

M. Flom Associates, Inc. - Global Compliance Center

3356 North San Marcos Place, Suite 107, Chandler, Arizona 85225-7176

www.mflom.com general@mflom.com (480) 926-3100, FAX: 926-3598

Date: March 29, 2001
Submitted: April 23, 2001

Federal Communications Commission
Via: Electronic Filing

Attention: Authorization & Evaluation Division
Applicant: Nokia Mobile Phones
Equipment: 3320
FCC ID: LJPNPC-1NB
FCC Rules: 22H, 22.901 (d), Confidentiality

Gentlemen:

On behalf of the Applicant, enclosed please find Application Form 731, Engineering Test Report and all pertinent documentation, the whole for approval of the referenced equipment as shown.

Filing fees are attached.

We trust the same is in order. Should you need any further information, kindly contact the writer who is authorized to act as agent.

Sincerely yours,

Morton Flom, P. Eng.

enclosure(s)
cc: Applicant
MF/cvr

LIST OF EXHIBITS
(FCC **CERTIFICATION** (CELLULAR TRANSMITTERS) - REVISED 9/28/98)

APPLICANT: Nokia Mobile Phones

FCC ID: LJPNPC-1NB

BY APPLICANT:

1. LETTER OF AUTHORIZATION
2. IDENTIFICATION DRAWINGS, 2.1033(c)(11)
 - LABEL
 - LOCATION OF LABEL
 - COMPLIANCE STATEMENT
 - LOCATION OF COMPLIANCE STATEMENT
3. PHOTOGRAPHS, 2.1033(c)(12)
4. CONFIDENTIALITY REQUEST: 0.457 and 0.459
5. DOCUMENTATION: 2.1033(c)
 - (3) USER MANUAL
 - (9) TUNE UP INFO
 - (10) SCHEMATIC DIAGRAM
 - (10) CIRCUIT DESCRIPTION
 - BLOCK DIAGRAM
 - PARTS LIST
 - ACTIVE DEVICES
6. ATTESTATION: ESN: Section 22.919
7. ATTESTATION: OET: Section 22.933

BY M.F.A. INC.

- A. TESTIMONIAL & STATEMENT OF CERTIFICATION
- B. STATEMENT OF QUALIFICATIONS

M. Flom Associates, Inc. - Global Compliance Center

3356 North San Marcos Place, Suite 107, Chandler, Arizona 85225-7176

www.mflom.com general@mflom.com (480) 926-3100, FAX: 926-3598

T R A N S M I T T E R C E R T I F I C A T I O N

of

FCC ID: LJPNPC-1NB

MODEL: 3320

Serial Numbers of units tested: 235/13949310 and 235/13949323

to

FEDERAL COMMUNICATIONS COMMISSION

Rule Part(s) 22H, 22.901 (d), Confidentiality

UPDATED REPORT: April 20, 2001

ON THE BEHALF OF THE APPLICANT:

Nokia Mobile Phones

AT THE REQUEST OF:

P.O. Kare Oksanen 3/20/2001

Nokia Mobile Phones
Elektroniikkatie 10
Fin-90570
Oulu, Finland

Attention of:

Olli Kautio, Senior Engineering Manager,
Testing & Type Approvals
olli.kautio@nokia.com
and/or Kare Oksanen, R&D Type Approvals
kare.oksanen@nokia.com
011 358 105051; FAX: 011 358 10505 7222

SUPERVISED BY:

Morton Flom, P. Eng.

THE APPLICANT HAS BEEN CAUTIONED AS TO THE FOLLOWING:

15.21 INFORMATION TO USER.

The users manual or instruction manual for an intentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

15.27(a) SPECIAL ACCESSORIES.

Equipment marketed to a consumer must be capable of complying with the necessary regulations in the configuration in which the equipment is marketed. Where special accessories, such as shielded cables and/or special connectors are required to enable an unintentional or intentional radiator to comply with the emission limits in this part, the equipment must be marketed with, i.e. shipped and sold with, those special accessories. However, in lieu of shipping or packaging the special accessories with the unintentional or intentional radiator, the responsible party may employ other methods of ensuring that the special accessories are provided to the consumer, without additional charge.

Information detailing any alternative method used to supply the special accessories for a grant of equipment authorization or retained in the verification records, as appropriate. The party responsible for the equipment, as detailed in § 2.909 of this chapter, shall ensure that these special accessories are provided with the equipment. The instruction manual for such devices shall include appropriate instructions on the first page of text concerned with the installation of the device that these special accessories must be used with the device. It is the responsibility of the user to use the needed special accessories supplied with the equipment.

