

FCC Measurement/Technical Report on

Truck Infotainment Unit Radio and Entertainment Module

FCC ID: LTQVTREM2 IC: 3659A-VTREM2

Test Report Reference: MDE_APTIV_1811_FCC01

Test Laboratory:

7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH

Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Table of Contents

1	Applied Standards and Test Summary	4
1.1	Applied Standards	4
1.2	FCC-IC Correlation Table	5
1.3	Measurement Summary / Signatures	6
2	Revision History	10
3	Administrative Data	11
3.1	Testing Laboratory	11
3.2	Project Data	11
3.3	Applicant Data	11
3.4	Manufacturer Data	11
4	Test object Data	12
4.1	General EUT Description	12
4.2	EUT Main components	12
4.3	Ancillary Equipment	13
4.4	Auxiliary Equipment	13
4.5	EUT Setups	13
4.6	Operating Modes	14
4.7	Product labelling	14
5	Test Results	15
5.1	Occupied Bandwidth (20 dB)	15
5.2	occupied bandwidth (99%)	18
5.3	Peak Power Output	20
5.4	Spurious RF Conducted Emissions	22
5.5	Transmitter Spurious Radiated Emissions	24
5.6	Band Edge Compliance Conducted	30
5.7	Band Edge Compliance Radiated	32
5.8	Channel Separation	34
5.9	Dwell Time	36
5.10	Number of Hopping Frequencies	38
6	Test Equipment	40
7	Antenna Factors, Cable Loss and Sample Calculations	44
7.1	LISN R&S ESH3-Z5 (150 kHz - 30 MHz)	44
7.2	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	45
7.3	Antenna R&S HL562 (30 MHz – 1 GHz)	46
7.4	Antenna R&S HF907 (1 GHz – 18 GHz)	47
7.5	Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)	48
7.6	Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	49

8	Setup Drawings	50
9	Measurement Uncertainties	51
10	Photo Report	52

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-18 Edition). The following subparts are applicable to the results in this test report.

- Part 2, Subpart J Equipment Authorization Procedures, Certification
- Part 15, Subpart C Intentional Radiators
- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

Note:

The tests were selected and performed with reference to the FCC Public Notice "Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of the FCC Rules, 558074 D01 15.247 Meas Guidance v05r02, 2019-04-02". ANSI C63.10–2013 is applied.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 1.3 Measurement Summary / Signatures.

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for FHSS (e.g. Bluetooth®) equipment from FCC and IC

FHSS equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 5: 8.8
Occupied bandwidth	§ 15.247 (a) (1)	RSS-247 Issue 2: 5.1 (b)
Peak conducted output power	§ 15.247 (b) (1), (4)	RSS-247 Issue 2: 5.4 (b)
Transmitter spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 5: 6.13/8.9/8.10; RSS-247 Issue 2: 5.5
Transmitter spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 5: 6.13 / 8.9/8.10; RSS-247 Issue 2: 5.5
Band edge compliance	§ 15.247 (d)	RSS-247 Issue 2: 5.5
Dwell time	§ 15.247 (a) (1) (iii)	RSS-247 Issue 2: 5.1 (d)
Channel separation	§ 15.247 (a) (1)	RSS-247 Issue 2: 5.1 (b)
No. of hopping frequencies	§ 15.247 (a) (1) (iii)	RSS-247 Issue 2: 5.1 (d)
Hybrid systems (only)	§ 15.247 (f); § 15.247 (e)	RSS-247 Issue 2: 5.3
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 5: 8.3
Receiver spurious emissions	_	-

1.3 MEASUREMENT SUMMARY / SIGNATURES

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (a	n) (1)		
Occupied Bandwidth (20 dB)				
The measurement was performed accord	ding to ANSI C63	3.10	Final Re	esult
OP-Mode	Setup	Date	FCC	IC
Radio Technology, Operating Frequency				
Bluetooth BDR, high	S01_AB01	2019-05-07	Passed	Passed
Bluetooth BDR, low	S01_AB01	2019-05-07	Passed	Passed
Bluetooth BDR, mid	S01_AB01	2019-05-07	Passed	Passed
Bluetooth EDR 2, high	S01_AB01	2019-05-07	Passed	Passed
Bluetooth EDR 2, low	S01_AB01	2019-05-07	Passed	Passed
Bluetooth EDR 2, mid	S01_AB01	2019-05-07	Passed	Passed
Bluetooth EDR 3, high	S01_AB01	2019-05-07	Passed	Passed
Bluetooth EDR 3, low	S01_AB01	2019-05-07	Passed	Passed
Bluetooth EDR 3, mid	S01_AB01	2019-05-07	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	-			
Occupied Bandwidth (99%)				
The measurement was performed according	ding to ANSI C63	8 10	Final Re	ecult

Occupied Bandwidth (99%) The measurement was performed according to ANSI C63.10 Final Result					
OP-Mode	Setup	Date	FCC	IC	
Radio Technology, Operating Frequency					
Bluetooth BDR, high	S01_AB01	2019-05-07	N/A	Passed	
Bluetooth BDR, low	S01_AB01	2019-05-07	N/A	Passed	
Bluetooth BDR, mid	S01_AB01	2019-05-07	N/A	Passed	
Bluetooth EDR 2, high	S01_AB01	2019-05-07	N/A	Passed	
Bluetooth EDR 2, low	S01_AB01	2019-05-07	N/A	Passed	
Bluetooth EDR 2, mid	S01_AB01	2019-05-07	N/A	Passed	
Bluetooth EDR 3, high	S01_AB01	2019-05-07	N/A	Passed	
Bluetooth EDR 3, low	S01_AB01	2019-05-07	N/A	Passed	
Bluetooth EDR 3, mid	S01_AB01	2019-05-07	N/A	Passed	

47 CFR CHAPTER I FCC PART 15 § 15.247 (b) (1) (2) Subpart C §15.247

Peak Power Output The measurement was performed accor	Final Re	esult			
OP-Mode Radio Technology, Operating Frequency, Measurement method	Setup	Date	FCC	IC	
Bluetooth BDR, high, conducted	S01_AB01	2019-05-07	Passed	Passed	
Bluetooth BDR, low, conducted	S01_AB01	2019-05-07	Passed	Passed	
Bluetooth BDR, mid, conducted	S01_AB01	2019-05-07	Passed	Passed	
Bluetooth EDR 2, high, conducted	S01_AB01	2019-05-07	Passed	Passed	
Bluetooth EDR 2, low, conducted	S01_AB01	2019-05-07	Passed	Passed	
Bluetooth EDR 2, mid, conducted	S01_AB01	2019-05-07	Passed	Passed	
Bluetooth EDR 3, high, conducted	S01_AB01	2019-05-07	Passed	Passed	

Subpart C §15.247				
Peak Power Output				
The measurement was performed accord	ding to ANSI C63	3.10	Final Re	esult
OP-Mode Radio Technology, Operating Frequency,	Setup	Date	FCC	IC
Measurement method				
Bluetooth EDR 3, low, conducted	S01_AB01	2019-05-07	Passed	Passed
Bluetooth EDR 3, mid, conducted	S01_AB01	2019-05-07	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (d	I)		
Spurious RF Conducted Emissions The measurement was performed according to ANSI C63.10			Final Re	esult

§ 15.247 (b) (1) (2)

OP-Mode Radio Technology, Operating Frequency	Setup	Date	FCC	IC
Bluetooth BDR, high	S01_AB01	2019-05-07	Passed	Passed
Bluetooth BDR, low	S01_AB01	2019-05-07	Passed	Passed
Bluetooth BDR, mid	S01_AB01	2019-05-07	Passed	Passed
Bluetooth EDR 2, high	S01_AB01	2019-05-07	Passed	Passed
Bluetooth EDR 2, low	S01_AB01	2019-05-07	Passed	Passed
Bluetooth EDR 2, mid	S01_AB01	2019-05-07	Passed	Passed
Bluetooth EDR 3, high	S01_AB01	2019-05-07	Passed	Passed
Bluetooth EDR 3, low	S01_AB01	2019-05-07	Passed	Passed
Bluetooth EDR 3, mid	S01_AB01	2019-05-07	Passed	Passed

