

SAR Compliance Test Report

Test report no.:	Salo_SAR_0736_12	Date of report:	2007-09-18
Template version:	7.0	Number of pages:	17
Testing laboratory:	TCC Nokia Salo Laboratory P.O.Box 86 Joensuunkatu 7H / Kiila 1B FIN-24101 SALO, FINLAND Tel. +358 (0) 7180 08000 Fax. +358 (0) 7180 45220	Client:	Nokia Corporation P.O. Box 50 Elektroniikkatie 10 FIN-90571 OULU, FINLAND Tel. +358 (0) 7180 08000 Fax. +358 (0) 7180 47222
Responsible test engineer:	Virpi Tuominen	Product contact person:	Niko Balabanis
Measurements made by:	Virpi Tuominen		
Tested device:	RX-44		
FCC ID:	LJPRX-44	IC:	661E-RX44
Supplement reports:	Salo_SAR_0738_04		
Testing has been carried out in accordance with:	<p>47CFR §2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices FCC OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01) Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields</p> <p>RSS-102 Evaluation Procedure for Mobile and Portable Radio Transmitters with Respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields</p> <p>IEEE 1528 - 2003 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Technique</p>		
Documentation:	The documentation of the testing performed on the tested devices is archived for 15 years at TCC Nokia.		
Test results:	<p>The tested device complies with the requirements in respect of all parameters subject to the test. The test results and statements relate only to the items tested. The test report shall not be reproduced except in full, without written approval of the laboratory.</p>		

Date and signatures:

For the contents:

CONTENTS

1. SUMMARY OF SAR TEST REPORT.....	3
1.1 TEST DETAILS.....	3
1.2 MAXIMUM RESULTS.....	3
1.2.1 <i>Body Worn Configuration</i>	3
1.2.2 <i>Maximum Drift</i>	3
1.2.3 <i>Measurement Uncertainty</i>	3
2. DESCRIPTION OF THE DEVICE UNDER TEST.....	4
2.1 DESCRIPTION OF THE ANTENNA.....	4
3. TEST CONDITIONS	4
3.1 TEMPERATURE AND HUMIDITY.....	4
3.2 TEST SIGNAL, FREQUENCIES AND OUTPUT POWER.....	4
4. DESCRIPTION OF THE TEST EQUIPMENT	5
4.1 MEASUREMENT SYSTEM AND COMPONENTS	5
4.1.1 <i>Isotropic E-field Probe Type ES3DV3</i>	6
4.2 PHANTOMS	7
4.3 TISSUE SIMULANTS	7
4.3.1 <i>Tissue Simulant Recipes</i>	7
4.3.2 <i>System Checking</i>	8
4.3.3 <i>Tissue Simulants used in the Measurements</i>	8
5. DESCRIPTION OF THE TEST PROCEDURE	9
5.1 DEVICE HOLDER.....	9
5.2 TEST POSITIONS.....	9
5.2.1 <i>Body Worn Configuration</i>	9
5.3 SCAN PROCEDURES.....	10
5.4 SAR AVERAGING METHODS.....	10
6. MEASUREMENT UNCERTAINTY.....	11
7. RESULTS	12
APPENDIX A: SYSTEM CHECKING SCANS.....	13
APPENDIX B: MEASUREMENT SCANS.....	14
APPENDIX C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S).....	16
APPENDIX D: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)	17

1. SUMMARY OF SAR TEST REPORT

1.1 Test Details

Period of test	2007-09-07
SN, HW and SW numbers of tested device	SN: Z6A008771, HW: 0701, SW: 0.2007.34-9, DUT: 12216
Batteries used in testing	BP-4L, DUT: 12218, 12219
Headsets used in testing	HS-48, DUT: 12217
Other accessories used in testing	-
State of sample	Prototype unit
Notes	-

1.2 Maximum Results

The maximum measured SAR values for Body Worn configuration are given in section 1.2.1. The device conforms to the requirements of the standard(s) when the maximum measured SAR value is less than or equal to the limit.

1.2.1 Body Worn Configuration

Mode	Ch / f(MHz)	Radiated power	Separation distance	Measured SAR value (1g avg)	Scaled* SAR value (1g avg)	SAR limit (1g avg)	Result
WLAN2450	11 / 2462.0	20.2dBm EIRP	0.95cm	0.346 W/kg	0.39 W/kg	1.6 W/kg	PASSED

*SAR values are scaled up by 12% to cover measurement drift.

