M. Flom Associates, Inc. - Global Compliance Center 3356 North San Marcos Place, Suite 107, Chandler, Arizona 85225-7176 www.mflom.com general@mflom.com (480) 926-3100, FAX: 926-3598

Date of Report: February 5, 2003
Date of Submission: February 11, 2003

Federal Communications Commission

Via: Electronic Filing

Attention: Authorization & Evaluation Division

Applicant: Tektron Micro Electronics, Inc.

Equipment: 4464A-SCORPION FCC ID: LPT-SCORPION

FCC Rules: 15.249

Gentlemen:

On behalf of the Applicant, enclosed please find Application Form 731, Engineering Test Report and all pertinent documentation, the whole for approval of the referenced equipment as shown.

Filing fees are attached.

We trust the same is in order. Should you need any further information, kindly contact the writer who is authorized to act as agent.

Sincerely yours,

Morton Flom, P. Eng.

enclosure(s)
cc: Applicant
MF/cva

FCC ID: LPT-SCORPION

<u>LIST OF EXHIBITS</u> (FCC **CERTIFICATION** (TRANSMITTERS) - REVISED 9/28/98)

APPLICANT: Tektron Micro Electronics, Inc.

FCC ID: LPT-SCORPION

BY APPLICANT:

1.	LETTER OF AUTHORIZATION	X
2.	IDENTIFICATION DRAWINGS x LABEL	
	x LOCATION OF LABEL	
	x COMPLIANCE STATEMENT	
	x LOCATION OF COMPLIANCE STATEMENT	
3.	DOCUMENTATION: 2.1033(b) (3) USER MANUAL	x
	(4) OPERATIONAL DESCRIPTION	x
	(5) BLOCK DIAGRAM	x
	(5) SCHEMATIC DIAGRAM	х
	(7) PHOTOGRAPHS	х
	BLOCK DIAGRAM	х
	PARTS LIST	X
	ACTIVE DEVICES	X

BY M.F.A. INC.

- A. TESTIMONIAL & STATEMENT OF CERTIFICATION
- B. STATEMENT OF QUALIFICATIONS

TRANSMITTER CERTIFICATION

of

FCC ID: LPT-SCORPION MODEL: 4464A-SCORPION

to

FEDERAL COMMUNICATIONS COMMISSION

Rule Part(s) 15.249

DATE OF REPORT: February 5, 2003

ON THE BEHALF OF THE APPLICANT:

Tektron Micro Electronics, Inc.

AT THE REQUEST OF:

P.O. Letter 01/06/2003

Tektron Micro Electronics, Inc.

7483B Candlewood Road Hanover, MD 21076

Attention of: (410) 850-4200; FAX: -4209

Bill Heineman

bill.h@tektronusa.com

and/or Bill Meyn

bill.m@tektronusa.com

SUPERVISED BY:

THE APPLICANT HAS BEEN CAUTIONED AS TO THE FOLLOWING:

15.21 INFORMATION TO USER.

The users manual or instruction manual for an intentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

15.27(a) SPECIAL ACCESSORIES.

Equipment marketed to a consumer must be capable of complying with the necessary regulations in the configuration in which the equipment is marketed. Where special accessories, such as shielded cables and/or special connectors are required to enable an unintentional or intentional radiator to comply with the emission limits in this part, the equipment must be marketed with, i.e. shipped and sold with, those special accessories. However, in lieu of shipping or packaging the special accessories with the unintentional or intentional radiator, the responsible party may employ other methods of ensuring that the special accessories are provided to the consumer, without additional charge.

Information detailing any alternative method used to supply the special accessories for a grant of equipment authorization or retained in the verification records, as appropriate. The party responsible for the equipment, as detailed in § 2.909 of this chapter, shall ensure that these special accessories are provided with the equipment. The instruction manual for such devices shall include appropriate instructions on the first page of text concerned with the installation of the device that these special accessories must be used with the device. It is the responsibility of the user to use the needed special accessories supplied with the equipment.

