

Amber Helm Development L.C.

92723 Michigan Hwy-152

Sister Lakes, Michigan 49047 USA

Tel: 888-847-8027

EMC Test Report

BOSCH1-WR2003TX
Issued: February 8, 2020

regarding

USA: CFR Title 47, Part 15.209 (Emissions)

Canada: ISED RSS-210v10/GENv5 (Emissions)

for

P004 Series

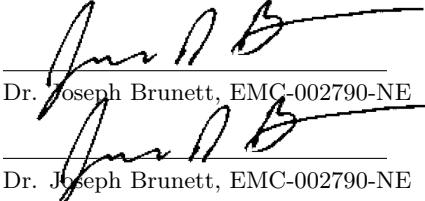
Category: LF Initiator

Judgments:

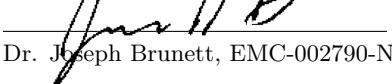
15.209/RSS-210v10 Compliant Transmitter

Testing Completed: December 22, 2019

Prepared for:


Robert Bosch (Australia) Pty Ltd

1555 Centre Road, Clayton Victoria 3168 Australia


Phone: +61 3 9541 7755, Fax: +61 3 9541 7755

Contact: Ben Meure, roy.rammau@bosch.com

Data Recorded by:

Dr. Joseph Brunett, EMC-002790-NE

Prepared by:

Dr. Joseph Brunett, EMC-002790-NE

Reviewed by:

Gordon Helm, EMC-002401-NE

Date of Issue: February 8, 2020

Revision History

Rev. No.	Date	Details	Revised By
r0	February 8, 2020	Initial Release.	J. Brunett
r1	February 22, 2020	Clarify ISED units in data tables.	J. Brunett

Contents

Revision History	2
Table of Contents	2
1 Test Report Scope and Limitations	4
1.1 Laboratory Authorization	4
1.2 Report Retention	4
1.3 Subcontracted Testing	4
1.4 Test Data	4
1.5 Limitation of Results	4
1.6 Copyright	4
1.7 Endorsements	4
1.8 Test Location	5
1.9 Traceability and Equipment Used	5
2 Test Specifications and Procedures	6
2.1 Test Specification and General Procedures	6
3 Configuration and Identification of the Equipment Under Test	7
3.1 Description and Declarations	7
3.1.1 EUT Configuration	8
3.1.2 Modes of Operation	8
3.1.3 Variants	8
3.1.4 Test Samples	8
3.1.5 Functional Exerciser	8
3.1.6 Modifications Made	8
3.1.7 Production Intent	8
3.1.8 Declared Exemptions and Additional Product Notes	8
4 Emissions	9
4.1 General Test Procedures	9
4.1.1 Radiated Test Setup and Procedures	9
4.1.2 Conducted Emissions Test Setup and Procedures	11
4.1.3 Power Supply Variation	11
4.2 Intentional Emissions	12
4.2.1 Fundamental Emission Pulsed Operation	12
4.2.2 Fundamental Emission Bandwidth	13
4.2.3 Fundamental Emission	14
4.3 Unintentional Emissions	15
4.3.1 Transmit Chain Spurious Emissions	15
5 Measurement Uncertainty and Accreditation Documents	16

List of Tables

1	Test Site List.	5
2	Equipment List.	5
3	EUT Declarations.	7
4	Pulsed Emission Characteristics (Duty Cycle).	12
5	Intentional Emission Bandwidth.	13
6	Fundamental Radiated Emissions.	14
7	Transmit Chain Spurious Emissions.	15
8	Measurement Uncertainty.	16

List of Figures

1	Photos of EUT.	7
2	EUT Test Configuration Diagram.	8
3	Radiated Emissions Diagram of the EUT.	9
4	Radiated Emissions Test Setup Photograph(s).	10
5	Pulsed Emission Characteristics (Duty Cycle).	12
6	Intentional Emission Bandwidth.	13
7	Accreditation Documents	16

1 Test Report Scope and Limitations

1.1 Laboratory Authorization

Test Facility description and attenuation characteristics are on file with the FCC Laboratory, Columbia, Maryland (FCC Reg. No: US5348 and US5356) and with ISED Canada, Ottawa, ON (File Ref. No: 3161A and 24249). Amber Helm Development L.C. holds accreditation under NVLAP Lab Code 200129-0.

1.2 Report Retention

For equipment verified to comply with the regulations herein, the manufacturer is obliged to retain this report with the product records for the life of the product, and no less than ten years. A copy of this Report will remain on file with this laboratory until March 2030.

1.3 Subcontracted Testing

This report does not contain data produced under subcontract.

1.4 Test Data

This test report contains data included within the laboratories scope of accreditation.

1.5 Limitation of Results

The test results contained in this report relate only to the item(s) tested. Any electrical or mechanical modification made to the test item subsequent to the test date shall invalidate the data presented in this report. Any electrical or mechanical modification made to the test item subsequent to this test date shall require reevaluation.

1.6 Copyright

This report shall not be reproduced, except in full, without the written approval of Amber Helm Development L.C.

1.7 Endorsements

This report shall not be used to claim product endorsement by any accrediting, regulatory, or governmental agency.

1.8 Test Location

The EUT was fully tested by **Amber Helm Development L.C.**, headquartered at 92723 Michigan Hwy-152, Sister Lakes, Michigan 49047 USA. Table 1 lists all sites employed herein. Specific test sites utilized are also listed in the test results sections of this report where needed.

Table 1: Test Site List.

Description	Location	Quality Num.
OATS (3 meter)	3615 E Grand River Rd., Williamston, Michigan 48895	OATSC

1.9 Traceability and Equipment Used

Pertinent test equipment used for measurements at this facility is listed in Table 2. The quality system employed at Amber Helm Development L.C. has been established to ensure all equipment has a clearly identifiable classification, calibration expiry date, and that all calibrations are traceable to the SI through NIST, other recognized national laboratories, accepted fundamental or natural physical constants, ratio type of calibration, or by comparison to consensus standards.

Table 2: Equipment List.

Description	Manufacturer/Model	SN	Quality Num.	Cal/Ver By / Date Due
Spectrum Analyzer	R & S / FPC1500	101692	RSFPC15001	RS / May-2020
Spectrum Analyzer	R & S / FSV30	101660	RSFSV30001	RS / Apr-2021
Biconical	EMCO / 93110B	9802-3039	BICEMCO01	Keysight / Aug-2020
Log Periodic Antenna	EMCO / 3146	9305-3614	LOGEMCO01	Keysight / Aug-2020
BNC-BNC Coax	WRTL / RG58/U	001	CAB001-BLACK	AHD / Jul-2020
3.5-3.5MM Coax	PhaseFlex / PhaseFlex	001	CAB015-PURP	AHD / Jul-2020
Shielded Loop Antenna	EMCO / 6502	9502-2926	EMCOLOOP1	Lib. Labs. / Aug-2020

2 Test Specifications and Procedures

2.1 Test Specification and General Procedures

The goal of Robert Bosch (Australia) Pty Ltd is to demonstrate that the Equipment Under Test (EUT) complies with the Rules and/or Directives below. Detailed in this report are the results of testing the Robert Bosch (Australia) Pty Ltd P004 Series for compliance to:

Country/Region	Rules or Directive	Referenced Section(s)
United States	Code of Federal Regulations	CFR Title 47, Part 15.209
Canada	ISED Canada	ISED RSS-210v10/GENv5

It has been determined that the equipment under test is subject to the rules and directives above at the date of this testing. In conjunction with these rules and directives, the following specifications and procedures are followed herein to demonstrate compliance (in whole or in part) with these regulations.

ANSI C63.4:2014	"Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz"
ANSI C63.10:2013	"American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices"
IEEE Trans. EMC, Vol. 47, No. 3 August 2005	"Extrapolating Near-Field Emissions of Low-Frequency Loop Transmitters," J.D.Brunett, V.V.Liepa, D.L.Sengupta
TP0102RA	"AHD Internal Document TP0102 - Radiated Emissions Test Procedure"
TP0106RC	"AHD Internal Document TP0106 - Emissions Measurement Procedures (above 40 GHz)"
ISED Canada	"The Measurement of Occupied Bandwidth"

3 Configuration and Identification of the Equipment Under Test

3.1 Description and Declarations

The equipment under test is a Body Control Module containing an LF transmitter for automotive use. The EUT is approximately 17 x 25 x 3 cm in dimension, and is depicted in Figure 1. It is powered by 12 VDC automotive power system. In use, this device is permanently installed in a motor vehicle. Table 3 outlines provider declared EUT specifications.

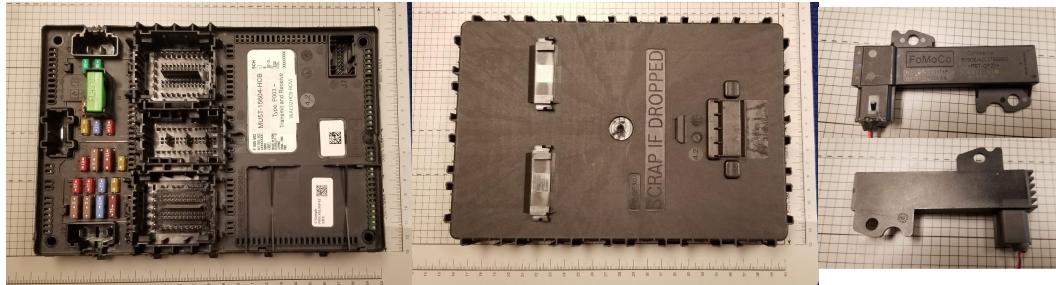


Figure 1: Photos of EUT.

Table 3: EUT Declarations.

General Declarations

Equipment Type:	LF Initiator
Country of Origin:	Not Declared
Nominal Supply:	12 VDC
Oper. Temp Range:	Not Declared
Frequency Range:	125 kHz
Antenna Dimension:	Not Declared
Antenna Type:	loop
Antenna Gain:	Not Declared
Number of Channels:	1
Channel Spacing:	Not Applicable
Alignment Range:	Not Declared
Type of Modulation:	ASK

United States

FCC ID Number:	LXPP004
Classification:	DSC

Canada

IC Number:	2298A-P004
Classification:	Remote Control Device, Vehicular Device

3.1.1 EUT Configuration

The EUT is configured for testing as depicted in Figure 2.

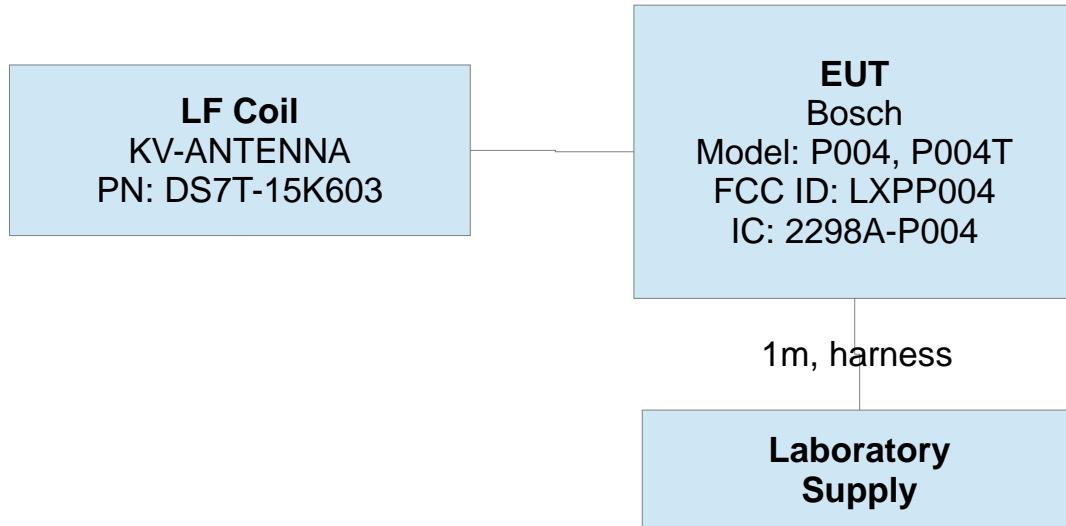


Figure 2: EUT Test Configuration Diagram.

3.1.2 Modes of Operation

This device is capable of only a single mode of operation, as an LF transmitter.

3.1.3 Variants

There is only a single variant of the EUT. HVIN P004 is fully populated and was tested herein. HVIN P004T will have its UHF receiver circuitry depopulated. Pre-scans of the depopulated version indicated that the populated version was representative of the worst-case emissions.

3.1.4 Test Samples

Three samples in total were provided, all setup for repeated LF transmission and with active UHF receiver.

3.1.5 Functional Exerciser

Normal operating EUT functionality was verified by observation of transmitted signal.

3.1.6 Modifications Made

There were no modifications made to the EUT by this laboratory.

3.1.7 Production Intent

The EUT appears to be a production ready sample.

3.1.8 Declared Exemptions and Additional Product Notes

The EUT is permanently installed in a transportation vehicle. As such, digital emissions are exempt from US and Canadian digital emissions regulations (per FCC 15.103(a) and IC correspondence on ICES-003).

4 Emissions

4.1 General Test Procedures

4.1.1 Radiated Test Setup and Procedures

Radiated electromagnetic emissions from the EUT are first pre-scanned in our screen room. Spectrum and modulation characteristics of all emissions are recorded. Instrumentation, including spectrum analyzers and other test equipment as detailed in Section 1.8 are employed. After pre-scan, emission measurements are made on the test site of record. If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in relevant test standards are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed if the resulting emissions appear to be worst-case in such a configuration. See Figure 3. All intentionally radiating elements that are not fixed-mounted in use are placed on the test table lying flat, on their side, and on their end (3-axes) and the resulting worst case emissions are recorded. If the EUT is fixed-mounted in use, measurements are made with the device oriented in the manner consistent with installation and then emissions are recorded. If the EUT exhibits spurious emissions due to internal receiver circuitry, such emissions are measured with an appropriate carrier signal applied.

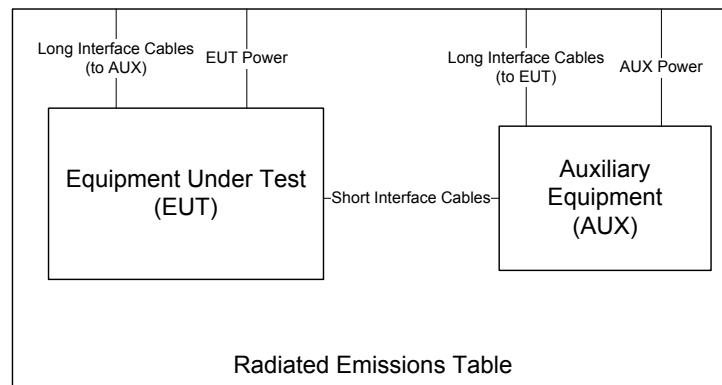


Figure 3: Radiated Emissions Diagram of the EUT.

For devices with intentional emissions below 30 MHz, a shielded loop antenna and/or E-field and H-Field broadband probes are used depending on the regulations. Shielded loops are placed at a 1 meter receive height at the desired measurement distance. For exposure in this band, the broadband probes employed are 10cm diameter single-axis shielded transducers and measurements are repeated and summed over three axes.

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. For both horizontal and vertical polarizations, the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected. The EUT is then rotated through 360° in azimuth until the highest emission is detected. The test antenna is then raised and lowered one last time from 1 to 4 m and the worst case value is recorded. Emissions above 1 GHz are characterized using standard gain or broadband ridge-horn antennas on our OATS with a 4 × 5 m rectangle of ECCOSORB absorber covering the OATS ground screen and a 1.5m table height. Care is taken to ensure that test receiver resolution and video bandwidths meet the regulatory requirements, and that the emission bandwidth of the EUT is not reduced. Photographs of the test setup employed are depicted in Figure 4.

Where regulations allow for direct measurement of field strength, power values (dBm) measured on the test receiver / analyzer are converted to dB μ V/m at the regulatory distance, using

$$E_{dist} = 107 + P_R + K_A - K_G + K_E - C_F$$

where P_R is the power recorded on spectrum analyzer, in dBm, K_A is the test antenna factor in dB/m, K_G is the combined pre-amplifier gain and cable loss in dB, K_E is duty correction factor (when applicable) in dB, and C_F is a distance conversion (employed only if limits are specified at alternate distance) in dB. This field strength value is then compared with the regulatory limit. If effective isotropic radiated power (EIRP) is computed, it is computed as

$$EIRP(dBm) = E_{3m}(dB\mu V/m) - 95.2.$$

When presenting data at each frequency, the highest measured emission under all possible EUT orientations (3-axes) is reported.

Figure 4: Radiated Emissions Test Setup Photograph(s).

4.1.2 Conducted Emissions Test Setup and Procedures**4.1.3 Power Supply Variation**

Tests at extreme supply voltages are made if required by the procedures specified in the test standard, and results of this testing are detailed in this report.

4.2 Intentional Emissions

4.2.1 Fundamental Emission Pulsed Operation

The details and results of testing the EUT for pulsed operation are summarized in Table 4.

Table 4: Pulsed Emission Characteristics (Duty Cycle).

Frequency Range		Det	IF Bandwidth	Video Bandwidth	Internal Frame Characteristics			Test Date:	24-Jan-20
#	EUT Mode	Min. Repetition Rate (sec)	Max. No. of Frames	Total Transmission Length (sec)	Max. Frame Length (ms)	Min. Frame Period (s)	Frame Encoding	Test Engineer:	Joseph Brunett
1	POLLING	1.00	1	0.032	32.0	1	When polling, the EUT transmits one 32 ms frames every 1 seconds	EUT Mode:	See Below
								Meas. Distance:	30 CM
								EUT Tested:	Bosch P004

* No Duty Cycle is employed when demonstrating compliance.

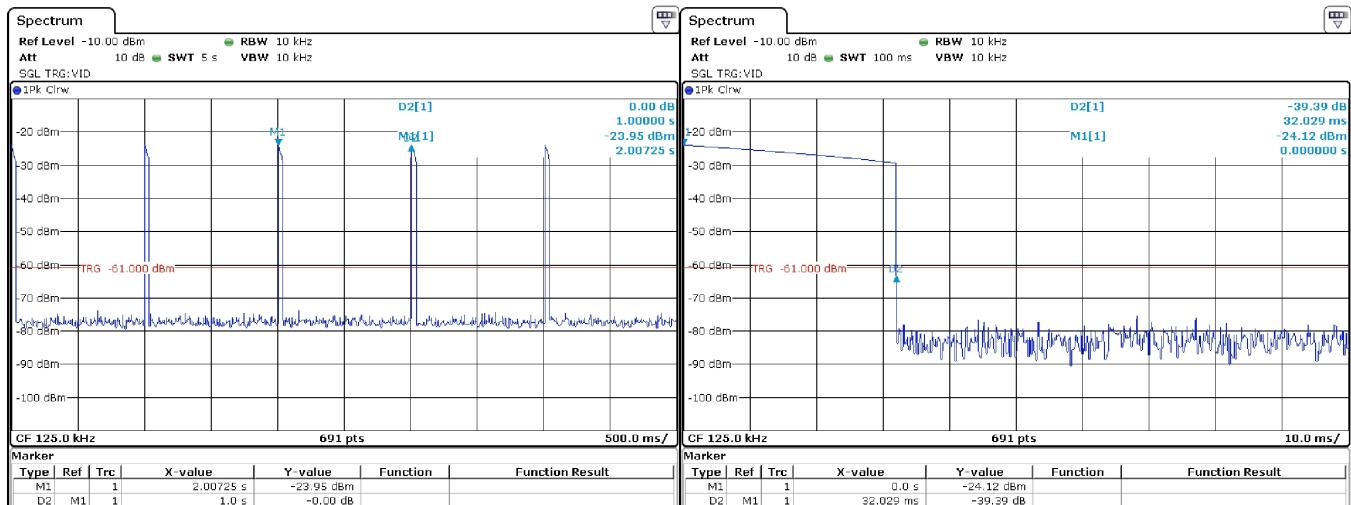


Figure 5: Pulsed Emission Characteristics (Duty Cycle).

4.2.2 Fundamental Emission Bandwidth

Emission bandwidth (EBW) of the EUT is measured with the device placed in the test mode(s) with the shortest available frame length and minimum frame spacing. Radiated emissions are recorded following the test procedures listed in Section 2.1. The 20 dB EBW is measured as the max-held peak-detected signal when the IF bandwidth is greater than or equal to 1% of the receiver span. For complex modulations other than ASK and FSK, the 99% emission bandwidth per IC test procedures has a different result, and is also separately reported. The results of EBW testing are summarized in Table 5. Plots showing measurements employed to obtain the emission bandwidth reported are provided in Figure 6.

Table 5: Intentional Emission Bandwidth.

Frequency Range	Det	IF Bandwidth	Video Bandwidth	Test Date:	24-Jan-20
9 kHz f 150 kHz	Pk	> 1% Span	>= 3 * IFBW	Test Engineer:	Joseph Brunett
150 kHz f 30 MHz	Pk	> 1% Span	>= 3 * IFBW	EUT Mode:	See Below
				Meas. Distance:	0.6 m
				EUT Tested:	Bosch P004

#	Mode	Frequency (MHz)	Temp (C)	Supply (VDC)	20 dB EBW (kHz)	99% EBW (kHz)	110 kHz Restricted Band* (dBr)	
1	POLLING	0.125	21	13.4	0.779	2.237	>-48	

* Note: The EUT emissions in the 90-110 kHz restricted band is down > 26 dB from the fundamental. The FCC requests that the sideband of the modulated spectrum be at least 26 dB down in the restricted band, and the emissions from the EUT that fall into that band is outside of the first null of the modulated spectrum, and thus are not considered part of the fundamental emission, per FCC guidelines.

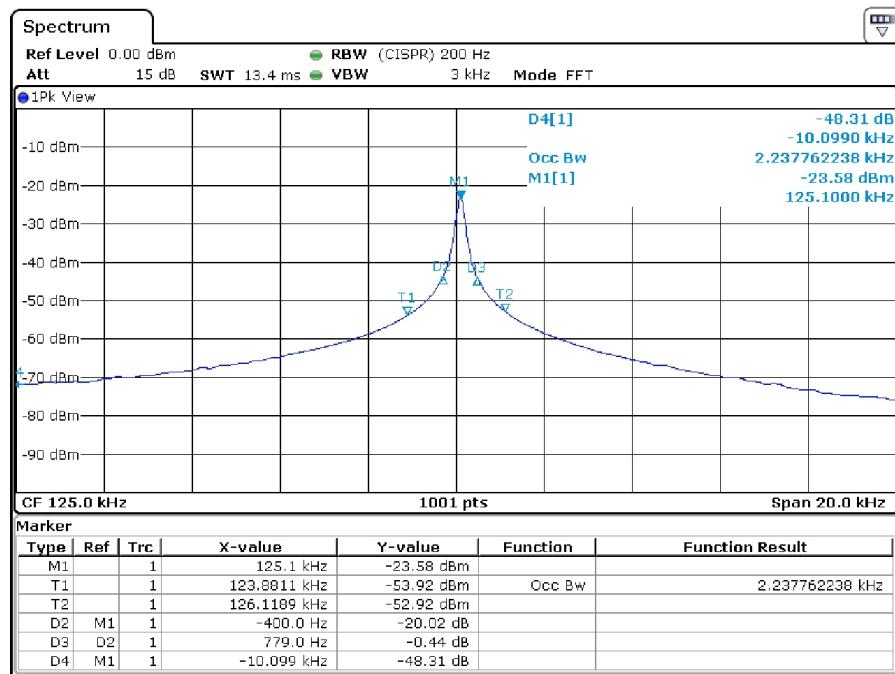


Figure 6: Intentional Emission Bandwidth.

4.2.3 Fundamental Emission

Following the test procedures listed in Section 2.1, field emissions measurements are made on the EUT for both Horizontal and Vertically polarized coupling fields. The EUT's loop antenna(s) are measured along all three axes, including when the EUT loop axes are aligned in the same axis as the test loop and aligned coplanar (in the same plane) with the test loop antenna. Table 6 details the results of these measurements.

Table 6: Fundamental Radiated Emissions.

Frequency Range		Det	IF Bandwidth		Video Bandwidth		Test Date:		24-Jan-20	
9 kHz f 150 kHz		Pk/QPk	200 Hz		300 Hz		Test Engineer:		J. Brunett	
150 kHz f 30 MHz		Pk/QPk	9 kHz		30 kHz		EUT Mode:		POLLING	
25 MHz f 1 000 MHz		Pk/QPk	120 kHz		300 kHz		Meas. Distance:		3 meters	
f > 1 000 MHz		Pk	1 MHz		3MHz		EUT Tested:		Bosch P004	
f > 1 000 MHz		Avg	1 MHz		3MHz					

Fundamental Emissions Measurements																				
#	Mode	EUT	Freq.	Ant.	Ant. Used	Ant. Height	Table	Ka	Kg	CF***	E-field @ 3m	H-field @ 3m	FCC E-field @ 300m	ISED H-field @ 300m	Pass By***					
#	Mode	Orientation	kHz	QN	Height	m	Table	Azim	deg	dB/m	dB	3m / 300m	Pk Qpk	dBuV/m	Pk Qpk	dBuV/m	Limit Qpk	dBuA/m	Limit Qpk	dBuA/m
1	POLLING	Flat	125.0	EMCOLOOP1	1.0	0	10.1	0.0	80.0	72.0	20.7	-8.0	25.7	-59.5	-25.8	33.7				
2		Side	125.0	EMCOLOOP1	1.0	0	10.1	0.0	80.0	68.2	16.9	-11.8	25.7	-63.3	-25.8	37.5				
3		End	125.0	EMCOLOOP1	1.0	0	10.1	0.0	80.0	67.1	15.8	-12.9	25.7	-64.4	-25.8	38.6				

#	Mode	Test Antenna	Freq.	DC Supply	E-field
#	Mode	Polarization	kHz	Voltage	dBuV/m
4	POLLING	Flat	125.0	15.2	72.0
5			125.0	13.4	72.0
6			125.0	11.5	72.0

* EUT was tested in CW mode. No averaging applies and Quasi-Peak data was not needed to demonstrate compliance.

** Emissions were evaluated at 1m test antenna height.

*** FCC E-field 40 dB/dec decay assumed. EUT field decay rate was not measured over a range of distances to determine CF between measurement and limit distance.

4.3 Unintentional Emissions

4.3.1 Transmit Chain Spurious Emissions

The results for the measurement of transmit chain spurious emissions at the nominal voltage and temperature are provided in Table 7. Following the test procedures listed in Section 2.1, field emissions measurements are made on the EUT for both Horizontal and Vertically polarized coupling fields. The EUT's loop antenna(s) are measured when the EUT loop axes placed in all three axes, including when they are aligned along the same axis as the test loop antenna and are aligned coplanar with the test loop antenna. For all arrangements, test loop is rotated for maximum field. The results for the measurement of transmit chain spurious emissions at the nominal voltage and temperature are provided in Table 7. Measurements are performed to 10 times the highest fundamental operating frequency.

Table 7: Transmit Chain Spurious Emissions.

Frequency Range	Det	IF Bandwidth	Video Bandwidth	Test Date:	24-Jan-20
9 kHz \leq f \leq 150 kHz	Pk/QPk	200 Hz	300 Hz	Test Engineer:	J. Brunett
150 kHz \leq f \leq 30 MHz	Pk/QPk	9 kHz	30 kHz	EUT Mode:	POLLING
25 MHz \leq f \leq 1 000 MHz	Pk/QPk	120 kHz	300 kHz	Meas. Distance:	3 meters
f > 1 000 MHz	Pk/Avg	1 MHz	3MHz	EUT Tested:	Bosch P004

Transmit Chain Spurious Emissions															
#	Mode	EUT	Freq.	Ant.	Ant.** Height m	Table Azim deg	Ka dB/m	Kg dB	C*** (3 to 30/300m) dB	E-field @ 3m Pk dBuV/m	FCC E-field @ 30/300m Pk Qpk dBuV/m	ISED H-field @ 30/300m Pk Qpk dBuV/m	Pass By	Comments	
1	POLLING	Max All, Worst	250.0	EMCOLOOP1	1.0	0	10.0	0.0	80.0	19.5	-60.5	19.6	-112.0	-31.9	80.1
2		Max All, Worst	375.0	EMCOLOOP1	1.0	90	10.0	0.0	80.0	22.9	-57.1	16.1	-108.6	-35.4	73.2
3		Max All, Worst	500.0	EMCOLOOP1	1.0	0	10.2	0.0	40.0	21.5	-18.5	33.6	-70.0	-17.9	52.1
4		Max All, Worst	625.0	EMCOLOOP1	1.0	0	10.2	0.0	40.0	30.2	-9.8	31.7	-61.3	-19.8	41.5
5		Max All, Worst	750.0	EMCOLOOP1	1.0	0	10.1	0.0	40.0	19.8	-20.2	30.1	-71.7	-21.4	50.3
6		Max All, Worst	875.0	EMCOLOOP1	1.0	0	10.3	0.0	40.0	52.9	12.9	28.8	-38.6	-22.7	15.9
7		Max All, Worst	1000.0	EMCOLOOP1	1.0	90	11.5	0.0	40.0	36.7	-3.3	27.6	-54.8	-23.9	30.9
8		Max All, Worst	1125.0	EMCOLOOP1	1.0	0	11.3	0.0	40.0	25.1	-14.9	26.6	-66.4	-24.9	41.5
9		Max All, Worst	1250.0	EMCOLOOP1	1.0	0	12.3	0.0	40.0	34.0	-6.0	25.7	-57.5	-25.8	31.7
10															

* EUT was tested in CW mode. No averaging applies and Quasi-Peak data was not needed to demonstrate compliance.

** Emissions were evaluated at 1m test antenna height from 9 kHz to 30 MHz. No significant spurious were observed past the 10th harmonic.

*** FCC E-field 40 dB/dec decay assumed. EUT field decay rate was not measured over a range of distances to determine CF between measurement and limit distance.

5 Measurement Uncertainty and Accreditation Documents

The maximum values of measurement uncertainty for the laboratory test equipment and facilities associated with each test are given in the table below. This uncertainty is computed for a 95.45% confidence level based on a coverage factor of $k = 2$.

Table 8: Measurement Uncertainty.

Measured Parameter	Measurement Uncertainty [†]
Radio Frequency Conducted Emm. Amplitude	$\pm(f_{Mkr}/10^7 + RBW/10 + (SPN/(PTS - 1))/2 + 1 \text{ Hz})$ $\pm1.9 \text{ dB}$
Radiated Emm. Amplitude (30 – 200 MHz)	$\pm4.0 \text{ dB}$
Radiated Emm. Amplitude (200 – 1000 MHz)	$\pm5.2 \text{ dB}$
Radiated Emm. Amplitude ($f > 1000 \text{ MHz}$)	$\pm3.7 \text{ dB}$

[†]Ref: CISPR 16-4-2:2011+A1:2014

Figure 7: Accreditation Documents