1.2.2 Maximum Drift

Maximum drift covered by 12% scaling up of the SAR values	Maximum drift during measurements
0.5dB	0.39dB

1.2.3 Measurement Uncertainty

Expanded Uncertainty (k=2) 95%	± 25.8%
--------------------------------	---------

2. DESCRIPTION OF THE DEVICE UNDER TEST

Device category	Portable
Exposure environment	General population / uncontrolled

Modes of Operation	Bands	Modulation Mode	Duty Cycle	Transmitter Frequency Range (MHz)
BT	2450	GFSK	1	2402 – 2480
WLAN	2450	11Mbps QPSK	1	2412 – 2462

2.1 Description of the Antenna

The device has an internal antenna.

3. TEST CONDITIONS

3.1 Temperature and Humidity

Ambient temperature (°C):	21.1 to 22.0
Ambient humidity (RH %):	39 to 44

3.2 Test Signal, Frequencies and Output Power

The device was put into operation by using control software.

The device output power was set to maximum power level for all tests; a fully charged battery was used for every test sequence.

In all operating bands the measurements were performed on lowest, middle and highest channels.

The radiated output power of the device was measured by a separate test laboratory on the same unit(s) as used for SAR testing.

4. DESCRIPTION OF THE TEST EQUIPMENT

4.1 Measurement System and Components

The measurements were performed using an automated near-field scanning system, DASY4, manufactured by Schmid & Partner Engineering AG (SPEAG) in Switzerland. The SAR extrapolation algorithm used in all measurements was the 'advanced extrapolation' algorithm.

The following table lists calibration dates of SPEAG components:

Test Equipment	Serial Number	Calibration interval	Calibration expiry
DAE 4	728	12 months	2008-02
E-field Probe ES3DV3	3131	12 months	2008-02
Dipole Validation Kit, D2450V2	749	24 months	2008-04
DASY4 software	Version 4.7	-	-

Additional test equipment used in testing:

Test Equipment	Model	Serial Number	Calibration interval	Calibration expiry
Signal Generator	SML03	101265	12 months	2008-07
Amplifier	ZHL-42 (SMA)	N072095-5	12 months	2008-07
Power Meter	NRVS	849305/028	12 months	2008-07
Power Sensor	NRV-Z32	839176/020	12 months	2008-07
Vector Network Analyzer	8753E	US38432928	12 months	2008-07
Dielectric Probe Kit	85070B	US33020420	-	-

4.1.1 Isotropic E-field Probe Type ES3DV3

Construction	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., butyl diglycol)
Calibration	Calibration certificate in Appendix C
Frequency	10 MHz to 4 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to 4 GHz)
Directivity	± 0.2 dB in HSL (rotation around probe axis) ± 0.3 dB in HSL (rotation normal to probe axis)
Dynamic Range	5 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB
Dimensions	Overall length: 330 mm Tip length: 20 mm Body diameter: 12 mm Tip diameter: 3.9 mm
Application	Distance from probe tip to dipole centers: 2.0 mm General dosimetry up to 4 GHz Compliance tests of mobile phones Fast automatic scanning in arbitrary phantoms

4.2 Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SPEAG. The phantom conforms to the requirements of IEEE 1528 - 2003.

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

The SPEAG device holder (see Section 5.1) was used to position the device in all tests whilst a tripod was used to position the validation dipoles against the flat section of phantom.

4.3 Tissue Simulants

Recommended values for the dielectric parameters of the tissue simulants are given in IEEE 1528 - 2003 and FCC Supplement C to OET Bulletin 65. All tests were carried out using simulants whose dielectric parameters were within $\pm 5\%$ of the recommended values. All tests were carried out within 24 hours of measuring the dielectric parameters.

The depth of the tissue simulant was 15.0 ± 0.5 cm measured from the ear reference point during system checking and device measurements.

4.3.1 Tissue Simulant Recipes

The following recipe(s) were used for Body tissue simulant(s):

2450MHz band	
Ingredient	Body (% by weight)
Deionised Water	70.20
Tween 20	29.62
Salt	0.18

4.3.2 System Checking

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyser. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system checking results (dielectric parameters and SAR values) are given in the table below.

System checking, body tissue simulant

f [MHz]	Description	SAR [W/kg], 1g	Dielectric Parameters		Temp [°C]
			ϵ_r	σ [S/m]	
2450	Reference result	14.1	53.7	1.97	
	$\pm 10\%$ window	12.7 – 15.5			
	2007-09-07	14.7	52.6	2.01	21.0

Plots of the system checking scans are given in Appendix A.

