Sub-part
2.1033(c):

EQUIPMENT IDENTIFICATION

FCC ID: LJPNSW-6NX

NAMEPLATE DRAWING

ATTACHED, EXHIBIT 1.

LOCATION

AS PER LABEL DRAWING(S)

DATE OF REPORT

April 1, 1999

SUPERVISED BY:

THE APPLICANT HAS BEEN CAUTIONED AS TO THE FOLLOWING:

15.21 INFORMATION TO USER.

The users manual or instruction manual for an intentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

15.27(a) SPECIAL ACCESSORIES.

Equipment marketed to a consumer must be capable of complying with the necessary regulations in the configuration in which the equipment is marketed. Where special accessories, such as shielded cables and/or special connectors are required to enable an unintentional or intentional radiator to comply with the emission limits in this part, the equipment must be marketed with, i.e. shipped and sold with, those special accessories. However, in lieu of shipping or packaging the special accessories with the unintentional or intentional radiator, the responsible party may employ other methods of ensuring that the special accessories are provided to the consumer, without additional charge.

Information detailing any alternative method used to supply the special accessories for a grant of equipment authorization or retained in the verification records, as appropriate. The party responsible for the equipment, as detailed in § 2.909 of this chapter, shall ensure that these special accessories are provided with the equipment. The instruction manual for such devices shall include appropriate instructions on the first page of text concerned with the installation of the device that these special accessories must be used with the device. It is the responsibility of the user to use the needed special accessories supplied with the equipment.

TABLE OF CONTENTS

RULE	DESCRIPTION	PAGE
	Test Report	1
2.1033(c)	General Information Required	2
2.1033(c)(14)	Rule Summary	4
	General Information	5
	Standard Test Conditions and Engineering Practice	s 6
2.1046(a)	R. F. Power Output (Radiated)	7
2.1047(a)	Audio Frequency Response	9
2.1047(a)	Audio Low Pass Filter (Voice Input)	11
2.1047(b), 22.	915 Modulation Limiting	14
	Measurement of Maximum Deviation	17
2.1049(c)(1)	Part 22 Emission Masks (Occupied Bandwidth)	20
2.1049, 24.238	(b) Part 24 Emission Masks (Occupied Bandwidth)	38
22.917	Emission Limitations for Cellular	48
2.1051	Spurious Emissions at Antenna Terminals	59
2.1053(a)	Field Strength of Spurious Radiation	61
2.1055(a)(1)	Frequency Stability (Temperature Variation)	67
2.1055(b)(1)	Frequency Stability (Voltage Variation)	71
2.202(g)	Necessary Bandwidth and Emission Bandwidth	72

PAGE NO. 1 of 72.

Required information per ISO/IEC Guide 25-1990, paragraph 13.2:

a) TEST REPORT

b) Laboratory: M. Flom Associates, Inc.

(FCC: 31040/SIT) 3356 N. San Marcos Place, Suite 107

(Canada: IC 2044) Chandler, AZ 85224

c) Report Number: d9940002

d) Client: Nokia Mobile Phones

Elektroniikkatie 10

Fin-90570 Oulu, Finland

e) Identification: 8860, Type NSW-6NX

FCC ID: LJPNSW-6NX

Description: Dual Mode, Tri-band Cellular Telephone

f) EUT Condition: Not required unless specified in individual

tests.

g) Report Date: April 1, 1999

EUT Received: March 22, 1999

h, j, k): As indicated in individual tests.

i) Sampling method: No sampling procedure used.

1) Uncertainty: In accordance with MFA internal quality manual.

m) Supervised by:

Morton Flom, P. Eng.

n) Results: The results presented in this report relate

only to the item tested.

o) Reproduction: This report must not be reproduced, except in

full, without written permission from this

laboratory.

PAGE NO. 2 of 72.

LIST OF GENERAL INFORMATION REQUIRED FOR CERTIFICATION

IN ACCORDANCE WITH FCC RULES AND REGULATIONS, VOLUME II, PART 2 AND TO

22, 24

Sub-part 2.1033

(c)(1): NAME AND ADDRESS OF APPLICANT:

Nokia Mobile Phones Elektroniikkatie 10 Fin-90570 Oulu, Finland

MANUFACTURER:

Nokia Manufacturing Inc U.S.A.

4201 Diplomacy Road

Centreport 2

Fort Worth, TX 76155

(c)(2): FCC ID: LJPNSW-6NX

MODEL NO: 8860, Type NSW-6NX

(c)(3): INSTRUCTION MANUAL(S):

PLEASE SEE ATTACHED EXHIBITS

(c)(4): TYPE OF EMISSION: AMPS-FM: 40K0F8W

40K0F1D

AMPS-TDMA: 30K0DXW

PCS-TDMA: 30K0DXW

(c)(5): <u>FREQUENCY RANGE, MHz</u>: AMPS-FM: 824.04 to 848.97

AMPS-TDMA: 824.04 to 848.97

PCS-TDMA:

1850.04 to 1909.92

(c)(6): POWER RATING, Watts: AMPS-FM: 0.66 W ERP

AMPS-TDMA: 0.50 W ERP

PCS-TDMA: 0.63 W EIRP

____ Switchable \underline{x} Variable ____ N/A

(c)(7): MAXIMUM POWER RATING, Watts: 0.6

<u>PAGE NO.</u> 3 of 72.

Subpart 2.1033 (continued)

(c)(8): VOLTAGES & CURRENTS IN ALL ELEMENTS IN FINAL R. F. STAGE, INCLUDING FINAL TRANSISTOR OR SOLID STATE DEVICE:

COLLECTOR CURRENT, A = per manual COLLECTOR VOLTAGE, Vdc = per manual SUPPLY VOLTAGE, Vdc = 3.6

(c)(9): TUNE-UP PROCEDURE:

PLEASE SEE ATTACHED EXHIBITS

(c)(10): CIRCUIT DIAGRAM/CIRCUIT DESCRIPTION:

Including description of circuitry &

Including description of circuitry & devices provided for determining and stabilizing frequency, for suppression of spurious radiation, for limiting modulation and limiting power.

PLEASE SEE ATTACHED EXHIBITS

(c)(11): LABEL INFORMATION:

PLEASE SEE ATTACHED EXHIBITS

(c)(12): PHOTOGRAPHS:

PLEASE SEE ATTACHED EXHIBITS

(c)(13): DIGITAL MODULATION DESCRIPTION:

____ ATTACHED EXHIBITS __X_ N/A

(c)(14): TEST AND MEASUREMENT DATA:

FOLLOWS

Accessories used during testing:

Travel Charger ACP-7U
Performance Travel Charger ACP-8U
Two Slot Desk Top Charger CGE-1
Headset HDC-5
Xena Battery Ni-MH 600mAh BMP-1D

PAGE NO. 4 of 72.

Sub-part

2.1033(c)(14): TEST AND MEASUREMENT DATA

All tests and measurement data shown were performed in accordance with FCC Rules and Regulations, Volume II; Part 2, Sub-part J, Sections 2.947, 2.1033(c), 2.1041, 2.1046, 2.1047, 2.1079, 2.1051, 2.1053, 2.1055, 2.1057 and the following individual Parts:

	21 - Domestic Public Fixed Radio Services
x	22 - Public Mobile Services
	22 Subpart H - Cellular Radiotelephone Service
	22.901(d) - Alternative technologies and auxiliary services
	23 - International Fixed Public Radiocommunication services
X	24 - Personal Communications Services
	74 Subpart H - Low Power Auxiliary Stations
	80 - Stations in the Maritime Services
	80 Subpart E - General Technical Standards
	80 Subpart F - Equipment Authorization for Compulsory Ships
	80 Subpart K - Private Coast Stations and Marine Utility
	Stations
	80 Subpart S - Compulsory Radiotelephone Installations for
-	Small Passenger Boats
	80 Subpart T - Radiotelephone Installation Required for
	Vessels on the Great Lakes
	80 Subpart U - Radiotelephone Installations Required by the
	Bridge-to-Bridge Act
	80 Subpart V - Emergency Position Indicating Radiobeacons
-	(EPIRB'S)
	80 Subpart W - Global Maritime Distress and Safety System
	(GMDSS) 80 Subpart X - Voluntary Radio Installations 87 - Aviation Services 90 - Private Land Mobile Radio Services 94 - Private Operational-Fixed Microwave Service
	80 Suppart X - Voluntary Radio Installations
	00 - Aviation Services
	94 - Private Land Mobile Radio Services 94 - Private Operational-Fixed Microwave Service
	95 Subpart A - General Mobile Radio Service (GMRS)
	95 Subpart C - Radio Control (R/C) Radio Service
-	95 Subpart D - Citizens Band (CB) Radio Service
-	95 Subpart E - Family Radio Service
	95 Subpart F - Interactive Video and Data Service (IVDS)
	101 - Fixed Microwave Services

GENERAL INFORMATION

- 1. Prior to testing, the deviation for audio modulation and each of the respective SAT + ST tones were set as close as possible to the required limit.
- 2. Except for audio modulation, which was applied externally, Wideband Data SAT, ST and all other tones and operational modes were provided by a test control unit incorporating appropriate software. Worst case repetition rate for Wideband Data was 10 kb/s.
- 3. Spurious radiation was measured at three (3) meters.
- 4. The two cellular frequency bands are available to the user automatically. Please refer to the manual contained in the documentation.

5.	The normal mod	des of modulat	ion are:
	x (a) VOI	CE	
	\overline{x} (b) WID	EBAND DATA	
	x (c) SAT	I	
	\overline{x} (d) ST		
	\overline{x} (e) SAT	+ VOICE	
	\overline{x} (f) SAT	' + DTMF	
	(g) CDM	ΙA	
	\overline{x} (h) TDM	ΙA	
	(i) NAM	IPS VOICE	
	(j) NAM	IPS DSAT	
	(k) NAM	IPS ST	
	(l) NAM	IPS VOICE + DSA	T

PAGE NO. 6 of 72.

STANDARD TEST CONDITIONS and ENGINEERING PRACTICES

Except as noted herein, the following conditions and procedures were observed during the testing:

In accordance with ANSI C63.4-1992, section 6.1.9, and unless otherwise indicated in the specific measurement results, the ambient temperature of the actual EUT was maintained within the range of 10° to 40° C (50° to 104 °F) unless the particular equipment requirements specify testing over a different temperature range. Also, unless otherwise indicated, the humidity levels were in the range of 10° to 90° relative humidity.

Prior to testing, the EUT was tuned up in accordance with the manufacturer's alignment procedures. All external gain controls were maintained at the position of maximum and/or optimum gain throughout the testing.

Measurement results, unless otherwise noted, are worst case measurements.

PAGE NO. 7 of 72.

NAME OF TEST: R. F. Power Output (Radiated)

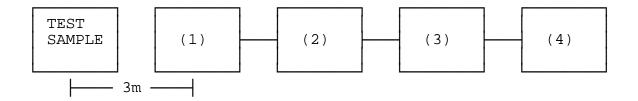
SPECIFICATION: 47 CFR 2.1046(a)

GUIDE: ETIA/EIA/IS-137-A-1996

TEST EQUIPMENT: As per attached page

MEASUREMENT PROCEDURE (RADIATED)

1. The EUT was placed on an open-field site and its radiated field strength at a known distance was measured by means of a spectrum analyzer. Equivalent loading was calculated from the equation $P_t = ((E \times R)^2/49.2)$ watts, where R = 3m.


2. Measurement accuracy is ±1.5 dB.

. <u> </u>		EASUREMEN		rs		
	FREQUENCY		CF, dB	uV/m @ 3m	•	ERP,
TUNED, MHz	EMISSION, MHz	dBuV/m			dBm	Watts
	w Power AMPS MC					
824.040000	824.038000	73.01	30.66	152580.84	6.25	
836.400000	836.398000	72.04	30.69	136930.44		
848.970000	848.968000	71.43	30.73	128233.06	4.75	0.003
STATE: 1:Lo	w Power AMPS-TD	MA a993(0184: 19	999-Mar-22 Mo	n 13:20	:00
	824.050000			41975.9		0.0003
	836.410000					0.0005
		64.24				0.0006
_						
	gh Power AMPS M					
	824.038000			1901078.28	28.25	0.66
	836.398000			1713957.31		
848.970000	848.968000	92.61	30.73	1468926.28	25.95	0.40
STATE: 2:Hi	gh Power AMPS-T	'DMA a993	30183: 1	999-Mar-22 M	on 11:31	1:00
	824.028000			1579428.61	26.55	0.46
	836.403000			1629296.03	26.85	0.49
848.970000	848.983000	93.64	30.73	1653864.78	26.95	0.50
	FREQUENCY		CF, dB	uV/m @ 3m		
TUNED, MHz	EMISSION, MHz	dBuV/m			dBm	Watts
STATE: 1:1.0	w Power PCS-TDM	12 ~993(1192: 10	999-Mar-23 Tu	e 08:20	: 00
1850.040000	1850.055000			65841.54	-1.05	
1879.980000	1879.980000	59.67	31.24			0.0004
1909.920000	1909.925000	56.49	31.25	24378.11	-9.65	0.0002
						
	gh Power PCS-TD					
1850.040000	1850.038000					0.54
1879.980000	1879.980000					
1909.920000	1909.935000	91.54	31.25	1378795.95	25.45	0.58

PAGE NO.

8 of 72.

TRANSMITTER RADIATED MEASUREMENTS

Asset Description s/n

(1) TRANSDUCER

x i00091 Emco 3115 001469 x i00089 Aprel Log Periodic 001500

(2) HIGH PASS FILTER

 $\frac{x}{x}$ i00 Narda μ PAD (In-Band Only) x i00 Trilithic (Out-Of-Band Only)

(3) PREAMP

<u>x</u> i00028 HP 8449 (+30 dB) 2749A00121

(4) SPECTRUM ANALYZER

` '		-		
X	i00048	HP	8566B	
	i00043	ΗP	8558B	2004A02076
	i00057	ΗP	8557A	1531A00193
Х	i00029	ΗP	8563E	3213A00104

PAGE NO. 9 of 72.

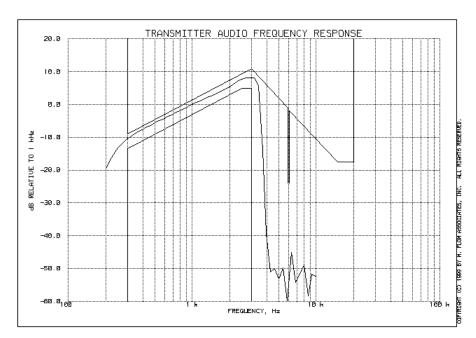
NAME OF TEST: Audio Frequency Response

SPECIFICATION: 47 CFR 2.1047(a)

GUIDE: TIA/EIA/IS-137-A-1996

TEST EQUIPMENT: As per previous page

MEASUREMENT PROCEDURE


- 1. The EUT and test equipment were set up as shown on the following page.
- 2. The audio signal generator was connected to the audio input circuit/microphone of the EUT.
- 3. The audio signal input was adjusted to obtain 20% modulation at 1 kHz, and this point was taken as the 0 dB reference level.
- 4. With input levels held constant and below limiting at all frequencies, the audio signal generator was varied from 100 Hz to 50 kHz.
- 5. The response in dB relative to 1 kHz was then measured, using the HP 8901A Modulation Analyzer.
- 6. MEASUREMENT RESULTS: ATTACHED

PAGE NO. 10 of 72.

NAME OF TEST: Audio Frequency Response

g9930077: 1999-Mar-22 Mon 11:37:00

STATE: 0:General

Additional points:

FREQUENCY, Hz	LEVEL, dB
300	-10.23
20000	-66.21
30000	-81.93
50000	-90.30

SUPERVISED BY:

Morton Flom, P. Eng.

M. Thur P. Eng

PAGE NO. 11 of 72.

NAME OF TEST: Audio Low Pass Filter (Voice Input)

SPECIFICATION: 47 CFR 2.1047(a)

GUIDE: TIA/EIA/IS-137-A-1996

TEST EQUIPMENT: As per attached page

MEASUREMENT PROCEDURE

- 1. The EUT and test equipment were set up such that the audio input was connected at the input to the modulation limiter, and the modulated stage.
- 2. The audio output was connected at the output to the modulated stage.
- 3. MEASUREMENT RESULTS: ATTACHED

<u>PAGE NO.</u> 12 of 72.

TRANSMITTER TEST SET-UP

TEST A. MODULATION CAPABILITY/DISTORTION

TEST B. AUDIO FREQUENCY RESPONSE

TEST C. HUM AND NOISE LEVEL

TEST D. RESPONSE OF LOW PASS FILTER

TEST E. MODULATION LIMITING

Asset Description

s/n

(1)	LINE	IMPEDANCE	STABILIZATION	NETWORK
-----	------	-----------	---------------	---------

	i00010	ΗP	204D	1105A04683
Х	i00017	ΗP	8903A	2216A01753
X	i00118	ΗP	33120A	US36002064

(2) COAXIAL ATTENUATOR

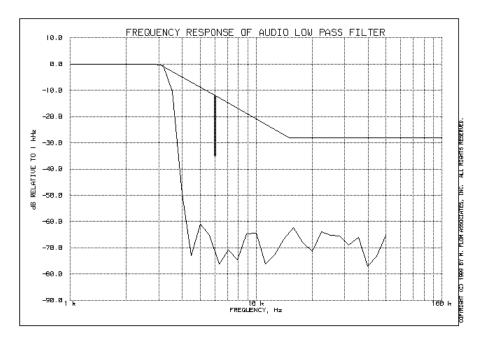
Х	i0 <mark>0122</mark>	NARDA 766-10	7802
	i00123	NARDA 766-10	7802A
	i00113	SIERRA 661A-3D	1059
	i00069	BIRD 8329 (30 dB)	10066

(3) MODULATION ANALYZER

(4) AUDIO ANALYZER

Х	i00017	HP	8903A	2216A01753

(5) SCOPE


i00058	HP 1741A		2215A09356
 i00071	Tektronix	935	1935-B011343

PAGE NO. 13 of 72.

NAME OF TEST: Audio Low Pass Filter (Voice Input)

g9930079: 1999-Mar-22 Mon 11:42:00

STATE: 0:General

SUPERVISED BY:

Morton Flom, P. Eng.

M. Ohur P. Eng

PAGE NO. 14 of 72.

NAME OF TEST: Modulation Limiting

SPECIFICATION: 47 CFR 2.1047(b), 22.915

GUIDE: TIA/EIA/IS-137-A-1996

TEST EQUIPMENT: As per previous page

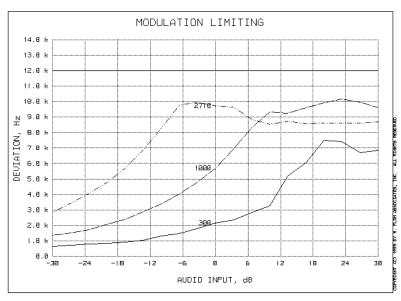
MEASUREMENT PROCEDURE

- 1. The audio signal generator was connected to the audio input circuit/microphone of the EUT as for Frequency Response of the Audio Modulating Circuit.
- 2. The modulation response was measured for each of three tones (one of which was the frequency of maximum response), and the input voltage was varied and was observed on an HP 8901A Modulation Analyzer.
- 3. The audio input level was varied from 30% modulation (± 3.6 kHz deviation) to at least 20 dB higher than the saturation point.
- 4. Measurements were performed for both negative and positive modulation and the respective results were recorded.
- 5. MEASUREMENT RESULTS ATTACHED FOR:

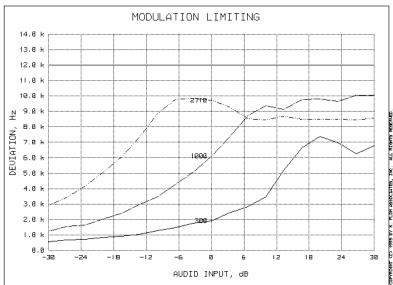
COMPANDER ON:

x VOICE

x VOICE + SAT


PAGE NO. 15 of 72.

NAME OF TEST: Modulation Limiting


g9930151: 1999-Mar-25 Thu 09:06:00

STATE: 0:General

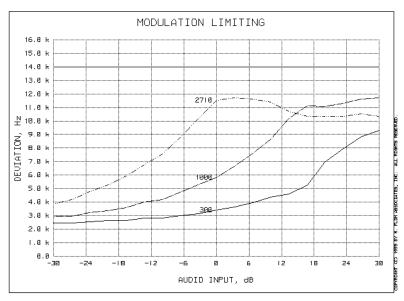
Positive Peaks:

Negative Peaks:

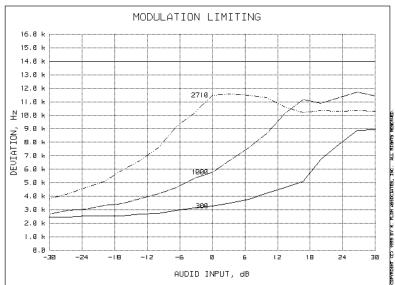
SUPERVISED BY:

Morton Flom, P. Eng.

M. Duck P. Eng


PAGE NO. 16 of 72.

NAME OF TEST: Modulation Limiting


g9930152: 1999-Mar-25 Thu 09:12:00

STATE: 0:General

Positive Peaks:

Negative Peaks:

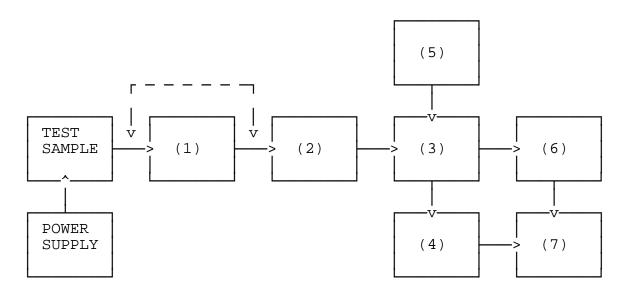
SUPERVISED BY:

PAGE NO. 17 of 72.

NAME OF TEST: Measurement Of Maximum Deviation

GUIDE: TIA/EIA/IS-137-A-1996

TEST EQUIPMENT: As per attached page


MEASUREMENT PROCEDURE

- 1. The presentation of tones was obtained by attaching the HP 8903A Oscilloscope to the Modulation Output of the HP 8901 Modulation Analyzer.
- 2. The EUT was modulated by an HP 8903 Audio Analyzer and/or internally generated signals.
- 3. Maximum deviation measurements were recorded for the various configurations.
- 4. MEASUREMENT RESULTS: ATTACHED SUMMARY FOR DEVIATION

PAGE NO.

18 of 72.

Measurement Of Maximum Deviation

2511A01467 3213A00104

Asset	Description	s/n
· · · ·	OSCILLATOR/GENERATOR HP 204D HP 8903A	1105A04683 2216A01753
i00122 x i00123	Narda 766-10 Narda 766-10 Narda 766-10 Sierra 661A-3D	7802 7802A 1059
i00126 i00125	ERS; NOTCH, HP, LP, BP Eagle TNF-1 Eagle TNF-1 Eagle TNF-1	100-250 50-60 250-850
· · · ·	UM ANALYZER HP 8566B	2511A01467

(5) SCOPE		
· · ·	HP 54502A	2927A00209

x i00048 HP 8566B i00029 HP 8563E

<u>PAGE NO.</u> 19 of 72.

MEASUREMENT SUMMARY: Measurement Of Maximum Deviation

MODULATION	LIMIT, kHz	DEVIATION, MHz
(a) Voice	\geq 10.8 & \leq 13.2	10.8
(b) Wideband Data	\geq 7.2 & \leq 8.8	8.1
(c) SAT	\geq 1.8 & \leq 2.2	2.1
(d) ST	\geq 7.2 & \leq 8.8	7.8
(e) SAT + VOICE	N/A	11.6
(f) SAT + DTMF	N/A	11.0
(g) CDMA	N/A	N/A
(h) TDMA	N/A	N/A
(i) NAMPS VOICE	N/A	N/A
(j) NAMPS DSAT	N/A	N/A
(k) NAMPS ST	N/A	N/A
(1) NAMPS VOICE	N/A	N/A

SUPERVISED BY:

Morton Flom, P. Eng.

OM. There P. Eng.

PAGE NO. 20 of 72.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

SPECIFICATION: 47 CFR 2.1049(c)(1)

GUIDE: TIA/EIA/IS-137-A-1996

TEST EQUIPMENT: As per previous page

MEASUREMENT PROCEDURE

- 1. The EUT and test equipment were set up as shown on the following page, with the Spectrum Analyzer connected.
- 2. For EUTs supporting audio modulation, the audio signal generator was adjusted to the frequency of maximum response and with output level set for ±2.5 kHz deviation (or 50% modulation). With level constant, the signal level was increased 16 dB.
- 3. For EUTs supporting digital modulation, the digital modulation mode was operated to its maximum extent.
- 4. The Occupied Bandwidth was measured with the Spectrum Analyzer controls set as shown on the test results.
- 5. MEASUREMENT RESULTS: ATTACHED

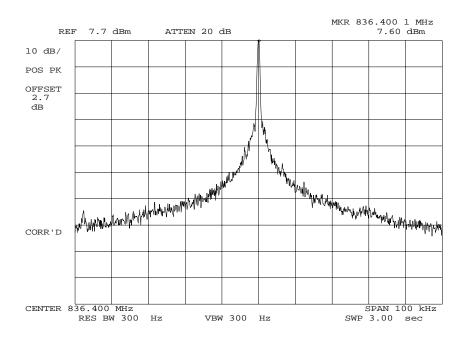
<u>PAGE NO.</u> 21 of 72.

MEASUREMENT SUMMARY: Emission Masks (Occupied Bandwidth)

MODULATION	MEASURED DEVIATION	LIMIT	B/W @-26 dB
	±kHz (HP 8901A)	±kHz	PLOTS, kHz
NONE	0.0	0.0	0.0
VOICE	10.8	\geq 10.8 & \leq 13.2	24
WIDEBAND DATA	8.1	\geq 7.2 & \leq 8.8	25
SAT + VOICE	11.6	N/A	28
SAT + DTMF	11.0	N/A	26
CDMA	N/A	N/A	N/A
TDMA	N/A	N/A	28
NAMPS		N/A	N/A

SUPERVISED BY:

Morton Flom, P. Eng.


M. Thuch P. Eng.

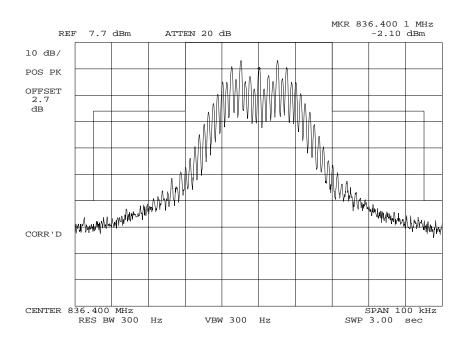
PAGE NO. 22 of 72.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

g9930196: 1999-Mar-23 Tue 10:04:00

STATE: 1:Low Power

POWER: LOW MODULATION: NONE


SUPERVISED BY:

PAGE NO. 23 of 72.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

g9930199: 1999-Mar-23 Tue 10:16:00

STATE: 1:Low Power

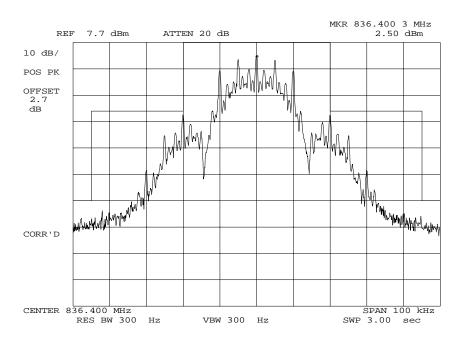
POWER: MODULATION:

LOW

VOICE: 2500 Hz SINE WAVE

MASK: AMPS CELLULAR,

F3E/F3D w/LPF


SUPERVISED BY:

PAGE NO. 24 of 72.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

g9930205: 1999-Mar-23 Tue 10:35:00

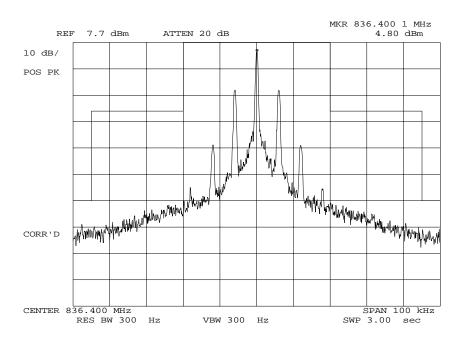
STATE: 1:Low Power

POWER: MODULATION:

LOW WBD

MASK: AMPS CELLULAR,

F3E/F3D w/LPF


SUPERVISED BY:

PAGE NO. 25 of 72.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

g9930202: 1999-Mar-23 Tue 10:21:00

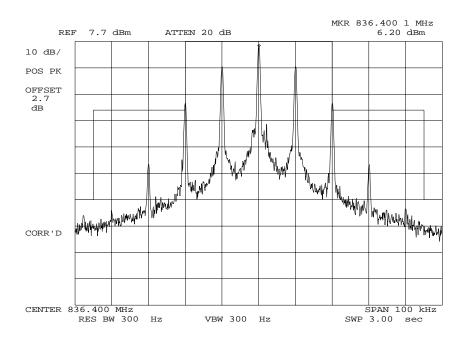
STATE: 1:Low Power

POWER: MODULATION:

LOW SAT

MASK: AMPS CELLULAR,

F3E/F3D w/LPF


SUPERVISED BY:

PAGE NO. 26 of 72.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

g9930207: 1999-Mar-23 Tue 10:50:00

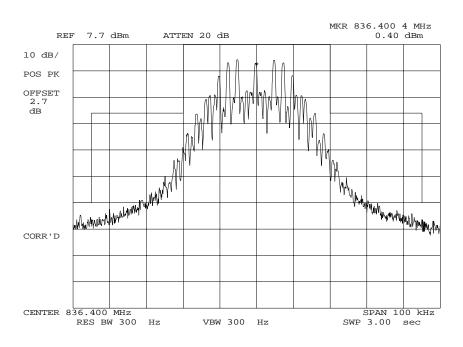
STATE: 1:Low Power

POWER: MODULATION:

LOW ST

MASK: AMPS CELLULAR,

F3E/F3D w/LPF


SUPERVISED BY:

PAGE NO. 27 of 72.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

g9930262: 1999-Mar-25 Thu 13:22:00

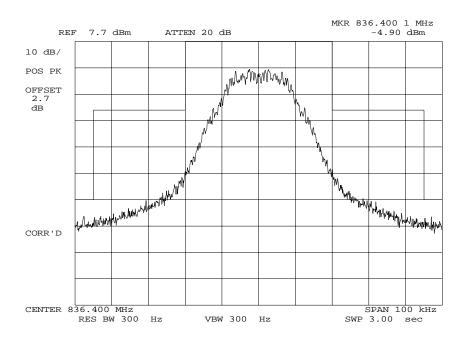
STATE: 1:Low Power

POWER: MODULATION:

LOW SAT+VOICE

MASK: AMPS CELLULAR,

F3E/F3D w/LPF


SUPERVISED BY:

PAGE NO. 28 of 72.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

g9930209: 1999-Mar-23 Tue 10:55:00

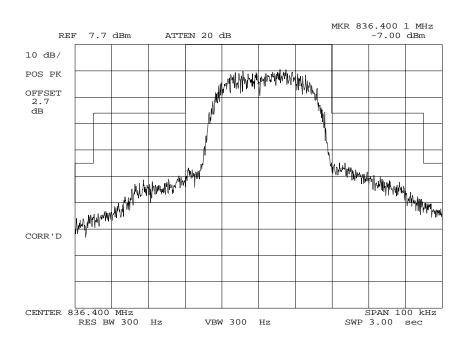
STATE: 1:Low Power

POWER: MODULATION:

LOW SAT+DTMF

MASK: AMPS CELLULAR,

F3E/F3D w/LPF


SUPERVISED BY:

PAGE NO. 29 of 72.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

g9930212: 1999-Mar-23 Tue 11:10:00

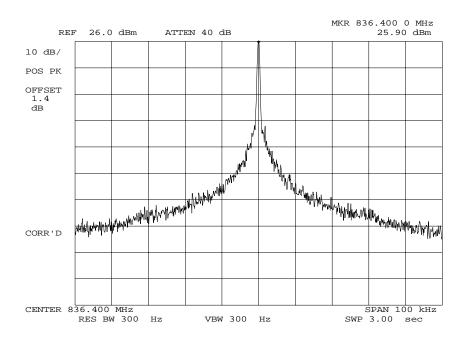
STATE: 1:Low Power

POWER: MODULATION:

LOW TDMA

MASK: AMPS CELLULAR, F1D,

DATA


SUPERVISED BY:

PAGE NO. 30 of 72.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

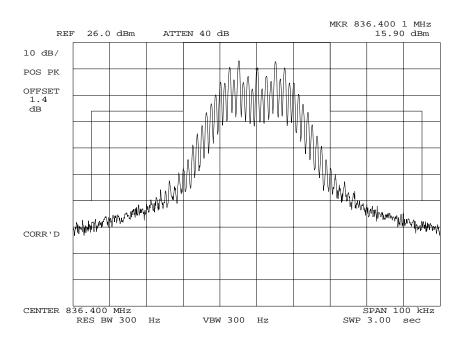
g9930197: 1999-Mar-23 Tue 10:08:00

STATE: 2:High Power

POWER: HIGH MODULATION: NONE

SUPERVISED BY:

Morton Flom, P. Eng.


M. Ther P. Eug.

PAGE NO. 31 of 72.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

g9930198: 1999-Mar-23 Tue 10:15:00

STATE: 2:High Power

POWER:

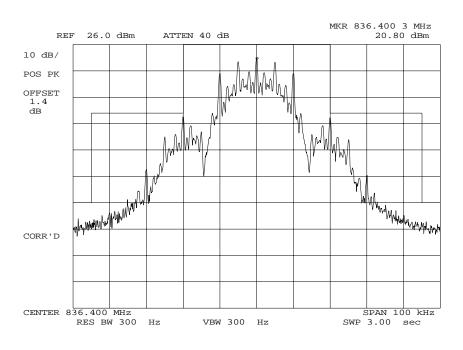
MODULATION:

HIGH

VOICE: 2500 Hz SINE WAVE

MASK: AMPS CELLULAR,

F3E/F3D w/LPF


SUPERVISED BY:

PAGE NO. 32 of 72.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

g9930204: 1999-Mar-23 Tue 10:34:00

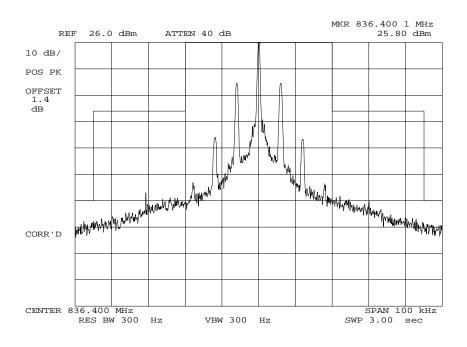
STATE: 2:High Power

POWER: MODULATION:

HIGH WBD

MASK: AMPS CELLULAR,

F3E/F3D w/LPF


SUPERVISED BY:

PAGE NO. 33 of 72.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

g9930203: 1999-Mar-23 Tue 10:23:00

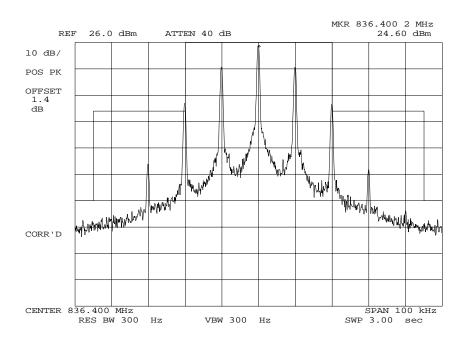
STATE: 2:High Power

POWER: MODULATION:

HIGH SAT

MASK: AMPS CELLULAR,

F3E/F3D w/LPF


SUPERVISED BY:

PAGE NO. 34 of 72.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

g9930206: 1999-Mar-23 Tue 10:48:00

STATE: 2:High Power

POWER: MODULATION:

HIGH ST

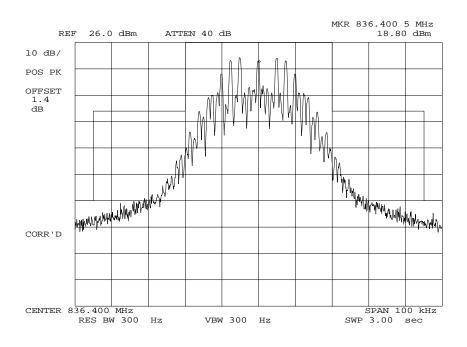
MASK: AMPS CELLULAR,

F3E/F3D w/LPF

SUPERVISED BY:

Morton Flom, P. Eng.

PAGE NO.


34 of 72.

PAGE NO. 35 of 72.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

g9930261: 1999-Mar-25 Thu 13:17:00

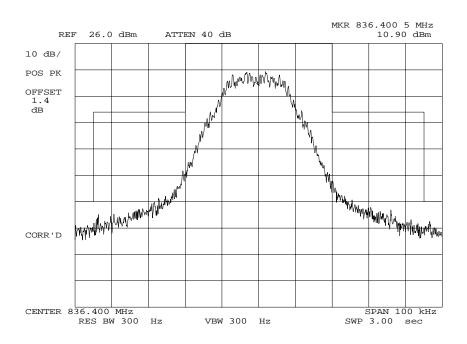
STATE: 2:High Power

POWER: MODULATION:

HIGH SAT+VOICE

MASK: AMPS CELLULAR,

F3E/F3D w/LPF


SUPERVISED BY:

PAGE NO. 36 of 72.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

g9930208: 1999-Mar-23 Tue 10:52:00

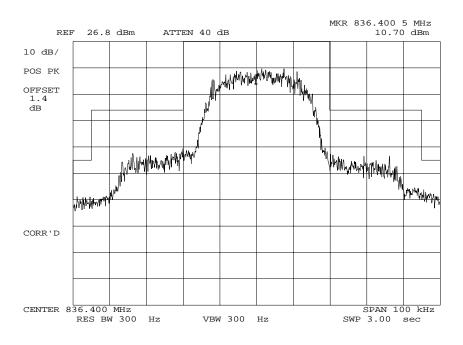
STATE: 2:High Power

POWER: MODULATION:

HIGH SAT+DTMF

MASK: AMPS CELLULAR,

F3E/F3D w/LPF


SUPERVISED BY:

PAGE NO. 37 of 72.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

g9930211: 1999-Mar-23 Tue 11:09:00

STATE: 2:High Power

POWER: HIGH MODULATION: TDMA

MASK: AMPS CELLULAR, F1D,

DATA

SUPERVISED BY:

PAGE NO. 38 of 72.

NAME OF TEST: Emission Masks (Occupied Bandwidth

SPECIFICATION: 2.1049(c), 24.238(b): Occupied Bandwidth

24: Emissions at Band Edges

GUIDE: TIA/EIA/IS-137-A-1996

TEST EQUIPMENT: As per attached page

MEASUREMENT PROCEDURE

1. The EUT and test equipment were set up as shown on the following page with the Spectrum Analyzer connected.

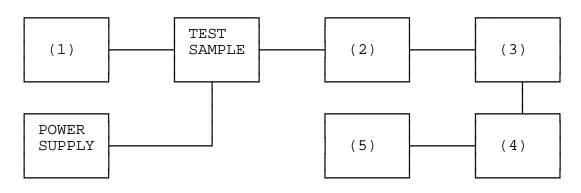
2. The low and high channels for all RF powers within the designated frequency block(s) were measured.

3. MEASUREMENT RESULTS: ATTACHED

SUPERVISED BY:

Morton Flom, P. Eng.

W. Thuch P. Eng.


PAGE NO.

39 of 72.

TRANSMITTER SPURIOUS EMISSION

TEST A. OCCUPIED BANDWIDTH (IN-BAND SPURIOUS)

TEST B. OUT-OF-BAND SPURIOUS

	_ ' '
\ccat	Decarintion
Asset	Description

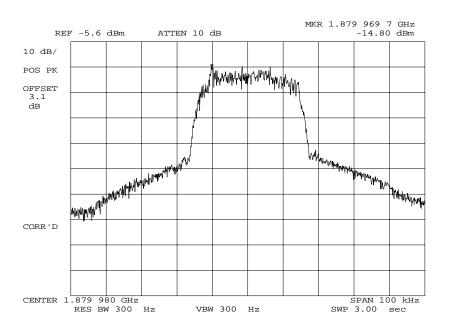
s/n

(1) AUDIO OSCILLATOR/GENERATOR				
	i00010	HP	204D	1105A04683
Х	i00017	ΗP	8903A	2216A01753
	i00012	ΗP	3312A	1432A11250

(2) COAXIAL ATTENUATOR				
x i00122	Narda 766-10	7802		
i00123	Narda 766-10	7802A		
<u>i00069</u>	Bird 8329 (30 dB)	1006		
i00113	Sierra 661A-3D	1059		

(3)) FILTE	RS; NOTCH, HP, LP, BP	
	i00126	Eagle TNF-1	100-250
	i00125	Eagle TNF-1	50-60
x	i00124	Eagle TNF-1	250-850

(4)) SPECTR	UM ANALYZER	
X	i00048	HP 8566B	2511A01467
	i00029	HP 8563E	3213A00104


(5) SCOPE			
i00058	HP 1741A		2251A09356
i00030	HP 54502A		2927A00209
i00071	Tektronix	935	1935-B011343

PAGE NO. 40 of 72.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

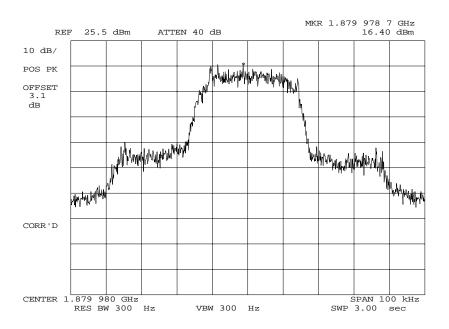
g9930236: 1999-Mar-23 Tue 14:31:00

STATE: 1:Low Power

POWER: LOW MODULATION: TDMA

SUPERVISED BY:

Morton Flom, P. Eng.


M. Oher P. Eug

PAGE NO. 41 of 72.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

g9930235: 1999-Mar-23 Tue 14:27:00

STATE: 2:High Power

POWER: HIGH MODULATION: TDMA

SUPERVISED BY:

PAGE NO. 42 of 72.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

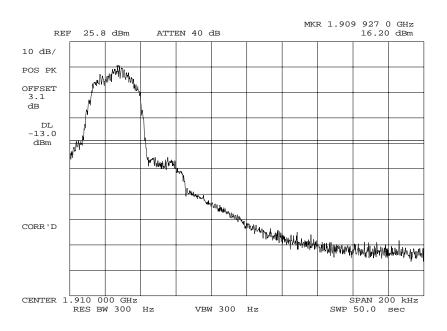
g9930271: 1999-Mar-29 Mon 11:34:00

STATE: 2:High Power

POWER: MODULATION:

HIGH TDMA PCS

LOWER BANDEDGE


SUPERVISED BY:

PAGE NO. 43 of 72.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

g9930272: 1999-Mar-29 Mon 11:40:00

STATE: 2:High Power

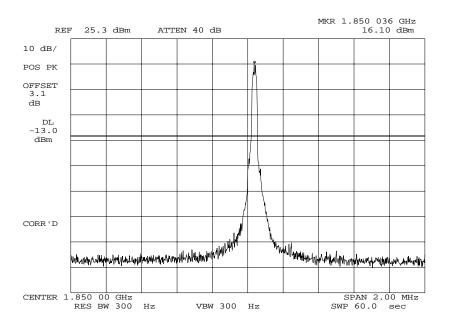
POWER: MODULATION:

HIGH TDMA PCS

UPPER BANDEDGE

SUPERVISED BY:

Morton Flom, P. Eng.


M. There P. Eug.

PAGE NO. 44 of 72.

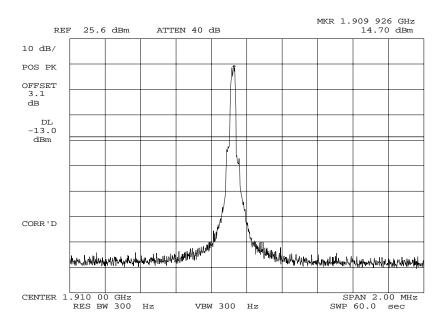
NAME OF TEST: Emission Masks (Occupied Bandwidth)

g9930237: 1999-Mar-23 Tue 14:40:00

STATE: 2:High Power

POWER: HIGH MODULATION: TDMA

LOWER BANDEDGE


SUPERVISED BY:

PAGE NO. 45 of 72.

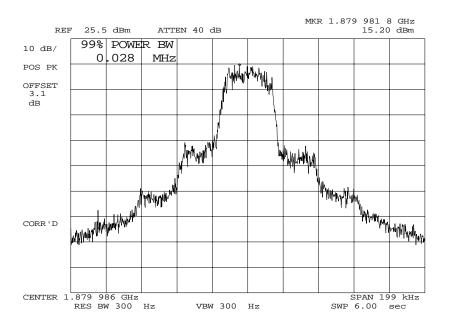
NAME OF TEST: Emission Masks (Occupied Bandwidth)

g9930238: 1999-Mar-23 Tue 14:50:00

STATE: 2:High Power

POWER: HIGH MODULATION: TDMA

UPPER BANDEDGE


SUPERVISED BY:

PAGE NO. 46 of 72.

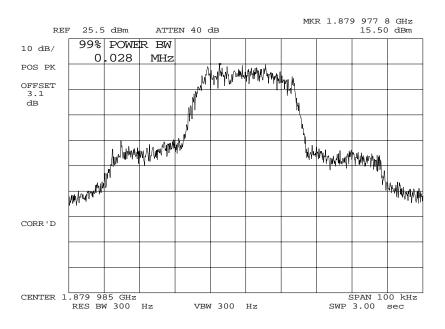
NAME OF TEST: Emission Masks (Occupied Bandwidth)

g9930240: 1999-Mar-23 Tue 14:57:00

STATE: 2:High Power

POWER: HIGH MODULATION: TDMA

99 % POWER BANDWIDTH


SUPERVISED BY:

PAGE NO. 47 of 72.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

g9930239: 1999-Mar-23 Tue 14:55:00

STATE: 2:High Power

POWER: HIGH MODULATION: TDMA

99 % POWER BANDWIDTH

SUPERVISED BY:

PAGE NO. 48 of 72.

NAME OF TEST: Emission Requirements -

Worst Case Modulation & Wideband Data

SPECIFICATION: 47 CFR 22.917

GUIDE: TIA/EIA/IS-137-A-1996

TEST EQUIPMENT: As per previous page

MEASUREMENT PROCEDURE

- 1. The EUT was connected to a coaxial attenuator and then to a spectrum analyzer. The unmodulated carrier was set for 0 dB reference level.
- 2. A notch filter was introduced to reduce or eliminate any spectrum analyzer internally generated spurious for measurements of the harmonics and the carrier level.
- 3. Spectrum analyzer bandwidth was set to section 22.917(h) as applicable.
- 4. Measurements were made on channels 380, 799 and 991. The equipment was first modulated for the Worst Case Modulation, then for Wideband Data (F8W, F1D).
- 5. All other spurious emissions over the range of 0 the beyond the $10^{\rm th}$ harmonic (10 GHz) were 20 dB or more below the limit
- 6. The data presented here is for the Worst Case.
- 7. MEASUREMENT RESULTS: ATTACHED

<u>PAGE NO.</u> 49 of 72.

MEASUREMENT SUMMARY: Emission Requirements -

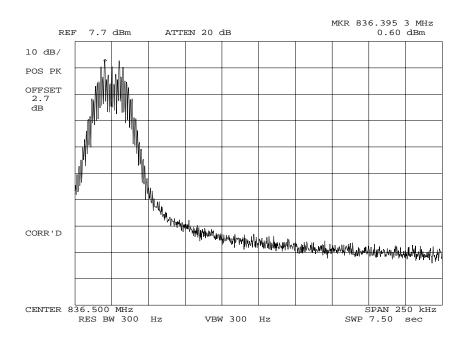
Worst Case Modulation

WORST CASE MODULATION = VOICE +_SAT

EMISSION, MHz/HARM.	LIMIT, dBc	SPURIOUS EM Lo	ISSIONS, dBc Hi
Fo + (F0 + 20 kHz) to F0 + 45 kHz	≤-26	≤-44.0	≤-48.0
Fo + (F0 + 45 kHz) to 2^{nd} Harmonic	\leq -60 or 43 + 10 log P	≤-67.1	≤-69.5
2^{nd} to 10^{th}	(≤-13 dBm)	≤-67.1	≤-67.1
MEASUREMENT	RESULTS	= ATTACHED OFFS	SET PLOTS

EMISSION IN THE RECEIVER CRITICAL BAND

EMISSION, MHz/HARM.	LIMIT, dBm	SPURIOUS EM Lo	ISSIONS, dBm Hi
869 to 894	≤-80	≤-86.1	≤-86.7
MEASUREMENT	' RESIILTS	= ATTACHED PLOT	'S


SUPERVISED BY:

PAGE NO. 50 of 72.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

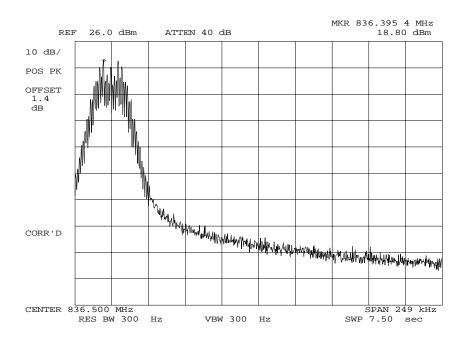
g9930222: 1999-Mar-23 Tue 11:35:00

STATE: 1:Low Power

POWER: MODULATION:

LOW SAT+VOICE

OFFSET OCCUPIED BANDWIDTH


SUPERVISED BY:

PAGE NO. 51 of 72.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

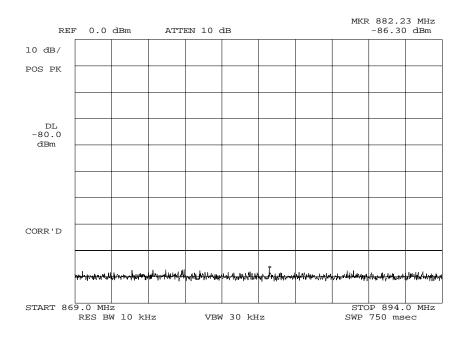
g9930221: 1999-Mar-23 Tue 11:33:00

STATE: 2:High Power

POWER: MODULATION:

HIGH SAT+VOICE

OFFSET OCCUPIED BANDWIDTH


SUPERVISED BY:

PAGE NO. 52 of 72.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

g9930229: 1999-Mar-23 Tue 11:55:00

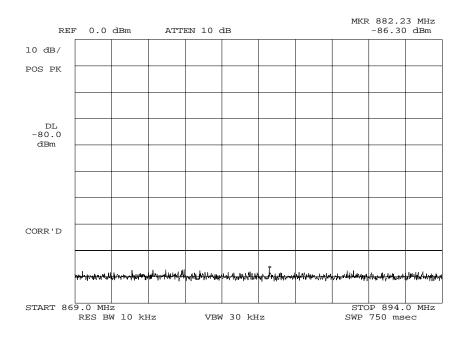
STATE: 2:Low Power

POWER: MODULATION:

LOW SAT+VOICE

TX SPURS IN RX CRITICAL

BAND


SUPERVISED BY:

PAGE NO. 53 of 72.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

g9930229: 1999-Mar-23 Tue 11:55:00

STATE: 2:High Power

POWER: MODULATION:

LOW SAT+VOICE

TX SPURS IN RX CRITICAL

BAND

SUPERVISED BY:

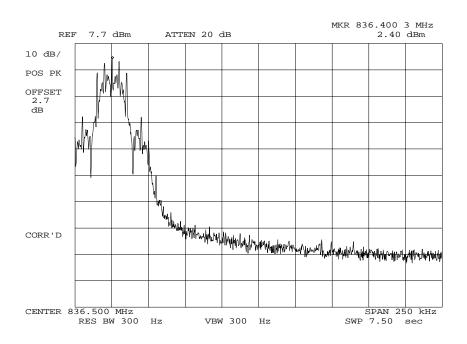
<u>PAGE NO.</u> 54 of 72.

MEASUREMENT SUMMARY: Emission Requirements Wideband Data (F9D, 10 kb/s)

EMISSION, MHz/HARM.	LIMIT, dBc	SPURIOUS EMI Lo	SSIONS, dBc Hi
Fo + (F0 + 20 kHz) to F0 + 45 kHz	≤-26	≤-39.0	≤-39.0
Fo + (F0 + 45 kHz) to F0 + 90 kHz	≤-45	≤-69.0	≤-69.0
Fo + (F0 + 90 kHz) to 2^{nd} Harmonic	≤-60 (≤-13 dBm)	≤-67.1	≤-69.5
2^{nd} to 10^{th}	(≤-13 dBm)	≤-55.2	≤-67.1
MEASUREMENT RE	SULTS	= ATTACHED OFF	SET PLOTS

EMISSION IN THE RECEIVER CRITICAL BAND

EMISSION,	LIMIT, dBm	SPURIOUS EMI	ISSIONS, dBm
MHz/HARM.		Lo	Hi
869 to 894	≤-80	≤-86.1	≤-86.7
MEASUREMEN	T RESULTS	= ATTACHED PLC	TS


SUPERVISED BY:

PAGE NO. 55 of 72.

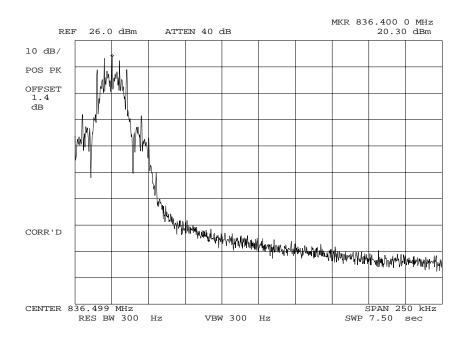
NAME OF TEST: Emission Masks (Occupied Bandwidth)

g9930214: 1999-Mar-23 Tue 11:14:00

STATE: 1:Low Power

POWER: LOW MODULATION: WBD

OFFSET OCCUPIED BANDWIDTH


SUPERVISED BY:

PAGE NO. 56 of 72.

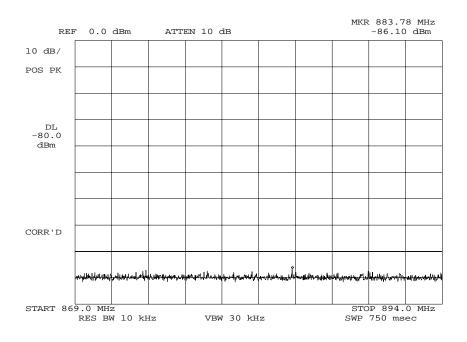
NAME OF TEST: Emission Masks (Occupied Bandwidth)

g9930213: 1999-Mar-23 Tue 11:13:00

STATE: 2:High Power

POWER: HIGH MODULATION: WBD

OFFSET OCCUPIED BANDWIDTH


SUPERVISED BY:

PAGE NO. 57 of 72.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

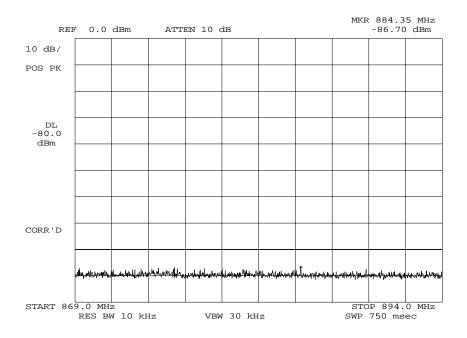
g9930215: 1999-Mar-23 Tue 11:17:00

STATE: 1:Low Power

POWER: LOW MODULATION: WBD

TX SPURS IN RX CRITICAL

BAND


SUPERVISED BY:

PAGE NO. 58 of 72.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

g9930216: 1999-Mar-23 Tue 11:18:00

STATE: 2:High Power

POWER: HIGH MODULATION: WBD

TX SPURS IN RX CRITICAL

BAND

SUPERVISED BY:

PAGE NO. 59 of 72.

NAME OF TEST: Spurious Emissions at Antenna Terminals

SPECIFICATION: 47 CFR 2.1051, 22.917

GUIDE: TIA/EIA/IS-137-A-1996

TEST EQUIPMENT: As per attached page

MEASUREMENT PROCEDURE

- 1. The EUT was connected to a coaxial attenuator and then to a Spectrum Analyzer.
- 2. A notch filter was introduced to reduce or eliminate spurious emission which could be generated internally in the spectrum analyzer.
- 3. Measurements were made over the range from 45 kHz to 10 GHz for the worst case modulation so both the highest and lowest R.F. power settings.
- 4. All other emissions were 20 dB or more below the limit.
- 5. Spectrum analyzer bandwidth was set to section 22.917(h) as applicable.
- 6. MEASUREMENT RESULTS: ATTACHED

<u>PAGE NO.</u> 60 of 72.

NAME OF TEST: Spurious Emissions at Antenna Terminals

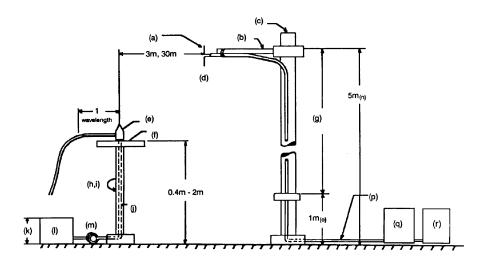
NOT APPLICABLE

PAGE NO. 61 of 72.

NAME OF TEST: Field Strength of Spurious Radiation

SPECIFICATION: 47 CFR 2.1053(a)

GUIDE: TIA/EIA/IS-137-A-1996


TEST EQUIPMENT: As per attached page

MEASUREMENT PROCEDURE

- 1. A description of the measurement facilities was filed with the FCC and was found to be in compliance with the requirements of Section 15.38, by letter from the FCC dated March 3, 1997, FILE 31040/SIT. All pertinent changes will be reported to the Commission by up-date prior to March 2000.
- 2. At first, in order to locate all spurious frequencies and approximate amplitudes, and to determine proper equipment functioning, the test sample was set up at a distance of three meters from the test instrument. Valid spurious signals were determined by switching the power on and off.
- 3. In the field, the test sample was placed on a wooden turntable above ground at three (or thirty) meters away from the search antenna. Excess power leads were coiled near the power supply.
 - The cables were oriented in order to obtain the maximum response. At each emission frequency, the turntable was rotated and the search antennas were raised and lowered vertically.
- 4. The emission was observed with both a vertically polarized and a horizontally polarized search antenna and the worst case was used.
- 6. The field strength of each emission within 20 dB of the limit was recorded and corrected with the appropriate cable and transducer factors.
- 7. The worst case for all channels is shown.
- 8. Measurement results: ATTACHED FOR WORST CASE

62 of 72.

RADIATED TEST SETUP

NOTES:

- (a)Search Antenna Rotatable on boom
- (b) Non-metallic boom
- (c) Non-metallic mast
- (d) Adjustable horizontally
- (e) Equipment Under Test
- (f) Turntable
- (g)Boom adjustable in height.
- (h) External control cables routed horizontally at least one wavelength.
- (i)Rotatable

- (j)Cables routed through hollow turntable center
- (k)30 cm or less
- (1)External power source
- (m)10 cm diameter coil of excess cable
- (n) 25 cm (V), 1 m-7 m (V, H)
- (o) 25 cm from bottom end of 'V', 1m normally
- (p)Calibrated Cable at least 10m
 in length
- (q)Amplifier (optional)
- (r)Spectrum Analyzer

	Asset	Description	s/n	Cycle Per ANSI C63	Last Cal
TRA	ANSDUCER i00065	EMCO 3109B 100Hz-50MHz	2336	12 mo.	
	i00033	Singer 94593-1 10kHz-32MHz	0219	12 mo.	
X	i00088	EMCO 3109-B 25MHz-300MHz	2336	12 mo.	Oct-98
X	i00089	Aprel 2001 200MHz-1GHz	001500	12 mo.	Oct-98
X	i00103	EMCO 3115 1GHz-18GHz	9208-3925	12 mo.	Oct-98
	i00085	EMCO 3116 10GHz-40GHz	2076	12 mo.	
<u>AM</u>	PLIFIER i00028	HP 8449A	2749A00121	12 mo.	Mar-98
SPECTRUM ANALYZER					
	i00029	HP 8563E	3213A00104	12 mo.	Aug-98
X	i00033	HP 85462A	3625A00357	12 mo.	Dec-98
	i00048	HP 8566B	2511AD1467	6 mo.	Dec-98

PAGE NO. 63 of 72.

MEASUREMENT RESULTS: FIELD STRENGTH OF SPURIOUS RADIATION

Measurement Distance, m = 3

Spectrum Searched, GHz = 0 to 10

TUNED,	CHANNEL	EMISSION	LEVEL, dBc
MHz	NUMBER	MHz/HARM.	
AMPS-FM:			
824.040	991	2 nd - 10 th	<-70
836.400	380	2 nd - 10 th	<-70
848.970	799	2 nd - 10 th	<-70
AMPS-TDMA:			
824.040	991	$2^{\text{nd}} - 10^{\text{th}}$	<-70
836.400	380	2 nd - 10 th	<-70
848.970	799	2 nd - 10 th	<-70
PCS-TDMA:			
1850.04		$2^{\rm nd} - 10^{\rm th}$	<-55
1878.98		$2^{\text{nd}} - 10^{\text{th}}$	<-55
1909.92		$2^{\text{nd}} - 10^{\text{th}}$	<-55

NOTE:

For channels 380, 799 and 991, the field strength of spurious radiation over the above noted range measured 20 dB or more below the limit.

SUPERVISED BY:

PAGE NO. 64 of 72.

NAME OF TEST: Field Strength of Spurious Radiation

g9930253: 1999-Mar-24 Wed 11:06:00

STATE: 1:Low Power AMPS

FREQUENCY	FREQUENCY	METER,	CF,	uV/m @	ERP,	MARGIN,
TUNED, MHz	EMISSION, MHz	dBuV	dВ	3m	dBm	dВ
836.400000	1672.805000	29.67	1.86	37.71	-65.85	-52.9
836.400000	2509.205000	34.17	6.46	107.52	-56.75	-43.8
836.400000	3345.605000	31.83	8.55	104.47	-56.95	-44
836.400000	4182.005000	32.33	10.66	141.09	-54.35	-41.4
836.400000	5018.405000	31.67	12.95	170.22	-52.75	-39.8
836.400000	5854.805000	30	15.07	179.27	-52.35	-39.3
836.400000	6691.205000	30.83	18.23	283.79	-48.35	-35.3
836.400000	7527.605000	31.33	19.6	351.97	-46.45	-33.5
836.400000	8364.005000	33.33	20.04	466.12	-44.05	-31

(P: Peak reading, A: Average reading)

NAME OF TEST: Field Strength of Spurious Radiation

g9930252: 1999-Mar-24 Wed 09:12:00

STATE: 2:High Power AMPS

	EDECITEMO!	MUUUD	O.D.	77/	TD D	MADOTAL
FREQUENCY	FREQUENCY	METER,	CF,	uV/m @	ERP,	MARGIN,
TUNED, MHz	EMISSION, MHz	dBuV	dВ	3m	dBm	dB
836.400000	1672.785000	33.67	31.86	1890.17	-31.85	-18.9
836.400000	2509.193333	61.5	6.46	2500.35	-29.45	-16.4
836.400000	3345.613333	39.33	8.55	247.74	-49.45	-36.5
836.400000	4182.006667	39.83	10.66	334.58	-46.85	-33.9
836.400000	5018.401667	49.5	12.95	1325.87	-34.95	-22
836.400000	5854.805000	41.5	15.07	673.75	-40.85	-27.8
836.400000	6691.205000	33.67	18.23	393.55	-45.45	-32.5
836.400000	7527.605000	31.83	19.6	372.82	-45.95	-33
836.400000	8364.005000	31	20.04	356.45	-46.35	-33.4

(P: Peak reading, A: Average reading)

<u>PAGE NO.</u> 65 of 72.

NAME OF TEST: Field Strength of Spurious Radiation

g9930251: 1999-Mar-24 Wed 09:09:00

STATE: 1:Low Power AMPS-TDMA

 FREQUENCY	FREQUENCY	METER,	CF,	uV/m @	ERP,	MARGIN,
TUNED, MHz	EMISSION, MHz	dBuV	dB	3m	dBm	dB
 836.400000	1672.800000	34.5	1.86	65.77	-61.05	-48
836.400000	2509.200000	32.5	6.46	88.72	-58.45	-45.4
836.400000	3345.600000	32.17	8.55	108.64	-56.65	-43.7
836.400000	4182.000000	32.33	10.66	141.09	-54.35	-41.4
836.400000	5018.400000	32.67	12.95	190.99	-51.75	-38.8
836.400000	5854.800000	32.17	15.07	230.14	-50.15	-37.2
836.400000	6691.200000	30.83	18.23	283.79	-48.35	-35.3
836.400000	7527.600000	32.17	19.6	387.7	-45.65	-32.6
836.400000	8364.000000	33	20.04	448.75	-44.35	-31.4
/D. D. 1			`			

(P: Peak reading, A: Average reading)

NAME OF TEST: Field Strength of Spurious Radiation

g9930246: 1999-Mar-23 Tue 14:56:00

STATE: 2:High Power AMPS-TDMA

FREQUENCY	FREQUENCY	METER,	CF,	uV/m @	ERP,	MARGIN,
TUNED, MHz	EMISSION, MHz	dBuV	dВ	3m	dBm	dB
836.400000	1672.786667	39.83	31.86	3841.49	-25.65	-12.7
836.400000	2509.193333	65.67	6.46	4041.1	-25.25	-12.3
836.400000	3345.585000	42.33	8.55	349.95	-46.45	-33.5
836.400000	4181.960000	41.33	10.66	397.65	-45.35	-32.4
836.400000	5018.393333	46.5	12.95	938.64	-37.95	-25
836.400000	5854.846667	48.67	15.07	1538.15	-33.65	-20.7
836.400000	6691.246667	31.67	18.23	312.61	-47.45	-34.5
836.400000	7527.646667	31.5	19.6	358.92	-46.25	-33.3
836.400000	8364.046667	33.83	20.04	493.74	-43.55	-30.5

(P: Peak reading, A: Average reading)

<u>PAGE NO.</u> 66 of 72.

NAME OF TEST: Field Strength of Spurious Radiation

g9930234: 1999-Mar-23 Tue 14:50:00

STATE: 1:Low Power PCS-TDMA

_							
	FREQUENCY	FREQUENCY	METER,	CF,	uV/m @	EIRP,	MARGIN,
	TUNED, MHz	EMISSION, MHz	dBuV	dВ	3m	dBm	dВ
	1879.980000	3759.988333	31.17	9.56	108.77	-56.65	-41.5
	1879.980000	5639.968333	30.17	14.55	172.19	-52.65	-37.5
	1879.980000	7519.948333	26.67	19.59	205.59	-51.15	-35.9
	1879.980000	9399.928333	28.33	22.96	366.86	-46.05	-30.9
	1879.980000	11279.908333	30.67	23.84	531.5	-42.85	-27.7
	1879.980000	13159.888333	29	26.89	623.02	-41.45	-26.3
	1879.980000	15039.868333	28.33	23.51	390.84	-45.55	-30.4
	1879.980000	16919.848333	29.33	30.35	963.83	-37.65	-22.5
	(D: Deak read	ing A: Average	reading)				

(P: Peak reading, A: Average reading)

NAME OF TEST: Field Strength of Spurious Radiation

g9930193: 1999-Mar-23 Tue 09:06:00

STATE: 2:High Power PCS-TDMA

FREQUENCY	FREQUENCY	METER,	CF,	uV/m @	EIRP,	MARGIN,
TUNED, MHz	EMISSION, MHz	dBuV	dВ	3m	dBm	dB
1879.980000	3759.978333	60	9.56	3006.08	-27.85	-12.6
1879.980000	5640.008333	61.5	14.55	6346	-21.35	-6.2
1879.980000	7519.958333	45	19.59	1696.29	-32.75	-17.6
1879.980000	9400.018334	47	22.96	3147.75	-27.45	-12.2
1879.980000	11280.035000	34	23.84	779.83	-39.55	-24.4
1879.980000	13160.015000	24.17	26.89	357.27	-46.35	-31.1
1879.980000	15039.995000	27.67	23.51	362.24	-46.15	-31
1879.980000	16919.975000	27.17	30.35	751.62	-39.85	-24.7
(P: Peak read	ling, A: Average	reading)				

(P: Peak reading, A: Average reading)

PAGE NO. 67 of 72.

NAME OF TEST: Frequency Stability (Temperature Variation)

SPECIFICATION: 47 CFR 2.1055(a)(1)

GUIDE: TIA/EIA/IS-137-A-1996

TEST CONDITIONS: As Indicated

TEST EQUIPMENT: As per previous page

MEASUREMENT PROCEDURE

- 1. The EUT and test equipment were set up as shown on the following page.
- 2. With all power removed, the temperature was decreased to $-30\,^{\circ}\text{C}$ and permitted to stabilize for three hours. Power was applied and the maximum change in frequency was noted within one minute.
- 3. With power OFF, the temperature was raised in 10°C steps. The sample was permitted to stabilize at each step for at least one-half hour. Power was applied and the maximum frequency change was noted within one minute.
- 4. The temperature tests were performed for the worst case.
- 5. MEASUREMENT RESULTS: ATTACHED

PAGE NO.

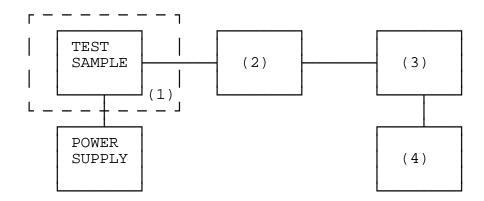
68 of 72.

TRANSMITTER TEST SET-UP

TEST A. OPERATIONAL STABILITY

TEST B. CARRIER FREQUENCY STABILITY

TEST C. OPERATIONAL PERFORMANCE STABILITY


TEST D. HUMIDITY

TEST E. VIBRATION

TEST F. ENVIRONMENTAL TEMPERATURE

TEST G. FREQUENCY STABILITY: TEMPERATURE VARIATION

TEST H. FREQUENCY STABILITY: VOLTAGE VARIATION

Asset Description s/n

(1) TEMPERATURE, HUMIDITY, VIBRATION

X	i00027	Tenny	Temp. Ch	amber	9083-765-234
	i00	Weber	Humidity	Chamber	

_____i00 L.A.B. RVH 18-100

(2) COAXIAL ATTENUATOR

X	$i0\overline{0122}$	NARDA 766-10	7802
	i00123	NARDA 766-10	7802A
	i00113	SIERRA 661A-3D	1059
	i00069	BIRD 8329 (30 dB)	10066

(3) R.F. POWER

	$i0\overline{0014}$	HP	435A	POWER	METER	1733A05839
X	i00039	ΗP	436A	POWER	METER	2709A26776
X	i00020	ΗP	8901	A POWEI	R MODE	2105A01087

(4) FREQUENCY COUNTER

	i00042	HP 5	5383A	1628A00959
	i00019	HP 5	5334B	2704A00347
X	i00020	HP 8	3901A	2105A01087

PAGE NO. 69 of 72. FREQUENCY STABILITY (WORST CASE OF ANALOGUE)

TEMP. °C	NOMINAL VOLT, ppm	LOW VOLTAGE, ppm	HIGH VOLTAGE, ppm
-30	-0.1	-0.4	0.0
-20	0.1	0.2	0.1
-10	-0.2	-0.2	-0.2
0	-0.3	-0.4	-0.3
10	-0.4	-0.4	-0.3
20	-0.3	-0.3	-0.3
25	-0.1	-0.1	-0.1
30	0.0	0.0	0.0
40	0.3	0.3	0.4
50	0.6	0.6	0.6
60	0.6	0.7	0.6

FREQUENCY STABILITY (WORST CASE OF DIGITAL)

TEMP. °C	NOMINAL VOLT, ppm	LOW VOLTAGE, ppm	HIGH VOLTAGE, ppm
-30	-0.1	-0.4	0.0
-20	0.1	0.2	0.1
-10	-0.2	-0.2	-0.2
0	-0.3	-0.4	-0.3
10	-0.4	-0.4	-0.3
20	-0.3	-0.3	-0.3
25	-0.1	-0.1	-0.1
30	0.0	0.0	0.0
40	0.3	0.3	0.4
50	0.6	0.6	0.6
60	0.6	0.7	0.6

PAGE NO. 70 of 72.

FREQUENCY STABILITY (WORST CASE OF PCS)

TEMP.	°C	NOMINAL VOLT, ppm	LOW VOLTAGE, ppm	HIGH VOLTAGE, ppm
-30		-0.1	-0.4	0.0
-20		0.1	0.2	0.1
-10		-0.2	-0.2	-0.2
0		-0.3	-0.4	-0.3
10		-0.4	-0.4	-0.3
20		-0.3	-0.3	-0.3
25		-0.1	-0.1	-0.1
30		0.0	0.0	0.0
40		0.3	0.3	0.4
50		0.6	0.6	0.6
60		0.6	0.7	0.6

SUPERVISED BY:

Morton Flom, P. Eng.

M. There P. Eng.

PAGE NO. 71 of 72.

NAME OF TEST: Frequency Stability (Voltage Variation)

SPECIFICATION: 47 CFR 2.1055 (b)(1)

GUIDE: TIA/EIA/IS-137-A-1996

TEST EQUIPMENT: As per previous page

MEASUREMENT PROCEDURE

- 1. The EUT was placed in a temperature chamber at 25±5°C and connected as for "Frequency Stability Temperature Variation" test.
- 2. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
- 3. The variation in frequency was measured for the worst case.

RESULTS: Frequency Stability (Voltage Variation)

STATE: 0:General AMPS MODE

LIMIT, ppm = 2.5 LIMIT, Hz = 2091 BATTERY END POINT (Voltage) = 3.1

% of STV	Voltage	Frequency, MHz	Change, Hz	Change, ppm
85	3.2	836.399910	-90	-0.1
100	3.8	836.399908	-92	-0.1
115	4.4	836.399916	-84	-0.1
B.E.P.	3.1	836.399910	-85	-0.1

RESULTS: Frequency Stability (Voltage Variation)

STATE: 0:General AMPS-TDMA MODE

LIMIT, ppm = 2.5 LIMIT, Hz = 2091 BATTERY END POINT (Voltage) = 3.1

% of STV	Voltage	Frequency, MHz	Change, Hz	Change, ppm
85	3.2	836.399990	-10	0.0
100	3.8	836.399987	-19	0.0
115	4.4	836.399991	-9	0.0
B.E.P.	3.1	836.400021	21	0.0
				_

RESULTS: Frequency Stability (Voltage Variation)

STATE: 0:General PCS-TDMA MODE

LIMIT, ppm = 2.5 LIMIT, Hz = 4700 BATTERY END POINT (Voltage) = 3.1

% of STV	Voltage	Frequency, MHz	Change, Hz	Change, ppm
85	3.2	1879.980003	3	0.0
100	3.8	1879.980011	11	0.0
115	4.4	1879.980005	5	0.0
B.E.P.	3.1	1879.979991	-9	0.0

SUPERVISED BY:

Morton Flom, P. Eng.

Mi Ohur P. Eur

FCC ID: LJPNSW-6NX

PAGE NO. 72 of 72.

NAME OF TEST: Necessary Bandwidth and Emission Bandwidth

SPECIFICATION: 47 CFR 2.202(g)

MODULATION = 40K0F8W

NECESSARY BANDWIDTH:

NECESSARY BANDWIDTH (B_N) , kHz = 40 (measured at the 99.75% power bandwidth)

MODULATION = 40K0F1D

NECESSARY BANDWIDTH:

NECESSARY BANDWIDTH (B_N) , kHz = 40 (measured at the 99.75% power bandwidth)

MODULATION = 30K0DXW

NECESSARY BANDWIDTH:

NECESSARY BANDWIDTH (B_N) , kHz = 30 (measured at the 99.75% power bandwidth)

SUPERVISED BY:

Morton Flom, P. Eng.

M. Jun V. Eut

TESTIMONIAL AND STATEMENT OF CERTIFICATION

THIS IS TO CERTIFY THAT:

- 1. THAT the application was prepared either by, or under the direct supervision of, the undersigned.
- 2. THAT the technical data supplied with the application was taken under my direction and supervision.
- THAT the data was obtained on representative units, randomly selected.
- 4. THAT, to the best of my knowledge and belief, the facts set forth in the application and accompanying technical data are true and correct.

CERTIFYING ENGINEER: