

Pollyflame Concept (HK) Ltd.

Application
For
Certification
(FCC ID: LOH843310)

RF Lighting Device

WO#0000124
CKL/at
April 3, 2000

INTERTEK TESTING SERVICES

LIST OF EXHIBITS

INTRODUCTION

<i>EXHIBIT 1:</i>	General Description
<i>EXHIBIT 2:</i>	System Test Configuration
<i>EXHIBIT 3:</i>	Emission Results
<i>EXHIBIT 4:</i>	Equipment Photographs
<i>EXHIBIT 5:</i>	Product Labelling
<i>EXHIBIT 6:</i>	Technical Specifications
<i>EXHIBIT 7:</i>	Instruction Manual

INTERTEK TESTING SERVICES

MEASUREMENT/TECHNICAL REPORT

Pollyflame Concept (HK) Ltd. - MODEL: 843.310
FCC ID: LOH843310

April 3, 2000

This report concerns (check one:) Original Grant X Class II Change _____

Equipment Type: RF Lighting

Deferred grant requested per 47 CFR 0.457(d)(1)(ii)? Yes _____ No
X _____

If yes, defer until: _____
date

Company Name agrees to notify the Commission by: _____
date

of the intended date of announcement of the product so that the grant can be issued on
that date.

Report prepared by:

C. K. Lam
Intertek Testing Services
2/F., Garment Center,
576, Castle Peak Road,
HONG KONG
Phone: 852-2713-8512
Fax: 852-2742-9149

INTERTEK TESTING SERVICES

Table of Contents

1.0 <u>General Description</u>	2
1.1 Product Description.....	2
1.2 Related Submittal(s) Grants.....	2
1.3 Test Methodology.....	3
1.4 Test Facility	3
1.5 Equipment List	4
2.0 <u>System Test Configuration</u>	6
2.1 Justification.....	6
2.2 EUT Exercising Software	6
2.3 Special Accessories	6
2.4 Equipment Modification.....	7
2.5 Support Equipment List and Description	7
3.0 <u>Emission Results</u>	9
3.1 Field Strength Calculation	10
3.1 Field Strength Calculation (cont).....	11
3.2 Radiated Emission Configuration Photograph	12
3.3 Radiated Emission Data	13
3.4 Line Conducted Configuration Photograph (cont'd)	15
3.5 Line Conducted Emission Data.....	16
4.0 <u>Equipment Photographs</u>	18
5.0 <u>Product Labelling</u>	20
6.0 <u>Technical Specifications</u>	22
7.0 <u>Instruction Manual</u>	24

INTERTEK TESTING SERVICES

List of attached file

Exhibit type	File Description	filename
Cover Letter	Letter of Agency	letter.pdf
Test Report	Test Report	report.doc
Test Setup Photo	Radiated Emission	radiated1.jpg to radiated2.jpg
Test Setup Photo	Conducted Emission	conduct1.jpg to conduct3.jpg
Test Report	Conducted Emission Test Result	conduct.pdf
External Photo	External Photo	ophoto1.jpg
Internal Photo	Internal Photo	iphoto1.jpg to iphoto4.jpg
Block Diagram	Block Diagram	block.pdf
Schematics	Circuit Diagram	circuit.pdf
ID Label/Location	Label Artwork and Location	label.pdf
User Manual	User Manual	manual.pdf

EXHIBIT 1

GENERAL DESCRIPTION

INTERTEK TESTING SERVICES

1.0 General Description

1.1 Product Description

The equipment under test (EUT) is a RF lighting consisting of an electronic ballast which is one of the parts of the 100CD jukebox. It works independently by pressing a switch. The EUT is operated at 32kHz and powered by AC 120V, 60Hz.

The brief circuit description is listed as follows:

- IC1, Q1, Q2 and associated circuit act as an oscillator
- Q3, Q4 and associated circuit act as an amplifier

1.2 Related Submittal(s) Grants

This is a single application for certification of a consumer RF lighting device.

INTERTEK TESTING SERVICES

1.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in MP-5. All measurements were performed in Open Area Test Sites. Preliminary scans were performed in the Open Area Test Sites only to determine worst case modes. For each scan, the procedure for maximizing emissions in Appendices D and E were followed. All Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the **"Justification Section"** of this Application.

1.4 Test Facility

The open area test site and conducted measurement facility used to collect the emission data is located at Garment Centre, 576 Castle Peak Road, Kowloon, Hong Kong. This test facility and site measurement data have been fully placed on file with the FCC.

INTERTEK TESTING SERVICES

1.5 Equipment List

1) Radiated Emission Test for FCC Part 18

Equipment	Registration No.	Manufacturer	Model No.	Serial No.	Calibration Due Date
EMI Test Receiver	EW-0014	R&S	ESVS30	842807/001	December 2000
Antenna Set	EW-0446	EMCO	3146	9905-5219	November 2000
	EW-0448	EMCO	3104C	9904-4850	November 2000
EMI Test Receiver	EW-0015	R&S	ESHS30	827128/009	December 2000

2) Disturbance Voltage Tests for FCC Part 18

Equipment	Registration No.	Manufacturer	Model No.	Serial No.	Calibration Due Date
EMI Test Receiver	EW-0015	R&S	ESHS30	827128/009	December 2000
Absorbing Clamp	EW-0019	R&S	MDS21	840031/001	October 2000
LISN	EW-0192	R&S	ESH3-Z5	828874/016	March 2000

EXHIBIT 2

SYSTEM TEST CONFIGURATION

INTERTEK TESTING SERVICES

2.0 System Test Configuration

2.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in MP-5.

The EUT was powered from AC 120V, 60Hz.

For maximizing emissions, the EUT was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. This step by step procedure for maximizing emissions led to the data reported in Exhibit 3.0.

The unit was operated standalone and placed in the center of the turntable.

The equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). The EUT was placed on turntable, which enabled the engineer to maximize emissions.

2.2 EUT Exercising Software

There was no special software to exercise the device. Once the EUT is turned on, it emits the RF noise.

2.3 Special Accessories

There are no special accessories necessary for compliance of this product.

INTERTEK TESTING SERVICES

2.4 Equipment Modification

Any modifications installed previous to testing by Pollyflame Concept (HK) Ltd. will be incorporated in each production model sold/leased in the United States.

No modifications were installed by Intertek Testing Services.

2.5 Support Equipment List and Description

This product was tested in a standalone configuration.

All the items listed under section 2.0 of this report are

Confirmed by:

C. K. Lam
Technical Manager
Intertek Testing Services Hong Kong Ltd.
Agent for Pollyflame Concept (HK) Ltd.

Signature

April 3, 2000

Date

EXHIBIT 3

EMISSION RESULTS

INTERTEK TESTING SERVICES

3.0 **Emission Results**

Data is included worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

INTERTEK TESTING SERVICES

3.1 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

$$FS = RA + AF + CF - AG + PD + AV$$

where FS = Field Strength in dB μ V/m

RA = Receiver Amplitude (including preamplifier) in dB μ V

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

PD = Pulse Desensitization in dB

AV = Average Factor in -dB

In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

$$FS = RA + AF + CF - AG + PD + AV$$

3.1 Field Strength Calculation (cont'd)

Example

Assume a receiver reading of 62.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted. The pulse desensitization factor of the spectrum analyzer was 0 dB, and the resultant average factor was -10 dB. The net field strength for comparison to the appropriate emission limit is 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

$$RA = 62.0 \text{ dB}\mu\text{V}$$

$$AF = 7.4 \text{ dB}$$

$$CF = 1.6 \text{ dB}$$

$$AG = 29.0 \text{ dB}$$

$$PD = 0 \text{ dB}$$

$$AV = -10 \text{ dB}$$

$$FS = 62 + 7.4 + 1.6 - 29 + 0 + (-10) = 32 \text{ dB}\mu\text{V/m}$$

$$\text{Level in mV/m} = \text{Common Antilogarithm} [(32 \text{ dB}\mu\text{V/m})/20] = 39.8 \mu\text{V/m}$$

INTERTEK TESTING SERVICES

3.2 Radiated Emission Configuration Photograph

Worst Case Radiated Emission
at
54.843 MHz

For electronic filing, the front view and back view of test configuration photograph is saved with filename: radiated1.jpg and radiated2.jpg respectively.

INTERTEK TESTING SERVICES

3.3 Radiated Emission Data

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Judgement: Passed by 15.3 dB

TEST PERSONNEL:

Signature

Danny T. L. Chui, Compliance Engineer
Typed/Printed Name

April 3, 2000

Date

INTERTEK TESTING SERVICES

Company: Pollyflame Concept (HK) Ltd.
Model: 843.310

Date of Test: January 17, 2000

Table 1

Radiated Emissions

Polarity	Frequency (M Hz)	Reading (dB μ V)	Antenna Factor (dB)	Pre- Amp Gain (dB)	Net at 3m (dB μ V/m)	Calculated Net at 30m (dB μ V/m)	Limit at 30m (dB μ V/m)	Margin (dB)
H	35.432	30.8	10	16	22.4	2.4	20	-17.6
H	40.687	31.8	10	16	22.9	2.9	20	-17.1
H	44.697	32.6	10	16	23.3	3.3	20	-16.7
H	50.043	32.8	11	16	23.9	3.9	20	-16.1
H	54.843	34.4	11	16	24.7	4.7	20	-15.3
H	59.738	32.4	10	16	23.2	3.2	20	-16.8

Notes:

1. Peak Detector Data unless otherwise stated.
2. All measurements were made at 3 meter. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
3. Negative value in the margin column shows emission below limit.

Test Engineer: Danny T. L. Chui

INTERTEK TESTING SERVICES

3.4 Line Conducted Configuration Photograph

Worst Case Line-Conducted Configuration
at
0.465 MHz

For electronic filing, the worst case line-conducted configuration photograph are saved with filename: conduct1.jpg , conduct 2.jpg and conduct3.jpg respectively.

INTERTEK TESTING SERVICES

3.5 Line Conducted Emission Configuration Data

For electronic filing, the graph and data table of the worst case conducted emission is saved with filename: conducted.pdf.

Judgement: Passed by 7.4 dB

TEST PERSONNEL:

Signature

Danny T. L. Chui, Compliance Engineer
Typed/Printed Name

April 3, 2000

Date

EXHIBIT 4

EQUIPMENT PHOTOGRAPHS

INTERTEK TESTING SERVICES

4.0 **Equipment Photographs**

For electronic filing, the photographs of the tested EUT are saved with filename: ophoto1.jpg for external photo and iphoto1.jpg to iphoto4.jpg for internal photo.

EXHIBIT 5

PRODUCT LABELLING

5.0 **Product Labelling**

For electronic filing, the FCC ID label artwork and the label location are saved with filename: label.pdf

EXHIBIT 6

TECHNICAL SPECIFICATIONS

6.0 **Technical Specifications**

For electronic filing, the block diagram and schematics of the tested EUT are saved with filename: block.pdf and circuit.pdf respectively.

EXHIBIT 7

INSTRUCTION MANUAL

INTERTEK TESTING SERVICES

7.0 Instruction Manual

For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf

This manual will be provided to the end-user with each unit sold/leased in the United States.