4.3.3 Tissue Simulants used in the Measurements

Body tissue simulant measurements

f [MHz]	Description	Dielectric Parameters		Temp [°C]
		ϵ_r	σ [S/m]	
2442	Recommended value	52.7	1.94	
	$\pm 5\%$ window	50.1 – 55.3	1.85 – 2.04	
	2007-09-07	52.7	2.00	21.0

5. DESCRIPTION OF THE TEST PROCEDURE

5.1 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the Dasy system.

Device holder supplied by SPEAG

A Nokia designed spacer (illustrated below) was used to position the device within the SPEAG holder. The spacer positions the device so that the holder has minimal effect on the test results but still holds the device securely. The spacer was removed before the tests.

Nokia spacer

5.2 Test Positions

5.2.1 Body Worn Configuration

The device was placed in the SPEAG holder using the Nokia spacer and placed below the flat section of the phantom. The distance between the device and the phantom was kept at the separation distance indicated in Section 1.2.1 using a separate flat spacer that was removed before the start of the measurements. The device was oriented with its antenna facing the phantom since this orientation gives higher results.

5.3 Scan Procedures

First, area scans were used for determination of the field distribution. Next, a zoom scan, a minimum of 5x5x7 points covering a volume of at least 30x30x30mm, was performed around the highest E-field value to determine the averaged SAR value. Drift was determined by measuring the same point at the start of the area scan and again at the end of the zoom scan.

5.4 SAR Averaging Methods

The maximum SAR value was averaged over a cube of tissue using interpolation and extrapolation.

The interpolation, extrapolation and maximum search routines within Dasy4 are all based on the modified Quadratic Shepard's method (Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148).

The interpolation scheme combines a least-square fitted function method with a weighted average method. A trivariate 3-D / bivariate 2-D quadratic function is computed for each measurement point and fitted to neighbouring points by a least-square method. For the zoom scan, inverse distance weighting is incorporated to fit distant points more accurately. The interpolating function is finally calculated as a weighted average of the quadratics.

In the zoom scan, the interpolation function is used to extrapolate the Peak SAR from the deepest measurement points to the inner surface of the phantom.

6. MEASUREMENT UNCERTAINTY

Table 6.1 – Measurement uncertainty evaluation

Uncertainty Component	Section in IEEE 1528	Tol. (%)	Prob Dist	Div	g_i	$g_i \cdot u_i$ (%)	v_i
Measurement System							
Probe Calibration	E2.1	± 5.9	N	1	1	± 5.9	∞
Axial Isotropy	E2.2	± 4.7	R	$\sqrt{3}$	$(1-c_p)^{1/2}$	± 1.9	∞
Hemispherical Isotropy	E2.2	± 9.6	R	$\sqrt{3}$	$(c_p)^{1/2}$	± 3.9	∞
Boundary Effect	E2.3	± 1.0	R	$\sqrt{3}$	1	± 0.6	∞
Linearity	E2.4	± 4.7	R	$\sqrt{3}$	1	± 2.7	∞
System Detection Limits	E2.5	± 1.0	R	$\sqrt{3}$	1	± 0.6	∞
Readout Electronics	E2.6	± 1.0	N	1	1	± 1.0	∞
Response Time	E2.7	± 0.8	R	$\sqrt{3}$	1	± 0.5	∞
Integration Time	E2.8	± 2.6	R	$\sqrt{3}$	1	± 1.5	∞
RF Ambient Conditions - Noise	E6.1	± 3.0	R	$\sqrt{3}$	1	± 1.7	∞
RF Ambient Conditions - Reflections	E6.1	± 3.0	R	$\sqrt{3}$	1	± 1.7	∞
Probe Positioner Mechanical Tolerance	E6.2	± 0.4	R	$\sqrt{3}$	1	± 0.2	∞
Probe Positioning with respect to Phantom Shell	E6.3	± 2.9	R	$\sqrt{3}$	1	± 1.7	∞
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	E5	± 3.9	R	$\sqrt{3}$	1	± 2.3	∞
Test sample Related							
Test Sample Positioning	E4.2	± 6.0	N	1	1	± 6.0	11
Device Holder Uncertainty	E4.1	± 5.0	N	1	1	± 5.0	7
Output Power Variation - SAR drift measurement	6.6.3	± 0.0	R	$\sqrt{3}$	1	± 0.0	∞
Phantom and Tissue Parameters							
Phantom Uncertainty (shape and thickness tolerances)	E3.1	± 4.0	R	$\sqrt{3}$	1	± 2.3	∞
Conductivity Target - tolerance	E3.2	± 5.0	R	$\sqrt{3}$	0.64	± 1.8	∞
Conductivity - measurement uncertainty	E3.3	± 5.5	N	1	0.64	± 3.5	5
Permittivity Target - tolerance	E3.2	± 5.0	R	$\sqrt{3}$	0.6	± 1.7	∞
Permittivity - measurement uncertainty	E3.3	± 2.9	N	1	0.6	± 1.7	5
Combined Standard Uncertainty				RSS		± 12.9	116
Coverage Factor for 95%				k=2			
Expanded Uncertainty						± 25.8	

7. RESULTS

The measured Body SAR values for the test device are tabulated below:

2450MHz Body SAR results

Option used	Test configuration	SAR, averaged over 1g (W/kg)		
		Ch 1 2412.0 MHz	Ch 7 2442.0 MHz	Ch 11 2462.0 MHz
WLAN	Power	18.3 dBm	18.5 dBm	20.2 dBm
Slide closed	Without headset	0.207	0.242	0.346
	Headset HS-48	0.209	0.235	0.330

Plots of the Measurement scans are given in Appendix B.

APPENDIX A: SYSTEM CHECKING SCANS

Date/Time: 2007-09-07 13:34:30

Test Laboratory: TCC Nokia

Type: D2450V2; Serial: D2450V2 - SN:749

Communication System: CW2450

Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: BSL2450; Medium Notes: 21.1C

Medium parameters used: $f = 2450$ MHz; $\sigma = 2.01$ mho/m; $\epsilon_r = 52.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

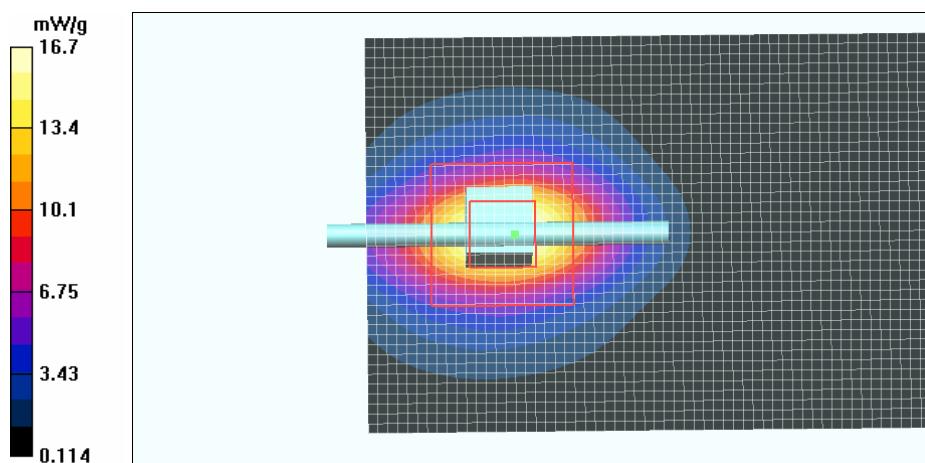
- Probe: ES3DV3 - SN3131
- ConvF(4.1, 4.1, 4.1); Calibrated: 2007-02-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn728; Calibrated: 2007-02-13
- Phantom: SAM 1; Type: Twin SAM 040 CA; Serial: TP-1179
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

d=15mm, Pin=250mW/Area Scan (41x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 17.8 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.7 V/m


Peak SAR (extrapolated) = 30.3 W/kg

SAR(1 g) = 14.7 mW/g

SAR(10 g) = 6.83 mW/g

Power Drift = -0.036 dB

Maximum value of SAR (measured) = 16.7 mW/g

APPENDIX B: MEASUREMENT SCANS

Date/Time: 2007-09-07 17:10:52

Test Laboratory: TCC Nokia

Type: RX-44; Serial: Z6A008771

Communication System: WLAN2450

Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: BSL2450; Medium Notes: 20.5C

Medium parameters used: $f = 2462$ MHz; $\sigma = 2.03$ mho/m; $\epsilon_r = 52.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

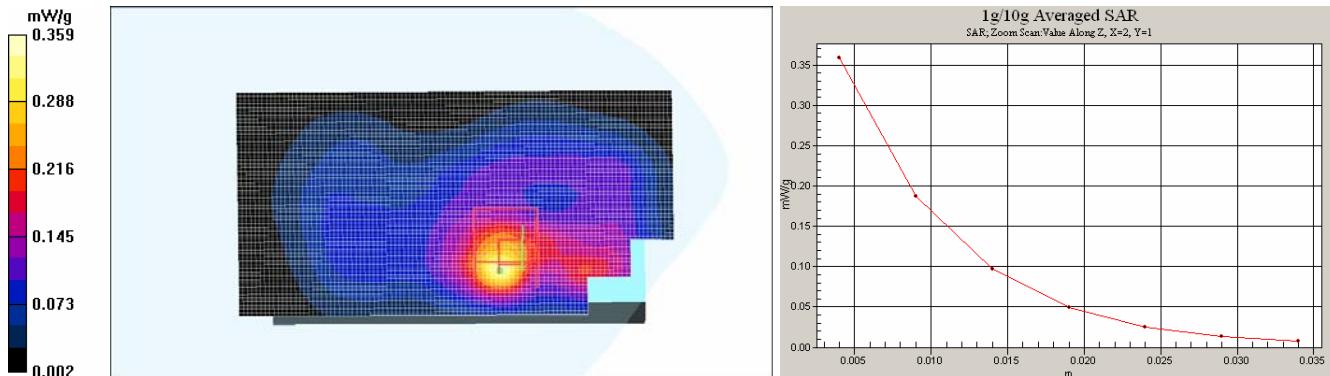
- Probe: ES3DV3 - SN3131
- ConvF(4.1, 4.1, 4.1); Calibrated: 2007-02-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn728; Calibrated: 2007-02-13
- Phantom: SAM 1; Type: Twin SAM 040 CA; Serial: TP-1179
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Body Measurement, High, Closed, No accessory/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.341 mW/g

Body Measurement, High, Closed, No accessory /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 4.91 V/m


Peak SAR (extrapolated) = 0.708 W/kg

SAR(1 g) = 0.346 mW/g

SAR(10 g) = 0.162 mW/g

Power Drift = 0.213 dB

Maximum value of SAR (measured) = 0.359 mW/g

Date/Time: 2007-09-07 16:55:03

Test Laboratory: TCC Nokia
Type: RX-44; Serial: Z6A008771

Communication System: WLAN2450

Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: BSL2450; Medium Notes: 20.5C

Medium parameters used: $f = 2462$ MHz; $\sigma = 2.03$ mho/m; $\epsilon_r = 52.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

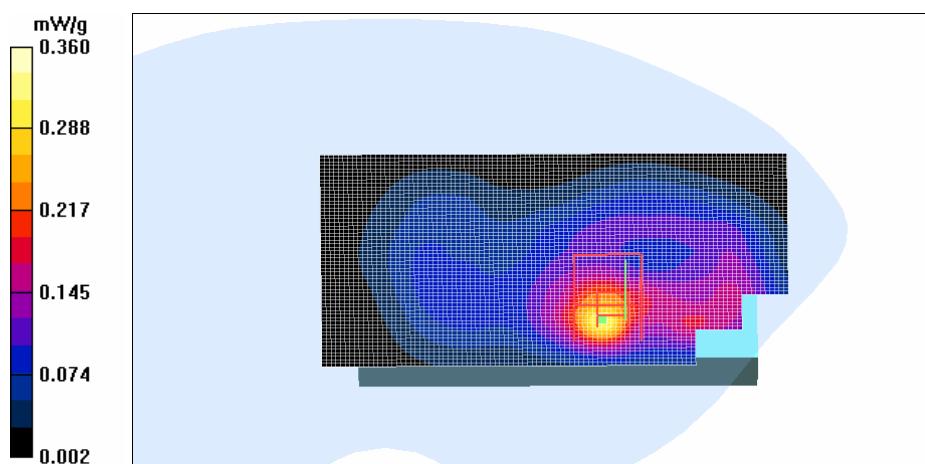
- Probe: ES3DV3 - SN3131
- ConvF(4.1, 4.1, 4.1); Calibrated: 2007-02-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn728; Calibrated: 2007-02-13
- Phantom: SAM 1; Type: Twin SAM 040 CA; Serial: TP-1179
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Body Measurement, High, Closed, HS-48/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.319 mW/g

Body Measurement, High, Closed, HS-48/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 4.92 V/m


Peak SAR (extrapolated) = 0.684 W/kg

SAR(1 g) = 0.330 mW/g

SAR(10 g) = 0.154 mW/g

Power Drift = 0.284 dB

Maximum value of SAR (measured) = 0.360 mW/g

APPENDIX C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)

See the next three pages.

Accredited by the Swiss Federal Office of Metrology and Accreditation
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client Nokia Salo TCC

Certificate No: ES3-3131_Feb07

CALIBRATION CERTIFICATE

Object ES3DV3 - SN:3131

Calibration procedure(s)
QA CAL-01.v5
 Calibration procedure for dosimetric E-field probes

Calibration date: **February 23, 2007**

Condition of the calibrated item **In Tolerance**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Power sensor E4412A	MY41495277	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Power sensor E4412A	MY41498087	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Reference 3 dB Attenuator	SN: S5054 (3c)	10-Aug-06 (METAS, No. 217-00592)	Aug-07
Reference 20 dB Attenuator	SN: S5086 (20b)	4-Apr-06 (METAS, No. 251-00558)	Apr-07
Reference 30 dB Attenuator	SN: S5129 (30b)	10-Aug-06 (METAS, No. 217-00593)	Aug-07
Reference Probe ES3DV2	SN: 3013	4-Jan-07 (SPEAG, No. ES3-3013_Jan07)	Jan-08
DAE4	SN: 654	21-Jun-06 (SPEAG, No. DAE4-654_Jun06)	Jun-07

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Nov-05)	In house check: Nov-07
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Oct-06)	In house check: Oct-07

Calibrated by:	Name	Function	Signature
	Katja Pokovic	Technical Manager	

Approved by:	Name	Function	Signature
	Niels Kuster	Quality Manager	

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Issued: February 26, 2007

DASY - Parameters of Probe: ES3DV3 SN:3131

Sensitivity in Free Space ^A			Diode Compression ^B		
NormX	1.33 \pm 10.1%	$\mu\text{V}/(\text{V}/\text{m})^2$	DCP X	94	mV
NormY	1.30 \pm 10.1%	$\mu\text{V}/(\text{V}/\text{m})^2$	DCP Y	93	mV
NormZ	1.24 \pm 10.1%	$\mu\text{V}/(\text{V}/\text{m})^2$	DCP Z	95	mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

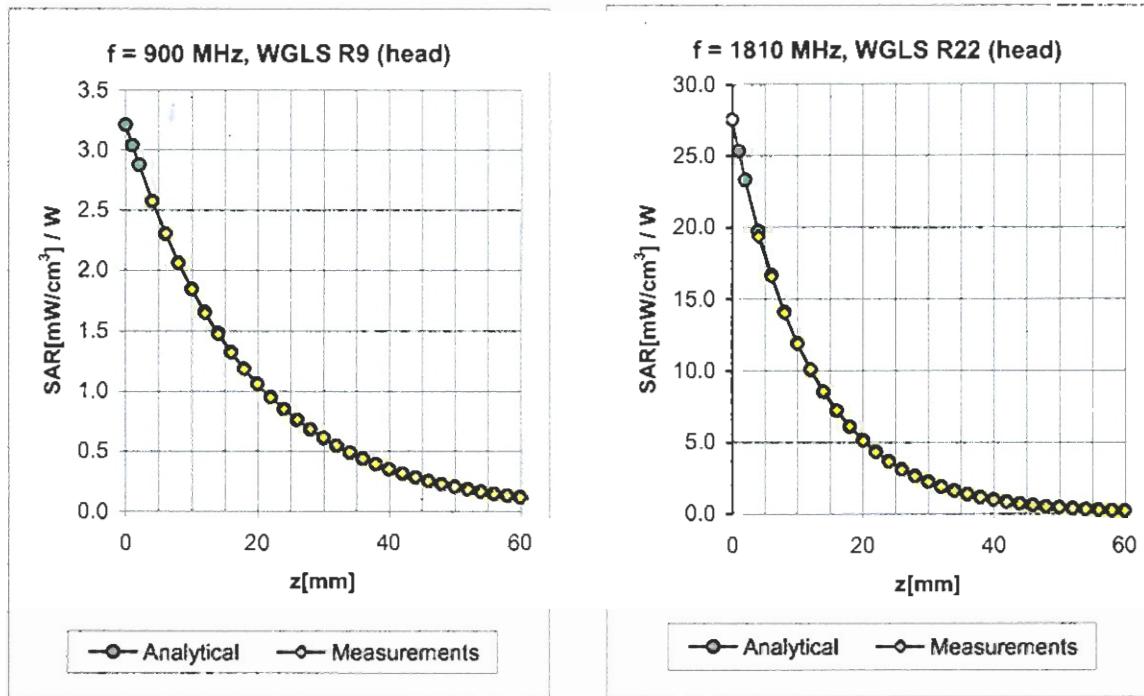
TSL 900 MHz Typical SAR gradient: 5 % per mm

Sensor Center to Phantom Surface Distance		3.0 mm	4.0 mm
SAR _{be} [%]	Without Correction Algorithm	5.5	2.5
SAR _{be} [%]	With Correction Algorithm	0.0	0.2

TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Center to Phantom Surface Distance		3.0 mm	4.0 mm
SAR _{be} [%]	Without Correction Algorithm	3.9	1.7
SAR _{be} [%]	With Correction Algorithm	0.1	0.1

Sensor Offset


Probe Tip to Sensor Center **2.0 mm**

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^a The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^b Numerical linearization parameter: uncertainty not required.

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.97	1.15	6.05	± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.70	1.30	5.08	± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.76	1.24	4.71	± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.63	1.42	4.45	± 11.8% (k=2)

900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.87	1.18	6.03	± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.84	1.30	4.76	± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.81	1.28	4.51	± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.65	1.35	4.10	± 11.8% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

APPENDIX D: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)

See the next three pages.

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client Nokia Salo TCC

Certificate No: D2450V2-749_Apr06

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 749

Calibration procedure(s) QA CAL-05.v6
Calibration procedure for dipole validation kits

Calibration date: April 27, 2006

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	04-Oct-05 (METAS, No. 251-00516)	Oct-06
Power sensor HP 8481A	US37292783	04-Oct-05 (METAS, No. 251-00516)	Oct-06
Reference 20 dB Attenuator	SN: 5086 (20g)	11-Aug-05 (METAS, No 251-00498)	Aug-06
Reference 10 dB Attenuator	SN: 5047.2 (10r)	11-Aug-05 (METAS, No 251-00498)	Aug-06
Reference Probe ES3DV2	SN 3025	28-Oct-05 (SPEAG, No. ES3-3025_Oct05)	Oct-06
DAE4	SN 601	15-Dec-05 (SPEAG, No. DAE4-601_Dec05)	Dec-06
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (SPEAG, in house check Oct-05)	In house check: Oct-07
RF generator Agilent E4421B	MY41000675	11-May-05 (SPEAG, in house check Nov-05)	In house check: Nov-07
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (SPEAG, in house check Nov-05)	In house check: Nov-06

Calibrated by: Name Mike Meili Function Laboratory Technician

Approved by: Name Katja Pokovic Function Technical Manager

Issued: April 28, 2006

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

DASY4 Validation Report for Head TSL

Date/Time: 27.04.2006 14:08:29

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN749

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB_060425;

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.76$ mho/m; $\epsilon_r = 38.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

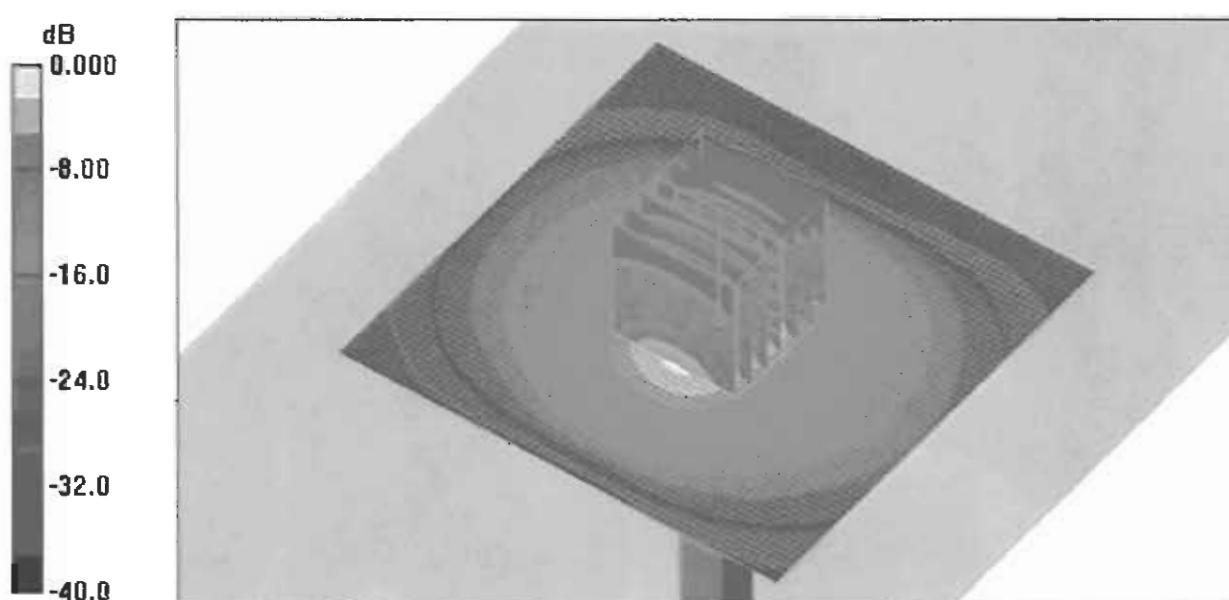
- Probe: ES3DV2 - SN3025 (HF); ConvF(4.4, 4.4, 4.4); Calibrated: 28.10.2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sa601; Calibrated: 15.12.2005
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA
- Measurement SW: DASY4, V4.7 Build 21; Postprocessing SW: SEMCAD, V1.8 Build 165

Pin = 250 mW; d = 10 mm/Area Scan (71x71x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 16.5 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.0 V/m; Power Drift = -0.102 dB

Peak SAR (extrapolated) = 28.1 W/kg

SAR(1 g) = 13.5 mW/g; SAR(10 g) = 6.26 mW/g

Maximum value of SAR (measured) = 15.4 mW/g

DASY4 Validation Report for Body TSL

Date/Time: 25.04.2006 14:23:08

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN749

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL U10;

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.97$ mho/m; $\epsilon_r = 53.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

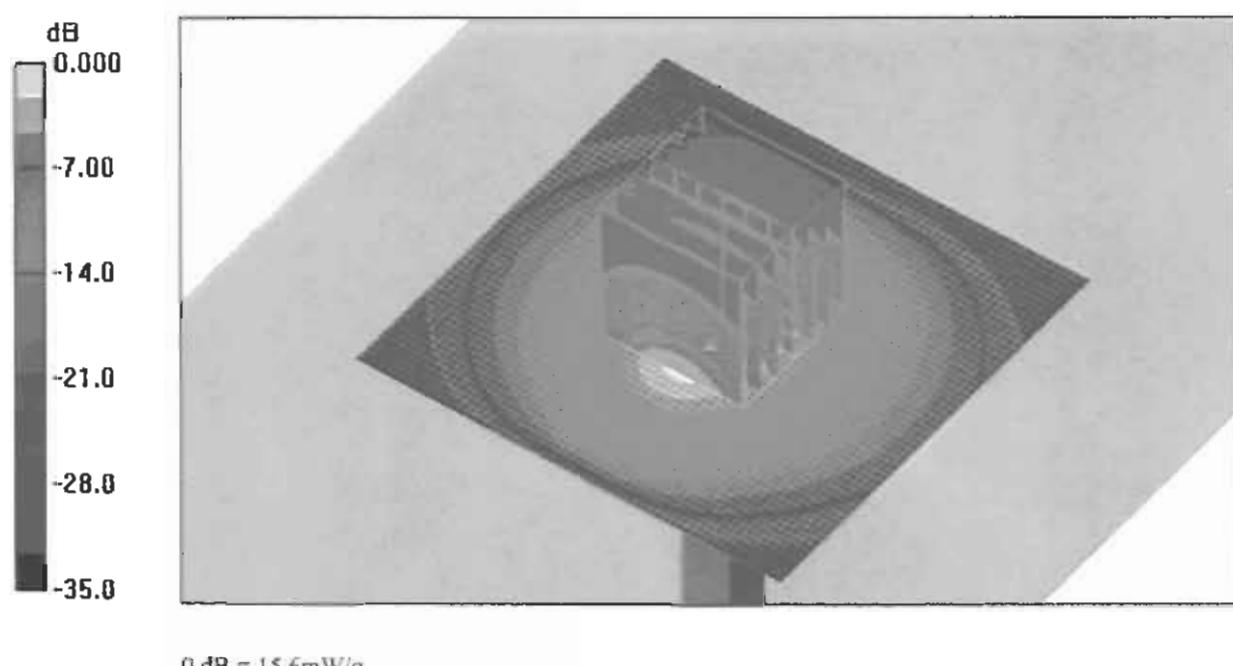
- Probe: ES3DV2 - SN3025 (HF); ConvF(4.06, 4.06, 4.06); Calibrated: 28.10.2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn60I; Calibrated: 15.12.2005
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA
- Measurement SW: DASY4, V4.7 Build 21; Postprocessing SW: SEMCAD, V1.8 Build 165

Pin = 250 mW; d = 10 mm/Area Scan (61x61x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 17.1 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.0 V/m; Power Drift = 0.031 dB

Peak SAR (extrapolated) = 30.0 W/kg

SAR(1 g) = 14.1 mW/g; SAR(10 g) = 6.5 mW/g

Maximum value of SAR (measured) = 15.6 mW/g