47 CFR CHAPTER I FCC PART 15 § 15.247 (d) Subpart C §15.247

47 CFR CHAPTER I FCC PART 15

Transmitter Spurious Radiated Emissions **Final Result** The measurement was performed according to ANSI C63.10 **OP-Mode** Setup **Date FCC** IC Radio Technology, Operating Frequency, Measurement range Bluetooth BDR, high, 1 GHz - 26 GHz S01_AA01 2019-04-27 Passed **Passed** Bluetooth BDR, high, 30 MHz - 1 GHz S01_AA01 2019-04-29 **Passed** Passed Bluetooth BDR, low, 1 GHz - 26 GHz 2019-04-26 Passed Passed S01_AA01 Bluetooth BDR, low, 30 MHz - 1 GHz S01_AA01 2019-04-29 Passed Passed Bluetooth BDR, mid, 1 GHz - 26 GHz S01_AA01 2019-04-27 Passed Passed S01_AA01 2019-04-29 Bluetooth BDR, mid, 30 MHz - 1 GHz Passed Passed S01_AA01 2019-04-29 Bluetooth BDR, mid, 9 kHz - 30 MHz **Passed** Passed Bluetooth EDR 2, high, 1 GHz - 26 GHz S01_AA01 2019-04-29 Passed Passed Remark: 1-8 GHz Bluetooth EDR 2, low, 1 GHz - 26 GHz S01_AA01 2019-04-29 Passed Passed Remark: 1-8 GHz S01_AA01 2019-04-29 Bluetooth EDR 2, mid, 1 GHz - 26 GHz Passed Passed Remark: 1-8 GHz

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (d)			
Band Edge Compliance Conducted	t- ANCI CC2 10		Einel De	
The measurement was performed according to ANSI C63.10 Final Result				
OP-Mode Radio Technology, Operating Frequency,	Setup	Date	FCC	IC
Band Edge Rivetooth BDP high high	S01 AB01	2019-05-07	Passed	Passed
Bluetooth BDR, high, high Bluetooth BDR, hopping, high	S01_AB01	2019-05-07	Passed	Passed
Bluetooth BDR, hopping, low	S01_AB01	2019-05-07	Passed	Passed
Bluetooth BDR, low, low	S01_AB01	2019-05-07	Passed	Passed
Bluetooth EDR 2, high, high	S01_AB01	2019-05-07	Passed	Passed
Bluetooth EDR 2, hopping, high	S01_AB01	2019-05-07	Passed	Passed
Bluetooth EDR 2, hopping, low	S01_AB01	2019-05-07	Passed	Passed
Bluetooth EDR 2, low, low	S01_AB01	2019-05-07	Passed	Passed
Bluetooth EDR 3, high, high	S01_AB01	2019-05-07	Passed	Passed
Bluetooth EDR 3, hopping, high	S01_AB01	2019-05-07	Passed	Passed
Bluetooth EDR 3, hopping, low	S01 AB01	2019-05-07	Passed	Passed
Bluetooth EDR 3, low, low	S01_AB01	2019-05-07	Passed	Passed
Braceson Ebres, low, low			. abbea	. assea
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (d)			
Band Edge Compliance Radiated	1 ANGT 662 46			
The measurement was performed according	ng to ANSI C63.10)	Final Re	sult
OP-Mode Radio Technology, Operating Frequency, Band Edge	Setup	Date	FCC	IC
Bluetooth BDR, high, high	S01_AA01	2019-04-29	Passed	Passed
Bluetooth EDR 2, high, high	S01_AA01	2019-04-29	Passed	Passed
Bluetooth EDR 3, high, high	S01_AA01	2019-04-29	Passed	Passed
47 CFR CHAPTER I FCC PART 15	§ 15.247 (a) ((1)		
Subpart C §15.247				
Channel Separation The measurement was performed according	ng to ANSI C63.10)	Final Re	sult
OP-Mode Radio Technology	Setup	Date	FCC	IC
Bluetooth BDR	S01_AB01	2019-05-07	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (a) (1) (i) (ii) (i	ii)	
Dwell Time			sult	
OP-Mode				
	Setup	Date	FCC	IC
Radio Technology Bluetooth BDR	Setup S01 AB01	Date 2019-05-07	FCC Passed	IC Passed

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

§ 15.247 (a) (1) (i) (ii) (iii)

Number of Hopping Frequencies

The measurement was performed according to ANSI C63.10 Final Result

OP-Mode Setup Date FCC IC Radio Technology

Bluetooth BDR S01_AB01 2019-05-07 Passed Passed

N/A: Not applicable N/P: Not performed

2 REVISION HISTORY

Report version control					
Version	Release date	Change Description	Version validity		
initial	2019-11-08		valid		

COMMENT: -

(responsible for accreditation scope)
Dipl.-Ing. Marco Kullik

(responsible for testing and report)
M.Sc. Joel Asongwe

Mayers

7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

3 ADMINISTRATIVE DATA

3.1 TESTING LABORATORY

Company Name: 7layers GmbH Address: Borsigstr. 11

40880 Ratingen

Germany

The test facility is accredited by the following accreditation organisation:

Laboratory accreditation no: DAkkS D-PL-12140-01-00

FCC Designation Number: DE0015

FCC Test Firm Registration: 929146

ISED CAB Identifier DE0007; ISED#: 3699A

Responsible for accreditation scope: Dipl. -Ing. Marco Kullik

Report Template Version: 2019-06-18

3.2 PROJECT DATA

Responsible for testing and report: M.Sc. Joel Asongwe

Employees who performed the tests: documented internally at 7Layers

Date of Report: 2019-11-08

Testing Period: 2019-04-26 to 2019-09-17

3.3 APPLICANT DATA

Company Name: Aptiv Services Poland S.A. Address: UI. Podgórki Tynieckie 2

30-399 Kraków

Poland

Contact Person: Jessica De Jong

3.4 MANUFACTURER DATA

Company Name: Aptiv Services Deutschland GmbH

Address: Am Technologiepark 1

42119 Wuppertal

Germany

Contact Person:

4 TEST OBJECT DATA

4.1 GENERAL EUT DESCRIPTION

	,
Kind of Device product description	Infotainment Unit with integrated Bluetooth radio and AM/FM/DAB broadcast receiver
Product name	Truck Infotainment Unit
Туре	Radio and Entertainment Module
Declared EUT data by	the supplier
Voltage Type	DC
Voltage Level	12 V
Tested Modulation Type	BT: GFSK Modulation, 1-DHx packets n/4 DQPSK Modulation, 2-DHx packets 8-DPSK Modulation, 3-DHx packets
General product description	The EUT is a Bluetooth device
Specific product description for the EUT	The EUT is a Bluetooth car radio
The EUT provides the following ports:	Cable Harness including DC USB Antenna
Tested datarates	1 Mbps, 2 Mbps, 3 Mbps
Special software used for testing	-

The main components of the EUT are listed and described in chapter 3.2 EUT Main components.

4.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description
EUT A	DE1352004ab01	Sample with SMA antenna
		connector
Sample Parameter		Value
Serial No.	1069285673471834700250	
HW Version	CO 28567347	
SW Version	LO	
Comment	-	

Sample Name	Sample Code	Description
EUT B	DE1352004aa01	Radiated Sample without SMA antenna connector / integral antenna
Sample Parameter		Value
Serial No.	0352285673471834700878	
HW Version	CO 28567347	
SW Version	LO	
Comment	-	

NOTE: The short description is used to simplify the identification of the EUT in this test report.

4.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Device	Details	Description
	(Manufacturer, Type Model, OUT Code)	
-	-	-

4.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, HW, SW, S/N)	Description
AUX 1	-	Display

4.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup Combination of EUTs Descri		Description and Rationale
S01_AA01	EUT B,	radiated
S01_AB01	EUT A, AUX 1	conducted

TEST REPORT REFERENCE: MDE_APTIV_1811_FCC01 Page 13 of 52

4.6 OPERATING MODES

This chapter describes the operating modes of the EUTs used for testing.

4.6.1 TEST CHANNELS

BT Test Channels: Channel: Frequency [MHz]

2.4 GHz ISM 2400 - 2483.5 MHz						
low mid high						
0	39	78				
2402	2441	2480				

4.7 PRODUCT LABELLING

4.7.1 FCC ID LABEL

Please refer to the documentation of the applicant.

4.7.2 LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

5 TEST RESULTS

5.1 OCCUPIED BANDWIDTH (20 DB)

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.1.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produce the worst-case (widest) emission bandwidth.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

Resolution Bandwidth (RBW): 1% to 5 % of the OBW

Video Bandwidth (VBW): 3 x RBW

• Span: 2 to 5 times the OBW

Trace: MaxholdSweeps: 400

• Sweeptime: 189.6 μs

Detector: Peak

The technology depending measurement parameters can be found in the measurement plot.

5.1.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (a) (2)

For the band: 902 – 928 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (i)

The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz

For the band: 5725 - 5850 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (ii)

The maximum allowed 20 dB bandwidth of the hopping channel is 1 MHz

For the frequency band 2400 – 2483.5 MHz: FCC Part 15, Subpart C, §15.247 (a) (1) (iii)

TEST REPORT REFERENCE: MDE_APTIV_1811_FCC01 Page 15 of 52

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Implication by the test laboratory:

Since the Bluetooth technology defines a fixed channel separation of 1 MHz this design parameter defines the maximum allowed occupied bandwidth depending on the EUT's output power:

1. Under the provision that the system operates with an output power not greater than 125 mW (21.0 dBm):

Implicit Limit: Max. 20 dB BW = 1.0 MHz / 2/3 = 1.5 MHz

2. If the system output power exceeds 125 mW (21.0 dBm):

Implicit Limit: Max. 20 dB BW = 1.0 MHz

Used conversion factor: Output power (dBm) = 10 log (Output power (W) / 1mW)

The measured output power of the system is below 125 mW (21.0 dBm). For the results, please refer to the related chapter of this report.

Therefore the limit is determined as 1.5 MHz.

5.1.3 TEST PROTOCOL

Ambient 25 °C

temperature:

Air Pressure: 1010 hPa Humidity: 30 %

BT GFSK (1-DH1)

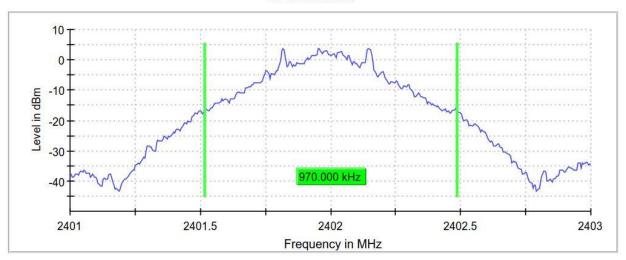
Band	Channel No.	Frequency [MHz]	20 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	0	2402	0.970	1.010	0.040
	39	2441	0.950	1.010	0.060
	78	2480	0.910	1.010	0.100

BT π/4 DQPSK (2-DH1)

Band	Channel No.	Frequency [MHz]	20 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	0	2402	1.280	1.515	0.235
	39	2441	1.290	1.515	0.225
	78	2480	1.290	1.515	0.225

BT 8-DPSK (3-DH1)

Band	Channel No.	Frequency [MHz]	20 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	0	2402	1.325	1.515	0.190
	39	2441	1.320	1.515	0.195
	78	2480	1.310	1.515	0.205


Remark: Please see next sub-clause for the measurement plot.

TEST REPORT REFERENCE: MDE_APTIV_1811_FCC01 Page 16 of 52

5.1.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = Bluetooth BDR, Operating Frequency = low

20 dB Bandwidth

5.1.5 TEST EQUIPMENT USED

- R&S TS8997

5.2 OCCUPIED BANDWIDTH (99%)

The test was performed according to:

ANSI C63.10

5.2.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

Resolution Bandwidth (RBW): 10 kHzVideo Bandwidth (VBW): 30 kHz

Span: 2 MHzTrace: MaxholdSweeps: 400

Sweeptime: 189.6 μsDetector: Sample

The 99 % measurement function of the spectrum analyser function was used to determine the 99 % bandwidth.

5.2.2 TEST REQUIREMENTS / LIMITS

No applicable limit:

5.2.3 TEST PROTOCOL

 $\begin{array}{lll} \mbox{Ambient temperature:} & 25 \ \mbox{°C} \\ \mbox{Air Pressure:} & 1010 \ \mbox{hPa} \\ \mbox{Humidity:} & 30 \ \% \\ \end{array}$

BT GFSK (1-DH1)

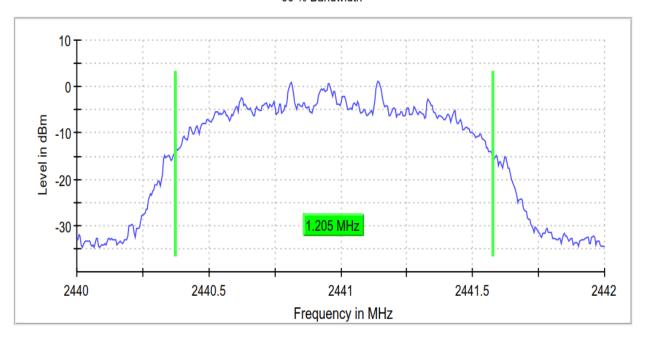
Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	0	2402	0.865
	39	2441	0.865
	78	2480	0.855

BT π/4 DQPSK (2-DH1)

Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	0	2402	1.180
	39	2441	1.195
	78	2480	1.190

BT 8-DPSK (3-DH1)

Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	0	2402	1.190
	39	2441	1.205
	78	2480	1.195


Remark: Please see next sub-clause for the measurement plot.

TEST REPORT REFERENCE: MDE_APTIV_1811_FCC01 Page 18 of 52

5.2.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = Bluetooth EDR 3, Operating Frequency = mid

99 % Bandwidth

5.2.5 TEST EQUIPMENT USED

- R&S TS8997

5.3 PEAK POWER OUTPUT

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.3.1 TEST DESCRIPTION

FHSS EQUIPMENT:

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyzer was set higher than the output power of the EUT.

