

SAR Compliance Test Report

Test report no.: Number of pages: Not numbered

Date of report: Contact person:

Responsible test engineer:

2002-02-20

Olli Kautio

Pertti Mäkikyrö

Testing laboratory:

Nokia Corporation Elektroniikkatie 10 P.O. Box 50 FIN-90571 OULU

Finland

Tel. +358-7180-08000 Fax +358-7180-47222 Client:

Nokia Corporation Elektroniikkatie 10 P.O. Box 50 FIN-90571 OULU Finland

Tel.+358-7180-08000 Fax 358-7180-47222

Tested devices:

LJPNPM-2NX

CSL-17, CSL-27, BCH-13, BCH-12P

Supplement reports:

Testing has been carried out in accordance with: IEEE P1528-200X Draft 6.4

Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications

Devices: Experimental Techniques

Documentation:

The documentation of the testing performed on the tested devices is archived for 15

years at PC Site Oulu

Test results:

The tested device complies with the requirements in respect of all parameters subject to the test.

The test results and statements relate only to the items tested. The test report shall not be reproduced except in full, without written approval of the laboratory.

Date and signatures:

For the contents:

2002-02-20

Pertti Mäkikyrö

Engineering Manager, EMC

lor launi

Miia Nurkkala **Test Engineer**

Mua Pinekala

Exhibit 11: SAR Report DTX04003-EN

Applicant: Nokia Corporation

FCC ID: LJPNPM-2NX

Copyright © 2002 Nokia Corporation

CONTENTS

1.	SUM	IMARY FOR SAR TEST REPORT	3
	1.1 1.1.1 1.1.2 1.1.3	Body Worn Configuration	3 3
2.	DESC	Cription of tested device	4
	2.1 2.2 2.3 2.4	PICTURE OF PHONE AND LOCATION OF ANTENNA	4 4
3.	TEST	CONDITIONS	6
	3.1 3.2 3.3	Ambient Conditions	6
4.	DESC	CRIPTION OF THE TEST EQUIPMENT	6
	4.1 4.2 4.2.1 4.2.2	Muscle Tissue Simulant	8 8 8
	4.3 4.4	PHANTOMS	
5.	DESC	CRIPTION OF THE TEST PROCEDURE	10
	5.1 5.1.1 5.1.2 5.2 5.3	3	10 12 13
ô.	MEA	SUREMENT UNCERTAINTY	14
	6.1 6.1.1	DESCRIPTION OF INDIVIDUAL MEASUREMENT UNCERTAINTY	
7.	RESU	JLTS	15
	7.1 7.2	HEAD CONFIGURATION	_
	PENDIX PENDIX	(A: Validation Test Printouts (6 pages) (B: SAR Distribution Printouts (32 pages)	

APPENDIX C: Calibration Certificate(s) (30 pages)

1. SUMMARY FOR SAR TEST REPORT

Date of test	2001-12-10 - 2001-12-14, 2001-12-31, 2002-01-02
Contact person	Olli Kautio
Test plan referred to	-
FCC ID	LJPNPM-2NX
SN, HW, SW and DUT numbers of tested device	SN:235/13975557 HW:B4.0 SW:V4.09.01 DUT: A101201/53
Accessories used in testing	Battery BLB-3, Headset HDE-1
Notes	-
Document code	DTX 04003-EN
Responsible test engineer	Pertti Mäkikyrö
Measurement performed by	Miia Nurkkala

1.1 Maximum Results Found during SAR Evaluation

The equipment is deemed to fulfil the requirements if the measured values are less than or equal to the limit.

1.1.1 Head Configuration

Ch / f (MHz)	Power	Position	Limit	Measured	Result
380/836.40	25.7dBm	cheek	1.6 mW/g	1.17mW/g	PASSED

1.1.2 Body Worn Configuration

Ch / f (MHz)	Power	Position	Limit	Measured	Result
2/1850.04	27.5dBm	CSL-27, BCH-13	1.6 mW/g	0.90mW/g	PASSED

1.1.3 Measurement Uncertainty

Combined Standard Uncertainty	± 13.6%
Extended Standard Uncertainty (k=2)	± 27.1 %

Exhibit 11: SAR Report FCC ID: LJPNPM-2NX

DTX04003-EN

2. DESCRIPTION OF TESTED DEVICE

Device category	Portable device
Exposure environment	Uncontrolled exposure
Unit type	Prototype unit
Case type	Fixed case

Modes of	AMPS	IS136-800	IS136-1900	GSM1900
Operation				
Modulation Mode		π/4	π/4	Gaussian
		Quadrature	Quadrature	Minimum
		Phase Shift	Phase Shift	Shift Keying
		Keying	Keying	
Duty Cycle	1	1/3	1/3	1/8
Transmitter	824.04 -	824.04 -	1850.04 -	1850.2 -
Frequency Range	848.97	848.97	1909.92	1909.8
(MHz)				

2.1 Picture of Phone and Location of Antenna

2.2 Description of the Antenna

Туре	Internal integrated an	Internal integrated antenna		
Dimensions (mm)	Maximum width	42 mm		
	Maximum length	29 mm		
Location	Inside the back cover, near the top of the device			

2.3 Battery Options

There is only one battery option available for tested device, BLB-3.

Exhibit 11: SAR Report

DTX04003-EN

2.4 Body Worn Accessories

Following body worn accessories are available for LJPNPM-2NX:

Carrying Case CSL-17

CSL-17 does contain metal parts.

Carrying Case CSL-27 with Belt Clip BCH-13

Belt Clips for Carrying Case CSL-27

Carrying case CSL-27 can not be used as a body worn accessory alone. It has two belt clip options BCH-13 and BCH-12P. BCH-13 dictates the closest spacing to the body and was therefore tested.

CSL-27, BCH-13 and BCH-12P do not contain any metallic components.

Exhibit 11: SAR Report

DTX04003-EN

3. TEST CONDITIONS

3.1 Ambient Conditions

Ambient temperature (°C)	22 ±1
Tissue simulating liquid temperature (°C)	22 ±1
Humidity	32

3.2 RF characteristics of the test site

Tests were performed in a fully enclosed RF shielded environment.

3.3 Test Signal, Frequencies, and Output Power

The device was controlled by using a special test mode.

In all operating bands the measurements were performed on lowest, middle and highest channels.

The phone was set to maximum power level during the all tests and at the beginning of the each test the battery was fully charged. Power output was measured by the FCC accredited test laboratory on the same unit used in SAR testing.

DASY3 system measures power drift during SAR testing by comparing e-field in the same location at the beginning and at the end of measurement. These records were used to monitor stability of power output.

4. DESCRIPTION OF THE TEST EQUIPMENT

The measurements were performed with an automated near-field scanning system, DASY3, manufactured by Schmid & Partner Engineering AG (SPEAG) in Switzerland.

Test Equipment	Serial Number	Due Date
DASY3 DAE V1	371	10/02
E-field Probe ET3DV6	1381	10/02
Dipole Validation Kit, D835V2	405	02/03
Dipole Validation Kit, D1900V2	511	02/03

E-field probe calibration records are presented in Appendix C.

Exhibit 11: SAR Report DTX04003-EN

Additional equipment needed in validation

Test Equipment	Model	Serial Number	Due Date
Signal Generator	R&S SMIQ03B	100012	02/02
Amplifier	Amplifier Research 5S1G4	27573	-
Power Meter	R&S NRT	835065/049	05/02
Power Sensor	R&S NRT-Z44	835374/021	05/02
Thermometer	D09416	1505985462	-
Vector Network Analyzer	Anritsu 37347A	992604	02/02
Transmission Line	Damaskos T1500	-	-
Dielectric Probe			

4.1 System Accuracy Verification

The probes are calibrated annually by the manufacturer. Dielectric parameters of the simulating liquids are measured using a Damaskos Inc. transmission line model T1500 and Anritsu 37347A vector network analyzer.

The SAR measurement of the DUT were done within 24 hours of system accuracy verification, which was done using the dipole validation kit.

The dipole antenna, which is manufactured by Schmid & Partner Engineering AG, is matched to be used near flat phantom filled with tissue simulating solution. Length of 835 MHz dipole is 161mm with overall height of 330mm. Dipole length for 1900 MHz is 68 mm with overall height of 300mm. A specific distance holder is used in the positioning of both antennas to ensure correct spacing between the phantom and the dipole. Manufacturer's reference dipole data is presented in Appendix C.

Power level of 250 mW was supplied to a dipole antenna placed under the flat section of SAM phantom. The validation results are in the table below and printout of the validation test is presented in Appendix A. All the measured parameters were within the specification.

	f		SAR	Dielectric Parameters		Temp
Tissue	(MHz)	Description	(W/kg), 1g	ε _r	σ (S/m)	(°C)
Head	835	Measured 12/10/01	2.63	40.1	0.90	22
Ticau	033	Reference Result	2.47	42.0	0.88	N/A
Head	1900	Measured 12/12/01	11.0	38.7	1.44	22
Ticau	1900	Reference Result	10.7	39.2	1.47	N/A
		Measured 12/12/01	2.64	57.5	0.95	22
Muscle	835	Measured 01/02/02	2.61	57.2	0.94	22
		Reference Result	2.53	56.6	0.93	N/A
		Measured 12/14/01	10.8	52.3	1.52	22
Muscle	1900	Measured 12/31/01	11.0	53.1	1.55	22
		Reference Result	10.6	53.5	1.46	N/A

Exhibit 11: SAR Report

DTX04003-EN

4.2 Tissue Simulants

All dielectric parameters of tissue simulants were measured within 24 hours of SAR measurements. The depth of the tissue simulant in the ear reference point of the phantom was $15\text{cm} \pm 5\text{mm}$ during all the tests. Volume for each tissue simulant was 26 liters.

4.2.1 Head Tissue Simulant

The composition of the brain tissue simulating liquid for 835MHz is

58.31% Sugar

39.74% De-Ionized Water

1.55% Salt 0.25% HEC

0.15% Bactericide

and for 1900MHz

44.91% 2-(2-butoxyethoxy) Ethanol

54.88% De-Ionized Water

0.21% Salt

f	Description	Dielectric Parameters		Temp
(MHz)		ε _r	σ (S/m)	(°C)
835	Measured 12/10/01	40.1	0.90	22
	Recommended Values	41.5	0.90	20-26
1880	Measured 12/12/01	38.9	1.42	22
	Recommended Values	40.0	1.40	20-26

Recommended values are adopted from OET Bulletin 65 (97-01) Supplement C (01-01).

4.2.2 Muscle Tissue Simulant

The composition of the muscle tissue simulating liquid for 835MHz is

55.97% De-Ionized Water

41.76% Sugar

1.21% HEC 0.79% Salt

0.27% Preservative

Exhibit 11: SAR Report FCC ID: LJPNPM-2NX

DTX04003-EN

and for 1900MHz

69.02% De-Ionized Water

30.76% Diethylene Glycol Monobutyl Ether

0.22% Salt

f	Description	Dielectric Parameters		Temp
(MHz)		ε _r	σ (S/m)	(°C)
835	Measured 12/12/01	57.5	0.95	22
	Measured 01/02/02	57.2	0.94	22
	Recommended Values	55.2	0.97	20-26
1880	Measured 12/14/01	52.4	1.50	22
	Measured 12/31/01	53.2	1.52	22
	Recommended Values	53.3	1.52	20-26

Recommended values are adopted from OET Bulletin 65 (97-01) Supplement C (01-01).

4.3 Phantoms

"SAM v4.0" phantom", manufactured by SPEAG, was used during the measurement. It has fiberglass shell integrated in a wooden table. The shape of the shell corresponds to the phantom defined by SCC34-SC2. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. Reference

markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

The thickness of phantom shell is 2 mm except for the ear, where an integrated ear spacer provides a 6 mm spacing from the tissue boundary. Manufacturer reports tolerance in shell thickness to be ± 0.1 mm.

Exhibit 11: SAR Report DTX04003-EN

4.4 Isotropic E-Field Probe ET3DV6

Construction Symmetrical design with triangular core

Built-in optical fiber for surface detection system

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., glycolether)

Calibration Calibration ceritificate in Appendix C

Frequency 10 MHz to 3 GHz (dosimetry); Linearity: \pm 0.2 dB (30 MHz to 3 GHz)

Optical Surface \pm 0.2 mm repeatability in air and clear liquids over diffuse reflecting

Detection surfaces

Directivity \pm 0.2 dB in HSL (rotation around probe axis)

± 0.4 dB in HSL (rotation normal to probe axis)

Dynamic Range 5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB

Dimensions Overall length: 330 mm

Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

Application General dosimetry up to 3 GHz

Compliance tests of mobile phones

Fast automatic scanning in arbitrary phantoms

5. DESCRIPTION OF THE TEST PROCEDURE

5.1 Test Positions

The device was placed in holder using a special positioning tool, which aligns the bottom

of the device with holder and ensures that holder contacts only to the sides of the device. After positioning is done, tool is removed. This method provides standard positioning and separation, and also ensures free space for

antenna.

Device holder was provided by SPEAG together with DASY3.

5.1.1 Against Phantom Head

Measurements were made on both the "left hand" and "right hand" side of the phantom.

The device was positioned against phantom according to OET Bulletin 65 (97–01) Supplement C (01–01). Definitions of terms used in aligning the device to a head phantom are available in IEEE Draft Standard P1528–2001 "Recommended Practice for Determining the Spatial–Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques"

Exhibit 11: SAR Report

DTX04003-EN

Applicant: Nokia Corporation

FCC ID: LJPNPM-2NX

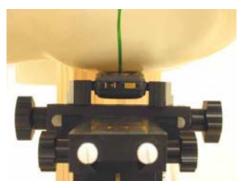
Copyright © 2002 Nokia Corporation

5.1.1.1 Initial Ear Position

The device was initially positioned with the earpiece region pressed against the ear spacer of a head phantom parallel to the "Neck-Front" line defined along the base of the ear spacer that contains the "ear reference point". The "test device reference point" is aligned to the "ear reference point" on the head phantom and the "vertical centerline" is aligned to the "phantom reference plane".

5.1.1.2 Cheek Position

"Initial ear position" alignments are maintained and the device is brought toward the mouth of the head phantom by pivoting along the "Neck-Front" line until any point on the display, keypad or mouthpiece portions of the handset is in contact with the phantom or when any portion of a foldout, sliding or similar keypad cover opened to its intended self-adjusting normal use position is in contact with the cheek or mouth of the phantom.

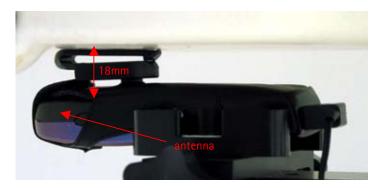

Exhibit 11: SAR Report DTX04003-EN

5.1.1.3 Tilt Position

In the "Cheek Position", if the earpiece of the device is not in full contact with the phantom's ear spacer and the peak SAR location for the "cheek position" is located at the ear spacer region or corresponds to the earpiece region of the handset, the device is returned to the "initial ear position" by rotating it away from the mouth until the earpiece is in full contact with the ear spacer. Otherwise, the device is moved away from the cheek perpendicular to the line passes through both "ear reference points" for approximate 2–3 cm. While it is in this position, the device is tilted away from the mouth with respect to the "test device reference point" by 15°. After the tilt, it is then moved back toward the head perpendicular to the line passes through both "ear reference points" until the device touches the phantom or the ear spacer. If the antenna touches the head first, the positioning process is repeated with a tilt angle less than 15° so that the device and its antenna would touch the phantom simultaneously.

5.1.2 Body Worn Configuration

Body worn accessories listed in section 2.4 were tested for the FCC RF exposure compliance. The phone was positioned into carrying cases and placed below of the flat phantom. Headset was connected during measurements. CSL-17 is designed so that headset can be connected only if the phone is positioned correctly into the accessory.



 Body worn configuration setup for CSL-17

Exhibit 11: SAR Report DTX04003-EN

LJPNPM-2NX can be positioned into CSL-27 only one way, because CSL-27 has an opening for keypad and display. CSL-27 was tested with belt clip BCH-13 that provides the smallest separation distance.

Body worn configuration setup for CSL-27 with BCH-13

5.2 Scan Procedures

First coarse scans are used for quick determination of the field distribution. Next a cube scan, 5x5x7 points; spacing between each point 8x8x5 mm, is performed around the highest E-field value to determine the averaged SAR-distribution over 1g.

5.3 SAR Averaging Methods

The maximum SAR value is averaged over its volume using interpolation and extrapolation.

The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three one-dimensional splines with the "Not a knot" -condition [W. Gander, Computermathematik, p. 141–150] (x, y and z -directions) [Numerical Recipes in C, Second Edition, p 123].

The extrapolation is based on least square algorithm [W. Gander, Computermathematik, p.168–180]. Through the points in the first 30 mm in all z-axis, polynomials of order four are calculated. This polynomial is then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1mm from one another.

Exhibit 11: SAR Report DTX04003-EN

6. MEASUREMENT UNCERTAINTY

6.1 Description of Individual Measurement Uncertainty

6.1.1 Assessment Uncertainty

Uncertainty description	Uncert. value %	Probability distribution	Div.	c _i ¹	Stand. uncert (1g) %	v _i ² or v _{eff}
Measurement System						
Probe calibration	± 4.4	normal	1	1	± 4.4	∞
Axial isotropy of the probe	± 4.7	rectangular	√3	$(1-c_p)^{1/2}$	± 1.9	∞
Sph. Isotropy of the probe	± 9.6	rectangular	√3	$(c_p)1^{/2}$	± 3.9	∞
Spatial resolution	± 0.0	rectangular	√3	1	± 0.0	∞
Boundary effects	± 5.5	rectangular	√3	1	± 3.2	∞
Probe linearity	± 4.7	rectangular	√3	1	± 2.7	∞
Detection limit	± 1.0	rectangular	√3	1	± 0.6	∞
Readout electronics	± 1.0	normal	1	1	± 1.0	∞
Response time	± 0.8	rectangular	√3	1	± 0.5	∞
Integration time	± 1.4	rectangular	√3	1	± 0.8	∞
RF ambient conditions	± 3.0	rectangular	√3	1	± 1.7	∞
Mech. constrains of robot	± 0.4	rectangular	√3	1	± 0.2	∞
Probe positioning	± 2.9	rectangular	√3	1	± 1.7	∞
Extrap. and integration	± 3.9	rectangular	√3	1	± 2.3	∞
Test Sample Related						
Device positioning	± 6.0	normal	0.89	1	± 6.7	12
Device holder uncertainty	± 5.0	normal	0.84	1	± 5.9	8
Power drift	± 5.0	rectangular	√3	1	± 2.9	∞
Phantom and Setup						
Phantom uncertainty	± 4.0	rectangular	√3	1	± 2.3	∞
Liquid conductivity (target)	± 5.0	rectangular	√3	0.6	± 1.7	∞
Liquid conductivity (meas.)	± 10.0	rectangular	√3	0.6	± 3.5	∞
Liquid permittivity (target)	± 5.0	rectangular	√3	0.6	± 1.7	∞
Liquid permittivity (meas.)	± 5.0	rectangular	√3	0.6	± 1.7	∞
Combined Standard Uncertainty					± 13.6	
Extended Standard Uncertainty (k=2)					± 27.1	

Exhibit 11: SAR Report

DTX04003-EN

7. RESULTS

Corresponding SAR distribution printouts of maximum results in every operating mode and position are shown in Appendix B. It also includes Z-plots of maximum measurement results in head and body worn configurations. The SAR distributions are substantially similar or equivalent to the plots submitted regardless of used channel in each mode and position.

7.1 Head Configuration

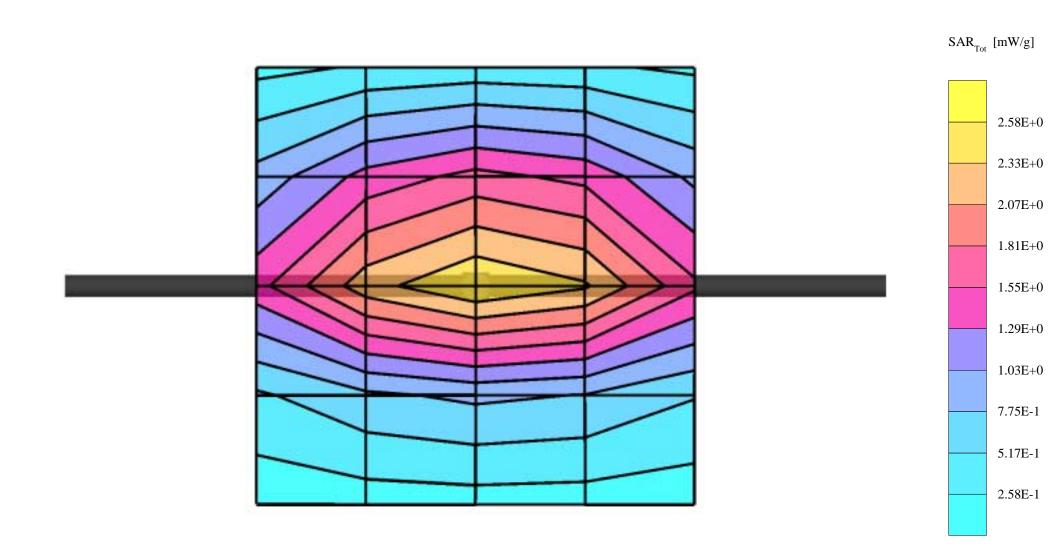
	Channel/	Power	SAR, averaged over 1g (mW/g)			
Mode	·	(dBm)	Left-hand		Right-hand	
	7 (IVII 12)	(ubiii)	Cheek	Tilted	Cheek	Tilted
AMPS 800	991/824.04	25.5	0.79	0.58	0.79	0.56
	380/836.40	25.7	1.16	0.86	1.17	0.86
	799/848.97	25.6	0.80	0.62	0.86	0.60
TDMA 800	991/824.04	27.2	0.38	0.23	0.39	0.28
	383/836.49	27.4	0.55	0.43	0.60	0.42
	799/848.97	27.1	0.42	0.32	0.42	0.32
TDMA 1900	2/1850.04	27.5	0.80	0.87	0.75	0.81
	1000/1879.98	27.2	0.72	0.75	0.68	0.74
	1998/1909.92	27.2	0.65	0.69	0.66	0.67
GSM 1900	512/1850.20	29.6	0.48	0.53	0.49	0.54
	661/1880.00	29.3	0.48	0.47	0.44	0.46
	810/1909.80	29.3	0.39	0.42	0.41	0.43

7.2 Body Worn Configuration

Mode	Channel/	Power	SAR, averaged over 1g (mW/g)		
ivioue	f(MHz)	(dBm)	CSL-17	CSL-27, BCH-13	
AMPS 800	991/824.04	25.5	0.27	0.54	
	380/836.40	25.7	0.33	0.74	
	799/848.97	25.6	0.22	0.61	
TDMA 800	991/824.04	27.2	0.13	0.33	
	383/836.49	27.4	0.19	0.34	
	799/848.97	27.1	0.10	0.25	
TDMA 1900	2/1850.04	27.5	0.28	0.90	
	1000/1879.98	27.2	0.21	0.83	
	1998/1909.92	27.2	0.20	0.80	
GSM 1900	512/1850.20	29.6	0.19	0.55	
	661/1880.00	29.3	0.12	0.49	
	810/1909.80	29.3	0.12	0.49	

Exhibit 11: SAR Report FCC ID: LJPNPM-2NX

DTX04003-EN


APPENDIX A.

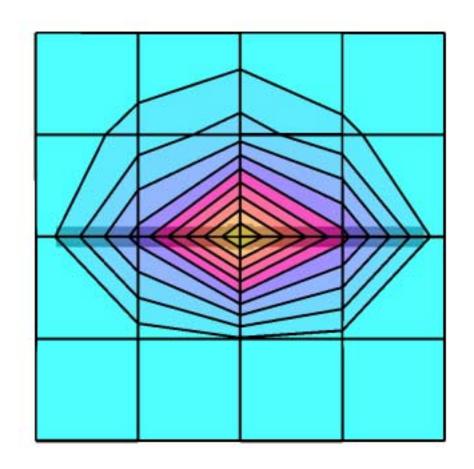
Validation Test Printouts

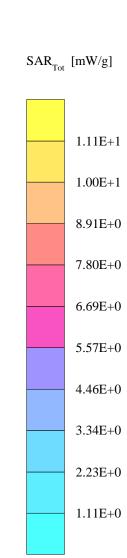
Dipole 835 MHz SAM; Flat

Probe: ET3DV6 - SN1381; ConvF(6.20,6.20,6.20); Crest factor: 1.0; Brain 836 MHz SCC34: $\sigma = 0.90$ mho/m $\epsilon = 40.1$ $\rho = 1.00$ g/cm³ Cubes (2): Peak: 4.21 mW/g \pm 0.00 dB, SAR (1g): 2.63 mW/g \pm 0.01 dB, SAR (10g): 1.67 mW/g \pm 0.02 dB Penetration depth: 11.9 (10.6, 13.7) [mm]

Powerdrift: -0.05 dB

Dipole 1900 MHz

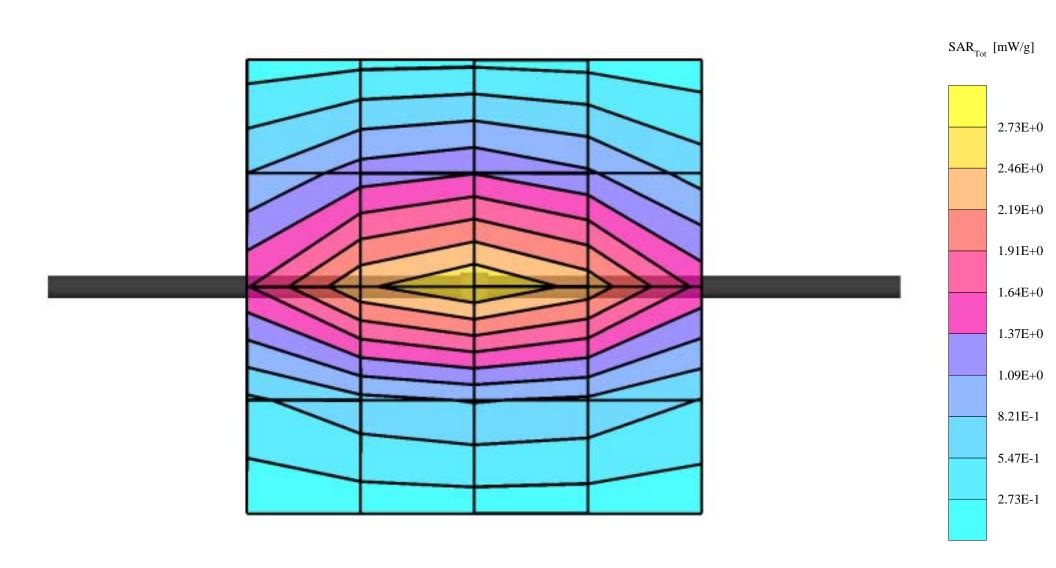

SAM; Flat


Probe: ET3DV6 - SN1381; ConvF(5.22,5.22,5.22); Crest factor: 1.0; Brain 1900 MHz SCC34: σ = 1.44 mho/m ϵ = 38.7 ρ = 1.00 g/cm³

Cubes (2): Peak: 21.0 $\,$ mW/g \pm 0.06 dB, SAR (1g): 11.0 $\,$ mW/g \pm 0.03 dB, SAR (10g): 5.55 $\,$ mW/g \pm 0.00 dB

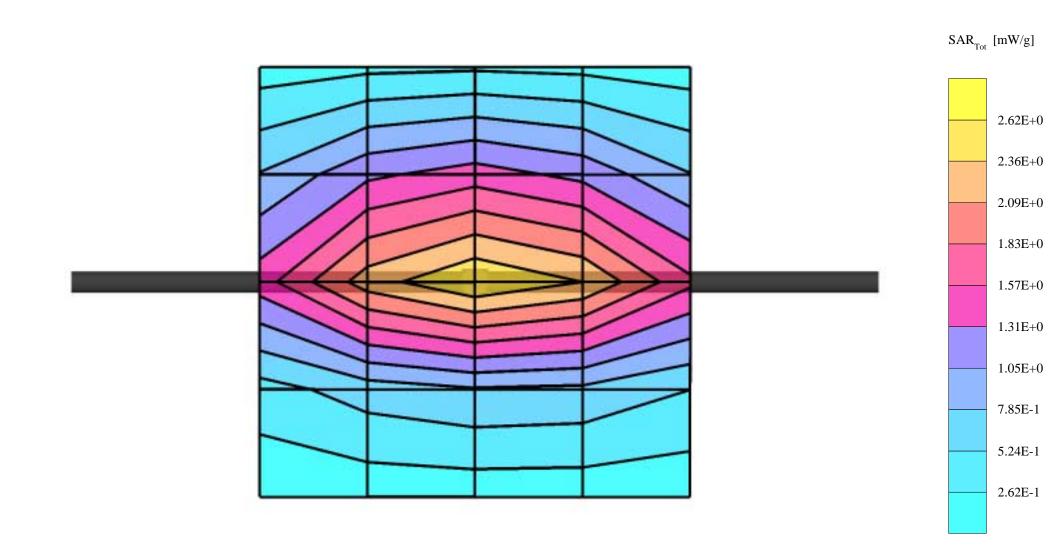
Penetration depth: 8.0 (7.5, 9.1) [mm]

Powerdrift: 0.04 dB



Dipole 835 MHz SAM; Flat

Probe: ET3DV6 - SN1381; ConvF(6.04,6.04,6.04); Crest factor: 1.0; Muscle 836 MHz: σ = 0.95 mho/m ϵ = 57.5 ρ = 1.00 g/cm³ Cubes (2): Peak: 4.16 mW/g \pm 0.01 dB, SAR (1g): 2.64 mW/g \pm 0.01 dB, SAR (10g): 1.70 mW/g \pm 0.02 dB Penetration depth: 12.7 (11.1, 14.7) [mm]

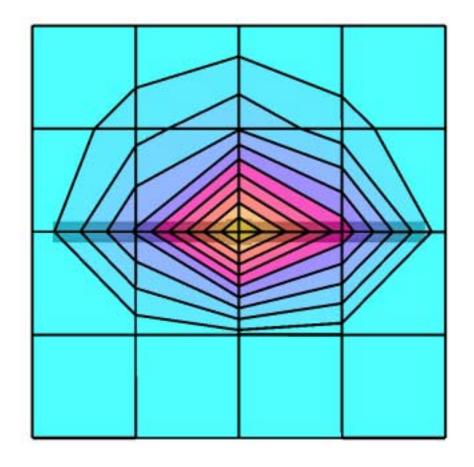

Powerdrift: -0.13 dB

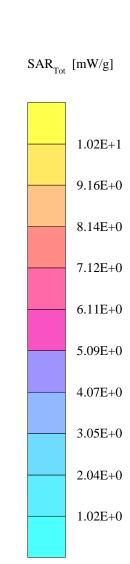
Dipole 835 MHz SAM; Flat

Probe: ET3DV6 - SN1381; ConvF(6.04,6.04,6.04); Crest factor: 1.0; Muscle 836 MHz: σ = 0.94 mho/m ϵ = 57.2 ρ = 1.00 g/cm³ Cubes (2): Peak: 4.10 mW/g \pm 0.02 dB, SAR (1g): 2.61 mW/g \pm 0.01 dB, SAR (10g): 1.69 mW/g \pm 0.00 dB Penetration depth: 12.8 (11.2, 14.8) [mm]

Powerdrift: -0.04 dB

Dipole 1900 MHz


SAM; Flat

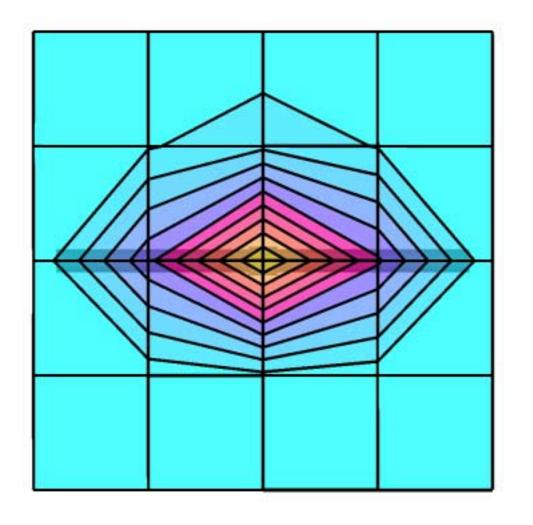

Probe: ET3DV6 - SN1381; ConvF(4.96,4.96,4.96); Crest factor: 1.0; Muscle 1900 MHz: $\sigma = 1.52 \text{ mho/m } \epsilon = 52.3 \text{ } \rho = 1.00 \text{ g/cm}^3$

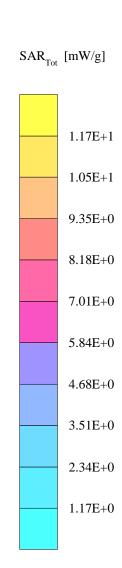
Cubes (2): Peak: 20.5 $\,$ mW/g \pm 0.04 dB, SAR (1g): 10.8 $\,$ mW/g \pm 0.01 dB, SAR (10g): 5.53 $\,$ mW/g \pm 0.01 dB

Penetration depth: 8.6 (7.8, 10.1) [mm]

Powerdrift: -0.02 dB

Dipole 1900 MHz


SAM; Flat

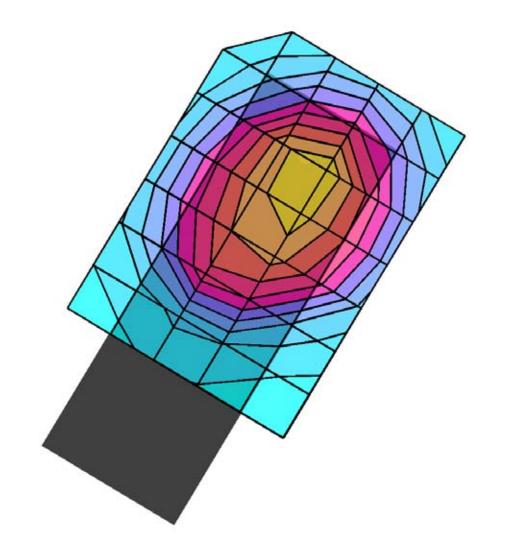

Probe: ET3DV6 - SN1381; ConvF(4.96,4.96,4.96); Crest factor: 1.0; Muscle 1900 MHz: $\sigma = 1.55 \text{ mho/m } \epsilon = 53.1 \text{ } \rho = 1.00 \text{ g/cm}^3$

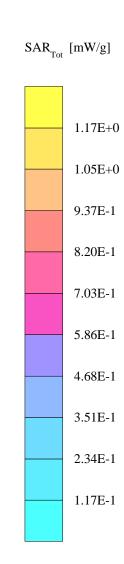
Cubes (2): Peak: 20.7 $\,$ mW/g \pm 0.03 dB, SAR (1g): 11.0 $\,$ mW/g \pm 0.01 dB, SAR (10g): 5.64 $\,$ mW/g \pm 0.02 dB

Penetration depth: 8.7 (7.9, 10.3) [mm]

Powerdrift: -0.11 dB

APPENDIX B.

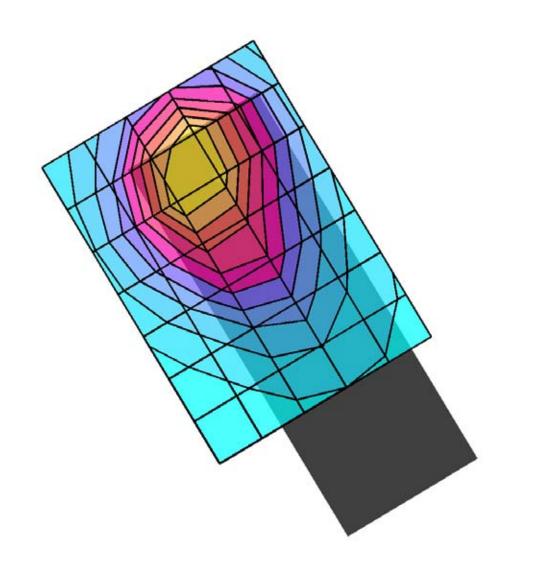

SAR Distribution Printouts

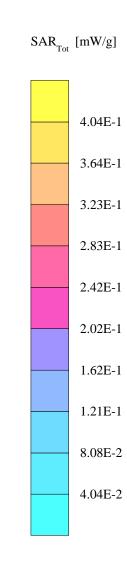

SAM Phantom; Left Hand Section; Position: cheek; Frequency: 836 MHz

Probe: ET3DV6 - SN1381; ConvF(6.20,6.20,6.20); Crest factor: 1.0; Brain 836 MHz SCC34: $\sigma = 0.90$ mho/m $\epsilon_r = 40.1$ $\rho = 1.00$ g/cm³

Cube 5x5x7: SAR (1g): 1.16 mW/g, SAR (10g): 0.784 mW/g Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0

Powerdrift: -0.09 dB

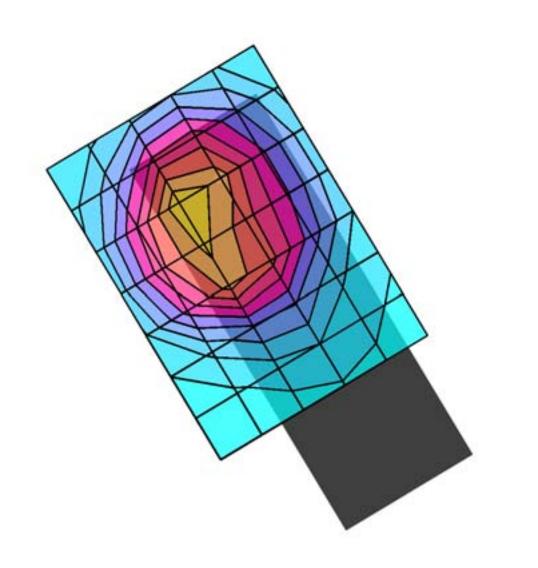

SAM Phantom; Righ Hand Section; Position: tilted; Frequency: 836 MHz

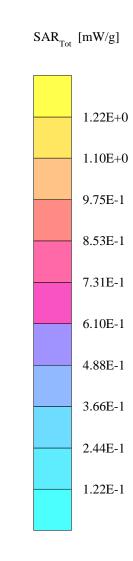

Probe: ET3DV6 - SN1381; ConvF(6.20,6.20,6.20); Crest factor: 3.0; Brain 836 MHz SCC34: $\sigma = 0.90$ mho/m $\epsilon_r = 40.1$ $\rho = 1.00$ g/cm³

Cube 5x5x7: SAR (1g): 0.420 mW/g, SAR (10g): 0.274 mW/g

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0

Powerdrift: 0.00 dB

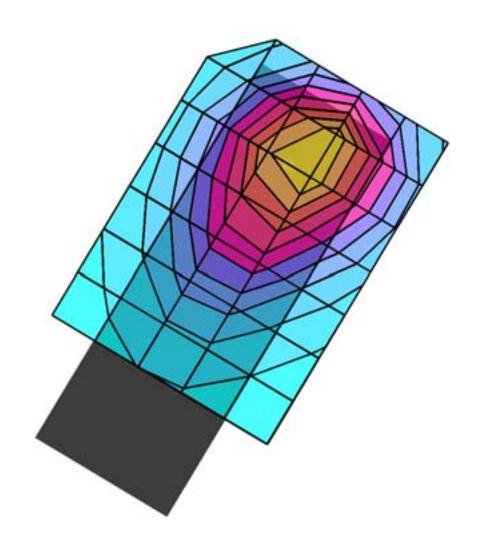

SAM Phantom; Righ Hand Section; Position: cheek; Frequency: 836 MHz

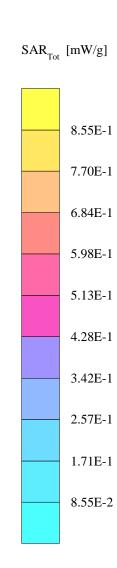

Probe: ET3DV6 - SN1381; ConvF(6.20,6.20,6.20); Crest factor: 1.0; Brain 836 MHz SCC34: $\sigma = 0.90$ mho/m $\epsilon_r = 40.1$ $\rho = 1.00$ g/cm³

Cube 5x5x7: SAR (1g): 1.17 mW/g, SAR (10g): 0.785 mW/g

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0

Powerdrift: -0.01 dB

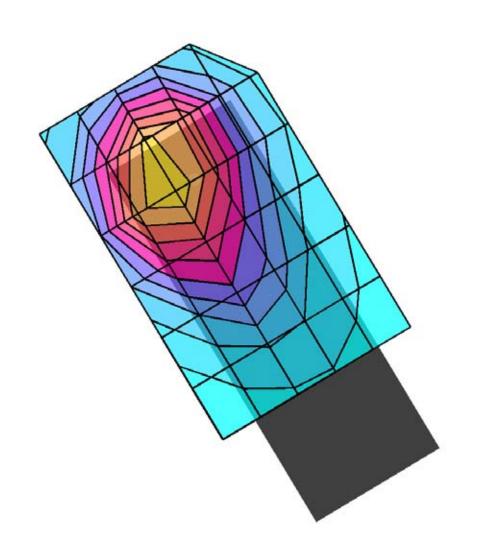

SAM Phantom; Left Hand Section; Position: tilted; Frequency: 836 MHz

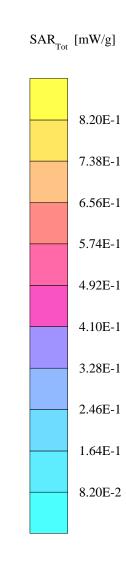

Probe: ET3DV6 - SN1381; ConvF(6.20,6.20,6.20); Crest factor: 1.0; Brain 836 MHz SCC34: $\sigma = 0.90$ mho/m $\epsilon_r = 40.1$ $\rho = 1.00$ g/cm³

Cube 5x5x7: SAR (1g): 0.857 mW/g, SAR (10g): 0.550 mW/g

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0

Powerdrift: -0.04 dB

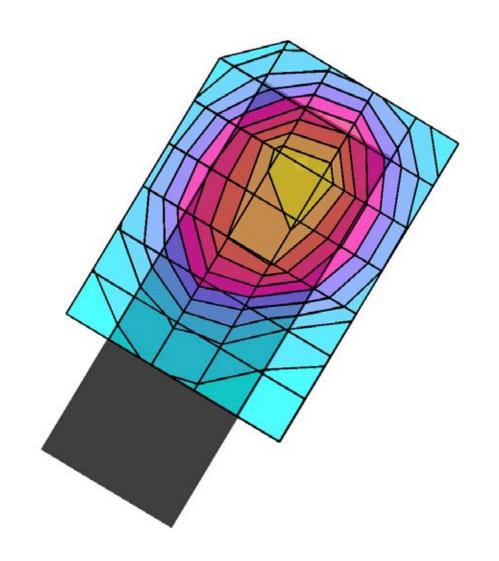

SAM Phantom; Righ Hand Section; Position: tilted; Frequency: 836 MHz

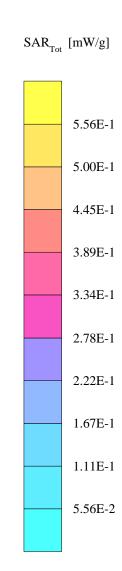

Probe: ET3DV6 - SN1381; ConvF(6.20,6.20,6.20); Crest factor: 1.0; Brain 836 MHz SCC34: $\sigma = 0.90$ mho/m $\epsilon_r = 40.1$ $\rho = 1.00$ g/cm³

Cube 5x5x7: SAR (1g): 0.855 mW/g, SAR (10g): 0.549 mW/g

Coarse: Dx = 19.0, Dy = 14.0, Dz = 10.0

Powerdrift: -0.05 dB

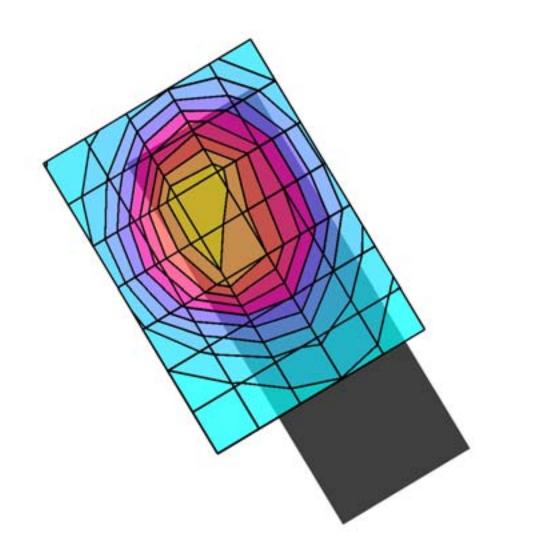


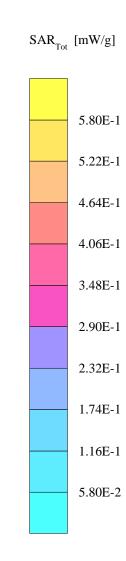

SAM Phantom; Left Hand Section; Position: cheek; Frequency: 836 MHz

Probe: ET3DV6 - SN1381; ConvF(6.20,6.20,6.20); Crest factor: 3.0; Brain 836 MHz SCC34: $\sigma = 0.90$ mho/m $\epsilon_r = 40.1$ $\rho = 1.00$ g/cm³

Cube 5x5x7: : Dx = 15.0, Dy = 15.0, Dz = 10.0

Powerdrift: 0.02 dB

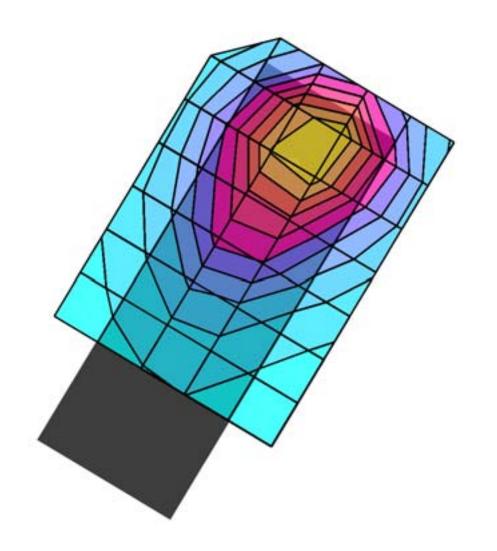

SAM Phantom; Righ Hand Section; Position: cheek; Frequency: 836 MHz

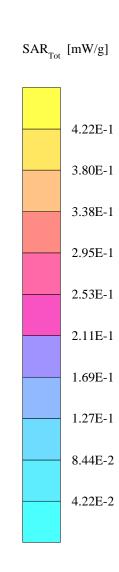

Probe: ET3DV6 - SN1381; ConvF(6.20,6.20,6.20); Crest factor: 3.0; Brain 836 MHz SCC34: $\sigma = 0.90$ mho/m $\epsilon_r = 40.1$ $\rho = 1.00$ g/cm³

Cube 5x5x7: SAR (1g): 0.595 mW/g, SAR (10g): 0.399 mW/g

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0

Powerdrift: 0.02 dB

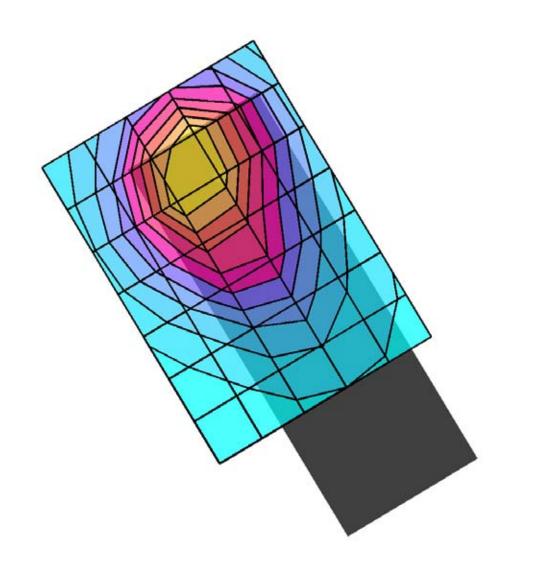

SAM Phantom; Left Hand Section; Position: tilted; Frequency: 836 MHz

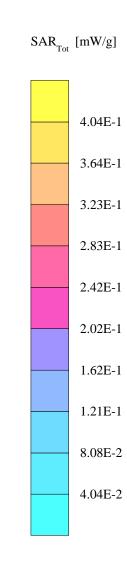

Probe: ET3DV6 - SN1381; ConvF(6.20,6.20,6.20); Crest factor: 3.0; Brain 836 MHz SCC34: $\sigma = 0.90$ mho/m $\epsilon_r = 40.1$ $\rho = 1.00$ g/cm³

Cube 5x5x7: SAR (1g): 0.430 mW/g, SAR (10g): 0.274 mW/g

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0

Powerdrift: 0.01 dB

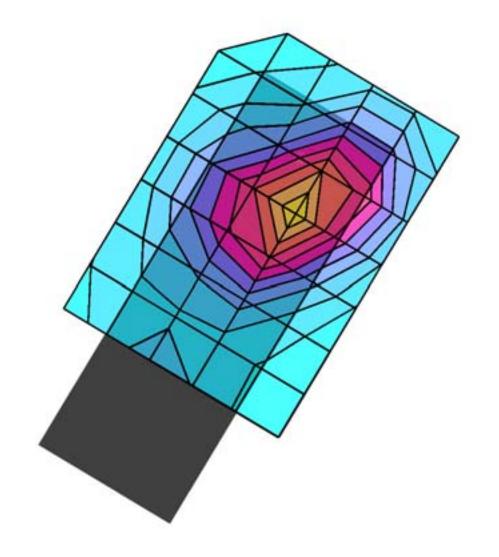

SAM Phantom; Righ Hand Section; Position: tilted; Frequency: 836 MHz

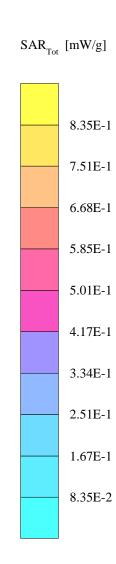

Probe: ET3DV6 - SN1381; ConvF(6.20,6.20,6.20); Crest factor: 3.0; Brain 836 MHz SCC34: $\sigma = 0.90$ mho/m $\epsilon_r = 40.1$ $\rho = 1.00$ g/cm³

Cube 5x5x7: SAR (1g): 0.420 mW/g, SAR (10g): 0.274 mW/g

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0

Powerdrift: 0.00 dB

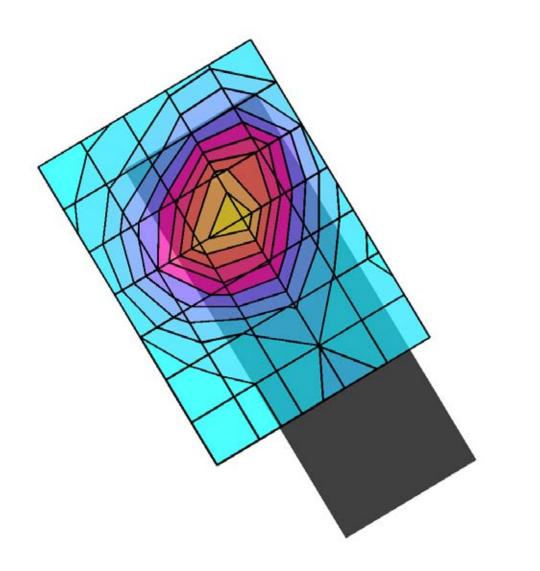

SAM Phantom; Left Hand Section; Position: cheek; Frequency: 1850 MHz

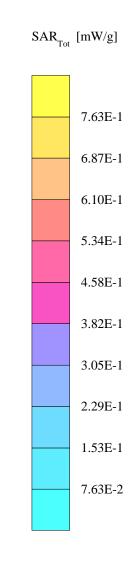

Probe: ET3DV6 - SN1381; ConvF(5.22,5.22,5.22); Crest factor: 3.0; Brain 1880 MHz SCC34: $\sigma = 1.42$ mho/m $\epsilon_r = 38.9$ $\rho = 1.00$ g/cm³

Cube 5x5x7: SAR (1g): 0.797 mW/g, SAR (10g): 0.476 mW/g

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0

Powerdrift: -0.16 dB

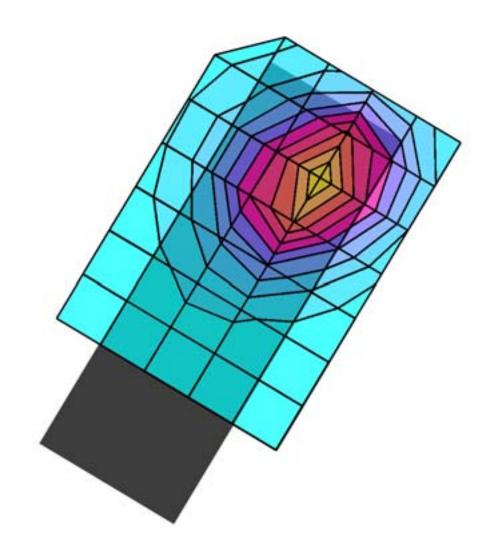

SAM Phantom; Righ Hand Section; Position: cheek; Frequency: 1850 MHz

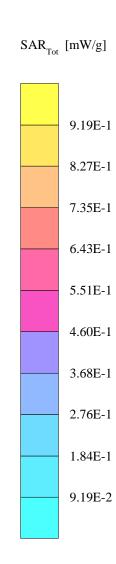

Probe: ET3DV6 - SN1381; ConvF(5.22,5.22,5.22); Crest factor: 3.0; Brain 1880 MHz SCC34: $\sigma = 1.42$ mho/m $\epsilon_r = 38.9$ $\rho = 1.00$ g/cm³

Cube 5x5x7: SAR (1g): 0.748 mW/g, SAR (10g): 0.458 mW/g

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0

Powerdrift: -0.25 dB

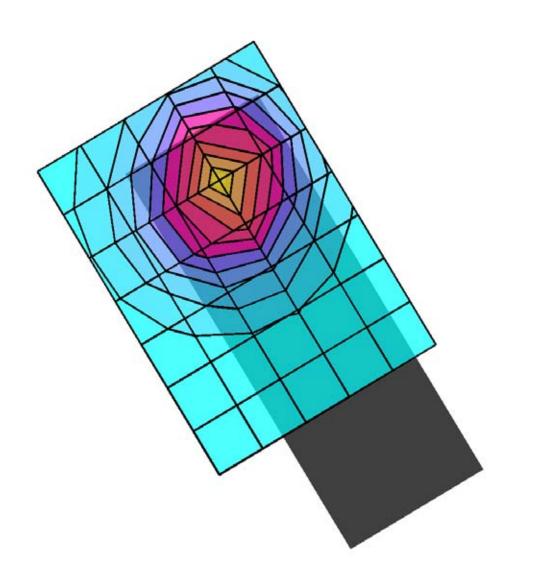

SAM Phantom; Left Hand Section; Position: tilted; Frequency: 1850 MHz

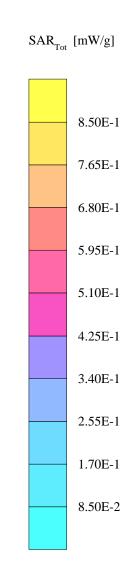

Probe: ET3DV6 - SN1381; ConvF(5.22,5.22,5.22); Crest factor: 3.0; Brain 1880 MHz SCC34: $\sigma = 1.42$ mho/m $\epsilon_r = 38.9$ $\rho = 1.00$ g/cm³

Cube 5x5x7: SAR (1g): $0.869\,$ mW/g, SAR (10g): $0.517\,$ mW/g

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0

Powerdrift: -0.21 dB

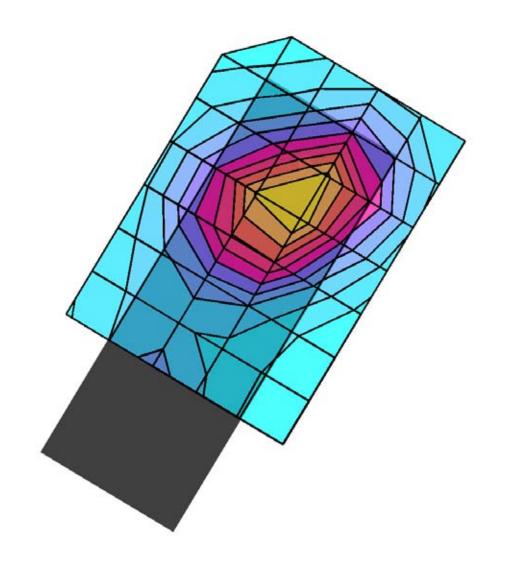


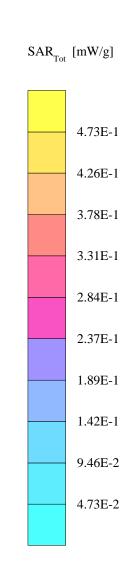

SAM Phantom; Righ Hand Section; Position: tilted; Frequency: 1850 MHz

Probe: ET3DV6 - SN1381; ConvF(5.22,5.22,5.22); Crest factor: 3.0; Brain 1880 MHz SCC34: $\sigma = 1.42$ mho/m $\epsilon_r = 38.9$ $\rho = 1.00$ g/cm³

Cube 5x5x7: : Dx = 15.0, Dy = 15.0, Dz = 10.0

Powerdrift: -0.05 dB

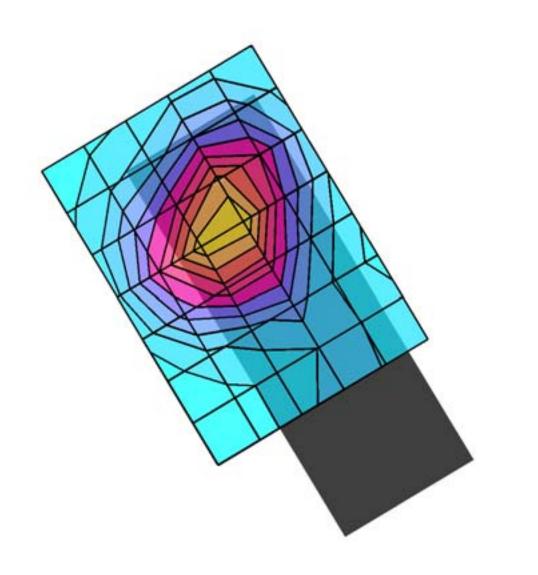

SAM Phantom; Left Hand Section; Position: cheek; Frequency: 1850 MHz

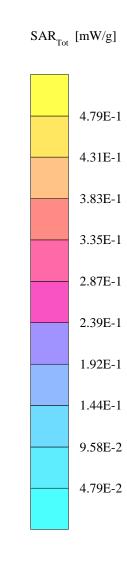

Probe: ET3DV6 - SN1381; ConvF(5.22,5.22,5.22); Crest factor: 8.0; Brain 1880 MHz SCC34: $\sigma = 1.42$ mho/m $\epsilon_r = 38.9$ $\rho = 1.00$ g/cm³

Cube 5x5x7: SAR (1g): 0.480 mW/g, SAR (10g): 0.287 mW/g

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0

Powerdrift: -0.12 dB

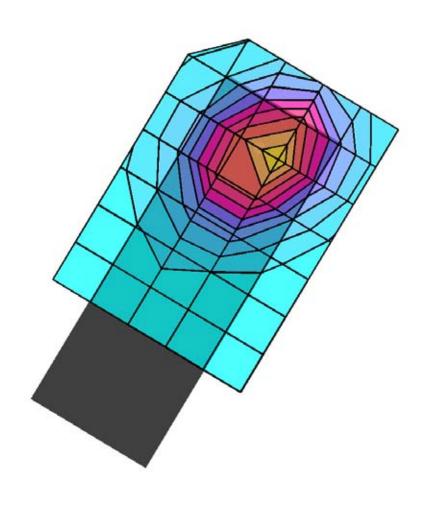

SAM Phantom; Righ Hand Section; Position: cheek; Frequency: 1850 MHz

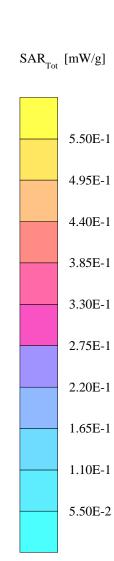

Probe: ET3DV6 - SN1381; ConvF(5.22,5.22,5.22); Crest factor: 8.0; Brain 1880 MHz SCC34: $\sigma = 1.42$ mho/m $\epsilon_r = 38.9$ $\rho = 1.00$ g/cm³

Cube 5x5x7: SAR (1g): 0.487 mW/g, SAR (10g): 0.295 mW/g

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0

Powerdrift: -0.05 dB

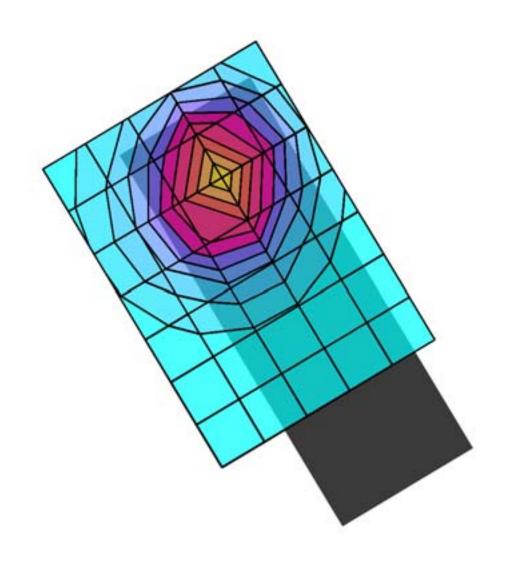


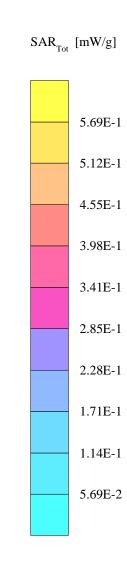

SAM Phantom; Left Hand Section; Position: tilted; Frequency: 1850 MHz

Probe: ET3DV6 - SN1381; ConvF(5.22,5.22,5.22); Crest factor: 8.0; Brain 1880 MHz SCC34: $\sigma = 1.42$ mho/m $\epsilon_r = 38.9$ $\rho = 1.00$ g/cm³

Cube 5x5x7: SAR (1g): 0.526 mW/g, SAR (10g): 0.310 mW/g Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0

Powerdrift: -0.27 dB

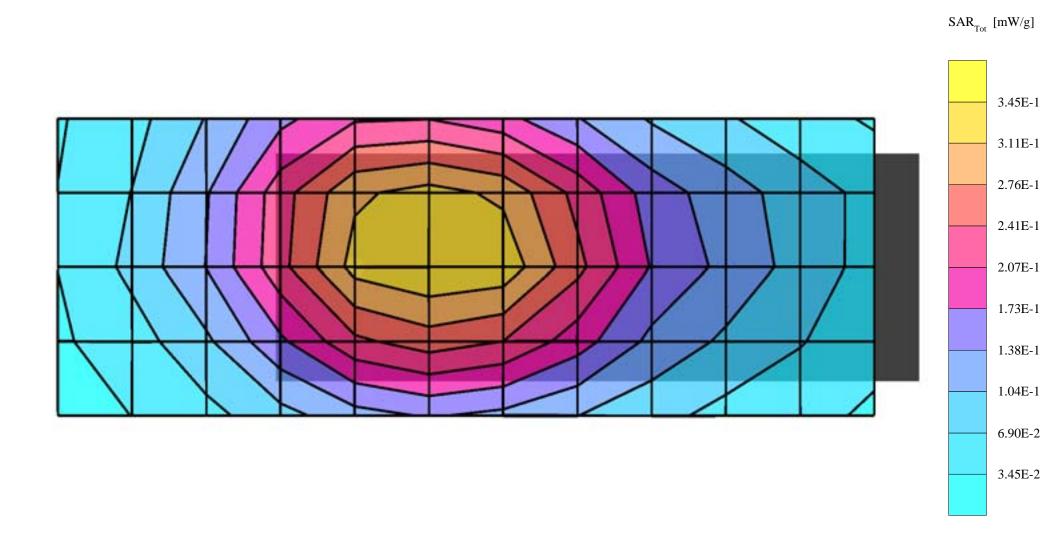

SAM Phantom; Righ Hand Section; Position:tilted; Frequency: 1850 MHz


Probe: ET3DV6 - SN1381; ConvF(5.22,5.22,5.22); Crest factor: 8.0; Brain 1880 MHz SCC34: $\sigma = 1.42$ mho/m $\epsilon_r = 38.9$ $\rho = 1.00$ g/cm³

Cube 5x5x7: SAR (1g): 0.535 mW/g, SAR (10g): 0.316 mW/g

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0

Powerdrift: 0.03 dB

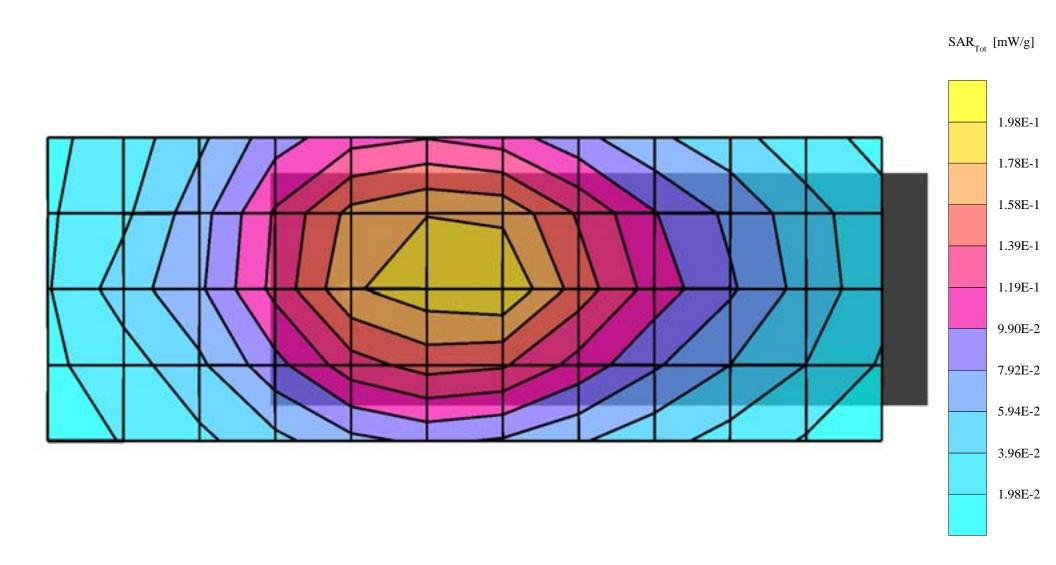


SAM Phantom; Flat Section; Position: body worn; Frequency: 836 MHz

Probe: ET3DV6 - SN1381; ConvF(6.04,6.04,6.04); Crest factor: 1.0; Muscle 836 MHz: $\sigma = 0.95$ mho/m $\epsilon_r = 57.5$ $\rho = 1.00$ g/cm³

Cube 5x5x7: SAR (1g): 0.333 mW/g, SAR (10g): 0.240 mW/g Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0

Powerdrift: -0.30 dB

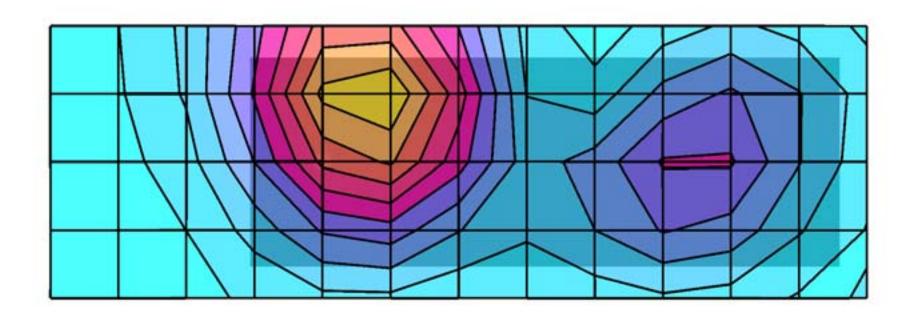


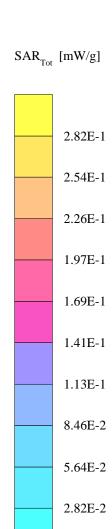
SAM Phantom; Flat Section; Position: body worn; Frequency: 836 MHz

Probe: ET3DV6 - SN1381; ConvF(6.04,6.04,6.04); Crest factor: 3.0; Muscle 836 MHz: $\sigma = 0.95$ mho/m $\epsilon_r = 57.5$ $\rho = 1.00$ g/cm³

Cube 5x5x7: SAR (1g): 0.188 mW/g, SAR (10g): 0.137 mW/g Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0

Powerdrift: -0.06 dB

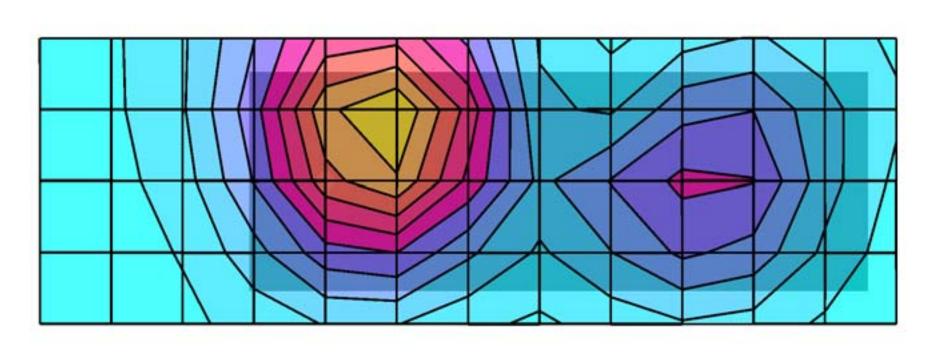

SAM Phantom; Flat Section; Position: body worn; Frequency: 1850 MHz

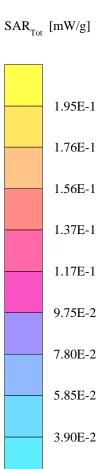

Probe: ET3DV6 - SN1381; ConvF(4.96,4.96,4.96); Crest factor: 3.0; Muscle 1880MHz: $\sigma = 1.50$ mho/m $\epsilon_r = 52.4$ $\rho = 1.00$ g/cm³

Cube 5x5x7: SAR (1g): 0.279 mW/g, SAR (10g): 0.175 mW/g

Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0

Powerdrift: -0.03 dB


SAM Phantom; Flat Section; Position: body worn; Frequency: 1850 MHz

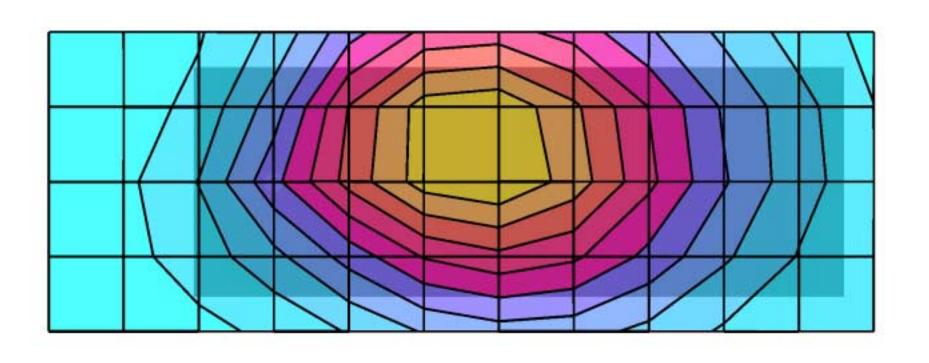

Probe: ET3DV6 - SN1381; ConvF(4.96,4.96,4.96); Crest factor: 8.0; Muscle 1880MHz: $\sigma = 1.50$ mho/m $\epsilon_r = 52.4$ $\rho = 1.00$ g/cm³

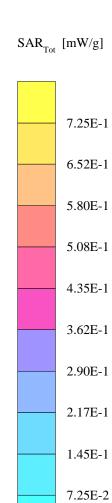
Cube 5x5x7: SAR (1g): 0.192 mW/g, SAR (10g): 0.120 mW/g

Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0

Powerdrift: -0.06 dB

1.95E-2

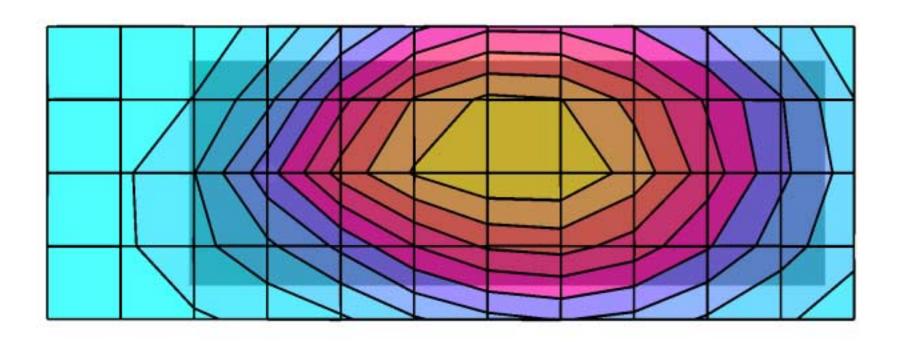

SAM Phantom; Flat Section; Position: body worn; Frequency: 836 MHz

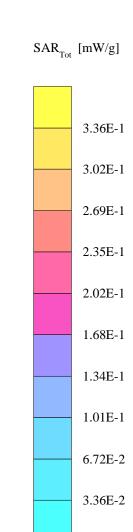

Probe: ET3DV6 - SN1381; ConvF(6.04,6.04,6.04); Crest factor: 1.0; Muscle 836 MHz: $\sigma = 0.94$ mho/m $\epsilon = 57.2$ $\rho = 1.00$ g/cm³

Cube 5x5x7: SAR (1g): 0.744 mW/g, SAR (10g): 0.524 mW/g

Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0

Powerdrift: -0.14 dB

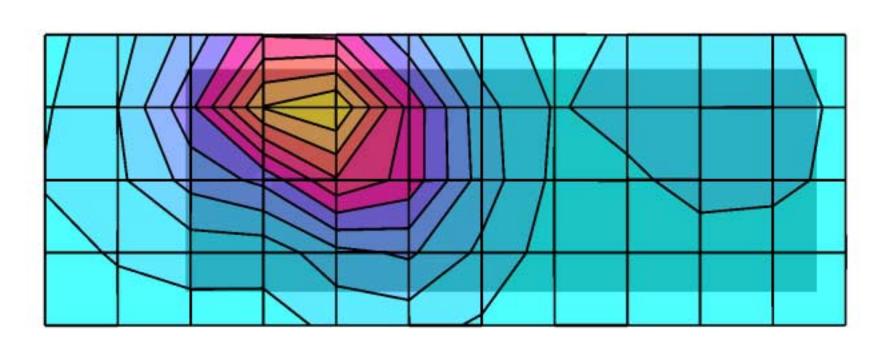

SAM Phantom; Flat Section; Position: body worn; Frequency: 836 MHz

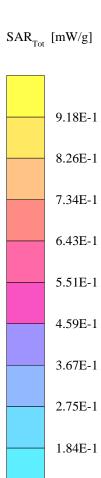

Probe: ET3DV6 - SN1381; ConvF(6.04,6.04,6.04); Crest factor: 3.0; Muscle 836 MHz: $\sigma = 0.94$ mho/m $\epsilon = 57.2$ $\rho = 1.00$ g/cm³

Cube 5x5x7: SAR (1g): 0.335 mW/g, SAR (10g): 0.242 mW/g

Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0

Powerdrift: 0.01 dB


SAM Phantom; Flat Section; Position: body worn; Frequency: 1850 MHz

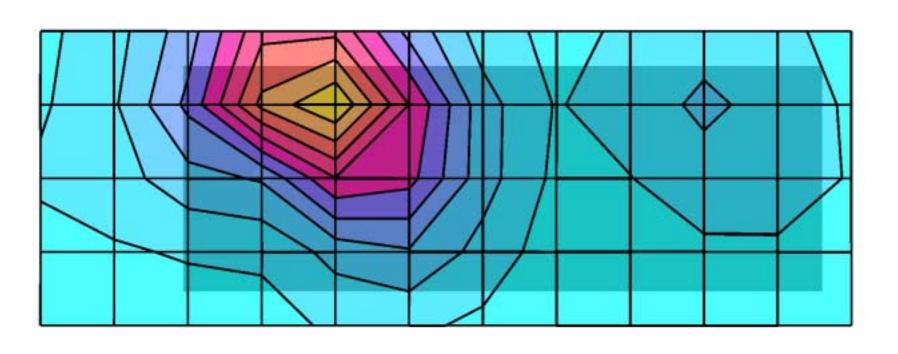

Probe: ET3DV6 - SN1381; ConvF(4.96,4.96,4.96); Crest factor: 3.0; Muscle 1880MHz: $\sigma = 1.52 \text{ mho/m } \epsilon = 53.2 \text{ } \rho = 1.00 \text{ g/cm}^3$

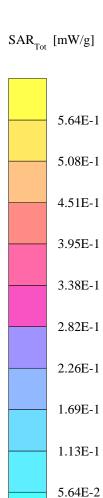
Cube 5x5x7: SAR (1g): 0.903 mW/g, SAR (10g): 0.528 mW/g

Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0

Powerdrift: -0.01 dB

9.18E-2

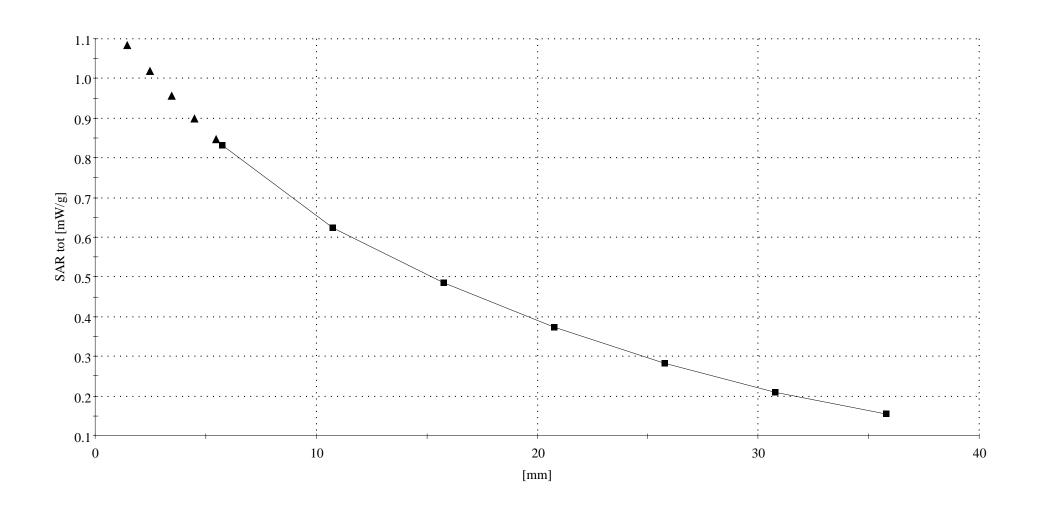

SAM Phantom; Flat Section; Position: body worn; Frequency: 1850 MHz


Probe: ET3DV6 - SN1381; ConvF(4.96,4.96,4.96); Crest factor: 8.0; Muscle 1880MHz: $\sigma = 1.52 \text{ mho/m } \epsilon = 53.2 \text{ } \rho = 1.00 \text{ g/cm}^3$

Cube 5x5x7: SAR (1g): 0.547 mW/g, SAR (10g): 0.315 mW/g

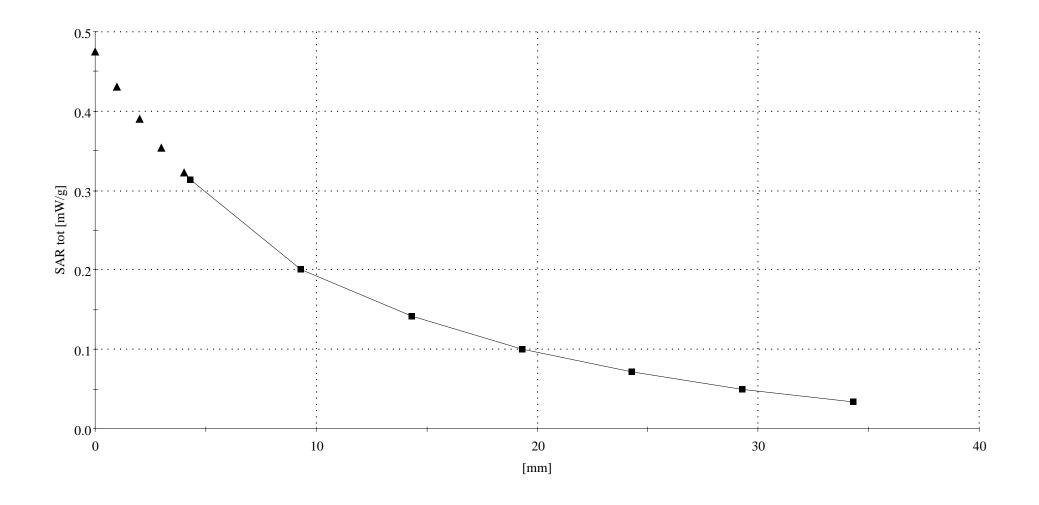
Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0

Powerdrift: -0.14 dB



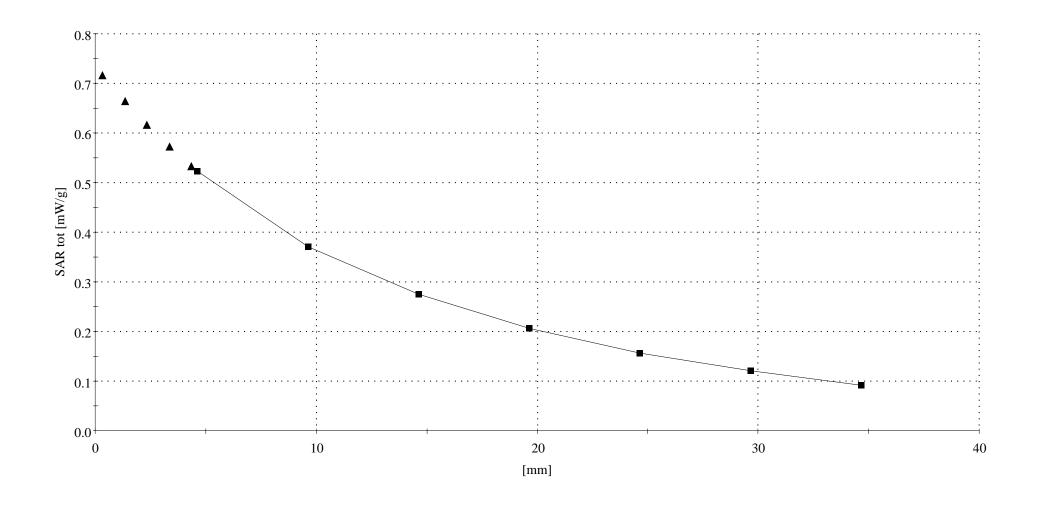
SAM Phantom; Righ Hand Section; Position: cheek; Frequency: 836 MHz

Probe: ET3DV6 - SN1381; ConvF(6.20,6.20,6.20); Crest factor: 1.0; Brain 836 MHz SCC34: $\sigma = 0.90$ mho/m $\epsilon_r = 40.1$ $\rho = 1.00$ g/cm³


Cube 5x5x7: SAR (1g): 1.17 mW/g, SAR (10g): 0.785 mW/g

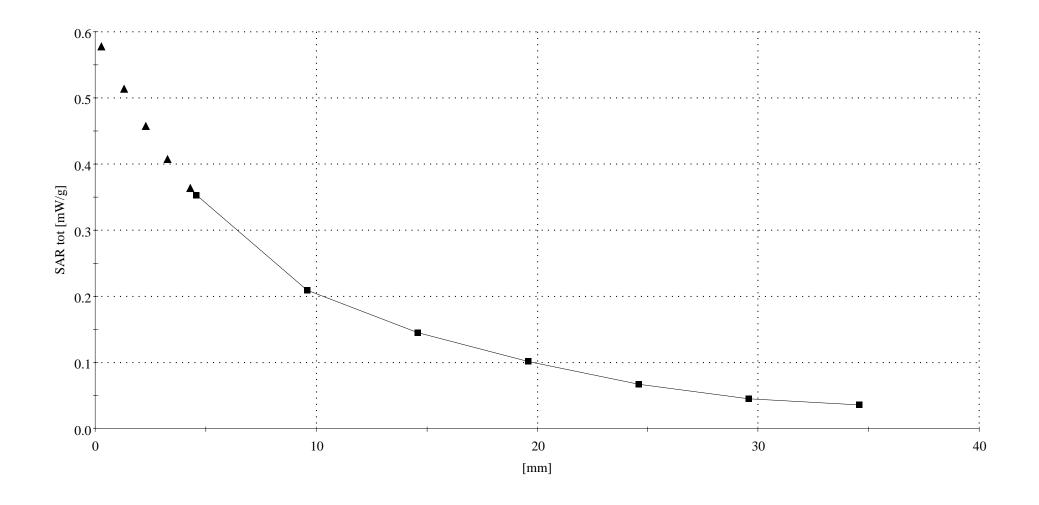
SAM Phantom; Left Hand Section; Position: tilted; Frequency: 1850 MHz

Probe: ET3DV6 - SN1381; ConvF(5.22,5.22,5.22); Crest factor: 3.0; Brain 1880 MHz SCC34: $\sigma = 1.42$ mho/m $\epsilon_r = 38.9$ $\rho = 1.00$ g/cm³


Cube 5x5x7: SAR (1g): 0.869 mW/g, SAR (10g): 0.517 mW/g

SAM Phantom; Flat Section; Position: body worn; Frequency: 836 MHz

Probe: ET3DV6 - SN1381; ConvF(6.04,6.04,6.04); Crest factor: 1.0; Muscle 836 MHz: $\sigma = 0.94$ mho/m $\epsilon_r = 57.2$ $\rho = 1.00$ g/cm³


Cube 5x5x7: SAR (1g): 0.744 mW/g, SAR (10g): 0.524 mW/g

SAM Phantom; Flat Section; Position: body worn; Frequency: 1850 MHz

Probe: ET3DV6 - SN1381; ConvF(4.96,4.96,4.96); Crest factor: 3.0; Muscle 1880MHz: $\sigma = 1.52 \text{ mho/m} \ \epsilon_r = 53.2 \ \rho = 1.00 \ \text{g/cm}^3$

Cube 5x5x7: SAR (1g): 0.903 mW/g, SAR (10g): 0.528 mW/g

APPENDIX C.

Calibration Certificate(s)

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Calibration Certificate

Dosimetric E-Field Probe

Type:	ET3DV6
Serial Number:	1381
Place of Calibration:	Zurich
Date of Calibration:	October 25, 2001
Calibration Interval:	12 months

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

Approved by:

Nikoloski Neviana

Olionie Kohja

Probe ET3DV6

SN:1381

Manufactured: September 18, 1999

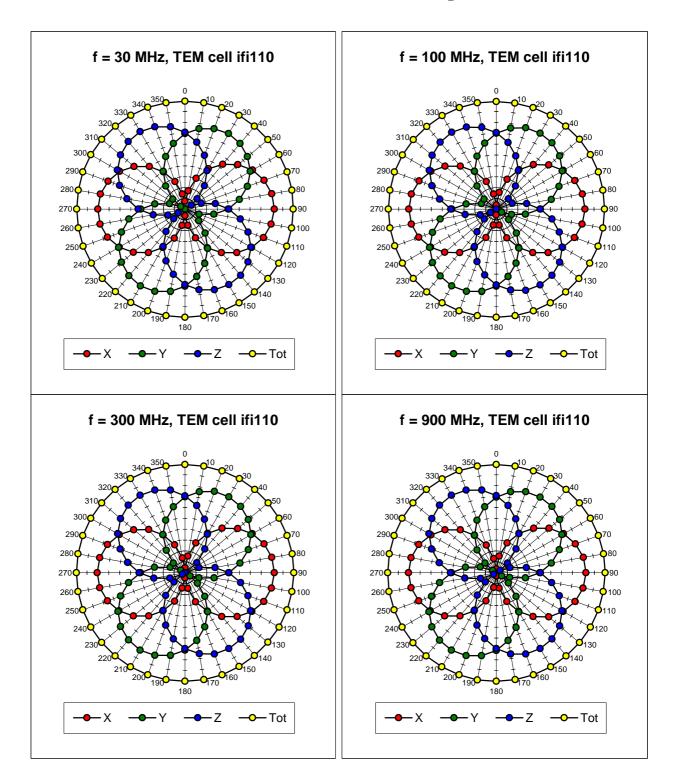
Last calibration: October 6, 2000 Recalibrated: October 25, 2001

Calibrated for System DASY3

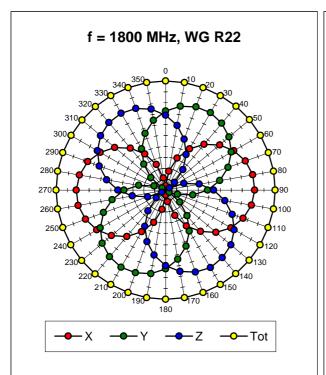
DASY3 - Parameters of Probe: ET3DV6 SN:1381

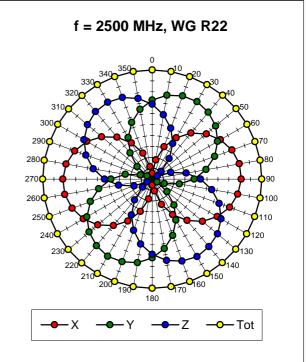
Sensitivity in Free Space Diode Co	ompression
------------------------------------	------------

NormX	1.57 μV/(V/m) ²	DCP X	95 mV
NormY	1.70 $\mu V/(V/m)^2$	DCP Y	95 mV
NormZ	1.78 μV/(V/m) ²	DCP Z	95 mV

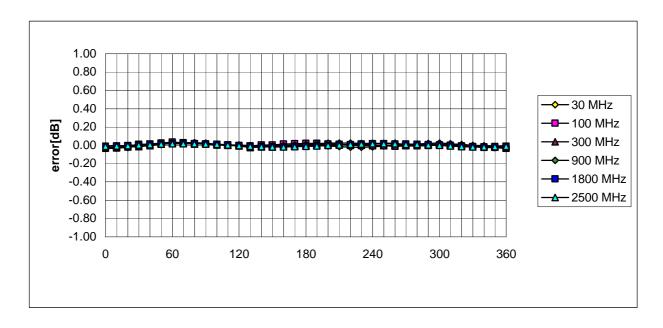

Sensitivity in Tissue Simulating Liquid

Head	450 MH	lz	e_r = 43.5 ± 5%	s = 0.87 ± 10% ml	no/m
	ConvF X	6.66	extrapolated	Boundary effe	ct:
	ConvF Y	6.66	extrapolated	Alpha	0.29
	ConvF Z	6.66	extrapolated	Depth	2.78
Head	800 - 1000 MH	lz	e _r = 39.0 - 43.5	s = 0.80 - 1.10 mh	no/m
	ConvF X	6.21	± 9.5% (k=2)	Boundary effec	ct:
	ConvF Y	6.21	± 9.5% (k=2)	Alpha	0.40
	ConvF Z	6.21	± 9.5% (k=2)	Depth	2.61
Head	1500 MH	Iz	e_r = 40.4 ± 5%	s = 1.23 ± 10% ml	no/m
	ConvF X	5.61	interpolated	Boundary effec	ct:
	ConvF Y	5.61	interpolated	Alpha	0.55
	0 57	F 04			
	ConvF Z	5.61	interpolated	Depth	2.38
Head	1700 - 1910 MH		interpolated $e_r = 39.5 - 41.0$	Depth s = 1.20 - 1.55 mh	
Head			e _r = 39.5 - 41.0	·	no/m
Head	1700 - 1910 MH	lz 5.31	e _r = 39.5 - 41.0	s = 1.20 - 1.55 mh	no/m

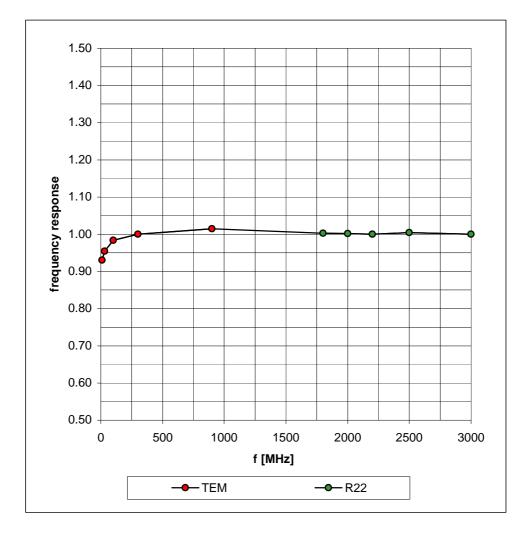

Sensor Offset


Probe Tip to Sensor Center	2.7	mm
Optical Surface Detection	1.6 ± 0.2	mm

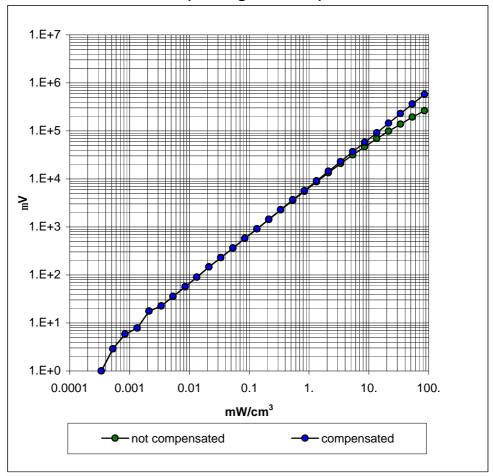
Receiving Pattern (f), $q = 0^{\circ}$

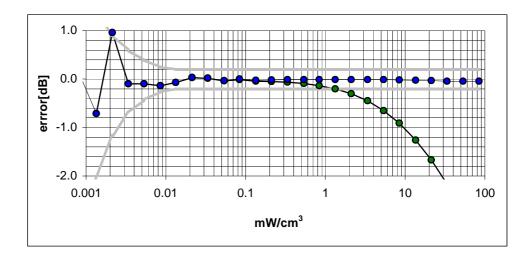


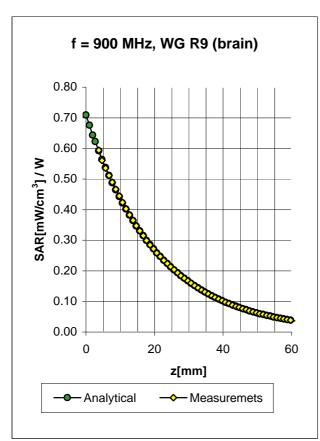
ET3DV6 SN:1381

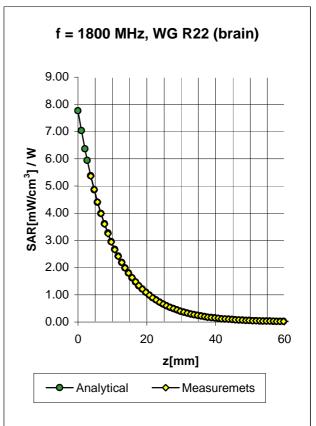


Isotropy Error (f), $q = 0^{\circ}$


Frequency Response of E-Field


(TEM-Cell:ifi110, Waveguide R22)



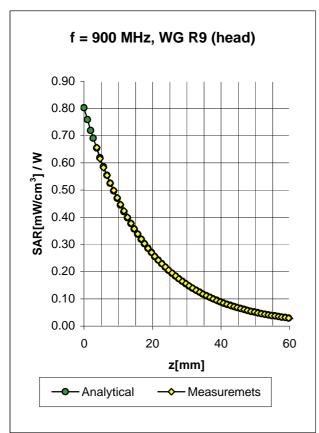

Dynamic Range f(SAR_{brain})

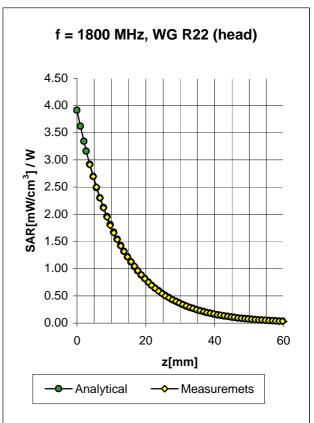
(Waveguide R22)

Brain 800 - 1000 MHz $e_r = 39.3 - 43.0$ s = 0.75 - 1.00 mho/m

 ConvF X
 6.13 $\pm 9.5\%$ (k=2)
 Boundary effect:

 ConvF Y
 6.13 $\pm 9.5\%$ (k=2)
 Alpha
 0.45


 ConvF Z
 6.13 $\pm 9.5\%$ (k=2)
 Depth
 2.36


Brain 1700 - 1910 MHz $e_r = 39.3 - 41.6$ s = 1.53 - 1.90 mho/m

 ConvF X
 5.53 $\pm 9.5\%$ (k=2)
 Boundary effect:

 ConvF Y
 5.53 $\pm 9.5\%$ (k=2)
 Alpha
 0.66

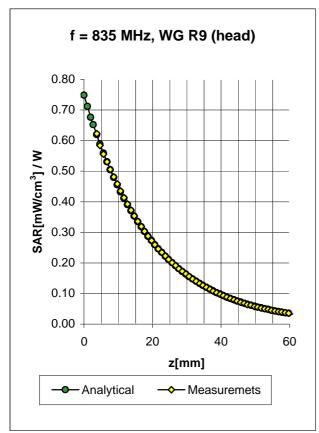
 ConvF Z
 5.53 $\pm 9.5\%$ (k=2)
 Depth
 2.07

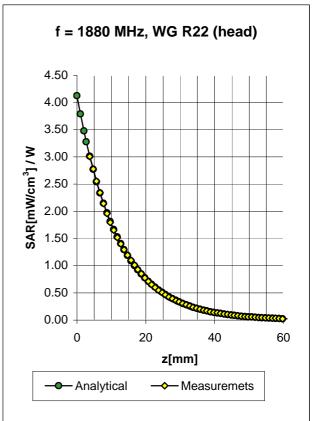
s = 0.80 - 1.10 mho/m

Head 800 - 1000 MHz $e_r = 39.0 - 43.5$

ConvF X **6.21** \pm 9.5% (k=2) Boundary effect:

ConvF Y **6.21** \pm 9.5% (k=2) Alpha **0.40**

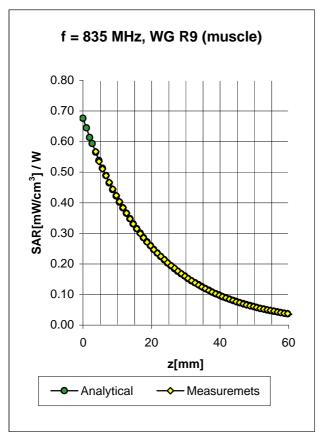

ConvF Z **6.21** \pm 9.5% (k=2) Depth **2.61**

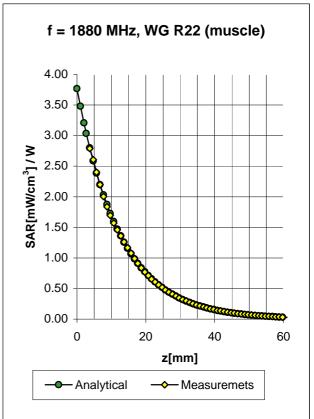

Head 1700 - 1910 MHz e_{r} = 39.5 - 41.0 s = 1.20 - 1.55 mho/m

ConvF X 5.31 \pm 9.5% (k=2) Boundary effect:

ConvF Y $5.31 \pm 9.5\%$ (k=2) Alpha 0.62

ConvF Z **5.31** ± 9.5% (k=2) Depth **2.27**

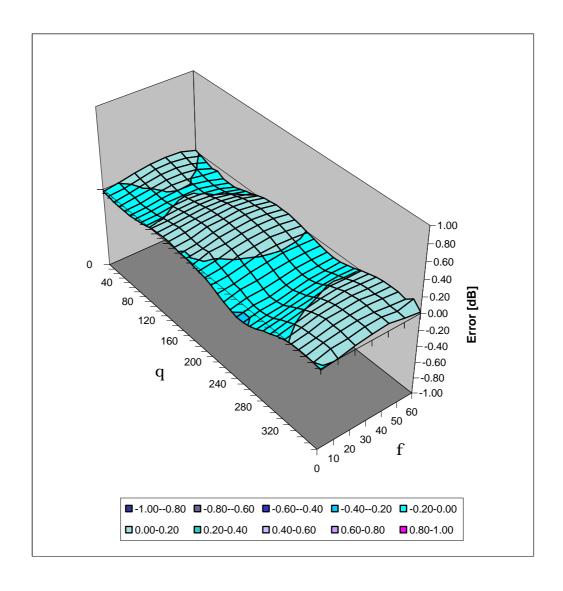




Head	835 MHz	e_r = 41.5 ± 5%	s = 0.90 ± 5% mho/m

ConvF X	6.20 ± 8.9% (k=2)	Boundary effe	ect:
ConvF Y	6.20 \pm 8.9% (k=2)	Alpha	0.41
ConvF Z	6.20 ± 8.9% (k=2)	Depth	2.58

Head	1880 [ИНz	e_r = 40.0 ± 5%	s = 1.540 ± 5% mho/m	1
	ConvF X	5.22 ±	8.9% (k=2)	Boundary effect:	
	ConvF Y	5.22 ±	8.9% (k=2)	Alpha 0.	64
	ConvE 7	5 22 +	8 0% (k-2)	Denth 2	23


Muscle	835 MHz	e_r = 55.2 ± 5%	$s = 0.97 \pm 5\% \text{ mho/m}$

ConvF X	6.04 ± 8.9% (k=2)	Boundary effe	ect:
ConvF Y	6.04 \pm 8.9% (k=2)	Alpha	0.42
ConvF Z	6.04 ± 8.9% (k=2)	Depth	2.73

Muscle	1880 MF	łz	e_r = 53.3 ± 5%	s = 1.52	± 5% mho/m
	ConvF X	4.96 ± 8	.9% (k=2)	Bour	ndary effect:
	ConvF Y	4.96 ± 8	.9% (k=2)	Alph	a 0.91
	ConvF Z	4.96 ± 8	.9% (k=2)	Dept	h 1.88

Deviation from Isotropy in HSL

Error (q,f), f = 900 MHz

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

DASY

Dipole Validation Kit

Type: D835V2

Serial: 405

Manufactured: September 25, 1999 Calibrated: February 13, 2001

1. Measurement Conditions

The measurements were performed in the flat section of the new generic twin phantom filled with head simulating solution of the following electrical parameters at 835 MHz:

Relative Dielectricity 42.0 ± 5% Conductivity 0.88 mbo/m ± 5%

The DASY3 System (Software version 3.1c) with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 6.27 at 900 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15mm from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 5x5x7 fine cube was chosen for cube integration. Probe isotropy errors were cancelled by measuring the SAR with normal and 90° turned probe orientations and averaging.

The dipole input power (forward power) was $250 \text{mW} \pm 3\%$. The results are normalized to 1 W input power.

SAR Measurement

Standard SAR-measurements were performed with the phantom according to the measurement conditions described in section 1. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values are:

averaged over 1 cm³ (1 g) of tissue: 9.88 mW/g

averaged over 10 cm³ (10 g) of tissue: 6.36 mW/g

Note: If the liquid parameters for validation are slightly different from the ones used for initial calibration, the SAR-values will be different as well. The estimated sensitivities of SAR-values and penetration depths to the liquid parameters are listed in the DASY Application Note 4: 'SAR Sensitivities'.

Dipole impedance and return loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:

(one direction) 1.449 ns

Transmission factor:

0.993

(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 835 MHz:

 $Re{Z} = 49.8 \Omega$

 $Im \{Z\} = 0.4 \Omega$

Return Loss at 835 MHz

-44.4 dB

Measurement Conditions

The measurements were performed in the flat section of the new generic twin phantom filled with muscle simulating solution of the following electrical parameters at 835 MHz:

Relative Dielectricity

56.6

± 5%

Conductivity

0.93 mho/m ± 5%

The DASY3 System (Software version 3.1c) with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 6.02 at 900 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15mm from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 5x5x7 fine cube was chosen for cube integration. Probe isotropy errors were cancelled by measuring the SAR with normal and 90° turned probe orientations and averaging.

The dipole input power (forward power) was 250mW ± 3 %. The results are normalized to 1W input power.

5. SAR Measurement

Standard SAR-measurements were performed with the phantom according to the measurement conditions described in section 4. The results have been normalized to a dipole input power of IW (forward power). The resulting averaged SAR-values are:

averaged over 1 cm3 (1 g) of tissue:

10<u>.1 m</u>W/g

2,525

averaged over 10 cm³ (10 g) of tissue:

6.56 mW/g

Note: If the liquid parameters for validation are slightly different from the ones used for initial calibration, the SAR-values will be different as well.

Dipole impedance and return loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:

1.449 ns

(one direction)

Transmission factor:

0.993

(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 4 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 835 MHz:

 $Re{Z} = 45.8 \Omega$

 $Im \{Z\} = -2.3 \Omega$

Return Loss at 835 MHz

-26.4 dB

7. Handling

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

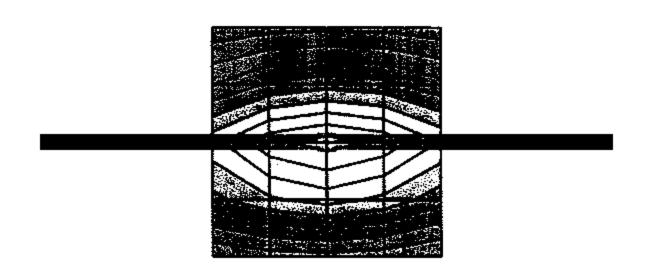
Do not apply excessive force to the dipole arms, because they might bend. If the dipole arms have to be bent back, take care to release stress to the soldered connections near the feedpoint; they might come off.

After prolonged use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

ነ

Validation Dipole D835V2 SN:405, d = 15 mm

Frequency 835 MHz, Antenna Input Power 250 [mW]

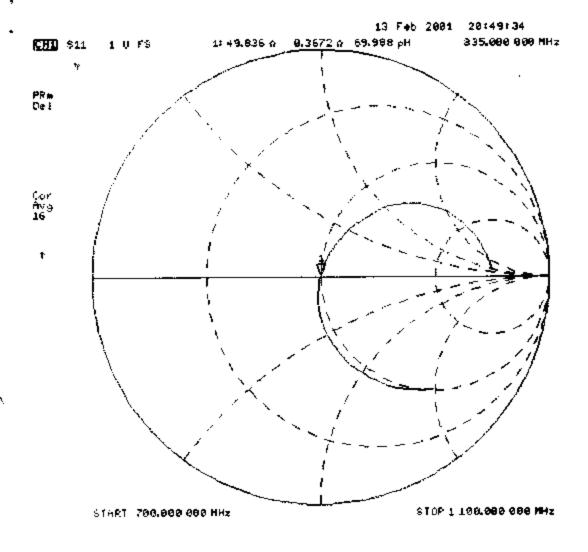

Generic Twin Phantom, Flat Section; Grid Spacing: Dx = 15.0, Dy = 15.0, Dz = 10.0

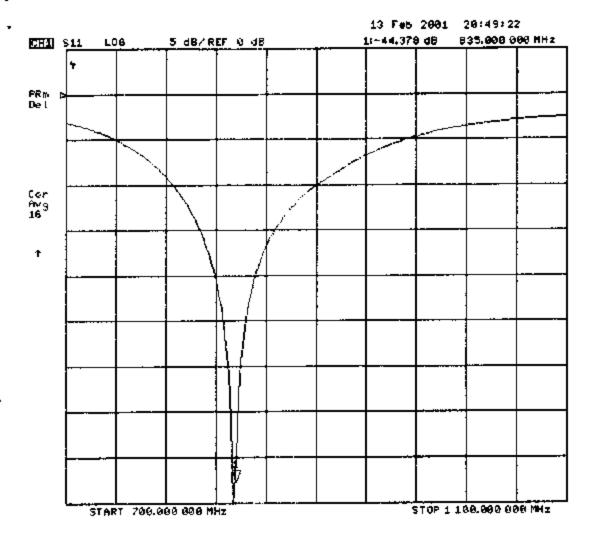
Probe ET3DV6 - SN1507; ConvF(6 27.6.27,6.27) at 900 MHz; IEEE1528 835 MHz; σ = 0.88 mho/m ϵ , = 42.0 ρ = 1.00 g/cm³

Cubes (2): Peak: 3.91 mW/g ± 0.02 dB, SAR (1g) 2.47 mW/g ± 0.01 dB, SAR (10g): 1.59 mW/g ± 0.02 dB, (Worst-case extrapolation)

Penetration depth 12 2 (10.9, 13.9) [mm]

Powerdrift 0 02 dB


2.50E+0 2.25E+0 2.00E+0 1.75E+0 1.50E+0 1.25E+0 1.00E+0 7.50E-1


5.00E-1

2.50E-1

SAR_{tal} [mW/g]

 $\mathsf{SAR}_{_{\mathsf{Tot}}} \ [\mathsf{mW/g}]$ 2.50E+0 2.25E+0 2.00E+0 1.75E+0 1.50E+0 1.25E+0 1.00E+0 7.50E-1 5.00E-1 2.50E-1

Schmid & Partner Engineering AG

Zeughausstrasse 43, \$004 Zurich, Switzerland, Phone +41 1 245 97 00, Fex +41 1 245 97 79

DASY3

Dipole Validation Kit

Type: D1900V2

Serial: 511

Manufactured: October 20, 1999 Calibrated: February 13, 2001

1. Measurement Conditions

The measurements were performed in the flat section of the new generic twin phantom fitled with head simulating solution of the following electrical parameters at 1900 MHz:

Relative permittivity 39.2 $\pm 5\%$ Conductivity 1.47 mho/m $\pm 10\%$

The DASY3 System (Software version 3.1c) with a dosimetric E-field probe ET3DV6 (SN:1507, conversion factor 5.57 at 1800 MHz) was used for the measurements.

The dipole feedpoint was positioned below the center marking and oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 5x5x7 fine cube was chosen for cube integration. Probe isotropy errors were cancelled by measuring the SAR with normal and 90° turned probe orientations and averaging. The dipole input power (forward power) was 250mW ± 3 %. The results are normalized to 1W input power.

SAR Measurement

Standard SAR-measurements were performed with the head phantom according to the measurement conditions described in section 1. The results (see figure) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values are:

averaged over 1 cm³ (1 g) of tissue: 42.8 mW/g

averaged over 10 cm³ (10 g) of tissue: 21.9 mW/g

Note: If the liquid parameters for validation are slightly different from the ones used for initial calibration, the SAR-values will be different as well. The estimated sensitivities of SAR-values and penetration depths to the liquid parameters are listed in the DASY Application Note 4: *SAR Sensitivities*.

Dipole impedance and return loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:

1.205 ns

(one direction)

Transmission factor:

0.983

(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 1900 MHz:

 $Re\{Z\} = 50.1 \Omega$

Im $\{Z\} = -1.5 \Omega$

Return Loss at 1900 MHz

- 34.9 dB

4. Measurement Conditions

The measurements were performed in the flat section of the new generic twin phantom filled with muscle simulating solution of the following electrical parameters at 1900 MHz:

Relative permitivity

53.5

± 5%

Conductivity

1.46 mko/m ± 10%

The DASY3 System (Software version 3.1c) with a dosimetric E-field probe ET3DV6 (SN:1507, conversion factor 4.85 at 1800 MHz) was used for the measurements.

The dipole feedpoint was positioned below the center marking and oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 5x5x7 fine cube was chosen for cube integration. Probe isotropy errors were cancelled by measuring the SAR with normal and 90° turned probe orientations and averaging.

The dipole input power (forward power) was 250mW ± 3 %. The results are normalized to 1W input power.

6. SAR Measurement

Standard SAR-measurements were performed with the head phantom according to the measurement conditions described in section 1. The results (see figure) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values are:

averaged over 1 cm³ (1 g) of tissue: 42.4 mW/g

averaged over 10 cm³ (10 g) of tissue: 22.0 mW/g

Note: If the liquid parameters for validation are slightly different from the ones used for initial calibration, the SAR-values will be different as well.

Dipole impedance and return loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay: 1.205 ns (one direction)

Transmission factor: 0.983 (voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 1900 MHz: $Re\{Z\} = 45.3 \Omega$

Im $\{Z\} = -1.0 \Omega$

Return Loss at 1900 MHz - 25.6 dB

8. Handling

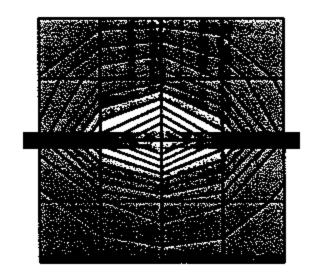
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

Do not apply excessive force to the dipole arms, because they might bend. If the dipole arms have to be bent back, take care to release stress to the soldered connections near the feedpoint; they might come off.

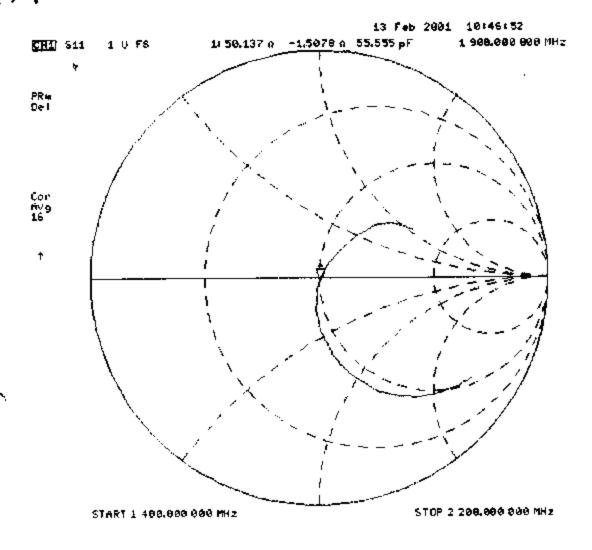
After prolonged use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

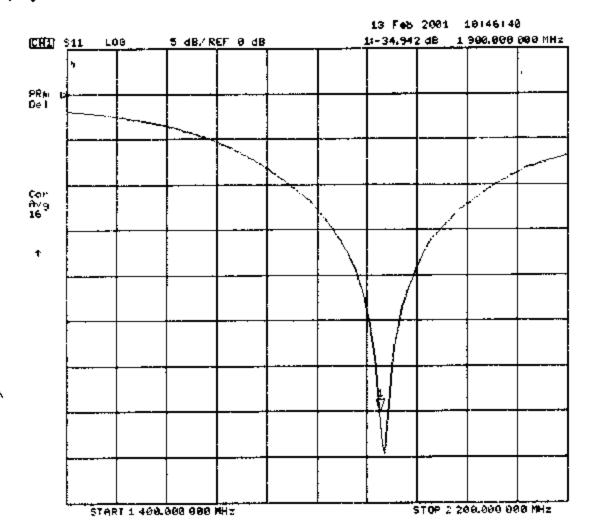
Validation Dipole D1900V2 SN:511, d = 10 mm

Frequency: 1900 MHz; Antenna Input Power: 250 [mW]


Generic Twin Phantom; Flat Section; Grid Spacing: Dx = 15.0, Dy = 15.0, Dz = 10.0

Probe: ET3DV6 - SN1507; ConvF(5.57.5.57, 5.57) at 1800 MHz; IEEE1528 1900 MHz; $\sigma = 1.47$ mHo/m $\epsilon_{\rm p} = 39.2$ $\epsilon = 1.00$ g/cm³


Cubes (2). Peak: 20.6 mW/g ± 0.02 dB, SAR (1g). 10.7 hW/g ± 0.03 dB, SAR (10g): 5.47 mW/g ± 0.03 dB, (Worst-case extrapolation)

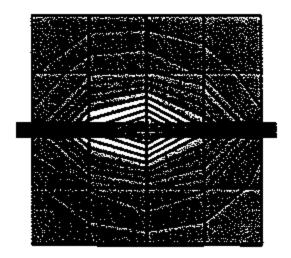

Penetration depth, 7.9 (7.4, 9.1) [mm]

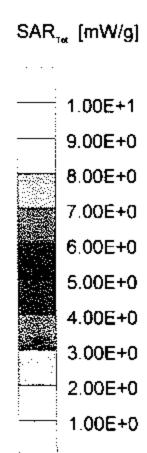
Powerdrift, 0.00 dB

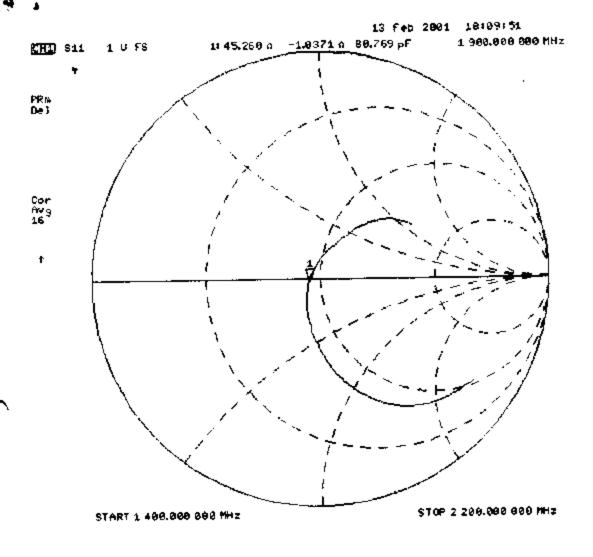
 SAR_{Tax} [mW/g] 1.00E+1 9.00E+0 8.00E+0 7.00E+0 6.00E+0 5.00E+0 4.00E+0 3.00E+0 2.00E+0 1.00E+0

Validation Dipole D1900V2 SN:511, d = 10 mm

Frequency: 1900 MHz; Antenna Input Power: 250 [mW]


Generic Twin Phantom; Flat Section; Grid Spacing: Dx = 15.0, Dy = 15.0, Dz = 10.0


Probe ET3DV6 - SN1507; ConvF(4.85,4.85,4.85) at 1800 MHz; Muscle 1900 MHz, $\sigma = 1.46$ mho/m $e_r = 53.5$ $\rho = 1.00$ g/cm³


Cubes (2): Peak: 20.0 mW/g ± 0.06 dB, SAR (1g) 10.6 mW/g ± 0.05 dB, SAR (10g): 5.49 mW/g ± 0.04 dB, (Worst-case extrapolation)

Penetration depth: 8 7 (7 9, 10.3) [mm]

Powerdrift, 0.01 dB