TABLE OF CONTENTS

RULE	DESCRIPTION	PAGE
	Test Report	1
2.1033(c)	General Information Required	2
	Standard Test Conditions and Engineering Practices	s 6
2.1053(a)	Field Strength of Spurious Radiation	8
2.1049(c)(1)	Emission Masks (Occupied Bandwidth)	14
15.207	A/C Powerline Conducted Emissions	18

PAGE NO. 1 of 21.

Required information per ISO/IEC Guide 25-1990, paragraph 13.2:

a) TEST REPORT

b) Laboratory: M. Flom Associates, Inc.

(FCC: 31040/SIT) 3356 N. San Marcos Place, Suite 107

(Canada: IC 2044) Chandler, AZ 85225

c) Report Number: d0320004

d) Client: Tektron Micro Electronics, Inc.

7483B Candlewood Road Hanover, MD 21076

e) Identification: 4464A-SCORPION

FCC ID: LPT-SCORPION

Description: Low Power Transceiver for Law Enforcement

f) EUT Condition: Not required unless specified in individual

tests.

g) Report Date: February 5, 2003 EUT Received: January 02, 2003

h, j, k): As indicated in individual tests.

i) Sampling method: No sampling procedure used.

1) Uncertainty: In accordance with MFA internal quality manual.

m) Supervised by:

Morton Flom, P. Eng.

U. Oher P. Eng

n) Results: The results presented in this report relate

only to the item tested.

o) Reproduction: This report must not be reproduced, except in

full, without written permission from this

laboratory.

PAGE NO. 2 of 21.

LIST OF GENERAL INFORMATION REQUIRED FOR CERTIFICATION

IN ACCORDANCE WITH FCC RULES AND REGULATIONS, VOLUME II, PART 2 AND TO

15.249

Sub-part 2.1033

(c)(1): NAME AND ADDRESS OF APPLICANT:

Tektron Micro Electronics, Inc. 7483B Candlewood Road Hanover, MD 21076

MANUFACTURER:

Tektron Micro Electronics, Inc. 7483 Candlewood Road Hanover, MD 20874

(c)(2): FCC ID: LPT-SCORPION

MODEL NO: 4464A-SCORPION

(c)(3): INSTRUCTION MANUAL(S):

PLEASE SEE ATTACHED EXHIBITS

(c)(4): TYPE OF EMISSION: 1M88F1D

(c)(5): FREQUENCY RANGE, MHz: 902 to 928

(c)(7): MAXIMUM POWER RATING, Watts: 50 mv/m @ 3m

15.203: ANTENNA REQUIREMENT:

 \overline{x} The antenna is permanently attached to the EUT

The antenna uses a unique coupling

The EUT must be professionally installed
The antenna requirement does not apply

PAGE NO. 3 of 21.

Subpart 2.1033 (continued)

(c)(8): VOLTAGES & CURRENTS IN ALL ELEMENTS IN FINAL R. F. STAGE, INCLUDING FINAL TRANSISTOR OR SOLID STATE DEVICE:

COLLECTOR CURRENT, A = per manual COLLECTOR VOLTAGE, Vdc = per manual SUPPLY VOLTAGE, Vdc = 13.8

(c)(9): TUNE-UP PROCEDURE:

PLEASE SEE ATTACHED EXHIBITS

(c)(10): CIRCUIT DIAGRAM/CIRCUIT DESCRIPTION:
Including description of circuitry & devices provided for determining and stabilizing frequency, for suppression of spurious radiation, for limiting modulation and limiting power.

PLEASE SEE ATTACHED EXHIBITS

(c)(11): LABEL INFORMATION:

PLEASE SEE ATTACHED EXHIBITS

(c)(12): PHOTOGRAPHS:

PLEASE SEE ATTACHED EXHIBITS

(c)(13): DIGITAL MODULATION DESCRIPTION:

____ ATTACHED EXHIBITS N/A

(c)(14): TEST AND MEASUREMENT DATA:

FOLLOWS

4 of 21.

M. Flom Associates, Inc. is accredited by the American Association for Laboratory Association (A2LA) as shown in the scope below.

"This laboratory is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this report have been determined in accordance with the laboratory's terms of accreditation unless stated otherwise in the report."

Should this report contain any data for tests for which we are not accredited, or which have been undertaken by a subcontractor that is not A2LA accredited, such data would not covered by this laboratory's A2LA accreditation.

PAGE NO. 5 of 21.

Sub-part 2.1033(b):

TEST AND MEASUREMENT DATA

All tests and measurement data shown were performed in accordance with FCC Rules and Regulations, Volume II; Part 2, Sub-part J, Sections 2.1031, 2.1033, 2.1035, 2.1041, 2.1043, 2.1045, and the following individual Parts:

	15.209	Radiated emission limits; general requirements
	15.211	Tunnel radio systems
	15.213	Cable locating equipment
-	15.214	Cordless telephones
	15.217	Operation in the band 160-190 kHz
	15.219	Operation in the band 510-1705 kHz
	15.213 15.214 15.217 15.219 15.221	Operation in the band 525-1705 kHz (leaky coax)
	15.223	Operation in the band 1.705-10 MHz
	15.225	Operation in the band 13.553-13.567 MHz
	15.223 15.225 15.227 15.229 15.231	Operation in the band 26-27.28 MHz (remote control)
	15.229	Operation in the band 40.66-40.70 MHz
	15.231	Periodic operation in the band 40.66-40.70 MHz and above
		70 MHz
	15.233	Operation within the bands 43.71-44.49, 46.60-46.98 MHz
		48.75-49.51 MHz and 49.66-50.0 MHz
	15.235	Operation within the band 49.82-49.90 MHz
	15.237	Operation within the bands 72.0-73.0 MHz, 74.6-74.8 MHz
		and 75.2-76.0 MHz (auditory assistance)
	15.239 15.241	Operation in band 88-108 MHz
	15.241	Operation in the band 174-216 MHz (biomedical)
	15.243	Operation in the band 890-940 MHz (materials)
	15.245	Operation within the bands 902-928 MHz, 2435-2465 MHz,
		5785-5815 MHz, 10500-10550 MHz, and 24075-24175 MHz
		(filed disturbance sensors)
	15.247	Operation within bands 902-928 MHz, 2400-2483.5 MHz, and
		5725-5850 MHz (spread spectrum)
X	15.249	Operation within the bands 902-928 MHz, 2400-2483.5 MHz,
		5725-5875 MHz, and 24.0-24.25 GHz
	15.251	Operation within the bands 2.9-3.26 GHz, 3.267-3.332
		GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz (vehicle
		identification systems)
	15.321	Specific requirements for asynchronous devices operating
		in the 1910-1920 MHz and 2390-2400 MHz bands (Unlicensed
		PCS)
	15.323	Specific requirements for isochronous devices operating
		in the 1920-1930 MHz sub-band (Unlicensed PCS)

PAGE NO. 6 of 21.

STANDARD TEST CONDITIONS and ENGINEERING PRACTICES

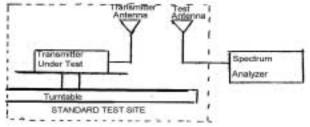
Except as noted herein, the following conditions and procedures were observed during the testing:

In accordance with ANSIC63.4-1992/2000 Draft, section 6.1.9, and unless otherwise indicated in the specific measurement results, the ambient temperature of the actual EUT was maintained within the range of 10° to 40° C (50° to 104° F) unless the particular equipment requirements specify testing over a different temperature range. Also, unless otherwise indicated, the humidity levels were in the range of 10% to 90% relative humidity.

Prior to testing, the EUT was tuned up in accordance with the manufacturer's alignment procedures. All external gain controls were maintained at the position of maximum and/or optimum gain throughout the testing.

Measurement results, unless otherwise noted, are worst case measurements.

PAGE NO. 7 of 21.


NAME OF TEST: ERP Carrier Power (Radiated)

SPECIFICATION: TIA/EIA 603A (Substitution Method)

2.2.17.1 Definition: The average radiated power of a licensed device is the equivalent power required, when delivered to a half-wave dipole or horn antenna, to produce at a distant point the same average received power as produced by the licensed device.

2.2.17.2 Method of Measurement:

a) Connect the equipment as illustrated. Place the transmitter to be tested on the turntable in the standard test site.