The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

Resolution Bandwidth (RBW): 2 MHzVideo Bandwidth (VBW): 10 MHz

Trace: MaxholdSweeps: 101

Sweeptime: 953.5 nsDetector: Peak

5.3.2 TEST REQUIREMENTS / LIMITS

Frequency Hopping Systems:

FCC Part 15, Subpart C, §15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

FCC Part 15, Subpart C, §15.247 (b) (2)

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Used conversion factor: Limit (dBm) = $10 \log (Limit (W)/1mW)$

TEST REPORT REFERENCE: MDE_APTIV_1811_FCC01 Page 20 of 52

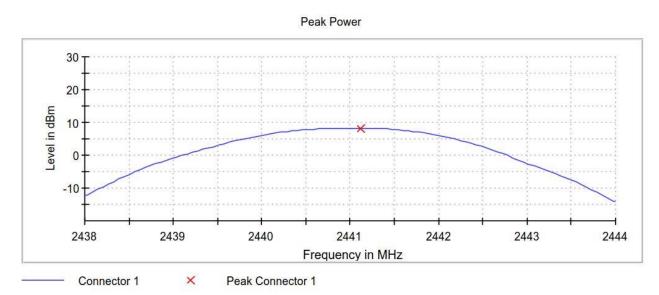
5.3.3 TEST PROTOCOL

 $\begin{array}{lll} \mbox{Ambient temperature:} & 25 \ \mbox{°C} \\ \mbox{Air Pressure:} & 1010 \ \mbox{hPa} \\ \mbox{Humidity:} & 30 \ \mbox{\%} \end{array}$

BT GFSK (1-DH1)

Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	0	2402	8.7	30.0	21.3	8.1
	39	2441	9.4	30.0	20.6	8.8
	78	2480	9.1	30.0	20.9	8.5

BT π/4 DOPSK (2-DH1)


Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	0	2402	7.2	21.0	13.8	6.6
	39	2441	8.3	21.0	12.7	7.7
	78	2480	8.0	21.0	13.0	7.4

BT 8-DPSK (3-DH1)

Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	0	2402	7.4	21.0	13.6	6.8
	39	2441	8.3	21.0	12.7	7.7
	78	2480	8.0	21.0	13.0	7.4

Remark: Please see next sub-clause for the measurement plot.

5.3.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = Bluetooth EDR 3, Operating Frequency = mid

5.3.5 TEST EQUIPMENT USED

- R&S TS8997

5.4 SPURIOUS RF CONDUCTED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.4.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements. The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

Frequency range: 30 – 25000 MHz
Resolution Bandwidth (RBW): 100 kHz
Video Bandwidth (VBW): 300 kHz

Trace: MaxholdSweeps: 32001Sweep Time: 32.1 msDetector: Peak

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance conducted". This value is used to calculate the 20 dBc limit.

5.4.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (c)

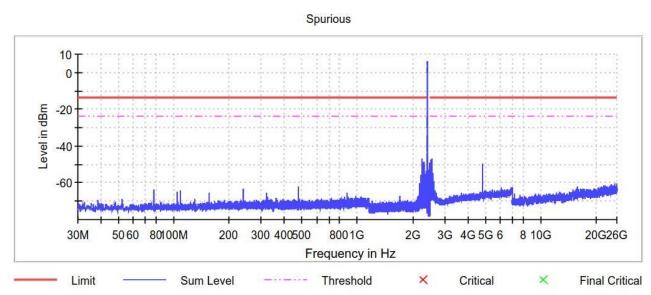
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

5.4.3 TEST PROTOCOL

 $\begin{array}{lll} \mbox{Ambient temperature:} & 25 \ \mbox{°C} \\ \mbox{Air Pressure:} & 1010 \ \mbox{hPa} \\ \mbox{Humidity:} & 30 \ \% \\ \mbox{BT GFSK (1-DH1)} \end{array}$

Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2399.1	-41.3	PEAK	100	8.5	-11.5	29.8
39	2441	4882.5	-43.1	PEAK	100	9.4	-10.6	32.5
78	2480	2324.0	-43.7	PEAK	100	9.0	-11.0	32.7

BT π/4 DQPSK (2-DH1)


Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2400.0	-34.4	PEAK	100	6.3	-13.7	20.7
39	2441	2285.0	-45.1	PEAK	100	8.3	-11.7	33.4
78	2480	2324.0	-44.9	PEAK	100	7.4	-12.6	32.3

BT 8-DPSK (3-DH1)

Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2400.0	-36.1	PEAK	100	6.3	-13.7	22.4
39	2441	2285.0	-45.2	PEAK	100	8.3	-11.7	33.5
78	2480	1717.6	-36.7	PEAK	100	7.3	-12.7	24.0

Remark: Please see next sub-clause for the measurement plot.

5.4.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = Bluetooth EDR 2, Operating Frequency = low

5.4.5 TEST EQUIPMENT USED

- R&S TS8997

5.5 TRANSMITTER SPURIOUS RADIATED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.5.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber
- Antenna distance: 3 m
- Detector: Peak-Maxhold
- Frequency range: 0.009 0.15 MHz and 0.15 30 MHz
- Frequency steps: 0.05 kHz and 2.25 kHz
- IF-Bandwidth: 0.2 kHz and 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side
- Antenna distance: according to the Standard
- Detector: Quasi-Peak
- Frequency range: 0.009 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 0.2 10 kHz
- Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Antenna distance: 3 m

- Detector: Peak-Maxhold / Quasipeak (FFT-based)

- Frequency range: 30 - 1000 MHz

Frequency steps: 30 kHzIF-Bandwidth: 120 kHz

Measuring time / Frequency step: 100 ms
Turntable angle range: -180° to 90°

- Turntable step size: 90°

Height variation range: 1 – 3 m
Height variation step size: 2 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 100 ms

- Turntable angle range: ± 45 ° around the determined value - Height variation range: ± 100 cm around the determined value

- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with OP detector

With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4:

- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90° .

The turn table step size (azimuth angle) for the preliminary measurement is 45 °.

Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed.

The turn table azimuth will slowly vary by \pm 22.5°.

The elevation angle will slowly vary by $\pm 45^{\circ}$

EMI receiver settings (for all steps):

- Detector: Peak, Average

- IF Bandwidth = 1 MHz

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / Average

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 1 MHz - Measuring time: 1 s

5.5.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 - 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 - 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

TEST REPORT REFERENCE: MDE_APTIV_1811_FCC01 Page 26 of 52

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

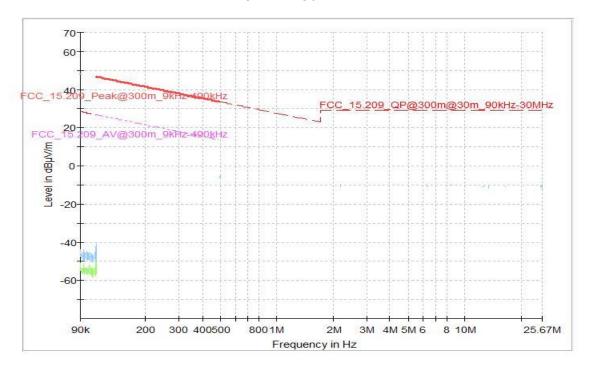
Used conversion factor: Limit ($dB\mu V/m$) = 20 log (Limit ($\mu V/m$)/1 $\mu V/m$)

5.5.3 TEST PROTOCOL

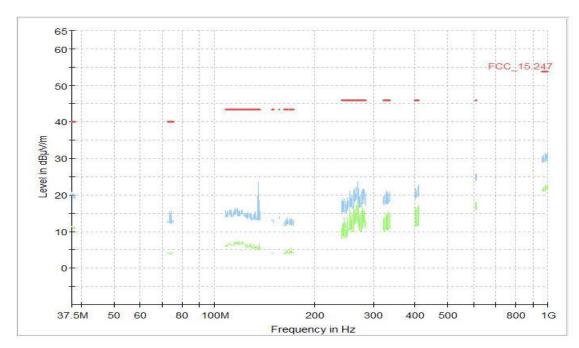
 $\begin{array}{lll} \mbox{Ambient temperature:} & 25 \ \mbox{°C} \\ \mbox{Air Pressure:} & 1023 \ \mbox{hPa} \\ \mbox{Humidity:} & 30 \ \mbox{\%} \end{array}$

BT GFSK (1-DH1)

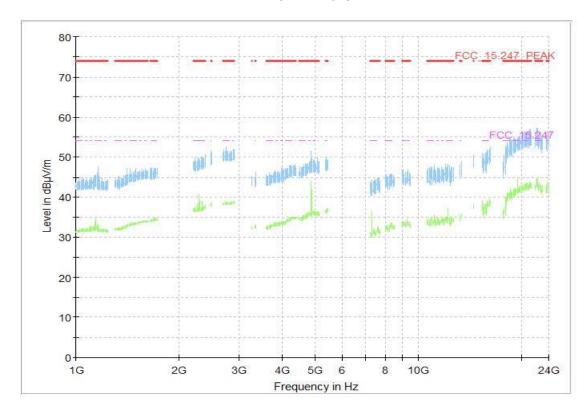
Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
0	2402	-	-	-	-	-	-	-
39	2441	=	-	-	-	-	-	-
78	2480	-	-	_	_	-	-	-


BT π/4 DQPSK (2-DH1)

Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
0	2402	-	-	-	-	-	-	-
39	2441	-	-	-	-	-	1	-
78	2480	-	-	-	-	-	=	-


Remark: Please see next sub-clause for the measurement plot.

