

element

Emerson/Rosemount

Emerson Synchros 9000X
Model: 9000XTM

FCC 15.247:2025

RSS-Gen Issue 5:2018+A1:2019+A2:2021

RSS-247 Issue 3:2023

2.4 GHz DTS Transceiver

Report: EMPM0186.2 Rev. 02, Issue Date: July 14, 2025

TABLE OF CONTENTS

Section	Page Number
Certificate of Test	3
Revision History	5
Accreditations.....	6
Facilities	7
Measurement Uncertainty	8
Test Setup Block Diagrams.....	9
Product Description	12
Power Settings and Antenna Information.....	13
Configurations	14
Modifications	15
Spurious Radiated Emissions - Spot Checks	16
End of Report.....	22

CERTIFICATE OF TEST

Last Date of Test: December 20, 2024
Emerson/Rosemount
EUT: 9000XTM

Radio Equipment Testing

Standards

Specification	Method
FCC 15.247:2025	
RSS-Gen Issue 5:2018+A1:2019+A2:2021	ANSI C63.10:2013
RSS-247 Issue 3:2023	

Note: FCC 15:247 has been updated superseding prior issues. The changes between the specifications do not affect the results of the prior testing.

Guidance

FCC KDB 558074 v05r02:2019

Results

Test Description	Result	FCC Section(s)	RSS Section(s)	ANSI C63.10 Section(s)	Comments
Powerline Conducted Emissions (Transmitter)	N/A	15.207	RSS-Gen 8.8	6.2	Not required for a battery powered EUT.
Spurious Radiated Emissions - Spot Checks	Pass	15.247(d), KDB 558074 -8.6, 8.7	N/A	6.5, 6.6, 11.12.1, 11.13.2	
Occupied Bandwidth (99%)	N/A	KDB 558074 -2.1	RSS-Gen 6.7	6.9.3	*1
Duty Cycle	N/A	15.247, KDB 558074 -6.0	RSS-Gen 3.2	11.6	*1
Emissions Bandwidth (dB)	N/A	15.247(a), KDB 558074 -8.2	RSS-247 5.2(a)	11.8.2	*1
Output Power	N/A	15.247(b), KDB 558074 -8.3	RSS-247 5.4(d)	11.9.1.1	*1
Equivalent Isotropic Radiated Power (EIRP)	N/A	15.247(b), KDB 558074 -8.3	RSS-247 5.4(d)	11.9.1.1	*1
Band Edge Compliance	N/A	15.247(d), KDB 558074 -8.5	RSS-247 5.5	11.11	*1
Power Spectral Density	N/A	15.247(e), KDB 558074 -8.4	RSS-247 5.2(b)	11.10.2	*1
Spurious Conducted Emissions	N/A	15.247(d), KDB 558074 -8.5	RSS-247 5.5	11.11	*1
Powerline Conducted Emissions (Receiver)	N/A	15.101, 15.107	RSS-Gen 5.2	ANSI C63.4 -12.2.4	Not required for a battery powered EUT.
Radiated Emissions for Receiver	N/A	15.101, 15.109	RSS-Gen 5.2	ANSI C63.4 -12.2.5	Not required as FCC 15.101 and RSS-Gen section 7 state receiver requirements only apply to receivers operating in the 30-960 MHz band.

*1 – Covered by testing contained in Element ENTI0186.0 Test Report for 9000X

Deviations From Test Standards

None

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

CERTIFICATE OF TEST

Approved By:

A handwritten signature in black ink, appearing to read 'Jeff Alcoke'.

Jeff Alcoke, Senior EMC Test Engineer
Signed for and on behalf of Element

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
01	Updated antenna manufacturer to Antenova.	2025-03-04	13
02	Added measurement uncertainty for MN05	2025-07-09	8
	Updated FCC specification year from 2024 to 2025		12
	Added duty cycle correction factor calculation		17

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission – Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS – Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:

[California](#)

[Minnesota](#)

[Oregon](#)

[Texas](#)

[Washington](#)

FACILITIES

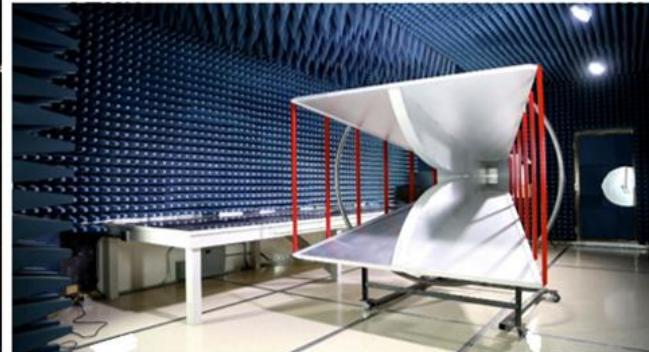
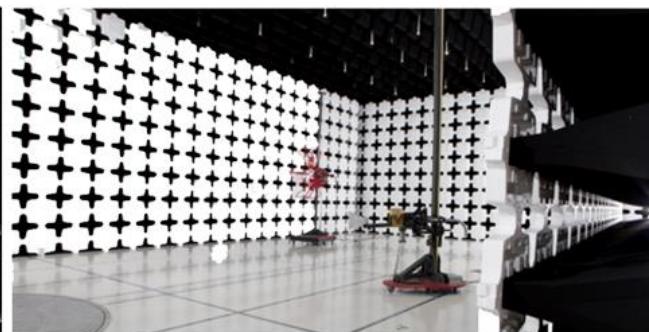
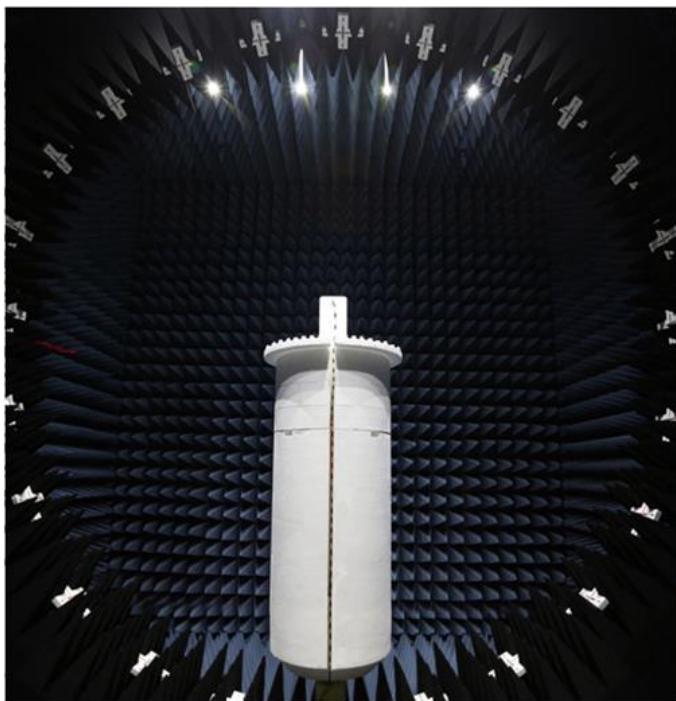
Testing was performed at the following location(s)

Location	Labs ⁽¹⁾	Address	A2LA ⁽²⁾	ISED ⁽³⁾	BSMI ⁽⁴⁾	VCCI ⁽⁵⁾	CAB ⁽⁶⁾	FDA ⁽⁷⁾
<input type="checkbox"/> California	OC01-17	41 Tesla Irvine, CA 92618 (949) 861-8918	3310.04	2834B	SL2-IN-E-1154R	A-0029	US0158	TL-55
<input checked="" type="checkbox"/> Minnesota	MN01-11	9349 W Broadway Ave. Brooklyn Park, MN 55445 (612) 638-5136	3310.05	2834E	SL2-IN-E-1152R	A-0109	US0175	TL-57
<input type="checkbox"/> Oregon	EV01-12	6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	3310.02	2834D	SL2-IN-E-1017	A-0108	US0017	TL-56
<input type="checkbox"/> Plano Texas	PT01-15	1701 E Plano Pkwy, Ste 150 Plano, TX 75074 (972) 509-2566	214.19	32637	SL2-IN-E-057R	A-0426	US0054	TL-137
<input type="checkbox"/> Washington	NC01-05	19201 120th Ave NE Bothell, WA 98011 (425) 984-6600	3310.06	2834F	SL2-IN-E-1153R	A-0110	US0157	TL-67
<input type="checkbox"/> Offsite	N/A	See Product Description	N/A	N/A	N/A	N/A	N/A	N/A

See data sheets for specific labs

(1) The lab designations denote individual rooms within each location. (OC01, OC02, OC03, etc.)

(2) A2LA Certificate No.




(3) ISED Company No.

(4) BSMI No.

(5) VCCI Site Filing No.

(6) CAB Identifier. Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA

(7) FDA ASCA No.

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

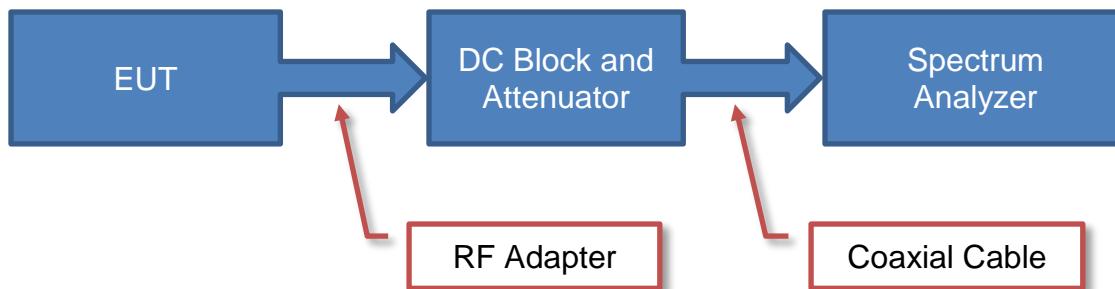
A measurement uncertainty estimation reported is based on statistical analysis that was performed by the laboratory. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty ($k=2$) can be found in the table below. A lab specific value may also be found in the applicable test description section. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable) and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Various Measurements

Test	All Labs (+/-)
Frequency Accuracy (%)	0.0007
Amplitude Accuracy (dB)	1.2
Conducted Power (dB)	1.2
Radiated Power via Substitution (dB)	0.7
Temperature (degrees C)	0.7
Humidity (% RH)	2.5
Voltage (AC) (%)	1
Voltage (DC) (%)	0.7

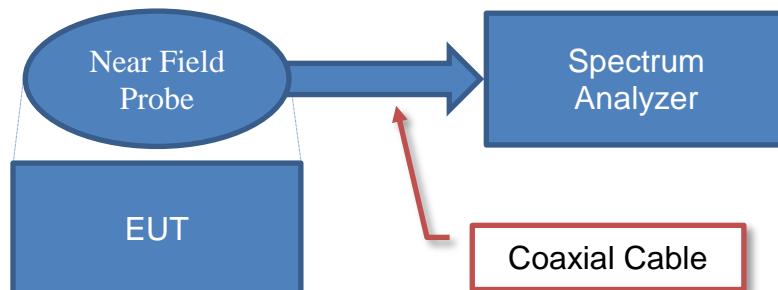
Test	MN05 (+/-) dB
Radiated Emissions (10 kHz – 30 MHz)	1.8
Radiated Emissions (30 MHz – 1 GHz)	4.6
Radiated Emissions (1 GHz – 6 GHz)	5.1
Radiated Emissions (6 GHz – 40 GHz)	5.3


TEST SETUP BLOCK DIAGRAMS

Measurement Bandwidths

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

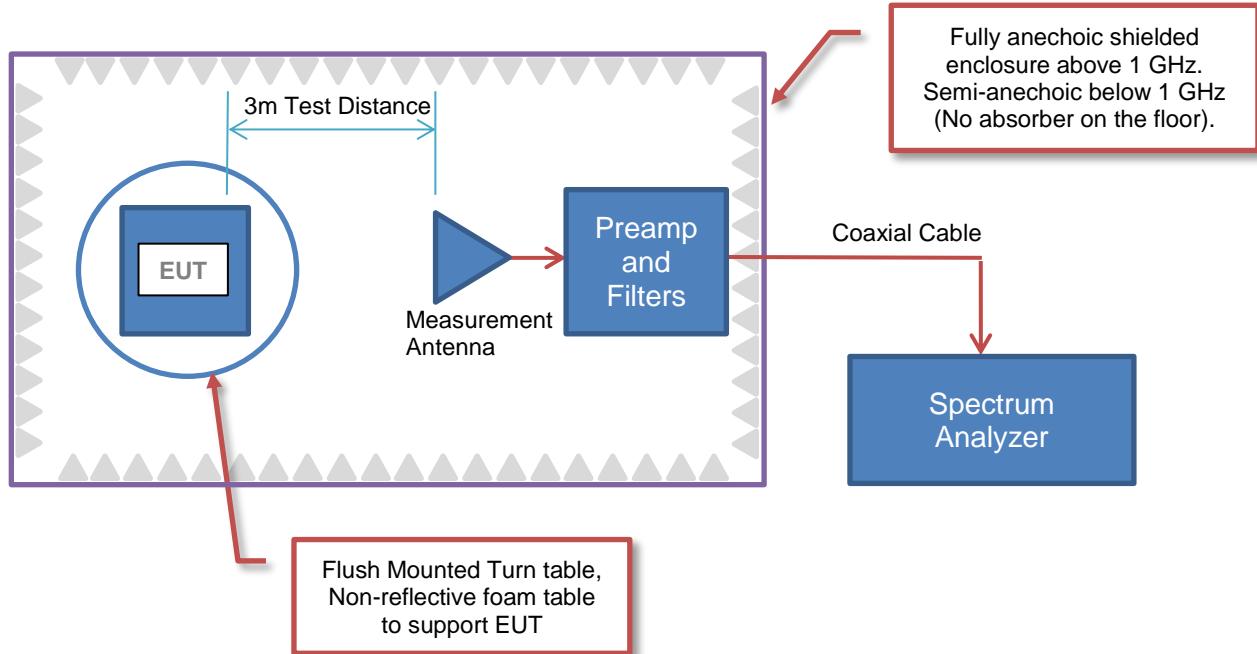
Unless otherwise stated, measurements were made using the bandwidths and detectors specified. No video filter was used.


Antenna Port Conducted Measurements

Sample Calculation (logarithmic units)

$$\begin{array}{ccc} \text{Measured} & \text{Measured} & \text{Reference} \\ \text{Value} & = & \text{Level} \\ 71.2 & = & 42.6 \\ & & + \\ & & \text{Level} \\ & & \text{Offset} \\ & & 28.6 \end{array}$$

Near Field Test Fixture Measurements



Sample Calculation (logarithmic units)

$$\begin{array}{ccc} \text{Measured} & \text{Measured} & \text{Reference} \\ \text{Value} & = & \text{Level} \\ 71.2 & = & 42.6 \\ & & + \\ & & \text{Level} \\ & & \text{Offset} \\ & & 28.6 \end{array}$$

TEST SETUP BLOCK DIAGRAMS

Emissions Measurements

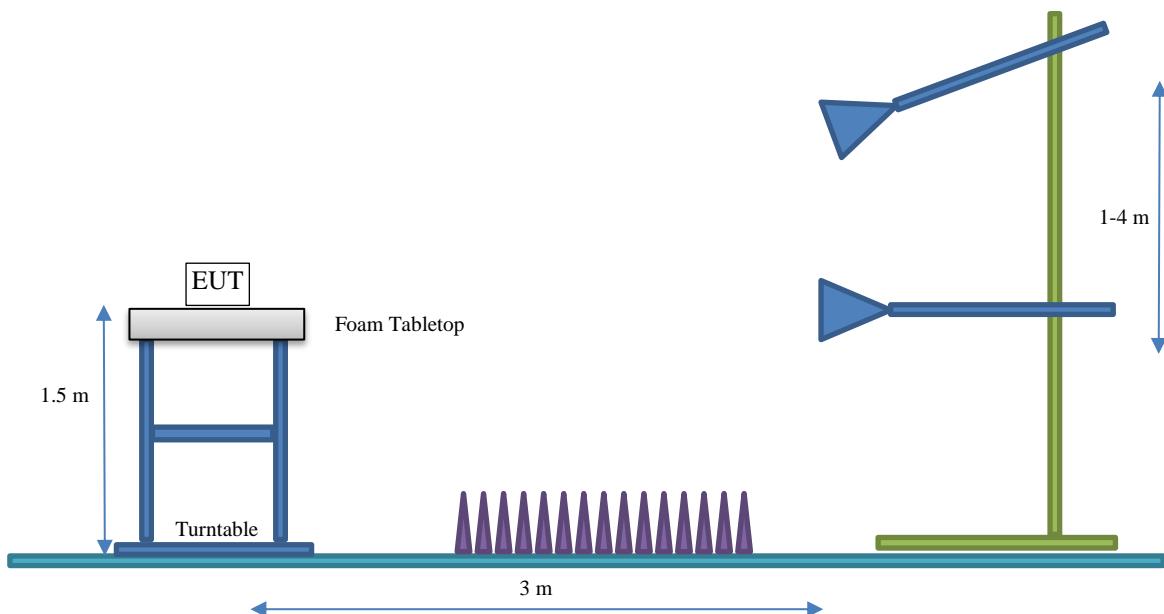
Sample Calculation (logarithmic units)

Radiated Emissions:

	Factor						
Measured Level (Amplitude)	Antenna Factor	Cable Factor	Amplifier Gain	Distance Adjustment Factor	External Attenuation		Field Strength
42.6	28.6	+	3.1	-	40.8	+	0.0
				0.0		+	0.0
						=	33.5

Conducted Emissions:

	Factor				
Measured Level (Amplitude)	Transducer Factor	Cable Factor	External Attenuation	Adjusted Level	
26.7	0.3	+	0.1	20.0	=
					47.1


Radiated Power (ERP/EIRP) – Substitution Method:

	Substitution	EIRP to ERP	Measured power
Measured Level into Substitution Antenna (Amplitude dBm)	Antenna Factor (dBi)	(if applicable)	(dBm ERP/EIRP)
10.0	6.0	- 2.15	= 13.9/16.0

TEST SETUP BLOCK DIAGRAMS

Bore Sighting (>1GHz)

The diameter of the illumination area is the dimension of the line tangent to the EUT formed by 3 dB beamwidth of the measurement antenna at the measurement distance. At a 3 meter test distance, the diameter of the illumination area was 3.8 meters at 1 GHz and greater than 2.1 meters up to 6 GHz. Above 1 GHz, when required by the measurement standard, the antenna is pointed for both azimuth and elevation to maintain the receive antenna within the cone of radiation from the EUT. The specified measurement detectors were used for comparison of the emissions to the peak and average specification limits.

PRODUCT DESCRIPTION

Client and Equipment under Test (EUT) Information

Company Name:	Emerson/Rosemount
Address:	6021 Innovation Blvd
City, State, Zip:	Shakopee, MN 55379
Test Requested By:	Erin Snell
EUT:	9000XTM
First Date of Test:	December 18, 2024
Last Date of Test:	December 20, 2024
Receipt Date of Samples:	December 18, 2024
Equipment Design Stage:	Prototype
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Emerson/Rosemount Synchros WirelessHART Platform, model: 9000X, is a communication device that pairs with various sensors to allow continuous monitoring in a wide variety of industrial applications. 9000X uses a chip radio to communicate wirelessly in a network utilizing a 2.4 GHz WirelessHART protocol. It is battery powered. In the initial launch, 9000X is available in two configurations: WirelessHART Repeater (9000X) and Temperature Monitor (9000XTM). This test report reflects the Temperature Monitor configuration.

Testing Objective:

Seeking to demonstrate compliance of the 2.4 GHz radio with operation under FCC 15.247:2025 and RSS-Gen Issue 5:2018+A1:2019+A2:2021, RSS-247 Issue 3:2023 specifications under technology category Other.

POWER SETTINGS AND ANTENNAS

The power settings, antenna gain value(s) and cable loss (if applicable) used for the testing contained in this report were provided by the customer and will affect the validity of the results. Element assumes no responsibility for the accuracy of this information. The power settings below reflect the maximum power that the EUT is allowed to transmit at during normal operation.

ANTENNA GAIN (dBi)

Type	Provided by:	Frequency Range (MHz)	Gain (dBi)
Dolo SR4W089 SMD Linearly Polarized Antenna	Antenova	2400-2500	3.0

The EUT was tested using the power settings provided by the manufacturer which were based upon:

- Test software settings
- Rated power settings

SETTINGS FOR ALL TESTS IN THIS REPORT

Modulation Types	Position (if multiple channels)	Power Setting (dBm)
OQPSK Modulation	Low Channel (2405 MHz)	8
	Mid Channel (2440 MHz)	8
	High Channel (2475 MHz)	8

CONFIGURATIONS

Configuration EMPM0186-5

Software/Firmware Running During Test	
Description	Version
Hart Talk	1.1.43.0A
Firmware	247.2.4

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
9000XTM	Emerson/Rosemount	9000XTM	24BKWC000021

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	2024-12-18	Spurious Radiated Emissions - Spot Checks	Tested as delivered to test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	2024-12-20	Spurious Radiated Emissions - Spot Checks	Tested as delivered to test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

SPURIOUS RADIATED EMISSIONS – SPOT CHECKS

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. A reference preview scan (pre-scan) is included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Where the radio test software does not provide for a duty cycle at continuous transmit conditions (> 98%) and the RMS (power average) measurements were made across the on and off times of the EUT transmissions, a duty cycle correction is added to the measurements using the formula of $10 \times \log(1/dc)$.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Antenna - Double Ridge	ETS Lindgren	3115	AIP	2024-08-02	2026-08-02
Cable	ESM Cable Corp.	Double Ridge Guide Horn Cables	MNI	2024-11-26	2025-11-26
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVT	2024-01-08	2025-01-08
Attenuator	Fairview Microwave	SA18H-20	VAF	2024-08-25	2025-08-25
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAQ	2024-03-13	2025-03-13
Filter - High Pass	Micro-Tronics	HPM50111	LFN	2024-08-25	2025-08-25
Antenna - Standard Gain	ETS Lindgren	3160-07	AXP	NCR	NCR
Cable	ESM Cable Corp.	Standard Gain Horn Cables	MNJ	2024-11-26	2025-11-26
Amplifier - Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVV	2024-01-08	2025-01-08
Antenna - Standard Gain	ETS Lindgren	3160-08	AIQ	NCR	NCR
Amplifier - Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVW	2024-01-08	2025-01-08
Attenuator	Fairview Microwave	SA18E-10	TYA	2024-08-25	2025-08-25

FREQUENCY RANGE INVESTIGATED

1000 MHz TO 18000 MHz

POWER INVESTIGATED

Battery (3.6VDC)

CONFIGURATIONS INVESTIGATED

EMPM0186-5

MODES INVESTIGATED

Transmitting OQPSK, Low, Mid and High Channel (2405, 2440, 2475 MHz)

SPURIOUS RADIATED EMISSIONS – SPOT CHECKS

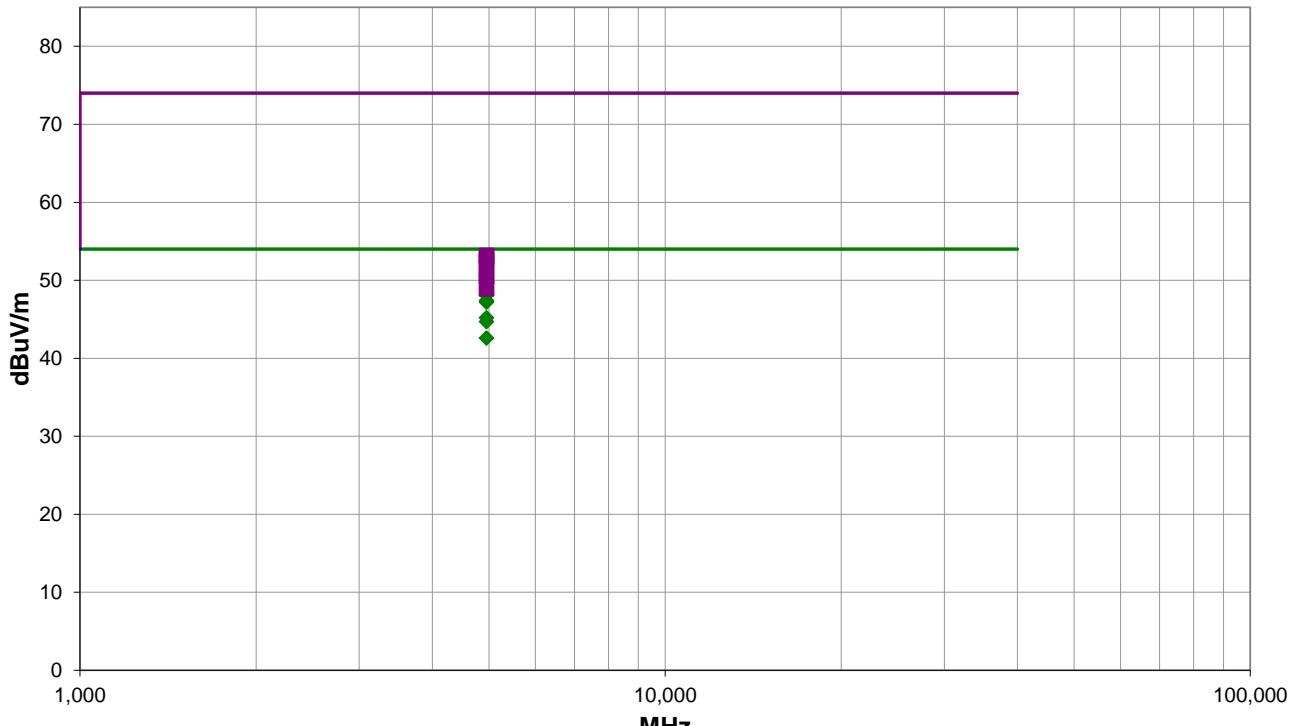
EUT:	9000XTM	Work Order:	EMPM0186
Serial Number:	24BKCW000021	Date:	2024-12-18
Customer:	Emerson/Rosemount	Temperature:	22.6°C
Attendees:	Stacy Lukaskawcez, Erin Snell	Relative Humidity:	24%
Customer Project:	None	Bar. Pressure (PMSL):	1029 mb
Tested By:	Christopher Heintzelman	Job Site:	MN05
Power:	Battery (3.6VDC)	Configuration:	EMPM0186-5

TEST PARAMETERS

Run #:	30	Test Distance (m):	3	Ant. Height(s) (m):	1 to 4(m)
--------	----	--------------------	---	---------------------	-----------

COMMENTS

The test mode operates at a duty cycle of 41.1%. The RMS Average measurements were corrected to 100% duty cycle using the following correction factor:


$$DCCF = 10 * \log(1/dc) = 10 * \log(1 / 0.41) = 3.9 \text{ dB.}$$

EUT OPERATING MODES

Transmitting OQPSK, Low, Mid, and High Channels (2405, 2440, and 2475 MHz)

DEVIATIONS FROM TEST STANDARD

None

Run #: 30

■ PK ◆ AV ● QP

SPURIOUS RADIATED EMISSIONS – SPOT CHECKS

RESULTS - Run #30

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
4950.000	38.8	5.4	3.04	171.0	3.9	0.0	Vert	AV	0.0	48.1	54.0	-5.9	EUT On Side, High Ch
4950.000	38.1	5.4	2.7	174.9	3.9	0.0	Horz	AV	0.0	47.4	54.0	-6.6	EUT Horz, High Ch
4950.000	37.9	5.4	2.26	204.9	3.9	0.0	Horz	AV	0.0	47.2	54.0	-6.8	EUT On Side, High Ch
4950.000	35.9	5.4	2.56	225.0	3.9	0.0	Vert	AV	0.0	45.2	54.0	-8.8	EUT Horz, High Ch
4950.000	35.4	5.4	1.27	99.9	3.9	0.0	Vert	AV	0.0	44.7	54.0	-9.3	EUT Vert, High Ch
4950.000	33.3	5.4	1.5	149.9	3.9	0.0	Horz	AV	0.0	42.6	54.0	-11.4	EUT Vert, High Ch
4951.033	47.8	5.4	3.04	171.0	0.0	0.0	Vert	PK	0.0	53.2	74.0	-20.8	EUT On Side, High Ch
4951.042	47.4	5.4	2.26	204.9	0.0	0.0	Horz	PK	0.0	52.8	74.0	-21.2	EUT On Side, High Ch
4950.925	47.0	5.4	2.7	174.9	0.0	0.0	Horz	PK	0.0	52.4	74.0	-21.6	EUT Horz, High Ch
4949.142	45.4	5.4	1.27	99.9	0.0	0.0	Vert	PK	0.0	50.8	74.0	-23.2	EUT Vert, High Ch
4950.825	45.1	5.4	2.56	225.0	0.0	0.0	Vert	PK	0.0	50.5	74.0	-23.5	EUT Horz, High Ch
4950.917	43.5	5.4	1.5	149.9	0.0	0.0	Horz	PK	0.0	48.9	74.0	-25.1	EUT Vert, High Ch

CONCLUSION

Pass

Tested By

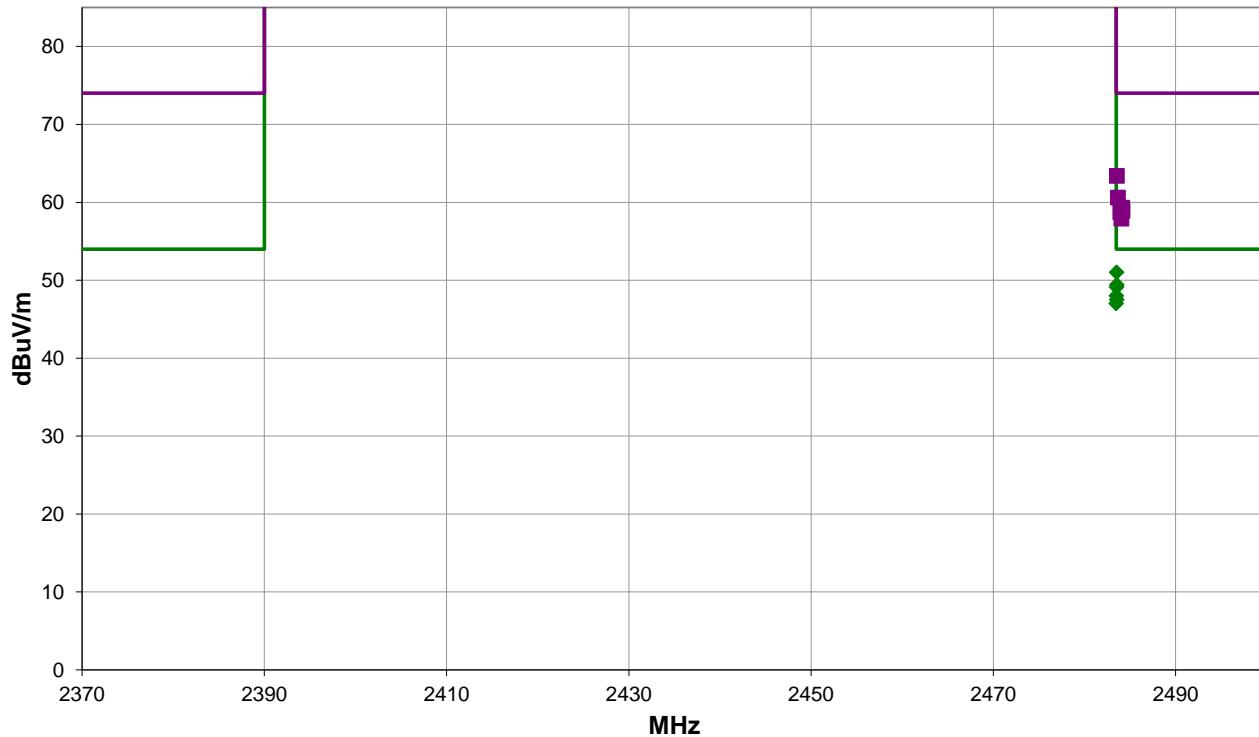
SPURIOUS RADIATED EMISSIONS – SPOT CHECKS

EUT:	9000XTM	Work Order:	EMPM0186
Serial Number:	24BKWC000021	Date:	2024-12-20
Customer:	Emerson/Rosemount	Temperature:	23°C
Attendees:	Stacy Lukaskawcez, Erin Snell	Relative Humidity:	22.8%
Customer Project:	None	Bar. Pressure (PMSL):	1031 mb
Tested By:	Christopher Heintzelman, William Hoffa	Job Site:	MN05
Power:	Battery (3.6VDC)	Configuration:	EMPM0186-5

TEST PARAMETERS

Run #:	78	Test Distance (m):	3	Ant. Height(s) (m):	1 to 4(m)
--------	----	--------------------	---	---------------------	-----------

COMMENTS


None

EUT OPERATING MODES

Transmitting OQPSK, High Channel, 2475 MHz

DEVIATIONS FROM TEST STANDARD

None

Run #: 78

PK AV QP

SPURIOUS RADIATED EMISSIONS – SPOT CHECKS

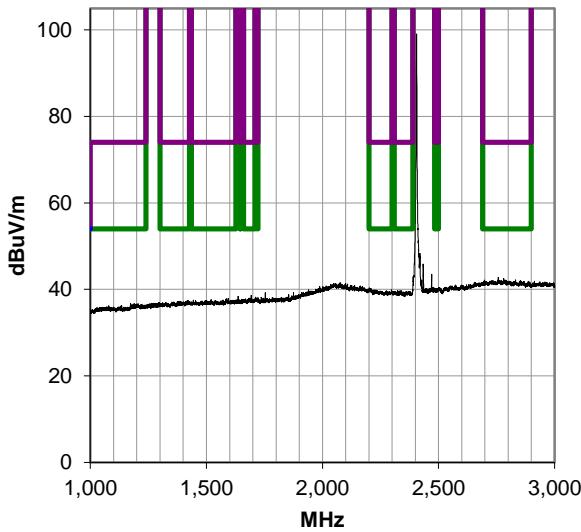
RESULTS - Run #78

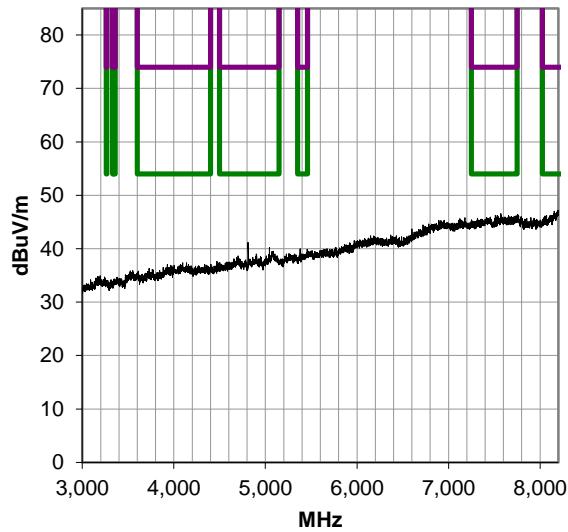
Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2483.542	40.6	-3.5	2.83	72.0	3.9	10.0	Horz	AV	0.0	51.0	54.0	-3.0	EUT On Side, High Ch
2483.558	39.0	-3.5	2.25	326.9	3.9	10.0	Horz	AV	0.0	49.4	54.0	-4.6	EUT Vert, High Ch
2483.542	38.7	-3.5	1.24	78.9	3.9	10.0	Vert	AV	0.0	49.1	54.0	-4.9	EUT Horz, High Ch
2483.517	37.6	-3.5	2.42	106.0	3.9	10.0	Horz	AV	0.0	48.0	54.0	-6.0	EUT Horz, High Ch
2483.575	37.1	-3.5	1.5	213.0	3.9	10.0	Vert	AV	0.0	47.5	54.0	-6.5	EUT Vert, High Ch
2483.500	36.6	-3.5	3.14	348.9	3.9	10.0	Vert	AV	0.0	47.0	54.0	-7.0	EUT On Side, High Ch
2483.575	56.9	-3.5	2.83	72.0	0.0	10.0	Horz	PK	0.0	63.4	74.0	-10.6	EUT On Side, High Ch
2483.692	54.1	-3.5	2.25	326.9	0.0	10.0	Horz	PK	0.0	60.6	74.0	-13.4	EUT Vert, High Ch
2484.158	52.8	-3.5	1.24	78.9	0.0	10.0	Vert	PK	0.0	59.3	74.0	-14.7	EUT Horz, High Ch
2484.183	52.4	-3.5	2.42	106.0	0.0	10.0	Horz	PK	0.0	58.9	74.0	-15.1	EUT Horz, High Ch
2483.942	52.2	-3.5	1.5	213.0	0.0	10.0	Vert	PK	0.0	58.7	74.0	-15.3	EUT Vert, High Ch
2484.050	51.4	-3.5	3.14	348.9	0.0	10.0	Vert	PK	0.0	57.9	74.0	-16.1	EUT On Side, High Ch

CONCLUSION

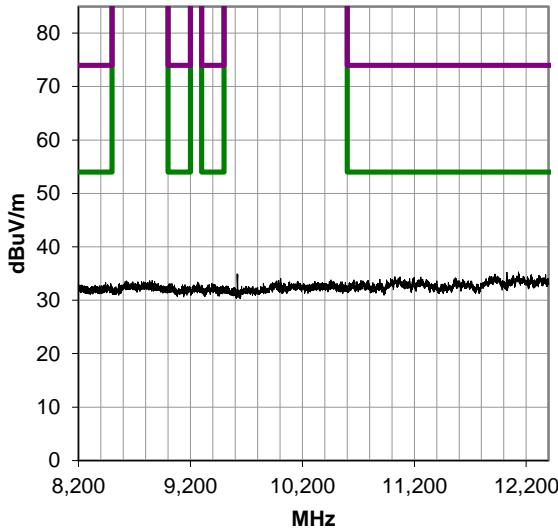
Pass

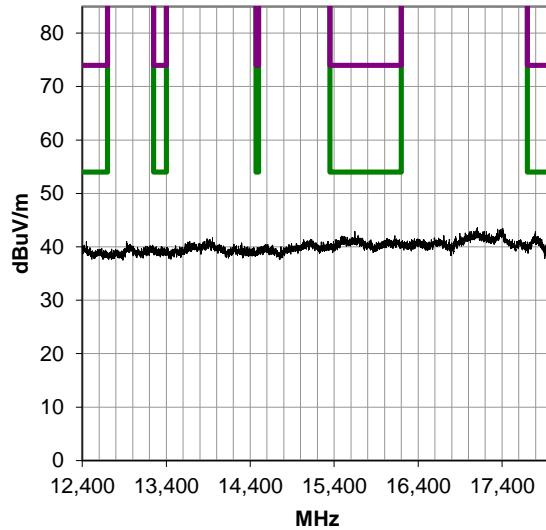
Tested By


SPURIOUS RADIATED EMISSIONS – SPOT CHECKS


PRESCAN DATA

Radiated spurious emissions from the EUT are initially reviewed with Pre-scans (Preview scans). Pre-scans are performed, with the EUT transmitting on the lowest applicable data rate, for both vertical and horizontal polarizations. The Pre-scan plots below are shown with a peak detector and RBW for the following frequency ranges: 9 kHz RBW (< 30 MHz); 120 kHz RBW (30 - 1000 MHz); 1 MHz RBW (> 1 GHz). In the case where unintentional emissions are observed, an ambient or idle pre-scan with the radio off, will be shown for comparison.


1000-3000 MHz, Run 18


3000-8200 MHz, Run 20

8200-12400 MHz, Run 21

12400-18000 MHz, Run 22

End of Test Report