

Elliott Laboratories Inc.
www.elliottlabs.com

684 West Maude Avenue
Sunnyvale, CA 94086-3518
408-245-7800 Phone
408-245-3499 Fax

May 30, 2000

Chief, Equipment Authorization Branch,
Authorization and Evaluation Division,
Office of Engineering and Technology
FEDERAL COMMUNICATIONS COMMISSION
P.O. Box 358315
Pittsburgh, PA 15251-5315

Gentlemen:

The enclosed documents constitute a formal submittal and application for a Grant of Equipment Authorization pursuant to Subpart C of Part 15 of FCC Rules (CFR 47) regarding intentional radiators. Data within this report demonstrates that the equipment tested complies with the FCC limits for intentional radiators.

Elliott Laboratories, as duly authorized agent prepared this submittal. A copy of the letter of our appointment as agent is enclosed.

If there are any questions or if further information is needed, please contact Elliott Laboratories for assistance.

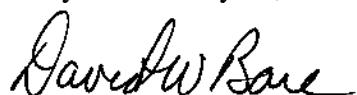
Sincerely,

David W. Bare
Principal Engineer

DWB/dmg

Enclosures: Agent Authorization Letter
 Emissions Test Report with Exhibits

*Electromagnetic Emissions Test Report
and
Application for Grant of Equipment Authorization
pursuant to
FCC Part 15, Subpart C Specifications for an
Intentional Radiator on the
Toy Biz Inc.
Model: Baby I Know*


FCC ID: LXV 33495

GRANTEE: Toy Biz Inc.
685 Third Avenue
New York City, NY 10011

TEST SITE: Elliott Laboratories, Inc.
684 W. Maude Avenue
Sunnyvale, CA 94086

REPORT DATE: May 30, 2000

FINAL TEST DATE: May 24 and May 26, 2000

AUTHORIZED SIGNATORY:

David W. Bare
Principal Engineer

This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

TABLE OF CONTENTS

COVER PAGE	1
TABLE OF CONTENTS	2
SCOPE	3
OBJECTIVE	3
STATEMENT OF COMPLIANCE	3
EMISSION TEST RESULTS	4
LIMITS OF CONDUCTED INTERFERENCE VOLTAGE.....	4
LIMITS OF RADIATED INTERFERENCE FIELD STRENGTH.....	4
MEASUREMENT UNCERTAINTIES	4
EQUIPMENT UNDER TEST (EUT) DETAILS	5
GENERAL.....	5
ENCLOSURE.....	5
MODIFICATIONS	5
SUPPORT EQUIPMENT.....	5
EUT INTERFACE PORTS.....	5
EUT OPERATION DURING TESTING.....	5
TEST SITE	6
GENERAL INFORMATION.....	6
RADIATED EMISSIONS CONSIDERATIONS.....	6
MEASUREMENT INSTRUMENTATION	7
RECEIVER SYSTEM	7
INSTRUMENT CONTROL COMPUTER	7
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	7
POWER METER.....	8
FILTERS/ATTENUATORS	8
ANTENNAS	8
ANTENNA MAST AND EQUIPMENT TURNTABLE	8
INSTRUMENT CALIBRATION.....	8
TEST PROCEDURES	9
EUT AND CABLE PLACEMENT.....	9
RADIATED EMISSIONS.....	9
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	10
RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209.....	10
SAMPLE CALCULATIONS - RADIATED EMISSIONS.....	11
EXHIBIT 1: Test Data Log Sheets	1
EXHIBIT 2: Radiated Emissions Test Configuration Photographs.....	2
EXHIBIT 3: Proposed FCC ID Label & Label Location	4
EXHIBIT 4: Detailed Photographs of Toy Biz Inc. Model Baby I Know Construction.....	5
EXHIBIT 5: Operator's Manual for Toy Biz Inc. Model Baby I Know.....	6
EXHIBIT 6: Block Diagram and Theory of Operation for Toy Biz Inc. Model Baby I Know	7
EXHIBIT 7: Schematic Diagrams for Toy Biz Inc. Model Baby I Know.....	8

SCOPE

An electromagnetic emissions test has been performed on the Toy Biz Inc. model Baby I Know pursuant to Subpart C of Part 15 of FCC Rules for intentional radiators. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4-1992 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Toy Biz Inc. model Baby I Know and therefore apply only to the tested sample. The sample was selected and prepared by Kent Suzuki of Toy Biz Inc.

OBJECTIVE

The primary objective of the manufacturer is compliance with Subpart C of Part 15 of FCC Rules for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 of the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units that are subsequently manufactured.

STATEMENT OF COMPLIANCE

The tested sample of Toy Biz Inc. model Baby I Know complied with the requirements of Subpart C of Part 15 of the FCC Rules for low power intentional radiators.

Maintenance of FCC compliance is the responsibility of the manufacturer. Any modification of the product that may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

EMISSION TEST RESULTS

The following emissions tests were performed on the Toy Biz Inc. model Baby I Know. The actual test results are contained in an exhibit of this report.

LIMITS OF CONDUCTED INTERFERENCE VOLTAGE

The EUT is a battery operated device, therefore conducted emissions were not performed.

LIMITS OF RADIATED INTERFERENCE FIELD STRENGTH

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.247 and 15.209 in the case of emissions falling within the frequency bands specified in Section 15.205.

The following measurement was extracted from the data recorded during the radiated electric field emissions scan and represents the highest amplitude emission relative to the specification limit. The actual test data and any correction factors are contained in an exhibit of this report.

Frequency MHz	Level dBuV/m	Pol v/h	FCC Limit	FCC Margin	Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments
0.856	39.3	open	69.0	-29.7	Pk	0	1.0	Noise Level of Receiver

MEASUREMENT UNCERTAINTIES

ISO Guide 25 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.2

EQUIPMENT UNDER TEST (EUT) DETAILS**GENERAL**

The Toy Biz Inc. model Baby I Know is a toy, which recognizes remote objects via RF. The product consists of Baby I Know doll. The electrical rating of the EUT power supply is 4 x AA batteries. Normally, the EUT would be placed on a tabletop during operation. The EUT was, therefore, placed in this position during testing to simulate the end user environment.

The sample was received on May 23, 2000 and tested on May 24 and May 26, 2000. The EUT consisted of the following component(s):

Manufacturer	Model	Description
Toy Biz	Baby I Know	toy doll with accessories

ENCLOSURE

The EUT enclosure is primarily constructed of unshielded plastic and is installed inside the Baby I Know doll. It measures approximately 12 cm wide by 7 cm deep by 5 cm high.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with the emission specifications.

SUPPORT EQUIPMENT

No support equipment was used during emissions testing.

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Cable Description	Length (m)	From Unit/Port	To Unit/Port
None	-	-	-

EUT OPERATION DURING TESTING

The unit has a jumper installed (JP1) that has put the unit into test mode. In this mode, the unit will not auto-power-off, and will be transmitting RF at 214kHz the entire time (normally, it transmits at 214kHz, 231kHz, 250kHz, 273kHz, 300kHz, 333kHz, 375kHz, and 428kHz).

TEST SITE**GENERAL INFORMATION**

Final test measurements were taken on May 24 and May 26, 2000 at the Elliott Laboratories Open Area Test Site #2 and #3 located at 684 West Maude Avenue, Sunnyvale, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines.

MEASUREMENT INSTRUMENTATION**RECEIVER SYSTEM**

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde and Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

POWER METER

A power meter and thermister mount are used for all direct output power measurements from transmitters as they provide a broadband indication of the power output.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES**EUT AND CABLE PLACEMENT**

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst case orientation is used for final measurements.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth that results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions that have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
0.009-0.490	$2400/F_{\text{KHz}} @ 300\text{m}$	$67.6-20*\log_{10}(F_{\text{KHz}}) @ 300\text{m}$
0.490-1.705	$24000/F_{\text{KHz}} @ 30\text{m}$	$87.6-20*\log_{10}(F_{\text{KHz}}) @ 30\text{m}$
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for near field measurements, is calculated by using the following formula:

$$F_d = 40 * \text{LOG10} (D_m/D_s)$$

where:

F_d = Distance Factor in dB

D_m = Measurement Distance in meters

D_s = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_f + F_d$$

and

$$M = R_c - L_s$$

where:

R_f = Receiver Reading in dBuV/m

F_d = Distance Factor in dB

R_c = Corrected Reading in dBuV/m

L_s = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

EXHIBIT 1:Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T37678 6 Pages

EMC Test Data

Client:	Toy Biz	Job Number:	J37676
Model:	Baby I Know	T-Log Number:	T37678
Contact:	Kent Suzuki	Proj Eng:	David Bare
Emissions Spec:	FCC and EN55022	Class:	B
Immunity Spec:	-	Environment:	-

EMC Test Data

For The

Toy Biz

Model

Baby I Know

EMC Test Data

Client:	Toy Biz	Job Number:	J37676
Model:	Baby I Know	T-Log Number:	T37678
Contact:	Kent Suzuki	Proj Eng:	David Bare
Emissions Spec:	FCC and EN55022	Class:	B
Immunity Spec:	-	Environment:	-

EUT INFORMATION

General Description

The EUT is a toy which recognizes remote objects via RF. The product consists of baby doll. The electrical rating of the EUT power supply is 4 x AA batteries. Normally, the EUT would be placed on a table top during operation. The EUT was, therefore, placed in this position during testing to simulate the end user environment.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
Toy Biz	Baby I Know	toy doll with accessories		

Other EUT Details

EUT Enclosure

The EUT enclosure is primarily constructed of unshielded plastic. It measures approximately 12 cm wide by 7 cm deep by 5 cm high.

Modification History

Mod. #	Test	Date	Modificaiton
1			
2			
3			

EMC Test Data

Client:	Toy Biz	Job Number:	J37676
Model:	Baby I Know	T-Log Number:	T37678
Contact:	Kent Suzuki	Proj Eng:	David Bare
Emissions Spec:	FCC and EN55022	Class:	B
Immunity Spec:	-	Environment:	-

Test Configuration Information (1)

Local Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
None				

Remote Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
None				

EUT Interface Ports

EUT Port	Connected To	Cable(s)		
		Description	Shielded or Unshielded	Length(m)
None				

EUT Operation During Emissions

The unit has a jumper installed (JP1) that has put the unit into test mode. In this mode, the unit will not auto-power-off, and will be transmitting RF at 214kHz the entire time (normally, it transmits at 214kHz, 231kHz, 250kHz, 273kHz, 300kHz, 333kHz, 375kHz, and 428kHz).

EMC Test Data

Client:	Toy Biz	Job Number:	J37676
Model:	Baby I Know	T-Log Number:	T37678
		Proj Eng:	David Bare
Contact:	Kent Suzuki		
Spec:	FCC and EN55022	Class:	B

Radiated Emissions

Test Specifics

Objective: The objective of this test session is to perform final qualification testing the EUT relative to the specification(s) defined above.

Date of Test: 05/24/2000 Config. Used: 1
Test Engineer: Rafael Varelas Config Change:
Test Location: SVOATS #3 EUT Voltage: Battery

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated emissions testing.

For radiated emissions testing between 30 and 1000 MHz, the measurement antenna was located at 10 meters distance from the EUT, unless otherwise noted. For testing above 1 GHz, the measurement antenna was located 3 meters from the EUT.

For radiated emissions testing below 30 MHz, the measurement antenna was located at 3 meters distance from the EUT, unless otherwise noted. Magnetic Field testing was performed with the loop antenna located one meter above the ground plane, with the antenna multiple orientations to the EUT.

Ambient Conditions: Temperature: 20.6°C
Rel. Humidity: 56%

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1 & 2	Transmitter fundamental, harmonics and spurious	FCC 15.209	PASS	-29.7dB @ .856 MHz

Modifications Made During Testing: None

EMC Test Data

Client:	Toy Biz	Job Number:	J37676
Model:	Baby I Know	T-Log Number:	T37678
Contact:	Kent Suzuki	Proj Eng:	David Bare
Spec:	FCC and EN55022	Class:	B

Run #1: Radiated emissions, .214 - 2.14 MHz

EUT Upright

Frequency	Level	Pol	FCC 15.209 ¹		Detector	Azimuth	Height	Comments
MHz	dB μ V/m	v/h	Limit	Margin	Pk/Avg ²	degrees	meters	
0.214	64.6	Open	121.0	-56.4	PK	0	1.0	
0.214	43.4	Closed	101.0	-57.6	Avg	70	1.0	
0.214	60.9	Closed	121.0	-60.1	PK	70	1.0	
0.214	40.9	Open	101.0	-60.1	Avg	0	1.0	
0.428	42.4	Open	95.0	-52.6	Pk	0	1.0	Noise Level of Receiver
0.642	39.1	Open	71.5	-32.4	Pk	0	1.0	Noise Level of Receiver
0.856	39.3	Open	69.0	-29.7	Pk	0	1.0	Noise Level of Receiver
1.070	33.6	Open	67.0	-33.4	Pk	0	1.0	Noise Level of Receiver
1.284	35.3	Open	65.4	-30.1	Pk	0	1.0	Noise Level of Receiver
1.712	26.8	Open	70.0	-43.2	Pk	0	1.0	Noise Level of Receiver
2.140	26.4	Open	70.0	-43.6	Pk	0	1.0	Noise Level of Receiver

Run #2: Radiated emissions, .214 - 2.14 MHz

EUT laying on its side

Frequency	Level	Pol	FCC 15.209 ¹		Detector	Azimuth	Height	Comments
MHz	dB μ V/m	v/h	Limit	Margin	Pk/Avg ²	degrees	meters	
0.214	65.5	Open	121.0	-55.5	PK	0	1.0	
0.214	45.5	Open	101.0	-55.5	Avg	0	1.0	
0.214	61.6	Closed	121.0	-59.4	PK	300	1.0	
0.214	41.6	Closed	101.0	-59.4	Avg	300	1.0	

Note 1: The limit has been extrapolated from 300 meters to 3 meters by adding 40 Log (300/3) dB or from 30 meters by adding 40 log(30/3).

Note 2: Correction factor of -20dB was applied to the peak readings to obtain the average readings. This factor was based on the manufacturers duty cycle of 1/16.

Note 3: During Run #2, no emissions were observed above the noise level of the receiver as recorded during run #1

Radiated Emissions, .214 - 2.14 MHz, 25-May-00 01:00 AM

<u>Engineer:</u>	<u>Rafael</u>	<u>Description</u>	<u>Model #</u>	<u>Assett #</u>	<u>Cal interval</u>	<u>Last Calibrated</u>	<u>Cal Due</u>
EMCO		Magnetic Loop Antenna, 10k-30MHz	6502	296	12	11/29/1999	11/29/2000
Rohde & Schwarz		Test Receiver, 0.009-30 MHz	ESH3	215, (F197)	12	02/17/2000	02/17/2001

EXHIBIT 2: Radiated Emissions Test Configuration Photographs

EXHIBIT 2: Radiated Emissions Test Configuration Photographs

EXHIBIT 3: Proposed FCC ID Label & Label Location

EXHIBIT 4: Detailed Photographs of Toy Biz Inc. Model Baby I KnowConstruction

6 Pages

EXHIBIT 5: Operator's Manual for Toy Biz Inc. Model Baby I Know

1 Page

***EXHIBIT 6: Block Diagram and Theory of Operation for Toy Biz Inc. Model Baby I
Know***

1 Page

EXHIBIT 7: Schematic Diagrams for Toy Biz Inc. Model Baby I Know

1 Page