5.5.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = Bluetooth BDR, Operating Frequency = mid 9 kHz - 30 MHz



Radio Technology = Bluetooth BDR, Operating Frequency = mid 30 MHz - 1 GHz

Radio Technology = Bluetooth BDR, Operating Frequency = mid 1 GHz - 26 GHz

5.5.5 TEST EQUIPMENT USED

- Radiated Emissions

5.6 BAND EDGE COMPLIANCE CONDUCTED

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.6.1 TEST DESCRIPTION

For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room. The reference power was measured in the test case "Spurious RF Conducted Emissions". The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

Lower Band Edge:

Minimum frequency: 2397.0 MHz

Upper Band Edge

Maximum frequency: 2485.0 MHz

• Span:

Bluetooth: 90 MHz Detector: Peak

Resolution Bandwidth (RBW): 100 kHzVideo Bandwidth (VBW): 300 kHz

• Sweeptime: 113.7 μs

Sweeps: 1800Trace: Maxhold

5.6.2 TEST REQUIREMENTS / LIMITS

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ...

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

TEST REPORT REFERENCE: MDE_APTIV_1811_FCC01 Page 30 of 52

5.6.3 TEST PROTOCOL

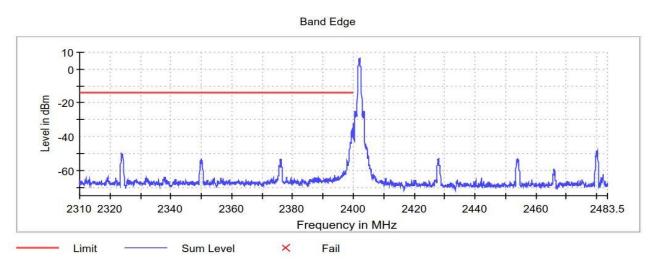
25 °C Ambient

temperature:

1010 hPa Air Pressure: Humidity: BT GFSK (1-DH1) 30 %

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2400.0	-35.2	PEAK	100	8.5	-11.5	23.7
78	2480	2483.5	-49.3	PEAK	100	9.0	-11.0	38.3
hopping	hopping	2400.0	-39.9	PEAK	100	9.5	-10.5	29.4
hopping	hopping	2483.5	-44.6	PEAK	100	9.5	-10.5	34.1

BT π/4 DQPSK (2-DH1)


Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2400.0	-32.8	PEAK	100	6.3	-13.7	19.1
78	2480	2483.5	-49.7	PEAK	100	7.4	-12.6	37.1
hopping	hopping	2400.0	-33.3	PEAK	100	7.8	-12.2	21.1
hopping	hopping	2483.5	-46.0	PEAK	100	7.8	-12.2	33.8

BT 8-DPSK (3-DH1)

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2400.0	-32.0	PEAK	100	6.3	-13.7	18.3
78	2480	2483.5	-49.3	PEAK	100	7.3	-12.7	36.6
hopping	hopping	2400.0	-33.8	PEAK	100	7.7	-12.3	21.5
hopping	hopping	2483.5	-46.1	PEAK	100	7.7	-12.3	33.8

Remark: Please see next sub-clause for the measurement plot.

5.6.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = Bluetooth EDR 3, Operating Frequency = low

5.6.5 TEST EQUIPMENT USED

R&S TS8997

5.7 BAND EDGE COMPLIANCE RADIATED

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.7.1 TEST DESCRIPTION

Please see test description for the test case "Spurious Radiated Emissions"

5.7.2 TEST REQUIREMENTS / LIMITS

For band edges connected to a restricted band, the limits are specified in Section 15.209(a)

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 - 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 - 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

 $\S15.35(b)$..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit ($dB\mu V/m$) = 20 log (Limit ($\mu V/m$)/1 $\mu V/m$)

TEST REPORT REFERENCE: MDE_APTIV_1811_FCC01 Page 32 of 52

5.7.3 TEST PROTOCOL

Ambient temperature: 25 °C
Air Pressure: 1023 hPa
Humidity: 30 %

BT GFSK (1-DH1)

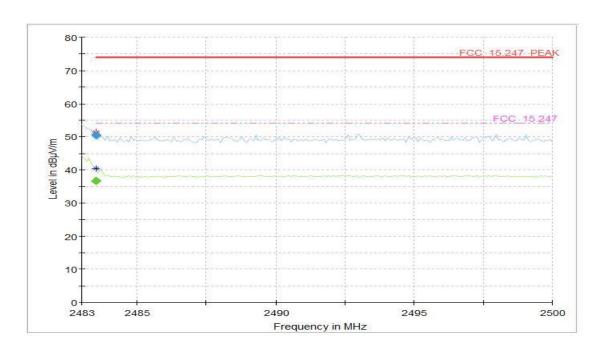
Applied duty cycle correction (AV): 0 dB

Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
78	2480	2483.5	50.4	PEAK	1000	74.0	23.6	BE
78	2480	2483.5	36.5	AV	1000	54.0	17.5	BE

BT π/4 DQPSK (2-DH1)

Applied duty cycle correction (AV): 0 dB

Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
78	2480	2483.5	48.4	PEAK	1000	74.0	25.6	BE
78	2480	2483.5	35.8	AV	1000	54.0	18.2	BE


BT 8-DPSK (3-DH1)

Applied duty cycle correction (AV): 0 dB

Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
78	2480	2483.5	50.5	PEAK	1000	74.0	23.5	BE
78	2480	2483.5	35.9	AV	1000	54.0	18.1	BE

Remark: Please see next sub-clause for the measurement plot.

5.7.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = Bluetooth BDR, Operating Frequency = high

5.7.5 TEST EQUIPMENT USED

- Radiated Emissions

5.8 CHANNEL SEPARATION

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.8.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the channel separation measurements. The channel separation is independent from the modulation pattern.

The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

Detector: PeakTrace: Maxhold

• Span: appr. 3 x OBW

• Centre Frequency: a mid frequency of the used band

• Resolution Bandwidth (RBW): appr. 3 % of channel spacing

Video Bandwidth (VBW): 3 x RBW

• Sweep Time: 1.0 ms

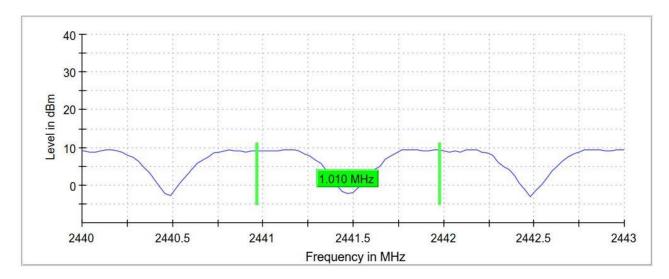
• Sweeps: 101

The technology depending measurement parameters can be found in the measurement plot.

5.8.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (a) (1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.


5.8.3 TEST PROTOCOL

Ambient temperature: 25 °C Air Pressure: 1010 hPa Humidity: 30 %

Radio Technology	Channel Separation [MHz]	Limit [MHz]	Margin to Limit [MHz]
BT GFSK (1-DH1)	1.010	0.970	0.040

Remark: Please see next sub-clause for the measurement plot.

5.8.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = Bluetooth BDR, Operating Frequency = mid

5.8.5 TEST EQUIPMENT USED

- R&S TS8997

5.9 DWELL TIME

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.9.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the dwell time measurements. The dwell time is independent from the modulation pattern. The dwell time is calculated by:

The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Dwell time = time slot length * hop rate / number of hopping channels * 31.6 s

with:

- hop rate = 1600 * 1/s for DH1 packets = $1600 s^{-1}$
- hop rate = 1600/3 * 1/s for DH3 packets = $533.33 s^{-1}$
- hop rate = 1600/5 * 1/s for DH5 packets = $320 s^{-1}$
- number of hopping channels = 79
- 31.6 s = 0.4 seconds multiplied by the number of hopping channels = 0.4 s * 79

The highest value of the dwell time is reported.

Analyzer settings:

- Center Frequency: mid channel frequency
- Span: Zero span • Detector: Peak
- Trace: Maxhold
- Resolution Bandwidth (RBW): ≤ channel separation
- Trigger: Video

5.9.2 TEST REQUIREMENTS / LIMITS

For the band: 902 - 928 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (i)

If the 20 dB bandwidth of the hopping channel is less than 250 kHz the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period. If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.

For the band: 5725 - 5850 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (ii)

The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30 second period.

For the frequency band 2400 – 2483.5 MHz:

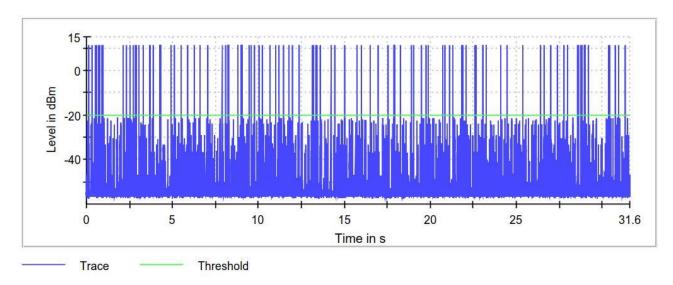
TEST REPORT REFERENCE: MDE_APTIV_1811_FCC01 Page 36 of 52

FCC Part 15, Subpart C, §15.247 (a) (1) (iii)

...The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Since the Bluetooth technology uses 79 channels this period is calculated to be 31.6 seconds.

FCC Part 15, Subpart C, §15.247 (f)

(f) For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques. The frequency hopping operation of the hybrid system, with the direct sequence or digital modulation operation turned-off, shall have an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4.


5.9.3 TEST PROTOCOL

Ambient temperature: 25 °C Air Pressure: 1010 hPa Humidity: 30 %

Radio Technology	Time Slot Length [ms]	Dwell Time [ms]	Limit [s]	Margin to Limit [ms]
BT GFSK (1-DH5)	2.946	377.088	0.4	22.912

Remark: Please see next sub-clause for the measurement plot.

5.9.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = Bluetooth BDR, Operating Frequency = mid

5.9.5 TEST EQUIPMENT USED

- R&S TS8997

TEST REPORT REFERENCE: MDE_APTIV_1811_FCC01

Page 37 of 52

5.10 NUMBER OF HOPPING FREQUENCIES

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.10.1TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the number of hopping frequencies measurement. The number of hopping frequencies is independent from the modulation pattern.

The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

Detector: PeakTrace: Maxhold

• Centre frequency: 2441 MHz

• Frequency span: Frequency band of operation

• Resolution Bandwidth (RBW): < 30 % of channel spacing or 20 dB bandwidth (whichever is maller)

• Video Bandwidth (VBW): 3 x RBW

• Sweep Time: 47.4 μs

• Sweeps: 418

The technology depending measurement parameters can be found in the measurement plot.

5.10.2TEST REQUIREMENTS / LIMITS

For the band: 902 - 928 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (i)

If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies.

If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies

For the band: 5725 - 5850 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (ii)

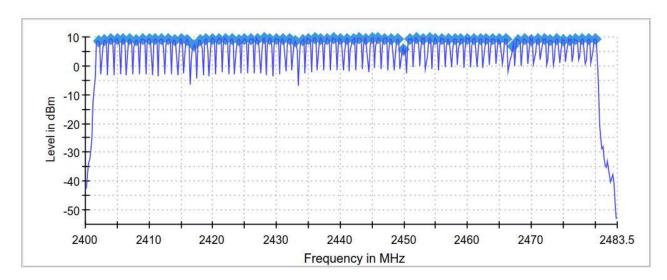
Frequency hopping systems operating in the 5725-5850 MHz band shall use at least 75 hopping frequencies.

For the band: 2400 - 2483.5 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

TEST REPORT REFERENCE: MDE_APTIV_1811_FCC01 Page 38 of 52


5.10.3TEST PROTOCOL

Ambient temperature: 25 °C Air Pressure: 1010 hPa Humidity: 30 %

Radio Techno	ology Numb	er of Hopping Frequencies	Limit	Margin to Limit
BT GFSK (1-DI	H1) 79		15	88

Remark: Please see next sub-clause for the measurement plot.

5.10.4MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = Bluetooth BDR, Operating Frequency = mid

5.10.5TEST EQUIPMENT USED

- R&S TS8997

6 TEST EQUIPMENT

1 R&S TS8997 EN300328/301893 Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.1	SMB100A	Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	107695	2017-07	2020-07
1.2	MFS	Rubidium Frequency Standard	Datum-Beverly	5489/001	2019-08	2020-08
1.3	FSV30	Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2018-04	2020-04
1.4	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2018-04	2020-04
1.5	Temperature Chamber VT 4002	Temperature Chamber Vötsch 03	Vötsch	58566002150010	2018-04	2020-04
1.6	A8455-4	4 Way Power Divider (SMA)		-		
1.7	Opus10 THI (8152.00)	, ,	Lufft Mess- und Regeltechnik GmbH	ID 7482	2019-06	2021-06
1.8	SMBV100A		Rohde & Schwarz	259291	2016-10	2019-10
1.9	OSP120	Switching Unit with integrated power meter	Rohde & Schwarz	101158	2018-05	2021-05

2 Radiated Emissions Lab to perform radiated emission tests

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.1	NRV-Z1		Rohde & Schwarz GmbH & Co. KG	827753/006	2019-08	2020-08
2.2		Rubidium Frequency Normal MFS	Datum GmbH	002	2018-10	2020-10
2.3	N5000/NP	Filter for EUT, 2 Lines, 250 V, 16 A	ETS-LINDGREN	241515		
2.4	Opus10 TPR (8253.00)		Lufft Mess- und Regeltechnik GmbH	ID 13936	2019-05	2021-05
2.5	ESW44		Rohde & Schwarz GmbH & Co. KG	101603	2018-05	2019-11
	Anechoic Chamber 01	SAC/FAR, 10.58 m x 6.38 m x 6.00 m	Frankonia	none	2018-06	2020-06
2.7	FS-Z60	Mixer 40 - 60	Rohde & Schwarz Messgerätebau GmbH	100178	2016-12	2019-12

TEST REPORT REFERENCE: MDE_APTIV_1811_FCC01

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.8	FS-Z220	Harmonic Mixer 140 - 220 GHz	Rohde & Schwarz Messgerätebau GmbH	101005	2017-03	2020-03
2.9	SGH-05		RPG-Radiometer Physics GmbH	075		
2.10	HL 562 ULTRALOG	Biconical-log- per antenna (30 MHz - 3 GHz) with HL 562E biconicals	Rohde & Schwarz GmbH & Co. KG	830547/003	2018-07	2021-07
2.11	5HC2700/12750 -1.5-KK	High Pass Filter	Trilithic	9942012		
2.12		Antenna Mast	Maturo GmbH	-		
2.13	Anechoic Chamber 03	FAR, 8.80m x 4.60m x 4.05m (I x w x h)	Albatross Projects	P26971-647-001- PRB	2018-06	2020-06
2.14	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2018-04	2020-04
2.15	NRVD	Power Meter	Rohde & Schwarz GmbH & Co. KG	828110/016	2019-08	2020-08
2.16	HF 906	Double-ridged horn	Rohde & Schwarz	357357/002	2018-09	2021-09
2.17	JS4-18002600- 32-5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
2.18	FSW 43	Spectrum Analyzer	Rohde & Schwarz	103779	2019-02	2021-02
2.19	3160-09		EMCO Elektronic GmbH	00083069		
2.20	SGH-19	Standard Gain / Pyramidal Horn Antenna (40 - 60 GHz)	RPG-Radiometer Physics GmbH	093		
2.21	WHKX 7.0/18G- 8SS	High Pass Filter	Wainwright Instruments GmbH	09		
2.22	DS 420S	Turn Table 2 m diameter	HD GmbH	420/573/99		
2.23	4HC1600/12750 -1.5-KK		Trilithic	9942011		
2.24	Chroma 6404	AC Source	Chroma ATE INC.	64040001304		
2.25		Broadband Amplifier 30 MHz - 26 GHz	Miteq	619368		
2.26	TT 1.5 WI	Turn Table	Maturo GmbH	-		
2.27	HL 562 ULTRALOG		Rohde & Schwarz GmbH & Co. KG	100609		

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.28	HF 906	Double-ridged horn	Rohde & Schwarz	357357/001	2018-03	2021-03
2.29	FS-Z325	Harmonic Mixer 220 - 325 GHz	Rohde & Schwarz Messgerätebau GmbH	101006	2017-03	2020-03
2.30	3160-10		EMCO Elektronic GmbH	00086675		
2.31	MA4985-XP-ET		innco systems GmbH	none		
2.32	SGH-08		RPG-Radiometer Physics GmbH	064		
2.33	SGH-12		RPG-Radiometer Physics GmbH	326		
2.34	5HC3500/18000 -1.2-KK		Trilithic	200035008		
2.35	FS-Z140	Harmonic Mixer 90 -140	Rohde & Schwarz Messgerätebau GmbH	101007	2017-02	2020-02
2.36	HFH2-Z2		Rohde & Schwarz	829324/006	2018-01	2021-01
2.37	Opus10 THI (8152.00)	ThermoHygro	Lufft Mess- und Regeltechnik GmbH	ID 12482	2019-06	2021-06
2.38	ESR 7		Rohde & Schwarz	101424	2019-01	2020-01
2.39	JS4-00101800- 35-5P		Miteq	896037		
2.40	AS 620 P		HD GmbH	620/37		
2.41	TD1.5-10kg	EUT Tilt Device (Rohacell)	Maturo GmbH	TD1.5- 10kg/024/37907 09		
2.42	SGH-03		RPG-Radiometer Physics GmbH	060		
2.43	FS-Z90	Mixer 60 - 90	Rohde & Schwarz Messgerätebau GmbH	101686	2017-03	2020-03
2.44	ESIB 26	Spectrum Analyzer	Rohde & Schwarz	830482/004	2018-01	2020-01
2.45	Innco Systems CO3000		innco systems GmbH	CO3000/967/393 71016/L		
2.46	PAS 2.5 - 10 kg		Maturo GmbH	-		
2.47	AFS42- 00101800-25-S- 42	Broadband	Miteq	2035324		

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.48	_	Antenna Mast 4 m	Maturo GmbH	AM4.0/180/1192 0513		
2.49	HF 907	Double-ridged horn	Rohde & Schwarz	102444	2018-07	2021-07

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

7 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

7.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Frequency	Corr.
MHz	dB
0.15	10.1
5	10.3
7	10.5
10	10.5
12	10.7
14	10.7
16	10.8
18	10.9
20	10.9
22	11.1
24	11.1
26	11.2
28	11.2
30	11.3

LISN insertion loss ESH3- Z5	cable loss (incl. 10 dB atten- uator)
dB	dB
0.1	10.0
0.1	10.2
0.2	10.3
0.2	10.3
0.3	10.4
0.3	10.4
0.4	10.4
0.4	10.5
0.4	10.5
0.5	10.6
0.5	10.6
0.5	10.7
0.5	10.7
0.5	10.8

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

7.2 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ)

	1	_
	45	
Eroguenav	AF	Corr
Frequency	HFH-Z2)	Corr.
MHz	dB (1/m)	dB
0.009	20.50	-79.6
0.01	20.45	-79.6
0.015	20.37	-79.6
0.02	20.36	-79.6
0.025	20.38	-79.6
0.03	20.32	-79.6
0.05	20.35	-79.6
0.08	20.30	-79.6
0.1	20.20	-79.6
0.2	20.17	-79.6
0.3	20.14	-79.6
0.49	20.12	-79.6
0.490001	20.12	-39.6
0.5	20.11	-39.6
0.8	20.10	-39.6
1	20.09	-39.6
2	20.08	-39.6
3	20.06	-39.6
4	20.05	-39.5
5	20.05	-39.5
6	20.02	-39.5
8	19.95	-39.5
10	19.83	-39.4
12	19.71	-39.4
14	19.54	-39.4
16	19.53	-39.3
18	19.50	-39.3
20	19.57	-39.3
22	19.61	-39.3
24	19.61	-39.3
26	19.54	-39.3
28	19.46	-39.2
30	19.73	-39.1

\ -		<u>'</u>				
cable	cable	cable	cable	distance	d_{Limit}	d_{used}
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-40 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.3	0.1	-40	30	3
0.4	0.1	0.3	0.1	-40	30	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -40 * LOG (d_{Limit}/d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

7.3 ANTENNA R&S HL562 (30 MHZ - 1 GHZ)

$d_{Limit} = 3 m)$		1
Frequency	AF R&S HL562	Corr.
MHz	dB (1/m)	dB
30	18.6	0.6
50	6.0	0.9
100	9.7	1.2
150	7.9	1.6
200	7.6	1.9
250	9.5	2.1
300	11.0	2.3
350	12.4	2.6
400	13.6	2.9
450	14.7	3.1
500	15.6	3.2
550	16.3	3.5
600	17.2	3.5
650	18.1	3.6
700	18.5	3.6
750	19.1	4.1
800	19.6	4.1
850	20.1	4.4
900	20.8	4.7
950	21.1	4.8
1000	21.6	4.9

_			T	•		
cable	cable	cable	cable	distance	d_{Limit}	d_{used}
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

 $(d_{Limit} = 10 m)$

30 50	18.6	-9.9							
50		٠.٠	0.29	0.04	0.23	0.02	-10.5	10	3
	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5	10	3
100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5	10	3
150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5	10	3
200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5	10	3
250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5	10	3
300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5	10	3
350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5	10	3
400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5	10	3
450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5	10	3
500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5	10	3
550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5	10	3
600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5	10	3
650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5	10	3
700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5	10	3
750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5	10	3
800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5	10	3
850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5	10	3
900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5	10	3
950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5	10	3
1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 * LOG (d_{Limit}/ d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.4 ANTENNA R&S HF907 (1 GHZ - 18 GHZ)

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
1000	24.4	-19.4
2000	28.5	-17.4
3000	31.0	-16.1
4000	33.1	-14.7
5000	34.4	-13.7
6000	34.7	-12.7
7000	35.6	-11.0