- b) Raise and lower the test antenna from 1m to 6 m with the transmitter facing the antenna and record the highest received signal in dB as LVL.
- c) Repeat step b) for seven additional readings at 45° interval positions of the turntable.
- d) Replace the transmitter under test with a half-wave or horn vertically polarized antenna. The center of the antenna should be at the same location as the transmitter under test. Connect the antenna to a signal generator with a known output power and record the path loss in dB or LOSS.
- e) Calculate the average radiated output power from the readings in step c) and d) by the following:

average radiated power = $10 \log_{10} \Sigma 10(LVL - LOSS)/10$ (dBm)

	RESULTS	
	915.44 MHZ	Path Loss,
	LVL, dbm	db
0 °	18.7	-1.0
45°	16.9	-1.0
90°	18.8	-1.0
135°	17.1	-1.0
180°	19.4	-1.0
225°	17.4	-1.0
270°	18.3	-1.0
315°	20.0	-1.0

Av. Radiated Power: 915.44 MHZ

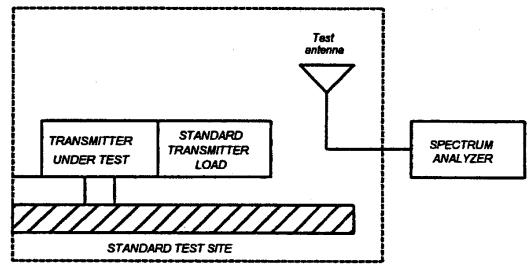
17.33 Peak dbm

PAGE NO. 8 of 21.

NAME OF TEST: Field Strength of Spurious Radiation

SPECIFICATION: 47 CFR 2.1053(a)

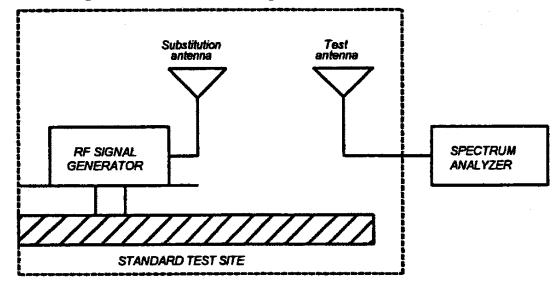
GUIDE: ANSI/TIA/EIA-603-1992/2001, Paragraph 1.2.12 and


Table 16, 47 CFR 22.917

MEASUREMENT PROCEDURE

1.2.12.1 Definition: Radiated spurious emissions are emissions from the equipment when transmitting into a non-radiating load on a frequency or frequencies which are outside an occupied band sufficient to ensure transmission of information of required quality for the class of communications desired.

1.2.12.2 Method of Measurement


- A) Connect the equipment as illustrated
- B) Adjust the spectrum analyzer for the following settings:
 - 1) Resolution Bandwidth 100 kHz (<1 GHZ), 1 MHZ (> 1GHz).
 - 2) Video Bandwidth \geq 3 times Resolution Bandwidth, or 30 kHz (22.917)
 - 3) Sweep Speed ≤2000 Hz/second
 - 4) Detector Mode = Mean or Average Power
- C) Place the transmitter to be tested on the turntable in the standard test site. The transmitter is transmitting into a non-radiating load which is placed on the turntable. The RF cable to this load should be of minimum length.

PAGE NO. 9 of 21.

NAME OF TEST: Field Strength of Spurious Radiation (Cont.)

- D) For each spurious measurement the test antenna should be adjusted to the correct length for the frequency involved. This length may be determined from a calibration ruler supplied with the equipment. Measurements shall be made from the lowest radio frequency generated in the equipment to the tenth harmonic of the carrier, except for the region close to the carrier equal to \pm the test bandwidth (see section 1.3.4.4).
- E) For each spurious frequency, raise and lower the test antenna from 1 m to 4 m to obtain a maximum reading on the spectrum analyzer with the test antenna at horizontal polarity. Repeat this procedure to obtain the highest possible reading. Record this maximum reading.
- F) Repeat step E) for each spurious frequency with the test antenna polarized vertically.

- G) Reconnect the equipment as illustrated.
- H) Keep the spectrum analyzer adjusted as in step B).
- I) Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground.

PAGE NO. 10 of 21.

NAME OF TEST: Field Strength of Spurious Radiation (Cont.)

- J) Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a non-radiating cable. With the antennas at both ends horizontally polarized and with the signal generator tuned to a particular spurious frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- K) Repeat step J) with both antennas vertically polarized for each spurious frequency.
- L) Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps J) and K) by the power loss in the cable between the generator and the antenna and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna.
- M) The levels recorded in step L) are absolute levels of radiated spurious emissions in dBm. The radiated spurious emissions in dB can be calculated by the following:

Radiated spurious emissions dB =
 10log₁₀(TX power in watts/0.001) - the levels in step 1)

NOTE: It is permissible that other antennas provided can be referenced to a dipole.

	ment: Description plicable)	s/n	Cycle Per ANSI C63.4-199	Last Cal
TRANSDUCER				
i00088	EMCO 3109-B 25MHz-300MHz	2336	12 mo.	Sep-02
i00065	EMCO 3301-B Active Monopole	2635	12 mo.	Sep-02
i00089	Aprel 2001 200MHz-1GHz	001500	12 mo.	Sep-02
i00103	EMCO 3115 1GHz-18GHz	9208-3925	12 mo.	Sep-02
AMPLIFIER				
i00028	HP 8449A	2749A00121	12 mo.	Mar-02
SPECTRUM A	NALYZER			
i00029	HP 8563E	3213A00104	12 mo.	Jan-03
i00033	HP 85462A	3625A00357	12 mo.	Jan-03
i00048	HP 8566B	2511AD1467	6 mo.	Jan-03

<u>PAGE NO.</u> 11 of 21.

 $\frac{\text{TEST SETUP}}{\text{g0310001:}}: \qquad \text{Radiated Emissions} \\ 2003-\text{Jan-03 Fri } 13:10:52$

STATE: 0:General

TEST SETUP: Radiated Emissions g0310002: 2003-Jan-03 Fri 13:10:52

STATE: 0:General

PAGE NO. 12 of 21.


TEST SETUP: Radiated Emissions g0310003: 2003-Jan-03 Fri 14:08:28

STATE: 0:General

 $\frac{\text{TEST SETUP}}{\text{g0310004:}}: \qquad \text{Radiated Emissions} \\ 2003-\text{Jan-03 Fri } 14:08:28$

STATE: 0:General

<u>PAGE NO.</u> 13 of 21.

NAME OF TEST: Field Strength of Spurious Radiation $\overline{g0310143}$: 2003-Jan-03 Fri 14:20:00

STATE: 2:High Power

FREQUENCY	FREQUENCY	METER,	CF, dB	uV/m @	ERP,	EIRP,
TUNED, MHz	EMISSION, MHz	dBuV		3m	dBm	dbc
915.440000	1831.600000	47.33	0.26	239.61	-49.8	≤-54.7
915.440000	2749.120000	37.17	3.67	110.15	-56.5	≤-54.7
915.440000	3661.500000	36.17	6.74	139.8	-54.5	≤-54.7
915.440000	4577.810000	36.5	7.43	157.22	-53.4	≤-54.7
915.440000	5489.890000	34.83	10.35	181.55	-52.2	≤-54.7
915.440000	6406.540000	34.67	11.23	197.24	-51.5	≤-54.7
915.440000	7321.580000	35.67	13.21	277.97	-48.5	≤-54.7
915.440000	8238.370000	36	14.29	326.96	-47.1	≤-54.7
915.440000	9157.270000	35.17	15.31	334.2	-46.9	≤-54.7

PAGE NO. 14 of 21.

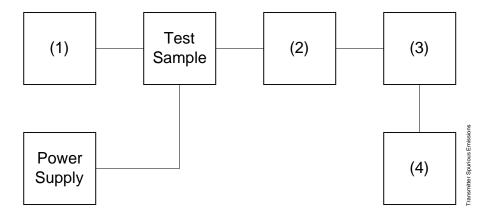
NAME OF TEST: Emission Masks (Occupied Bandwidth)

SPECIFICATION: 47 CFR 2.1049(c)(1)

GUIDE: ANSI/TIA/EIA-603-1992, Paragraph 2.2.11

TEST EQUIPMENT: As per previous page

MEASUREMENT PROCEDURE


- 1. The EUT and test equipment were set up as shown on the following page, with the Spectrum Analyzer connected.
- 2. For EUTs supporting audio modulation, the audio signal generator was adjusted to the frequency of maximum response and with output level set for ±2.5 kHz deviation (or 50% modulation). With level constant, the signal level was increased 16 dB.
- 3. For EUTs supporting digital modulation, the digital modulation mode was operated to its maximum extent.
- 4. The Occupied Bandwidth was measured with the Spectrum Analyzer controls set as shown on the test results.
- 5. MEASUREMENT RESULTS: ATTACHED

15 of 21.

TRANSMITTER SPURIOUS EMISSION

TEST A. OCCUPIED BANDWIDTH (IN-BAND SPURIOUS)

TEST B. OUT-OF-BAND SPURIOUS

Asset Description s/n (as applicable) (1) AUDIO OSCILLATOR/GENERATOR i00010 HP 204D 1105A04683 i00017 HP 8903A 2216A01753 i00012 HP 3312A 1432A11250 (2) COAXIAL ATTENUATOR i00122 Narda 766-10 7802 i00123 Narda 766-10 7802A i00069 Bird 8329 (30 dB) 1006 i00113 Sierra 661A-3D 1059 (3) FILTERS; NOTCH, HP, LP, BP i00126 Eagle TNF-1 100-250 i00125 Eagle TNF-1 50-60 i00124 Eagle TNF-1 250-850

PAGE NO. 16 of 21.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

g0310142: 2003-Jan-03 Fri 14:02:00

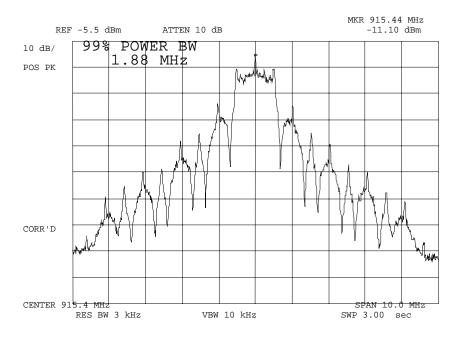
STATE: 2:High Power

ACTV DET: PBAK MBAS DET: PBAK QP AVG MKR 915.44 MHz B7.34 dB_MV

POWER: HIGH

MODULATION: DIGITAL 512 K/BITS SECOND

RADIATED TRANSMITTER


SUPERVISED BY:

PAGE NO. 17 of 21.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

g0310144: 2003-Jan-03 Fri 14:38:00

STATE: 2:High Power

POWER: MODULATION:

HIGH
DIGITAL 512 K/BITS SECOND
99 % POWER BANDWIDTH

SUPERVISED BY:

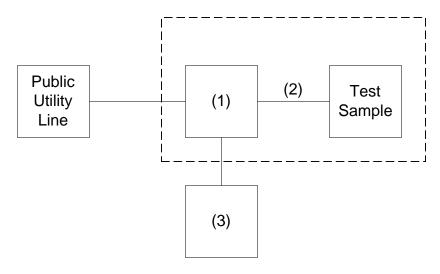
PAGE NO. 18 of 21.

NAME OF TEST: A/C Powerline Conducted Emissions

SPECIFICATION: FCC: 47 CFR 15.27

GUIDE: IEEE Standard 213

TEST CONDITIONS: S. T. & H.


TEST EQUIPMENT: As per attached page

MEASUREMENT PROCEDURE

- 1. A test sample was connected to the Public Utility lines through a LISN Ailtech Model 94641-1 (50 $\mu H)\,.$
- 2. A reference level of 250 μV was set on the Spectrum Analyzer. The spectrum was searched over the range of 450 kHz to 30 MHz.
- 3. All other emissions were 20 dB or more below limit.
- 4. ___ The test sample used a charger. ___ The test sample does not use a charger.
- 5. Measurement Results: Attached.

19 of 21.

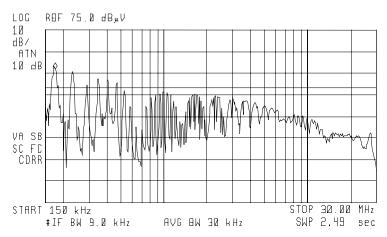
AC POWERLINE CONDUCTED MEASUREMENTS

Asset Description s/n Cycle Last Cal (as applicable)

(T) LINE T	MPEDANCE STABILIZATION NET	I'WORK		
i00077	Singer 91221-1 (5 μH)	0396	12 mo.	
i00155	Eaton 94641-1 (50 μ H)	178	12 mo.	Sep-02
i00167	Ailtech 94641-1 (50 μ H)	0103	12 mo.	

(2) SCREEN ROOM			
i00169 Lindgren 22-2/2-0	3861	N/A	none
i00170 Lindgren LG170	4999		

(3) SPECTRUM ANALYZER			
i00029 HP 8563E	3213A00104	12 mo.	Jan-03
i00033 HP 85462A	3625A00357	12 mo.	Jan-03
i00048 HP 8566B	2511AD1467	6 mo.	Jan-03


20 of 21.

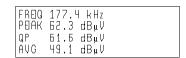
NAME OF TEST: A/C Powerline Conducted Emissions

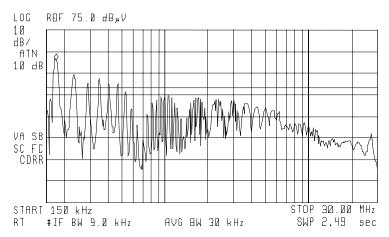
g0310145: 2003-Jan-06 Mon 08:28:00

STATE: 0:General

LINE SIDE

NOTE: 15.207(b) Broadband Emissions can be reduced by -13db for comparison with limits.


SUPERVISED BY:


21 of 21.

NAME OF TEST: A/C Powerline Conducted Emissions

g0310146: 2003-Jan-06 Mon 08:32:00

STATE: 0:General

NEUTRAL SIDE

NOTE: 15.207(b) Broadband Emissions can be reduced by -13db for comparison with limits.

SUPERVISED BY:

FOR PART 15 RADIATED MEASUREMENTS TRANSMITTERS W/ INTEGRAL ANTENNAS

Radiated Measurements

RANGE OF MEASUREMENT	SPECIFICATION	RESOLUTION B/W	VIDEO B/A
30 to 1000 MHz	CISPR	≥100 kHz	≥100 kHz
>1000 MHz	FCC, 15.37(b)	1 MHz	≥1 MHz
(if averaging)	FCC, 15.37(b)	1 MHz	10 Hz

Measuring Equipment

a. ANTENNAS:

EMCO 3109	20	_	300	MHz
APREL AALP2001	200	_	1000	MHz
APREL AAB20200	20	_	200	MHz
APREL AAH118	1	_	18	GHz

b. INSTRUMENTS:

HP8566B	Spectrum Analyzer
HP85685A	Preselector, w/ preamp below 2 GHz
HP85650A	Quasi Peak Adapter
HP8449	Preamp, above 2 GHz

All test instrumentation is calibrated every January and every July. In addition, all test instrumentation is calibrated daily, or as required by the manufacturer. A Calibration Agreement is maintained with Hewlett Packard.

Occupied Bandwidth

Occupied Bandwidth is measured as a radiated signal without attenuators and/or filter. RBW, VBW and scan settings as shown were set to produce a meaningful result in accordance with ANSI C63.4, Section 13.1.7.

Part 15.21, Information to User

The users manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly avoided by the party responsible for compliance could void the user's authority to operate the equipment.

§ 15.205 Restricted Bands of Operation

(a) Except as shown in paragraph (b) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.25
0.495-0.505	16.69475-16.69625	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2655-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-339.4	3600-4400	(2)
13.36-13.41			

Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. Above 38.6

TESTIMONIAL AND STATEMENT OF CERTIFICATION

THIS IS TO CERTIFY THAT:

- 1. THAT the application was prepared either by, or under the direct supervision of, the undersigned.
- 2. THAT the technical data supplied with the application was taken under my direction and supervision.
- THAT the data was obtained on representative units, randomly selected.
- 4. THAT, to the best of my knowledge and belief, the facts set forth in the application and accompanying technical data are true and correct.

CERTIFYING ENGINEER: