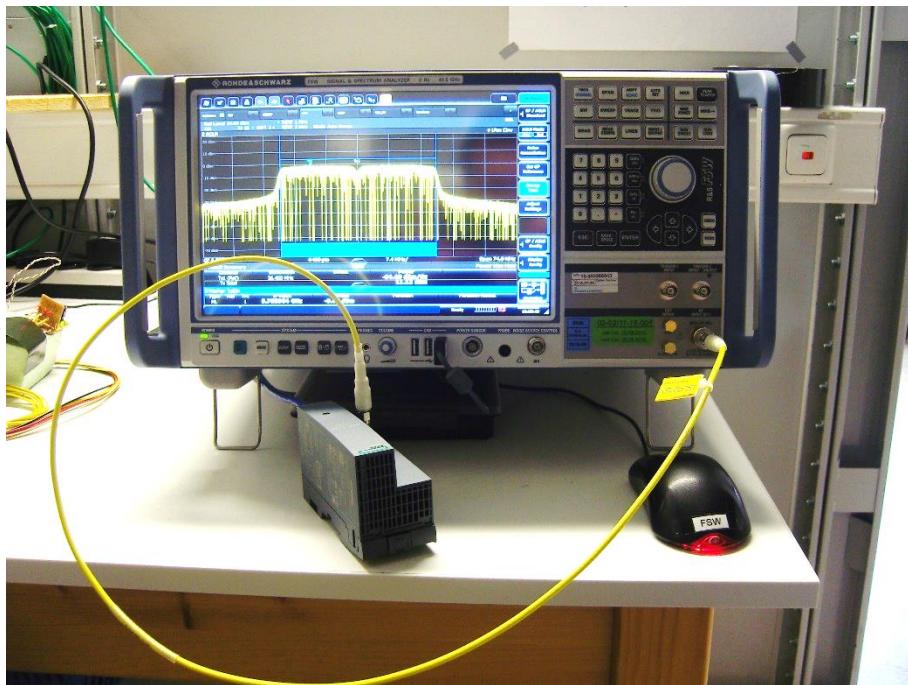
5.1 AC power line conducted emissions

For test instruments and accessories used see section 6 Part **A 4**.

5.1.1 Description of the test location

Test location: NONE

Remarks: This measurement is already documented in the test report T35625-00-05HS.


5.2 Emission bandwidth and occupied bandwidth

For test instruments and accessories used see section 6 Part **MB**.

5.2.1 Description of the test location

Test location: AREA4

5.2.2 Photo documentation of the test set-up

5.2.3 Applicable standard

According to FCC Part 15, Section 15.407(e):

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

5.2.4 Description of Measurement

The minimum 6 dB bandwidth is measured conducted using a spectrum analyser with n-dB down function if applicable otherwise the 6 dB bandwidth is measured manually and following the procedure set out in ANSI C63.10, item 6.9.2 or KDB 789033 D02, item C.2. The bandwidth is measured at Port 1.

Spectrum analyser settings 6 dB bandwidth:

RBW: 100 kHz, VBW: 300 kHz, Detector: Peak, Trace mode: max hold;

Spectrum analyser settings occupied bandwidth:

For 20 MHz channels:

RBW: 300 kHz, VBW: 1 MHz, Detector: Peak, Trace mode: max hold;

For 40 MHz channels:

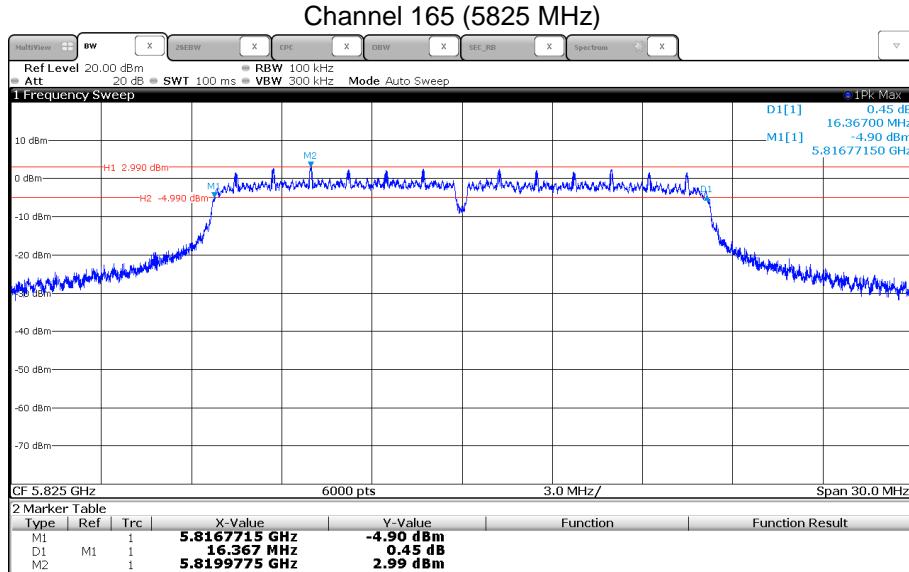
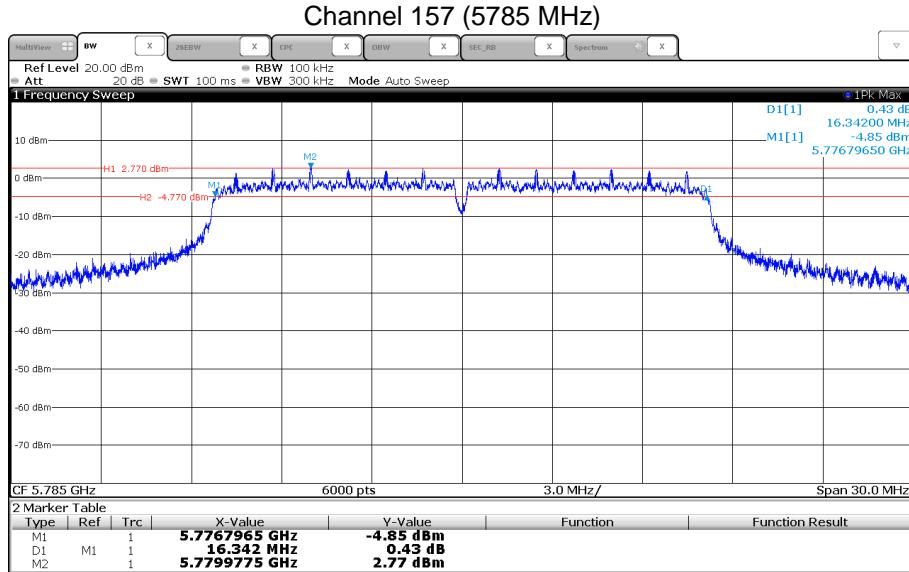
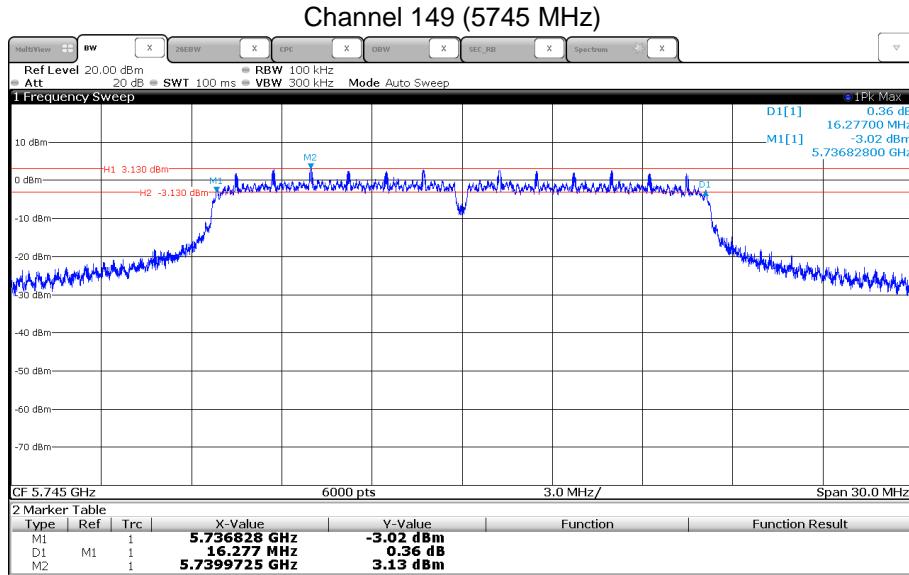
RBW: 500 kHz, VBW: 2 MHz, Detector: Peak, Trace mode: max hold;

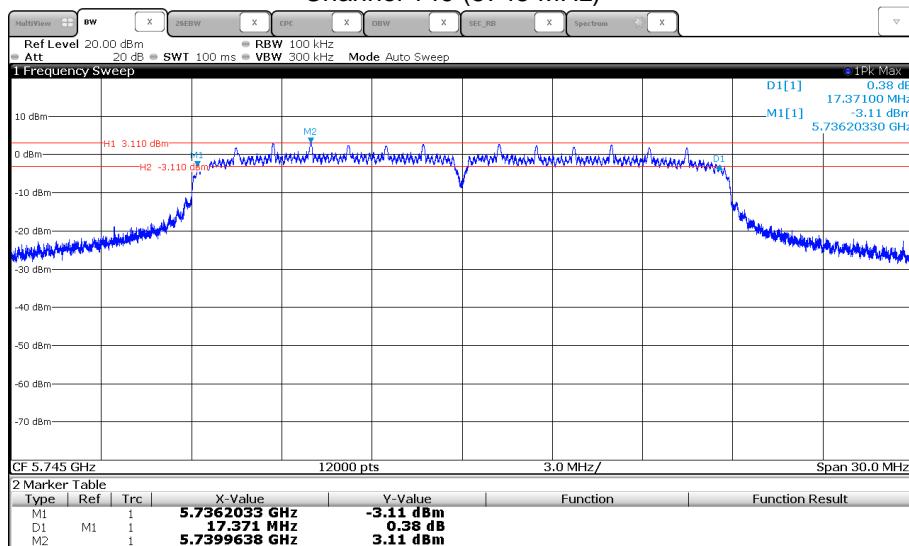
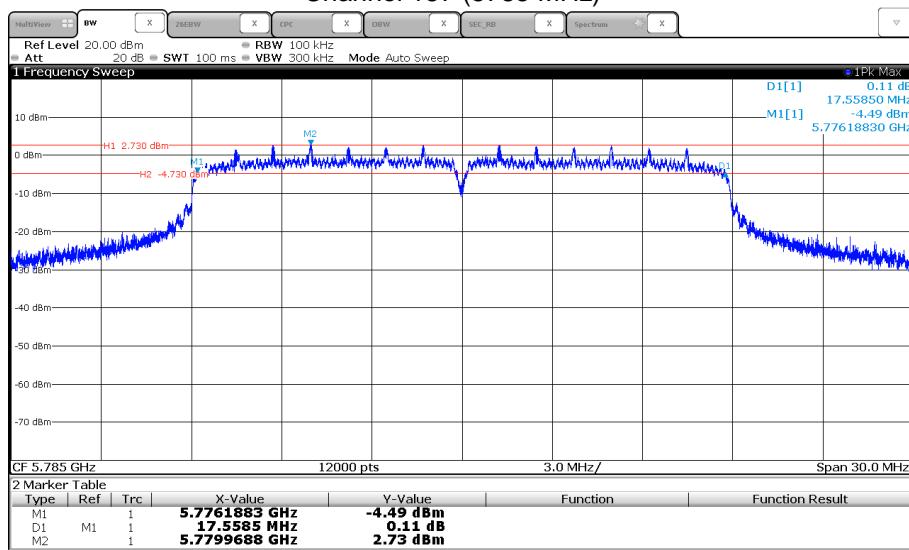
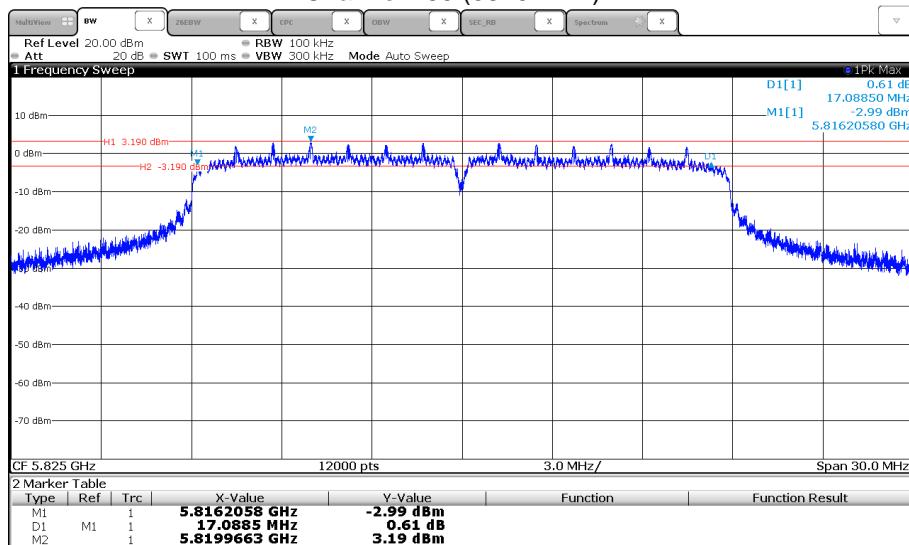
5.2.5 Test result
802.11a mode, Port1:

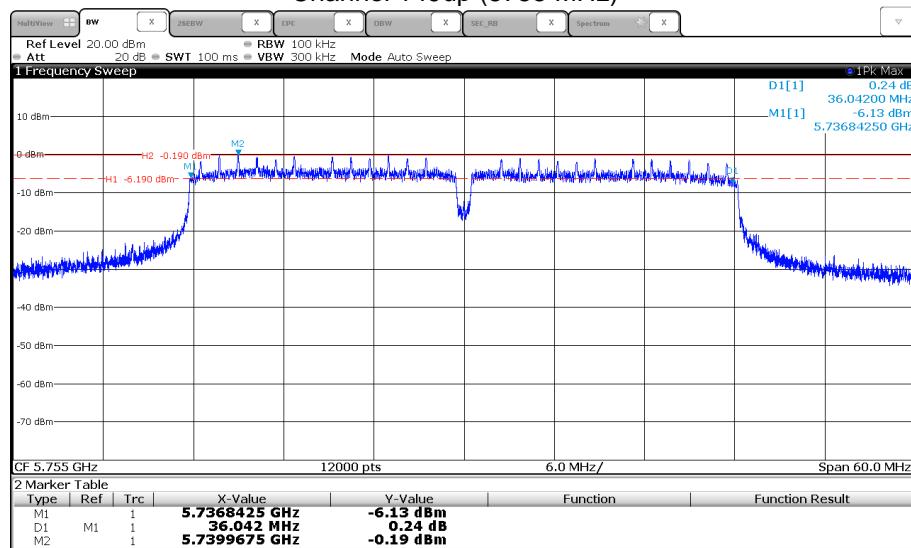
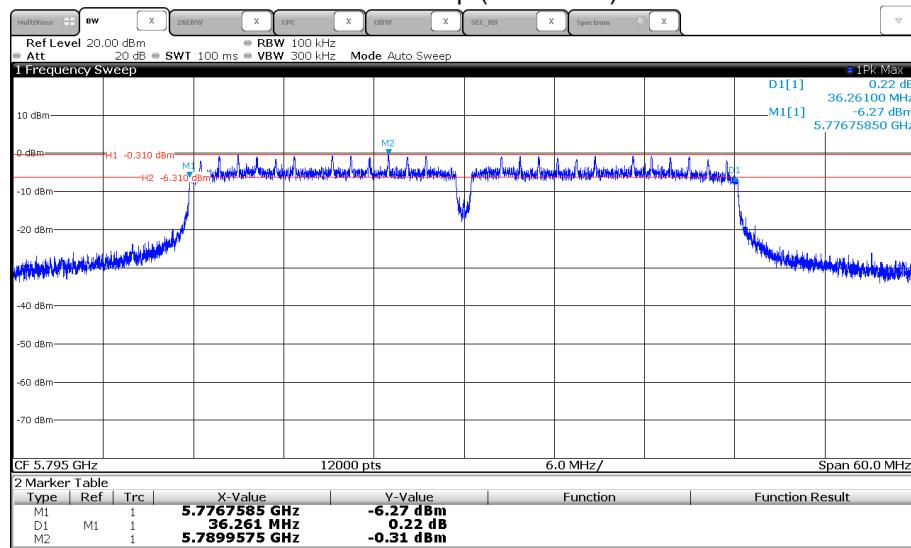
Channel	Centre frequency	6 dB bandwidth	Minimum 6 dB limit	99% OBW
	(MHz)	(MHz)	(MHz)	(MHz)
149	5745	16.277	0.5	17.205
157	5785	16.342	0.5	17.290
165	5825	16.367	0.5	17.090

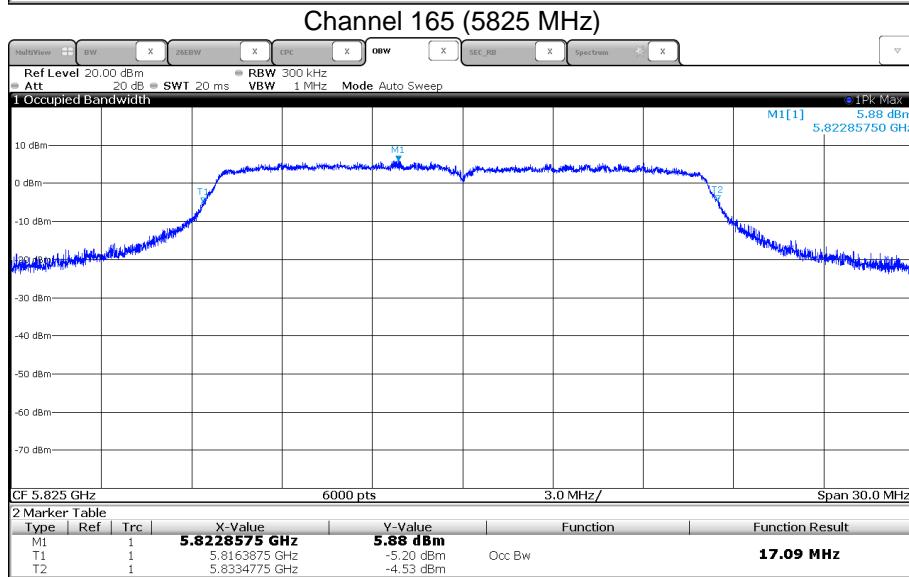
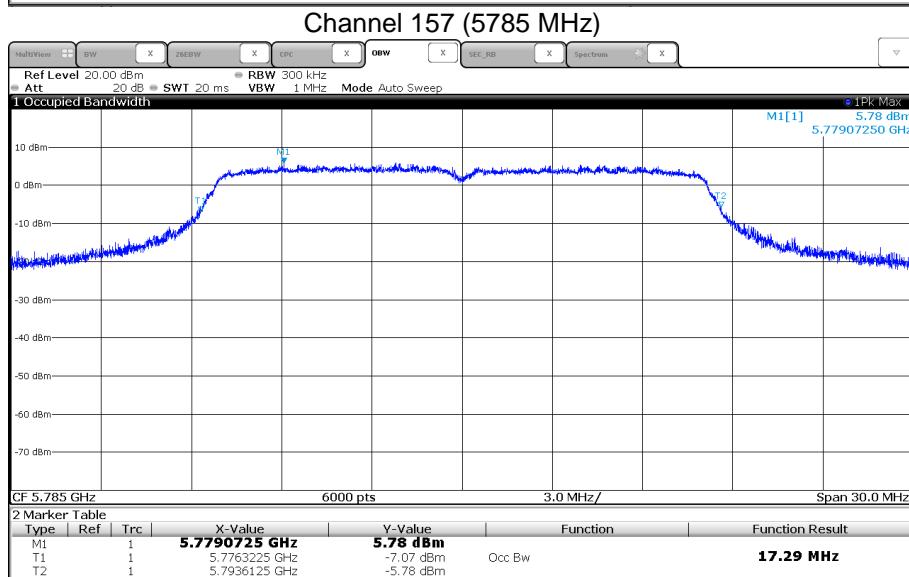
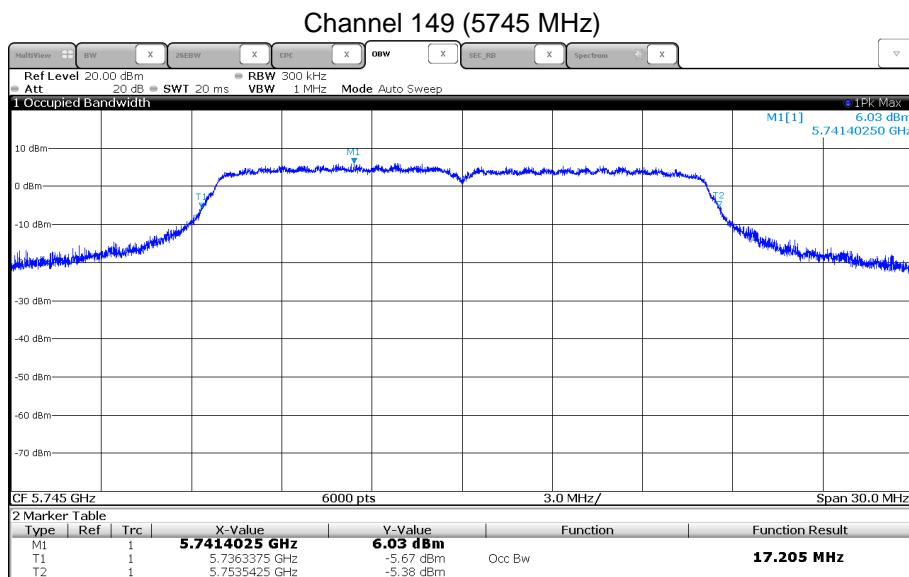
802.11n mode, HT 20, Port1:

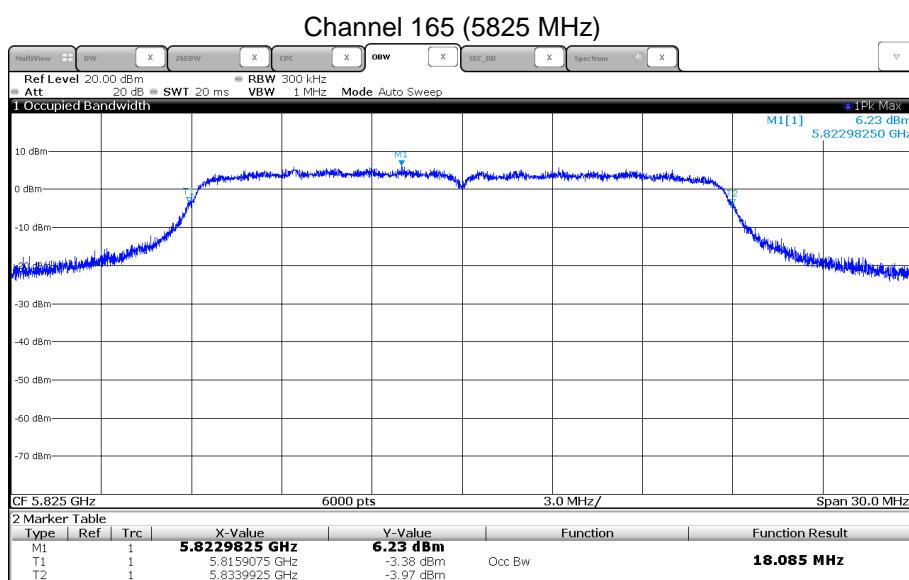
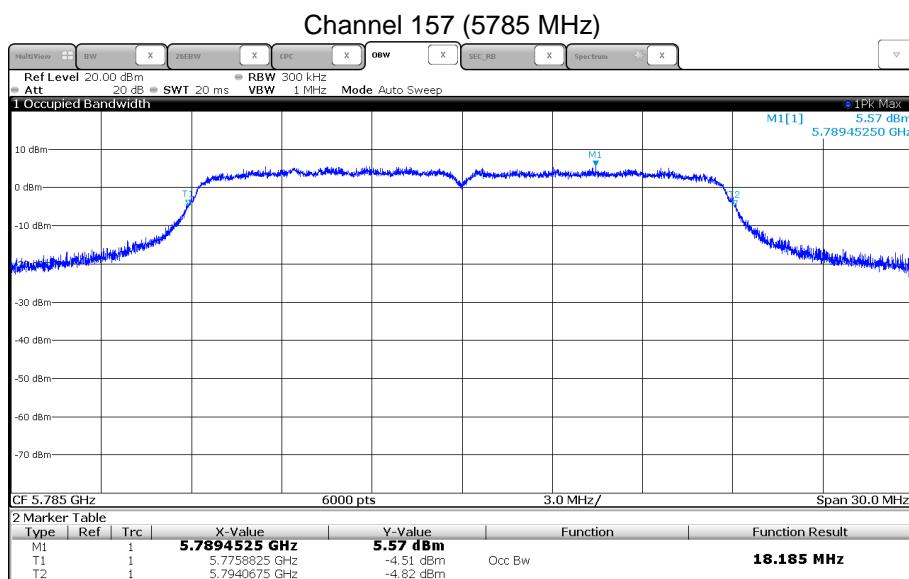
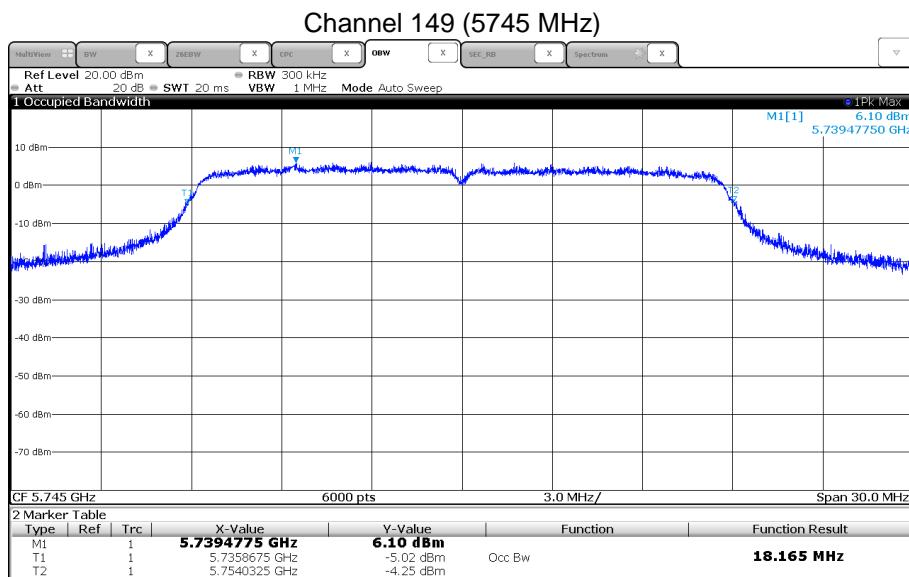
Channel	Centre frequency	6 dB bandwidth	Minimum 6 dB limit	99% OBW
	(MHz)	(MHz)	(MHz)	(MHz)
149	5745	17.371	0.5	18.165
157	5785	17.558	0.5	18.185
165	5825	17.089	0.5	18.085

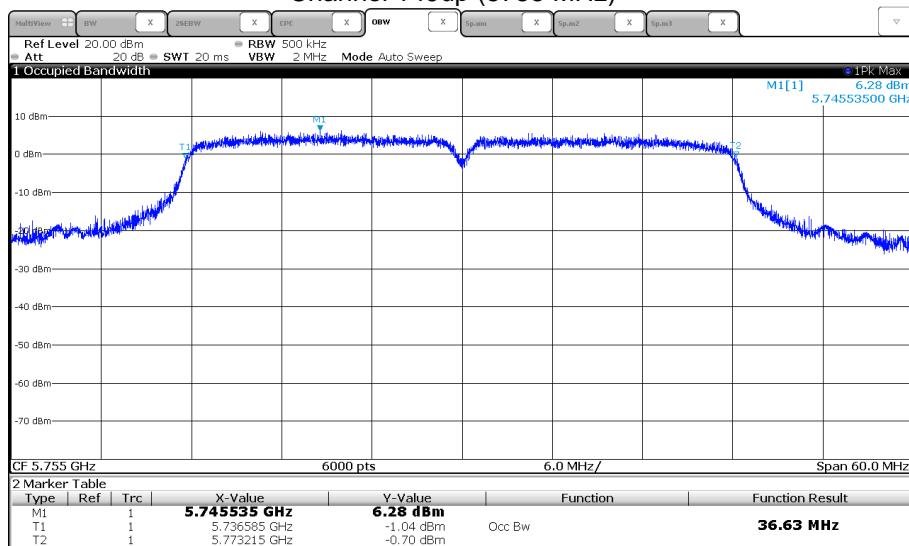
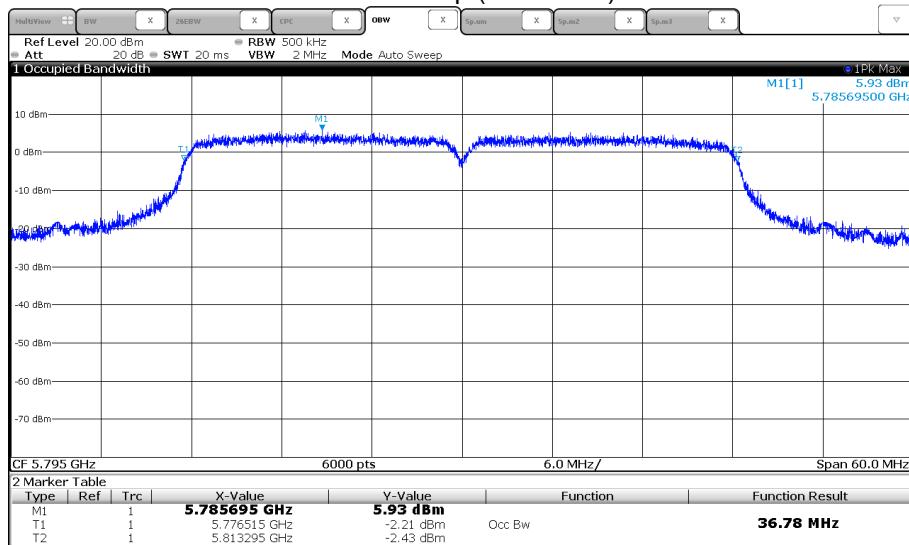



802.11n mode, HT 40, Port1:




Channel	Centre frequency	6 dB bandwidth	Minimum 6 dB limit	99% OBW
	(MHz)	(MHz)	(MHz)	(MHz)
149up	5755	36.042	0.5	36.630
157up	5795	36.261	0.5	36.780



Note: There is no limit for the OBW 99 %.




The requirements are **FULFILLED**.




Remarks: For detailed test results please refer to following test protocols.



5.2.6 Test protocols emission bandwidth 6 dB
802.11a:

HT20:
Channel 149 (5745 MHz)

Channel 157 (5785 MHz)

Channel 165 (5825 MHz)

HT40:
Channel 149up (5755 MHz)

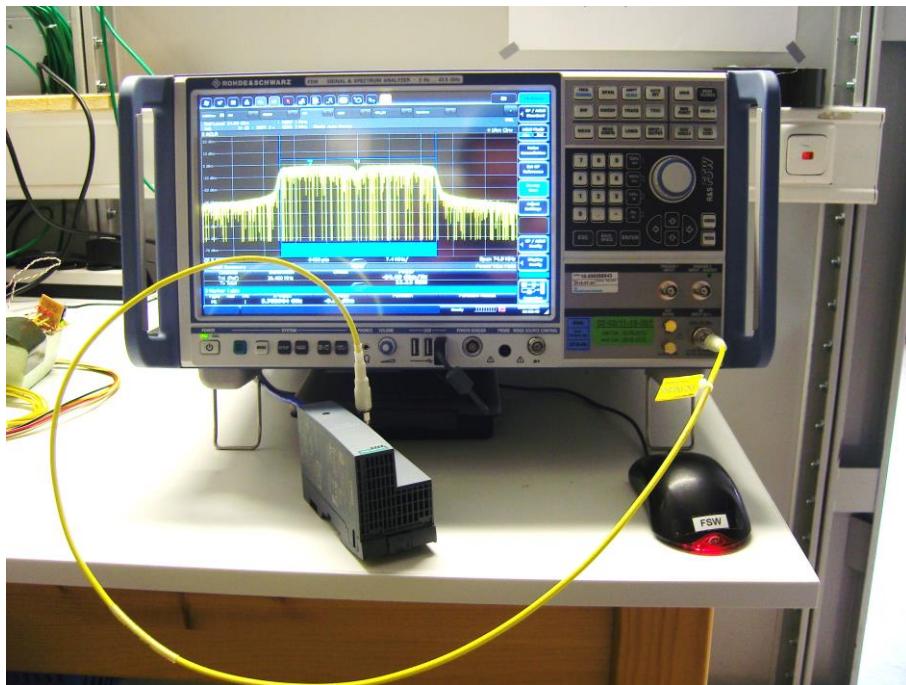
Channel 157up (5795 MHz)

5.2.7 Test protocols OBW 99 %
802.11a:

HT20:

HT40:
Channel 149up (5755 MHz)

Channel 157up (5795 MHz)


5.3 Maximum conducted output power

For test instruments and accessories used see section 6 Part **CPC 3**.

5.3.1 Description of the test location

Test location: AREA 4

5.3.2 Photo documentation of the test set-up

5.3.3 Applicable standard

According to FCC Part 15, Section 15.407(a)(3):

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

5.3.4 Description of Measurement

The maximum conducted output power is measured using a spectrum analyser with the function "integrated band power measurement" following the procedure set out in KDB 789033 D02, item C f) Method SA-3. The EUT is set in TX continuous mode while measuring. The resulting values are listed in the following tables.

Spectrum analyser settings:

RBW: 1 MHz, VBW: 3 MHz, Detector: RMS (power averaging), Trace mode: max hold;
Number of points: 6401, Sweep time: see table, Band power function;

Modulation	Burst time T (ms)	Sweep points	Max sweep time analyser (s)
802.11a	2.069	6401	13.2
802.11n, HT20	0.893	6401	5.7
802.11n, HT40	0.321	6401	2.1

FCC ID: LYHELN1V1
IC: 267AA-ELN1V1

5.3.5 Test result

Raw data as representative for all one Port measurements, used for 802.11a:

	A1[P14] (dBm)	A1 [P17] (dBm)	A1 [P20] (dBm)
CH149	12.68	13.21	13.16
CH157	12.21	13.06	13.00
CH165	12.24	13.07	13.02

Calculation of the total output power:

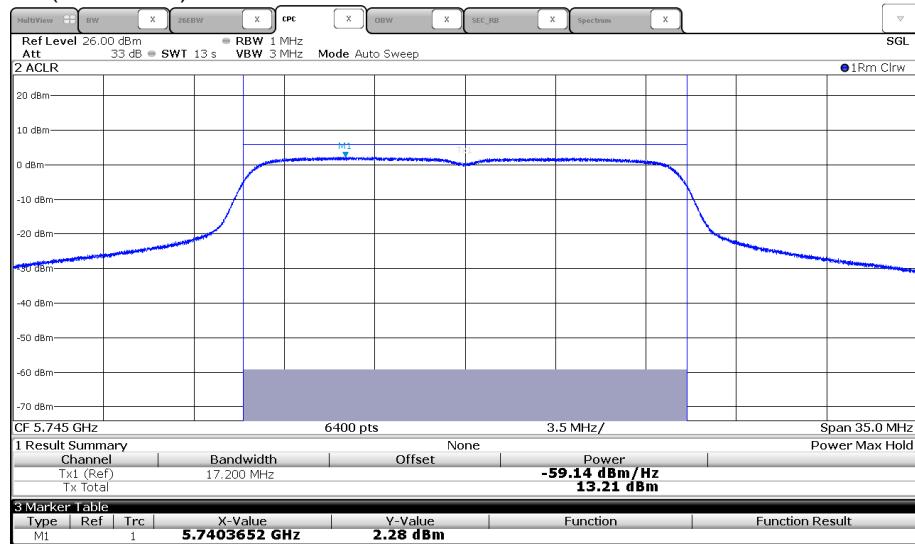
802.11a, 6 Mbps, 1TX		Test results conducted				
Port 1		A[P14] (dBm)	A [P17] (dBm)	A [P20] (dBm)	Limit (dBm)	Min Margin (dB)
Lowest						
T_{nom}	V_{nom}	13.8	14.3	14.3	30.0	-15.7
Middle						
T_{nom}	V_{nom}	13.3	14.2	14.1	30.0	-15.8
Highest						
T_{nom}	V_{nom}	13.3	14.2	14.1	30.0	-15.8

Note. An insertion loss of 1.1 dB at 5800 MHz for measurement cable and switch is taken into account.

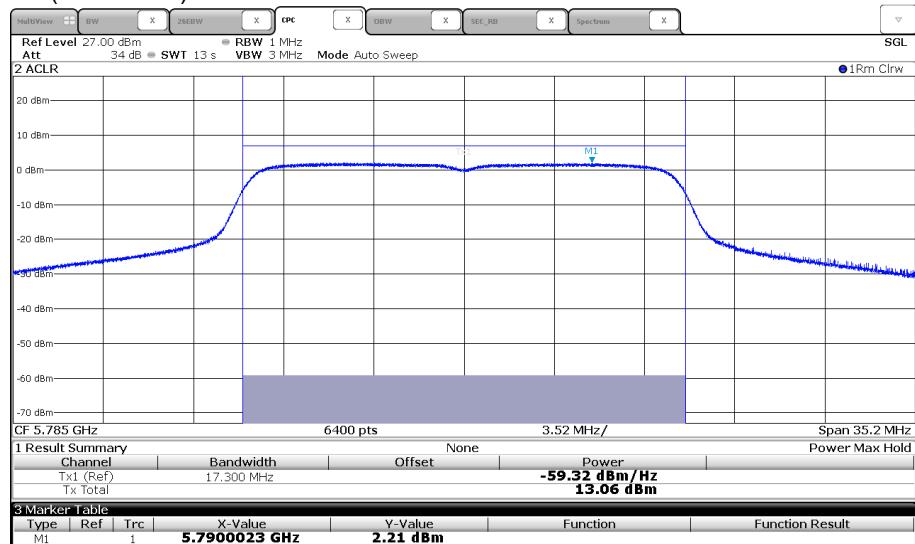
HT20, MCS0, 1TX		Test results conducted				
Port 1		A[P14] (dBm)	A [P17] (dBm)	A [P20] (dBm)	Limit (dBm)	Min Margin (dB)
Lowest frequency: CH149						
T_{nom}	V_{nom}	13.1	13.8	13.8	30.0	-16.2
Middle frequency: CH157						
T_{nom}	V_{nom}	12.6	13.5	13.4	30.0	-16.6
Highest frequency: CH165						
T_{nom}	V_{nom}	12.8	13.6	13.5	30.0	-16.4

HT40, MCS8, 1TX		Test results conducted				
Port 1		A[P14] (dBm)	A [P17] (dBm)	A [P20] (dBm)	Limit (dBm)	Min Margin (dB)
Lowest frequency: CH149up						
T_{nom}	V_{nom}	11.5	12.3	12.3	30.0	-17.7
Highest frequency: CH157up						
T_{nom}	V_{nom}	11.7	12.2	12.2	30.0	-17.8

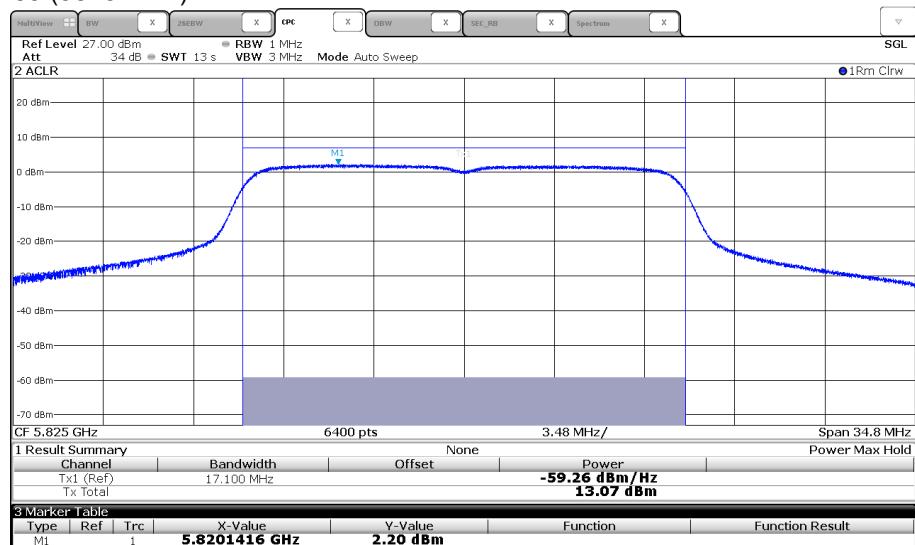
Maximum conducted output power limit according to FCC Part 15, Section 15.407(a)(3):

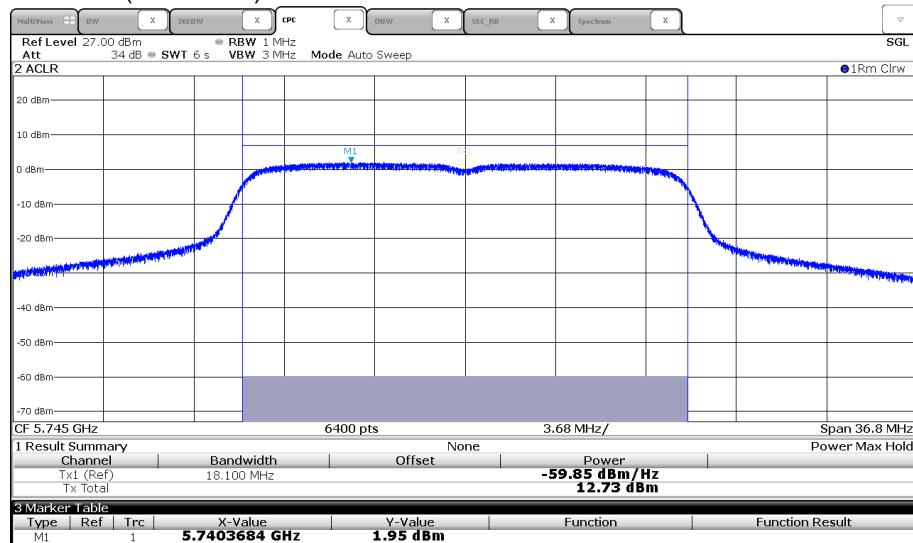
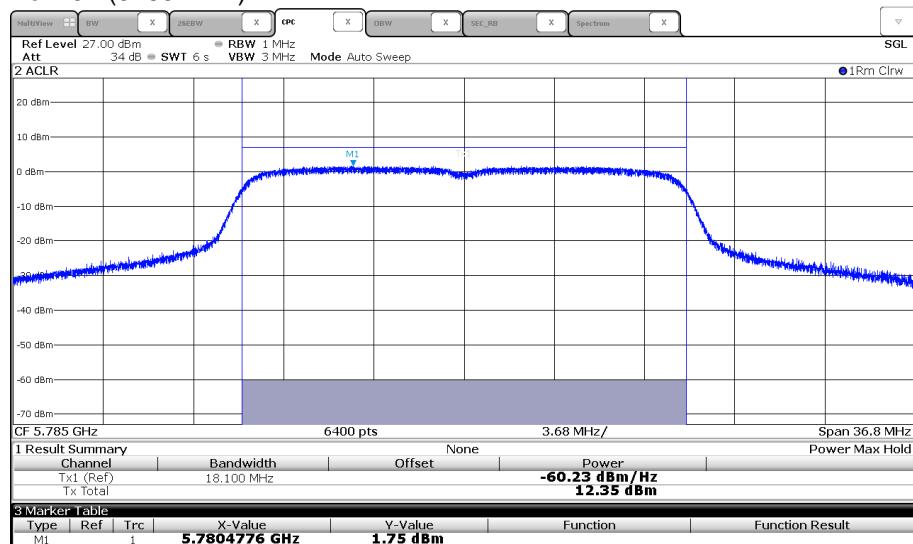
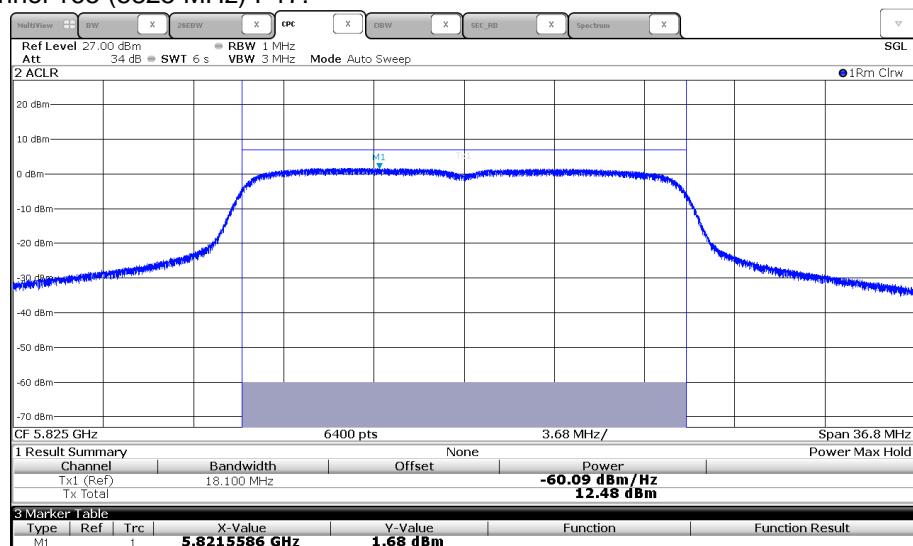

Frequency (MHz)	Maximum conducted power limit	
	(dBm)	(Watt)
5725 - 5850	30	1.0

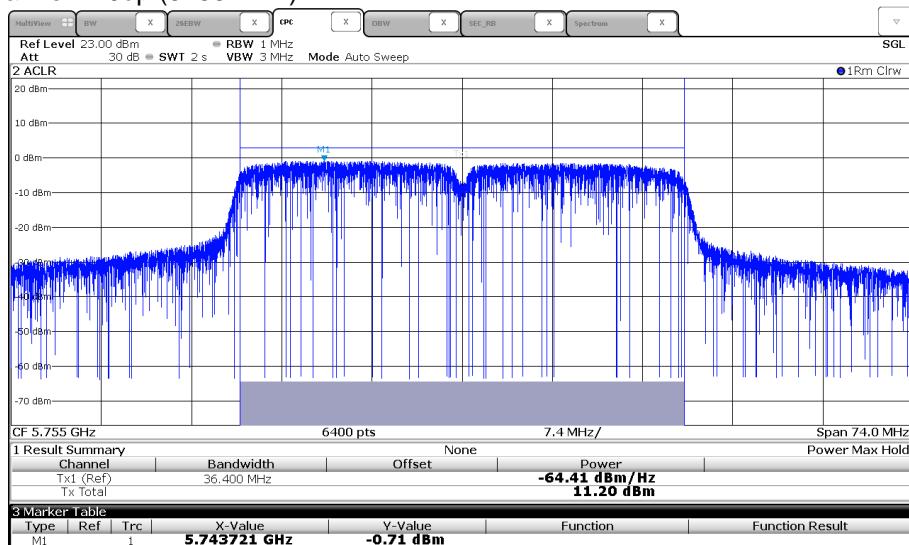
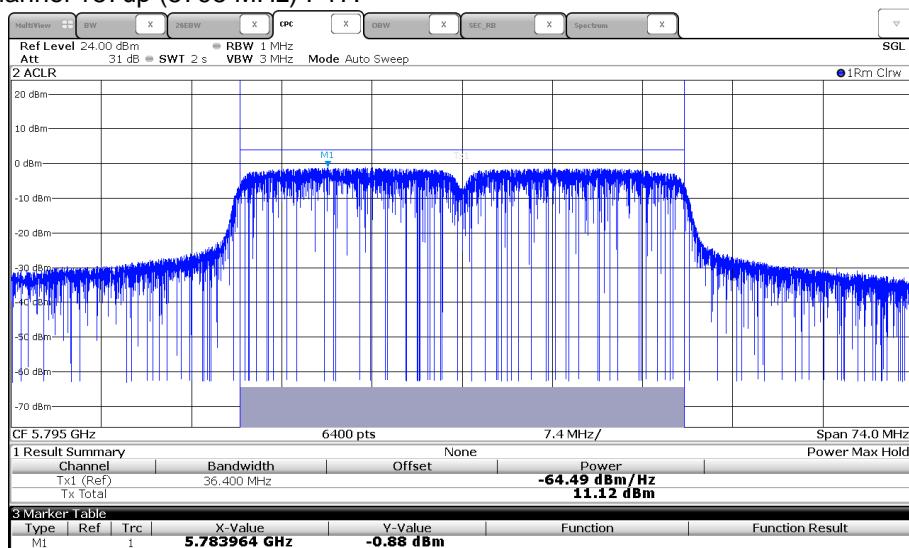
The requirements are **FULFILLED**.


Remarks: For detailed test results please see the following test protocols.

5.3.6 Test protocols


802.11a, Channel 149 (5745 MHz) P17:



802.11a, Channel 157 (5785 MHz) P17:

802.11a, Channel 165 (5825 MHz) P17:

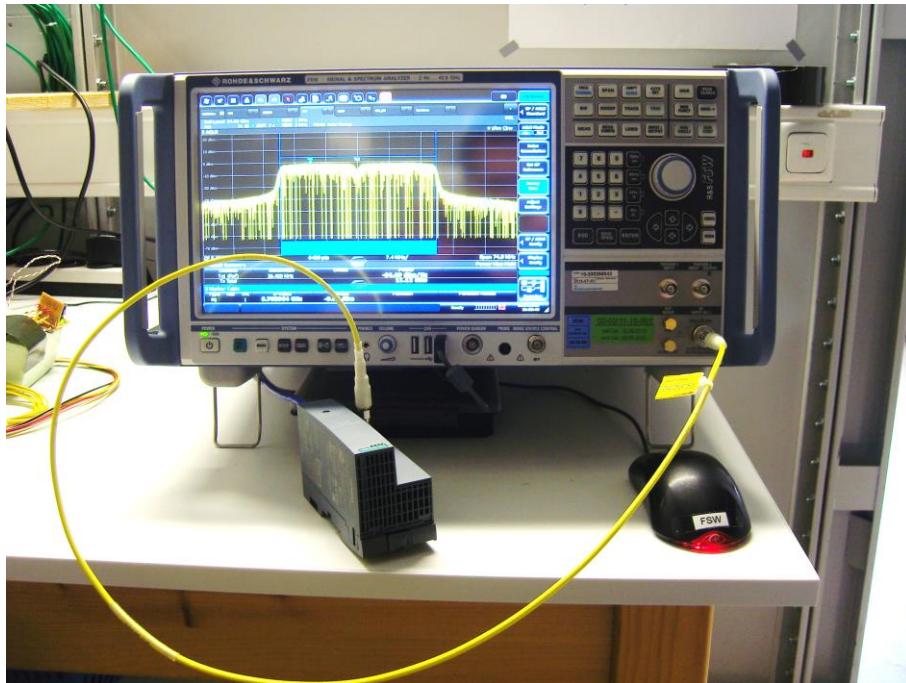
802.11n HT20, Channel 149 (5745 MHz) P17:

802.11 HT20, Channel 157 (5785 MHz) P17:

802.11 HT20, Channel 165 (5825 MHz) P17:

802.11n, HT40, Channel 149up (5755 MHz) P17:

802.11n, HT40, Channel 157up (5795 MHz) P17:


5.4 Maximum power spectral density

For test instruments and accessories used see section 6 Part **CPC 3**.

5.4.1 Description of the test location

Test location: AREA 4

5.4.2 Photo documentation of the test set-up

5.4.3 Applicable standard

According to FCC Part 15, Section 15.407(e):

The maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.

5.4.4 Description of Measurement

The maximum conducted PSD is measured using a spectrum analyser with the function "integrated band power measurement" following the procedure set out in KDB 789033 D02, item F. Therefore the PSD is measured the same way. The "integrated band power measurement" is related to PSD (dBm/Hz). The EUT is set in TX continuous mode while measuring. The values are corrected with the conversion factor Hz to 500 kHz, 57.0 dB. The resulting values are listed in the following tables. The insertion loss of cable and switch is taken into account with 1.1 dB at 5.8 GHz.

Spectrum analyser settings:

RBW: 1 MHz, VBW: 3 MHz, Detector: RMS (power averaging), Trace mode: max hold;
Number of points: 6401, Sweep time: see table

Modulation	Burst time T	Sweep points	Max sweep time analyser
	(ms)		(s)
802.11a	2.069	6401	13.2
802.11n, HT20	0.893	6401	5.7
802.11n, HT40	0.321	6401	2.1

5.4.5 Test result

Raw data as representative for all one Port measurements, used for 802.11a:

	PD1[P14] (dBm/Hz)	PD1 [P17] (dBm/Hz)	PD1 [P20] (dBm/Hz)
CH149	-59.68	-59.14	-59.20
CH157	-60.18	-59.32	-59.35
CH165	-60.09	-59.26	-59.32

Calculation of the total output power:

802.11a, 6 Mbps, 1TX		Test results conducted				
Port 1		PD[P14] (dBm/500kHz)	PD [P17] (dBm/500kHz)	PD [P20] (dBm/500kHz)	Limit (dBm/500kHz)	Margin (dB)
Lowest						
T_{nom}	V_{nom}	-1.6	-1.0	-1.1	30.0	-31.0
Middle						
T_{nom}	V_{nom}	-2.1	-1.2	-1.3	30.0	-31.3
Highest						
T_{nom}	V_{nom}	-2.0	-1.2	-1.2	30.0	-31.2

Note. An insertion loss of 1.1 dB at 5800 MHz for measurement cable and switch is taken into account.

HT20, MCS0, 1TX		Test results conducted				
Port 1		PD[P14] (dBm/500kHz)	PD [P17] (dBm/500kHz)	PD [P20] (dBm/500kHz)	Limit (dBm/500kHz)	Margin (dB)
Lowest frequency: CH149						
T_{nom}	V_{nom}	-2.5	-1.8	-1.8	30.0	-31.8
Middle frequency: CH157						
T_{nom}	V_{nom}	-3.0	-2.1	-2.2	30.0	-32.2
Highest frequency: CH165						
T_{nom}	V_{nom}	-2.8	-2.0	-2.0	30.0	-32.0

HT40, MCS8, 1TX		Test results conducted				
Port 1		PD[P14] (dBm/500kHz)	PD [P17] (dBm/500kHz)	PD [P20] (dBm/500kHz)	Limit (dBm/500kHz)	Margin (dB)
Lowest frequency: CH149up						
T_{nom}	V_{nom}	-7.1	-6.3	-6.4	30.0	-36.4
Middle frequency: CH157up						
T_{nom}	V_{nom}	-6.9	-6.4	-6.5	30.0	-36.5

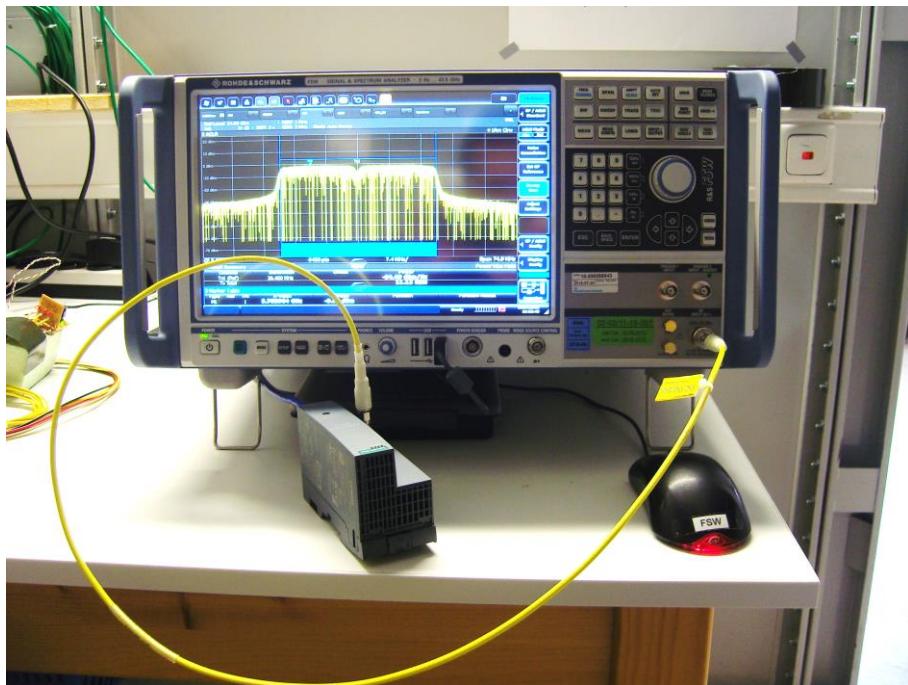
Power spectral density limit according to FCC Part 15, Section 15.407(e):

The maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.

Frequency (MHz)	Power spectral density limit
	(dBm/500 kHz)
5725 - 5850	30

The requirements are **FULFILLED**.

Remarks: For detailed test results please see the test protocols under 5.3.6.


5.5 Defacto limit

For test instruments and accessories used see section 6 Part **CPC 3**.

5.5.1 Description of the test location

Test location: AREA 4

5.5.2 Photo documentation of the test set-up

5.5.3 Applicable standard

According to FCC Part 15, Section 15.407(a)(3):

If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.5.4 Test result

The amount of reduction is calculated using the following formula: $P_{out} = 30 - (G_x - 6)$;

Where

P_{out} = maximum conducted output power

G_x = antenna gain of the applied antenna

FCC ID: LYHELN1V1
IC: 267AA-ELN1V1

Output power:

Antenna	Gx	Cond. limit	G	Amax	Limit P _{out}	Reduction	P set
	(dBi)	(dBm)	(dBi)	(dBm)	(dBm)	(dB)	5 GHz
ANT 793-8DK	14.2	30.0	6.0	13.8	21.8	0.0	P14
ANT 793-8DJ	13.6	30.0	6.0	13.8	22.4	0.0	P14
ANT793-8DL	14.0	30.0	6.0	13.8	22.0	0.0	P14
ANT793-8DP	13.5	30.0	6.0	13.8	22.5	0.0	P14

Antenna	Gx	Cond. limit	G	Amax	Limit P _{out}	Reduction	P set
	(dBi)	(dBm)	(dBi)	(dBm)	(dBm)	(dB)	5 GHz
ANT 795-6DC	9.0	30.0	6.0	14.3	27.0	0.0	P17
ANT793-6DG	9.0	30.0	6.0	14.3	27.0	0.0	P17
ANT 795-6MN	8.0	30.0	6.0	14.3	28.0	0.0	P17
ANT795-6MP	7.0	30.0	6.0	14.3	29.0	0.0	P17
ANT896-6MM	7.0	30.0	6.0	14.3	29.0	0.0	P17

PSD:

Antenna	Gx	Cond. limit	G	PSDmax	Limit P _{out}	Reduction	P set
	(dBi)	(dBm/500 kHz)	(dBi)	(dBm/500 kHz)	(dBm/500 kHz)	(dB)	5 GHz
ANT 793-8DK	14.2	30.0	6.0	-1.6	21.8	0.0	P14
ANT 793-8DJ	13.6	30.0	6.0	-1.6	22.4	0.0	P14
ANT793-8DL	14.0	30.0	6.0	-1.6	22.0	0.0	P14
ANT793-8DP	13.5	30.0	6.0	-1.6	22.5	0.0	P14

Antenna	Gx	Cond. limit	G	PSDmax	Limit P _{out}	Reduction	P set
	(dBi)	(dBm/500 kHz)	(dBi)	(dBm/500 kHz)	(dBm/500 kHz)	(dB)	5 GHz
ANT 795-6DC	9.0	30.0	6.0	-1.1	27.0	0.0	P17
ANT793-6DG	9.0	30.0	6.0	-1.1	27.0	0.0	P17
ANT 795-6MN	8.0	30.0	6.0	-1.1	28.0	0.0	P17
ANT795-6MP	7.0	30.0	6.0	-1.1	29.0	0.0	P17
ANT896-6MM	7.0	30.0	6.0	-1.1	29.0	0.0	P17

Defacto limit according to FCC Part 15, Section 15.407(a)(3):

If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Frequency (MHz)	Maximum EIRP limit	
	(dBm)	(Watt)
5725 - 5850	36	4.0

Frequency (MHz)	Maximum radiated PSD limit	
	(dBm/500 kHz)	(Watt/500 kHz)
5725 - 5850	36	4.0

The requirements are **FULFILLED**.

Remarks: The used antennas requires neither reduction of the output power nor PSD.

5.6 Unwanted emissions

For test instruments and accessories used see section 6 Part **SER 1, 2 and SER 3**.

5.6.1 Description of the test location

Test location: NONE

Remarks: This measurement is already documented in the test report T35625-00-05HS.

Antenna application

5.6.2 Applicable standard

According to FCC Part 15C, Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit that broken antennas can be replaced by the user, but the use of a standard antenna jack is prohibited.

The EUT use the listed antennas. The equipment connector is SMA-R.

Remarks:

6 USED TEST EQUIPMENT AND ACCESSORIES

All test instruments used are calibrated and verified regularly. The calibration history is available on request.

Test ID	Model Type	Equipment No.	Next Calib.	Last Calib.	Next Verif.	Next Verif.
CPC 3	FSW43 KMS102-1 m	02-02/11-15-001 02-02/50-11-015	05/08/2016	05/08/2015		
MB	FSW43 KMS102-1 m	02-02/11-15-001 02-02/50-11-015	05/08/2016	05/08/2015		