				1
		cable		
cable		loss 3		
loss 1		(switch		
(relay +	cable	unit,		
cable	loss 2	atten-	cable	
inside	(outside	uator &	loss 4 (to	
chamber)	chamber)	pre-amp)	receiver)	
dB	dB	dB	dB	
0.99	0.31	-21.51	0.79	
1.44	0.44	-20.63	1.38	
1.87	0.53	-19.85	1.33	
2.41	0.67	-19.13	1.31	
2.78	0.86	-18.71	1.40	
2.74	0.90	-17.83	1.47	
2.82	0.86	-16.19	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
3000	31.0	-23.4
4000	33.1	-23.3
5000	34.4	-21.7
6000	34.7	-21.2
7000	35.6	-19.8

cable loss 1 (relay inside	cable loss 2 (inside	cable loss 3 (outside	cable loss 4 (switch unit, atten- uator &	cable loss 5 (to	used for FCC
chamber)	chamber)	chamber)	pre-amp)	receiver)	15.247
dB	dB	dB	dB	dB	
0.47	1.87	0.53	-27.58	1.33	
0.56	2.41	0.67	-28.23	1.31	
0.61	2.78	0.86	-27.35	1.40	
0.58	2.74	0.90	-26.89	1.47	
0.66	2.82	0.86	-25.58	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
7000	35.6	-57.3
8000	36.3	-56.3
9000	37.1	-55.3
10000	37.5	-56.2
11000	37.5	-55.3
12000	37.6	-53.7
13000	38.2	-53.5
14000	39.9	-56.3
15000	40.9	-54.1
16000	41.3	-54.1
17000	42.8	-54.4
18000	44.2	-54.7

cable					
loss 1	cable	cable	cable	cable	cable
(relay	loss 2	loss 3	loss 4	loss 5	loss 6
inside	(High	(pre-	(inside	(outside	(to
chamber)	Pass)	amp)	chamber)	chamber)	receiver)
dB	dB	dB	dB	dB	dB
0.56	1.28	-62.72	2.66	0.94	1.46
0.69	0.71	-61.49	2.84	1.00	1.53
0.68	0.65	-60.80	3.06	1.09	1.60
0.70	0.54	-61.91	3.28	1.20	1.67
0.80	0.61	-61.40	3.43	1.27	1.70
0.84	0.42	-59.70	3.53	1.26	1.73
0.83	0.44	-59.81	3.75	1.32	1.83
0.91	0.53	-63.03	3.91	1.40	1.77
0.98	0.54	-61.05	4.02	1.44	1.83
1.23	0.49	-61.51	4.17	1.51	1.85
1.36	0.76	-62.36	4.34	1.53	2.00
1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

	4.5	
	AF EMCO	
Frequency	3160-09	Corr.
MHz	dB (1/m)	dB
18000	40.2	-23.5
18500	40.2	-23.2
19000	40.2	-22.0
19500	40.3	-21.3
20000	40.3	-20.3
20500	40.3	-19.9
21000	40.3	-19.1
21500	40.3	-19.1
22000	40.3	-18.7
22500	40.4	-19.0
23000	40.4	-19.5
23500	40.4	-19.3
24000	40.4	-19.8
24500	40.4	-19.5
25000	40.4	-19.3
25500	40.5	-20.4
26000	40.5	-21.3
26500	40.5	-21.1

,		,		
cable	cable	cable	cable	cable
loss 1	loss 2	loss 3	loss 4	loss 5
(inside	(pre-	(inside	(switch	(to
chamber)	amp)	chamber)	unit)	receiver)
dB	dB	dB	dB	dB
0.72	-35.85	6.20	2.81	2.65
0.69	-35.71	6.46	2.76	2.59
0.76	-35.44	6.69	3.15	2.79
0.74	-35.07	7.04	3.11	2.91
0.72	-34.49	7.30	3.07	3.05
0.78	-34.46	7.48	3.12	3.15
0.87	-34.07	7.61	3.20	3.33
0.90	-33.96	7.47	3.28	3.19
0.89	-33.57	7.34	3.35	3.28
0.87	-33.66	7.06	3.75	2.94
0.88	-33.75	6.92	3.77	2.70
0.90	-33.35	6.99	3.52	2.66
0.88	-33.99	6.88	3.88	2.58
0.91	-33.89	7.01	3.93	2.51
0.88	-33.00	6.72	3.96	2.14
0.89	-34.07	6.90	3.66	2.22
0.86	-35.11	7.02	3.69	2.28
0.90	-35.20	7.15	3.91	2.36
	_		_	

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

7.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

Frequency	AF EMCO 3160-10	Corr.
GHz	dB (1/m)	dB
26.5	43.4	-11.2
27.0	43.4	-11.2
28.0	43.4	-11.1
29.0	43.5	-11.0
30.0	43.5	-10.9
31.0	43.5	-10.8
32.0	43.5	-10.7
33.0	43.6	-10.7
34.0	43.6	-10.6
35.0	43.6	-10.5
36.0	43.6	-10.4
37.0	43.7	-10.3
38.0	43.7	-10.2
39.0	43.7	-10.2
40.0	43.8	-10.1

cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance (used)
dB	dB	dB	dB	dB	m	m
4.4				-9.5	3	1.0
4.4				-9.5	3	1.0
4.5				-9.5	3	1.0
4.6				-9.5	3	1.0
4.7				-9.5	3	1.0
4.7				-9.5	3	1.0
4.8				-9.5	3	1.0
4.9				-9.5	3	1.0
5.0				-9.5	3	1.0
5.1				-9.5	3	1.0
5.1				-9.5	3	1.0
5.2				-9.5	3	1.0
5.3				-9.5	3	1.0
5.4				-9.5	3	1.0
5.5				-9.5	3	1.0

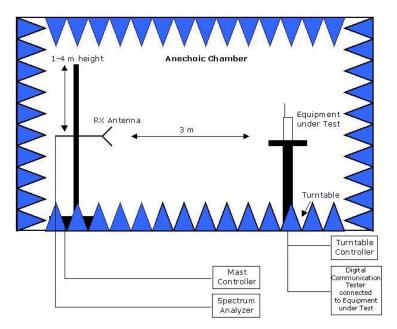
Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

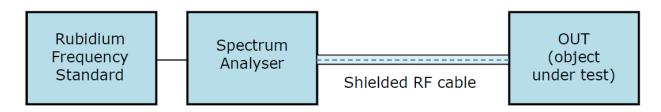
AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)


Linear interpolation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG (d_{Limit}/d_{used}) Linear interpolation will be used for frequencies in between the values in the table.

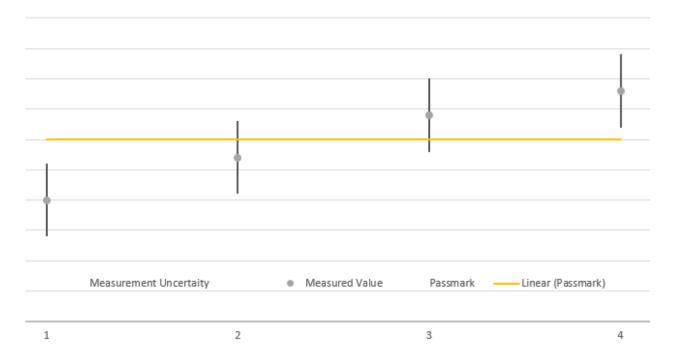
Table shows an extract of values.



8 SETUP DRAWINGS

Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting groundplane.


Drawing 2: Setup for conducted radio tests.

9 MEASUREMENT UNCERTAINTIES

Test Case	Parameter	Uncertainty
AC Power Line	Power	± 3.4 dB
Field Strength of spurious radiation	Power	± 5.5 dB
6 dB / 26 dB / 99% Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz
Conducted Output Power	Power	± 2.2 dB
Band Edge Compliance	Power Frequency	± 2.2 dB ± 11.2 kHz
Frequency Stability	Frequency	± 25 Hz
Power Spectral Density	Power	± 2.2 dB

The measurement uncertainties for all parameters are calculated with an expansion factor (coverage factor) k = 1.96. This means, that the true value is in the corresponding interval with a probability of 95 %.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so called shared risk principle.

10 PHOTO REPORT

Please see separate photo report.