TABLE OF CONTENTS

RULE	DESCRIPTION	PAGE
	Test Report	1
2.1033(c)	General Information Required	2
2.1033(c)(14)	Rule Summary	5
	General Information	6
	Standard Test Conditions and Engineering Practices	7
2.1046(a)	Carrier Output Power (Conducted)	8
2.1046(a)	R. F. Power Output (Radiated)	10
2.1047(a)	Audio Frequency Response	12
2.1047(a)	Audio Low Pass Filter (Voice Input)	14
2.1047(b)	Modulation Limiting	17
	Measurement Of Maximum Deviation	20
2.1049(c)(1), 22		
	Emission Masks (Occupied Bandwidth)	23
22.917	Emission Requirements -	
	Worst Case Modulation & Wideband Data	41
2.1051, 22.917	Spurious Emissions at Antenna Terminals	52
2.1053(a)	Field Strength of Spurious Radiation	57
2.1055(a)(1)	Frequency Stability (Temperature Variation)	62
2.1055(b)(1)	Frequency Stability (Voltage Variation)	65

PAGE NO.

1 of 65.

Required information per ISO/IEC Guide 25-1990, paragraph 13.2:

a)

TEST REPORT

b) Laboratory: M. Flom Associates, Inc.
 (FCC: 31040/SIT) 3356 N. San Marcos Place, Suite 107
 (Canada: IC 2044) Chandler, AZ 85225

c) Report Number: d0130035

d) Client: Nokia Mobile Phones
 Elektroniikkatie 10
 Fin-90570
 Oulu, Finland

e) Identification: 3320
 FCC ID: LJPNPC-1NB
 Description: Single Band, Dual Mode Cellular Telephone

f) EUT Condition: Not required unless specified in individual tests.

g) Report Date: March 29, 2001
 EUT Received: March 20, 2001

h, j, k): As indicated in individual tests.

i) Sampling method: No sampling procedure used.

l) Uncertainty: In accordance with MFA internal quality manual.

m) Supervised by:

Morton Flom, P. Eng.

n) Results: The results presented in this report relate only to the item tested.

o) Reproduction: This report must not be reproduced, except in full, without written permission from this laboratory.

ACCESSORIES USED DURING TESTING:

SPECIMEN #	TYPE	MANUFACTURER	SERIAL NO
s00962	EUT	Nokia	235/13949310
s00965	EUT	Nokia	234/13949323
s00961	HDC-5 Headset	Nokia	
s00966	ACP-7U Charger	Nokia	
s00915	BMC-2 Battery	Nokia	
s00967	BMC-3 Battery	Nokia	
s00914	BMC-3 Battery	Nokia	
s00917	DCV-10 Desk Top Stand	Nokia	
s00916	ACP-8U Charger	Nokia	

PAGE NO.

2 of 65.

LIST OF GENERAL INFORMATION REQUIRED FOR CERTIFICATIONIN ACCORDANCE WITH FCC RULES AND REGULATIONS,
VOLUME II, PART 2 AND TO

22H, 22.901 (d), Confidentiality

Sub-part 2.1033

(c)(1): NAME AND ADDRESS OF APPLICANT:

Nokia Mobile Phones
 Elektroniikkatie 10
 Fin-90570
 Oulu, Finland

MANUFACTURER:

Nokia Manufacturing Inc U.S.A.
 5650 Alliance Gateway
 Fort Worth, TX 76155
 or
 Nokia TMC., Ltd.
 Yangduck-Dong 973-6
 Hwe won-Ku, Masan. Korea

(c)(2): FCC ID: LJPNPC-1NBMODEL NO: 3320(c)(3): INSTRUCTION MANUAL(S):

PLEASE SEE ATTACHED EXHIBITS

(c)(4): TYPE OF EMISSION: 30K0DXW, 40K0F8W, 40K0F1D(c)(5): FREQUENCY RANGE, MHz: 824.04 to 848.97

(c)(6): POWER RATING, Watts: 0.459 ERP AMPS MODE
 0.680 ERP TDMA MODE
 Switchable Variable N/A

FCC GRANT NOTE: BC - The output power is
 continuously variable from
 the value listed in this
 entry to 5%-10% of the
 value listed.

(c)(7): MAXIMUM POWER RATING, Watts: 7 Watts

PAGE NO. 3 of 65.

Subpart 2.1033 (continued)

(c)(8): VOLTAGES & CURRENTS IN ALL ELEMENTS IN FINAL R. F. STAGE, INCLUDING FINAL TRANSISTOR OR SOLID STATE DEVICE:

COLLECTOR CURRENT, A = per manual
COLLECTOR VOLTAGE, Vdc = per manual
SUPPLY VOLTAGE, Vdc = 3.6

(c)(9): TUNE-UP PROCEDURE:

PLEASE SEE ATTACHED EXHIBITS

(c)(10): CIRCUIT DIAGRAM/CIRCUIT DESCRIPTION:

Including description of circuitry & devices provided for determining and stabilizing frequency, for suppression of spurious radiation, for limiting modulation and limiting power.

PLEASE SEE ATTACHED EXHIBITS

(c)(11): LABEL INFORMATION:

PLEASE SEE ATTACHED EXHIBITS

(c)(12): PHOTOGRAPHS:

PLEASE SEE ATTACHED EXHIBITS

(c)(13): DIGITAL MODULATION DESCRIPTION:

 ATTACHED EXHIBITS
x N/A

(c)(14): TEST AND MEASUREMENT DATA:

FOLLOWS

PAGE NO.

4 of 65.

M. Flom Associates, Inc. is accredited by the American Association for Laboratory Association (A2LA) as shown in the scope below.

THE AMERICAN
ASSOCIATION
FOR LABORATORY
ACCREDITATION

ACCREDITED LABORATORY

A2LA has accredited

M. FLOM ASSOCIATES, INC.

Chandler, AZ

for technical competence in the field of

Electrical (EMC) Testing

The accreditation covers the specific tests and types of tests listed on the agreed scope of accreditation. This laboratory meets the requirements of ISO/IEC Guide 25-1990 "General Requirements for the Competence of Calibration and Testing Laboratories" (equivalent to relevant requirements of the ISO 9000 series of standards) and any additional program requirements in the identified field of testing.

Presented this 24th day of November, 1998.

Pete Flom
President
For the Accreditation Council
Certificate Number 1008.01
Valid to December 31, 2000

For tests or types of tests to which this accreditation applies, please refer to the laboratory's Electrical (EMC) Scope of Accreditation

American Association for Laboratory Accreditation

SCOPE OF ACCREDITATION TO [ISO/IEC GUIDE 25-1990 AND EN 45001]

M. FLOM ASSOCIATES, INC.
Electronic Testing Laboratory
3356 North San Marcos Place, Suite 107
Chandler, AZ 85225
Morton Flom Phone: 480 926 3100

ELECTRICAL (EMC)

Valid to: December 31, 2000

Certificate Number: 1008-01

In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this laboratory to perform the following electromagnetic compatibility tests:

Tests	Standard(s)
RF Emissions	FCC Part 15 (Subparts B and C) using ANSI C63.4-1992; CISPR 11; CISPR 13; CISPR 14; CISPR 22; EN 55011; EN 55013; EN 55014; EN 55022; EN 50081-1; EN 50081-2; FCC Part 18; ICES-003; AS/NZS 1044; AS/NZS 1053; AS/NZS 3548; AS/NZS 4251.1; CNS 13439
RF Immunity	EN 50082-1; EN 50082-2; AS/NZS 4251.1
Radiated Susceptibility	EN 61000-4-3; ENV 50140; ENV 50204; IEC 1000-4-3; IEC 801-3
ESD	EN 61000-4-2; IEC 1000-4-2; IEC 801-2
EFT	EN 61000-4-4; IEC 1000-4-4; IEC 801-4
Surge	EN 61000-4-5; ENV 50142; IEC 1000-4-5; IEC 801-5
47 CFR (FCC)	2, 21, 22, 23, 24, 74, 80, 87, 90, 95, 97

Revised 2/2/2000

Pete Flom

5301 Buckeystown Pike, Suite 350 • Frederick, MD 21704-8370 • Phone: 301 644 3248 • Fax: 301 662 2974

"This laboratory is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this report have been determined in accordance with the laboratory's terms of accreditation unless stated otherwise in the report."

Should this report contain any data for tests for which we are not accredited, or which have been undertaken by a subcontractor that is not A2LA accredited, such data would not be covered by this laboratory's A2LA accreditation.

PAGE NO.

5 of 65.

Sub-part

2.1033(c)(14): TEST AND MEASUREMENT DATA

All tests and measurement data shown were performed in accordance with FCC Rules and Regulations, Volume II; Part 2, Sub-part J, Sections 2.947, 2.1033(c), 2.1041, 2.1046, 2.1047, 2.1079, 2.1051, 2.1053, 2.1055, 2.1057 and the following individual Parts:

- ____ 21 - Domestic Public Fixed Radio Services
- ____ 22 - Public Mobile Services
- 22 Subpart H - Cellular Radiotelephone Service
- 22.901(d) - Alternative technologies and auxiliary services
- ____ 23 - International Fixed Public Radiocommunication services
- ____ 24 - Personal Communications Services
- ____ 74 Subpart H - Low Power Auxiliary Stations
- ____ 80 - Stations in the Maritime Services
- ____ 80 Subpart E - General Technical Standards
- ____ 80 Subpart F - Equipment Authorization for Compulsory Ships
- ____ 80 Subpart K - Private Coast Stations and Marine Utility Stations
- ____ 80 Subpart S - Compulsory Radiotelephone Installations for Small Passenger Boats
- ____ 80 Subpart T - Radiotelephone Installation Required for Vessels on the Great Lakes
- ____ 80 Subpart U - Radiotelephone Installations Required by the Bridge-to-Bridge Act
- ____ 80 Subpart V - Emergency Position Indicating Radiobeacons (EPIRB'S)
- ____ 80 Subpart W - Global Maritime Distress and Safety System (GMDSS)
- ____ 80 Subpart X - Voluntary Radio Installations
- ____ 87 - Aviation Services
- ____ 90 - Private Land Mobile Radio Services
- ____ 94 - Private Operational-Fixed Microwave Service
- ____ 95 Subpart A - General Mobile Radio Service (GMRS)
- ____ 95 Subpart C - Radio Control (R/C) Radio Service
- ____ 95 Subpart D - Citizens Band (CB) Radio Service
- ____ 95 Subpart E - Family Radio Service
- ____ 95 Subpart F - Interactive Video and Data Service (IVDS)
- ____ 97 - Amateur Radio Service
- ____ 101 - Fixed Microwave Services

PAGE NO.

6 of 65.

GENERAL INFORMATION

1. Prior to testing, the deviation for audio modulation and each of the respective SAT + ST tones were set as close as possible to the required limit.
2. Except for audio modulation, which was applied externally, Wideband Data SAT, ST and all other tones and operational modes were provided by a test control unit incorporating appropriate software. Worst case repetition rate for Wideband Data was 10 kb/s.
3. Spurious radiation was measured at three (3) meters.
4. The two cellular frequency bands are available to the user automatically. Please refer to the manual contained in the documentation.
5. The normal modes of modulation are:

<u>x</u>	(a) VOICE
<u>x</u>	(b) WIDEBAND DATA
<u>x</u>	(c) SAT
<u>x</u>	(d) ST
<u>x</u>	(e) SAT + VOICE
<u>x</u>	(f) SAT + DTMF
<u> </u>	(g) CDMA
<u>x</u>	(h) TDMA
<u> </u>	(i) NAMPS VOICE
<u> </u>	(j) NAMPS DSAT
<u> </u>	(k) NAMPS ST
<u> </u>	(l) NAMPS VOICE + DSAT

PAGE NO.

7 of 65.

STANDARD TEST CONDITIONS
and
ENGINEERING PRACTICES

Except as noted herein, the following conditions and procedures were observed during the testing:

In accordance with ANSI C63.4-1992/2000 Draft, section 6.1.9, and unless otherwise indicated in the specific measurement results, the ambient temperature of the actual EUT was maintained within the range of 10° to 40°C (50° to 104 °F) unless the particular equipment requirements specify testing over a different temperature range. Also, unless otherwise indicated, the humidity levels were in the range of 10% to 90% relative humidity.

Prior to testing, the EUT was tuned up in accordance with the manufacturer's alignment procedures. All external gain controls were maintained at the position of maximum and/or optimum gain throughout the testing.

Measurement results, unless otherwise noted, are worst case measurements.

PAGE NO. 8 of 65.

NAME OF TEST: Carrier Output Power (Conducted)

SPECIFICATION: 47 CFR 2.1046(a)

TEST EQUIPMENT: As per attached page

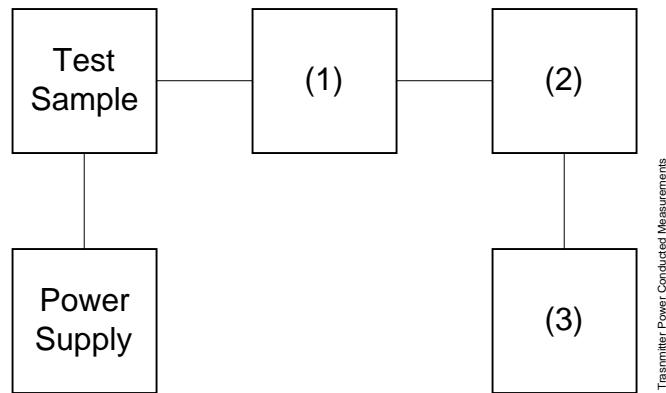
MEASUREMENT PROCEDURE

1. The EUT was connected to a resistive coaxial attenuator of normal load impedance, and the unmodulated output power was measured by means of an R. F. Power Meter.
2. Measurement accuracy is $\pm 3\%$.

MEASUREMENT RESULTS

NOMINAL, MHz	CHANNEL	dBm		R. F. POWER, WATTS	
		Lo	Hi	Lo	Hi
AMPS MODE:					
824.040	991	6.16	25.58	4.13 mW	0.361
836.400	380	6.25	25.50	4.22 mW	0.355
848.970	799	5.18	25.78	3.30 mW	0.379
TDMA MODE:					
824.040	991	-4.42	27.02	361 μ W	0.503
836.400	380	-4.44	26.99	360 μ W	0.500
848.970	799	-5.32	27.18	294 μ W	0.522

PERFORMED BY:



 Doug Noble, B.A.S. E.E.T.

PAGE NO.

9 of 65.

TRANSMITTER POWER CONDUCTED MEASUREMENTS

TEST 1: R. F. POWER OUTPUT
 TEST 2: FREQUENCY STABILITY

Asset Description (as applicable)	s/n
(1) COAXIAL ATTENUATOR	
i00122 Narda 766-10	7802
i00123 Narda 766-10	7802A
i00069 Bird 8329 (30 dB)	1006
i00113 Sierra 661A-3D	1059
(2) POWER METERS	
i00014 HP 435A	1733A05836
i00039 HP 436A	2709A26776
i00020 HP 8901A POWER MODE	2105A01087
(3) FREQUENCY COUNTER	
i00042 HP 5383A	1628A00959
i00019 HP 5334B	2704A00347
i00020 HP 8901A FREQUENCY MODE	2105A01087

PAGE NO. 10 of 65.
NAME OF TEST: R. F. Power Output (Radiated)
SPECIFICATION: 47 CFR 2.1046(a)
TEST EQUIPMENT: As per attached page

MEASUREMENT PROCEDURE (RADIATED)

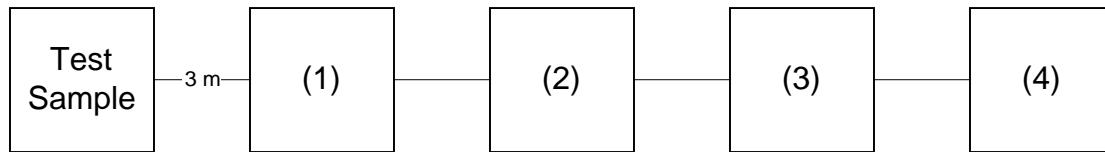
1. The EUT was placed on an open-field site and its radiated field strength at a known distance was measured by means of a spectrum analyzer. Equivalent loading was calculated from the equation $P_t = ((E \times R)^2 / 49.2)$ watts, where $R = 3m$.
2. Measurement accuracy is ± 1.5 dB.

MEASUREMENT RESULTS

AMPS

g0140094: 2001-Apr-18 Wed 08:28:00

FREQUENCY TUNED, MHz	FREQUENCY EMISSION, MHz	METER, dBuV	CF, dB	ERP, dBm	ERP, Watts
824.040000	824.038000	93.81	29.58	26.0	0.400
836.400000	836.398000	93.26	29.61	25.5	0.357
848.970000	848.968000	92.36	29.64	24.6	0.290


TDMA

g0140095: 2001-Apr-18 Wed 09:11:00

FREQUENCY TUNED, MHz	FREQUENCY EMISSION, MHz	METER, dBuV	CF, dB	ERP, dBm	ERP, Watts
824.040000	824.038000	97.41	29.58	29.6	0.917
836.400000	836.413000	96.79	29.61	29.0	0.798
848.970000	848.973000	96.37	29.64	28.6	0.728

PAGE NO.

11 of 65.

TRANSMITTER RADIATED MEASUREMENTS

Transmitter Radiated Measurements

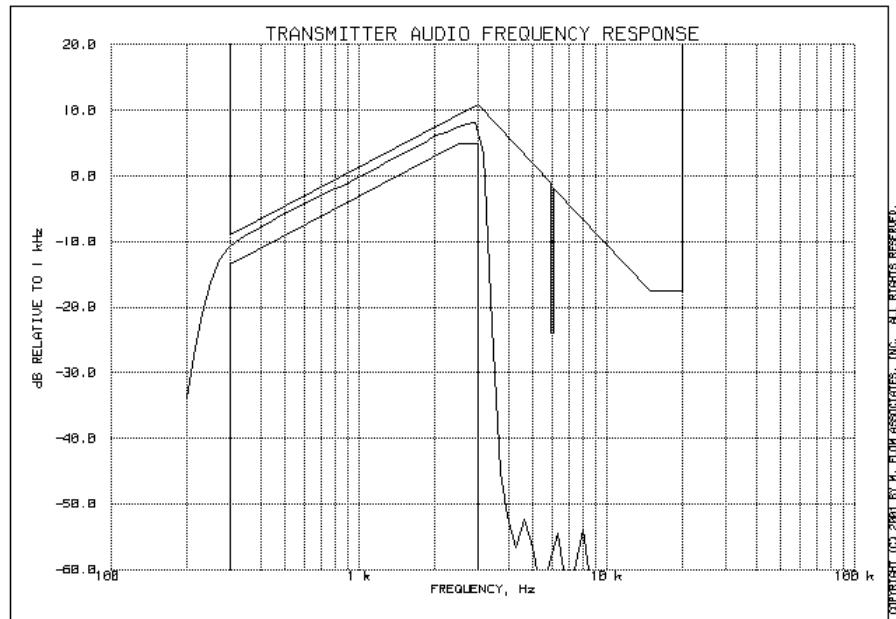
Asset Description (as applicable)	s/n
(1) <u>TRANSDUCER</u> i00091 Emco 3115 i00089 Aprl Log Periodic	001469 001500
(2) <u>HIGH PASS FILTER</u> i00 Narda μ PAD (In-Band Only) i00 Trilithic (Out-Of-Band Only)	
(3) <u>PREAMP</u> i00028 HP 8449 (+30 dB)	2749A00121
(4) <u>SPECTRUM ANALYZER</u> i00048 HP 8566B i00057 HP 8557A i00029 HP 8563E	2511A01467 1531A00191 3213A00104

PAGE NO. 12 of 65.

NAME OF TEST: Audio Frequency Response

SPECIFICATION: 47 CFR 2.1047(a)

TEST EQUIPMENT: As per previous page


MEASUREMENT PROCEDURE

1. The EUT and test equipment were set up as shown on the following page.
2. The audio signal generator was connected to the audio input circuit/microphone of the EUT.
3. The audio signal input was adjusted to obtain 20% modulation at 1 kHz, and this point was taken as the 0 dB reference level.
4. With input levels held constant and below limiting at all frequencies, the audio signal generator was varied from 100 Hz to 50 kHz.
5. The response in dB relative to 1 kHz was then measured, using the HP 8901A Modulation Analyzer.
6. MEASUREMENT RESULTS: ATTACHED

PAGE NO.

13 of 65.

NAME OF TEST: Audio Frequency Response
g0130135: 2001-Mar-20 Tue 09:30:00
STATE: 0:General

PERFORMED BY:

Doug Noble, B.A.S. E.E.T.

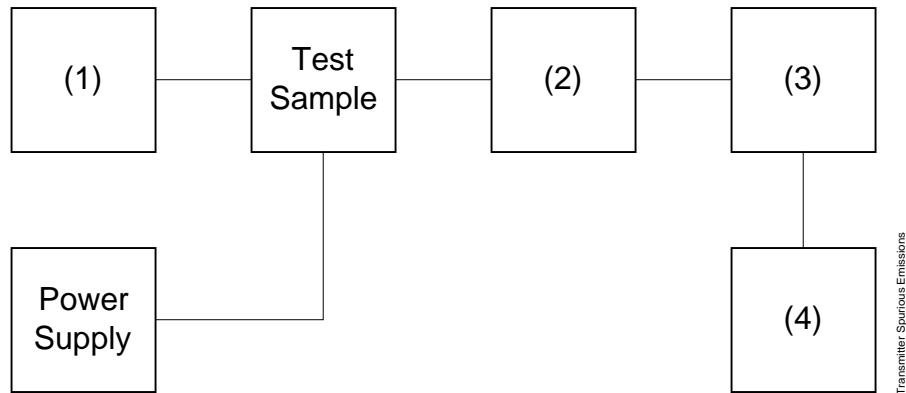
PAGE NO. 14 of 65.

NAME OF TEST: Audio Low Pass Filter (Voice Input)

SPECIFICATION: 47 CFR 2.1047(a)

TEST EQUIPMENT: As per attached page

MEASUREMENT PROCEDURE

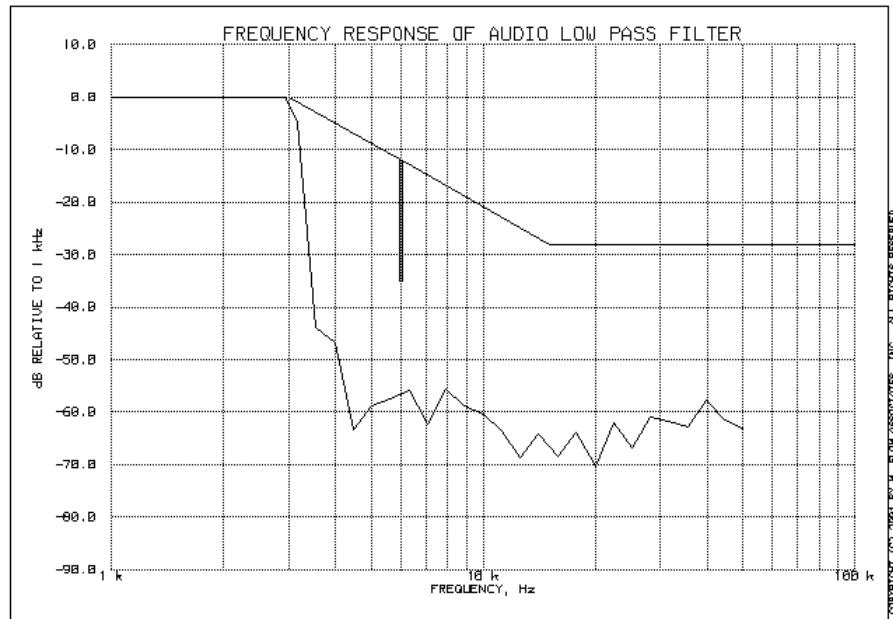

1. The EUT and test equipment were set up such that the audio input was connected at the input to the modulation limiter, and the modulated stage.
2. The audio output was connected at the output to the modulated stage.
3. MEASUREMENT RESULTS: ATTACHED

PAGE NO.

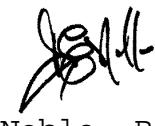
15 of 65.

TRANSMITTER SPURIOUS EMISSION

TEST A. OCCUPIED BANDWIDTH (IN-BAND SPURIOUS)
 TEST B. OUT-OF-BAND SPURIOUS



Asset Description (as applicable)	s/n
(1) <u>AUDIO OSCILLATOR/GENERATOR</u>	
i00010 HP 204D	1105A04683
i00017 HP 8903A	2216A01753
i00012 HP 3312A	1432A11250
(2) <u>COAXIAL ATTENUATOR</u>	
i00122 Narda 766-10	7802
i00123 Narda 766-10	7802A
i00069 Bird 8329 (30 dB)	1006
i00113 Sierra 661A-3D	1059
(3) <u>FILTERS; NOTCH, HP, LP, BP</u>	
i00126 Eagle TNF-1	100-250
i00125 Eagle TNF-1	50-60
i00124 Eagle TNF-1	250-850
(4) <u>SPECTRUM ANALYZER</u>	
i00048 HP 8566B	2511A01467
i00029 HP 8563E	3213A00104


PAGE NO.

16 of 65.

NAME OF TEST: Audio Low Pass Filter (Voice Input)
g0130137: 2001-Mar-20 Tue 09:38:00
STATE: 0:General

PERFORMED BY:

Doug Noble, B.A.S. E.E.T.

PAGE NO. 17 of 65.

NAME OF TEST: Modulation Limiting

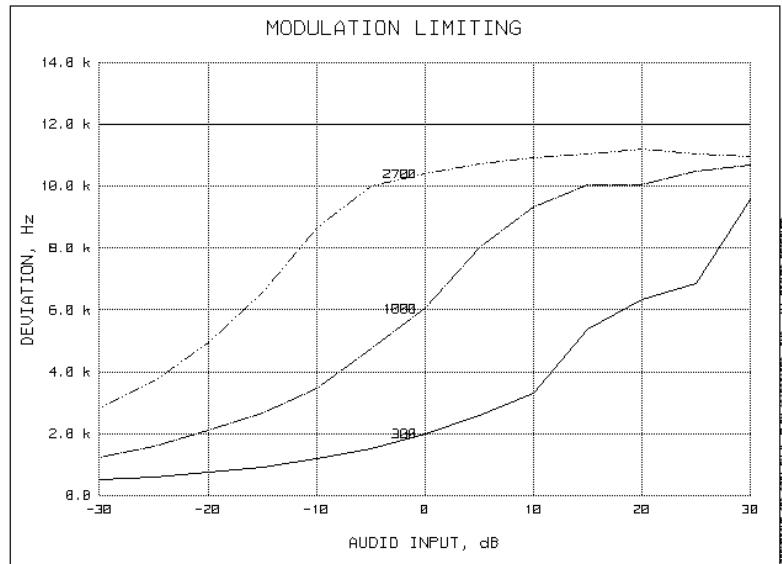
SPECIFICATION: 47 CFR 2.1047(b)

TEST EQUIPMENT: As per previous page

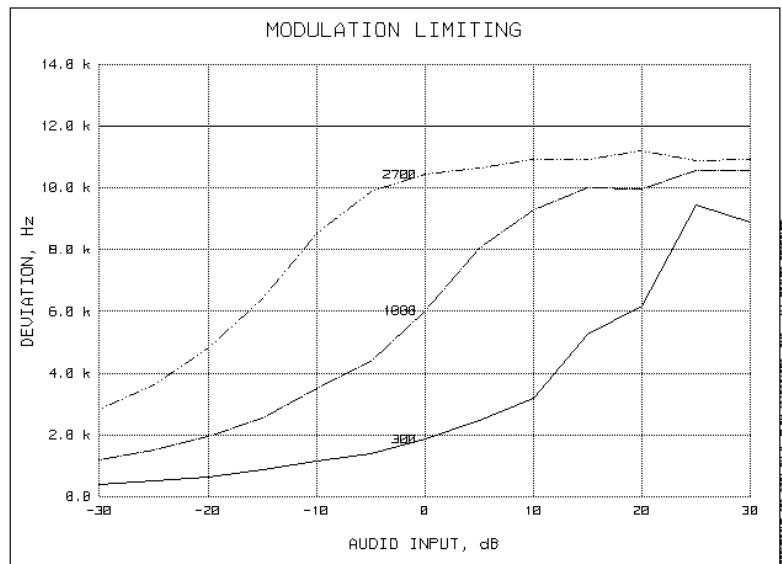
MEASUREMENT PROCEDURE

1. The audio signal generator was connected to the audio input circuit/microphone of the EUT as for Frequency Response of the Audio Modulating Circuit.
2. The modulation response was measured for each of three tones (one of which was the frequency of maximum response), and the input voltage was varied and was observed on an HP 8901A Modulation Analyzer.
3. The audio input level was varied from 30% modulation (± 3.6 kHz deviation) to at least 20 dB higher than the saturation point.
4. Measurements were performed for both negative and positive modulation and the respective results were recorded.
5. MEASUREMENT RESULTS ATTACHED FOR:

COMPANDER ON:


VOICE
 VOICE + SAT

PAGE NO.

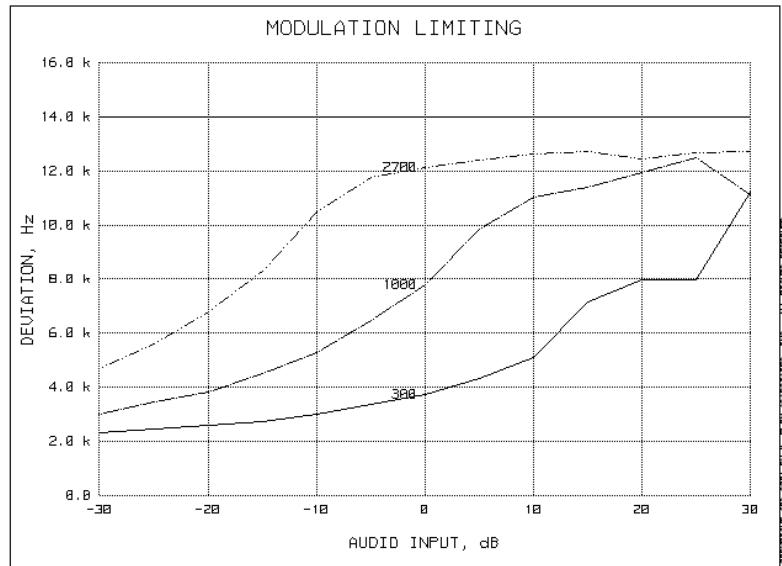

18 of 65.

NAME OF TEST: Modulation Limiting
 g0130139: 2001-Mar-20 Tue 09:48:00
 STATE: 0:General VOICE ONLY

Positive Peaks:

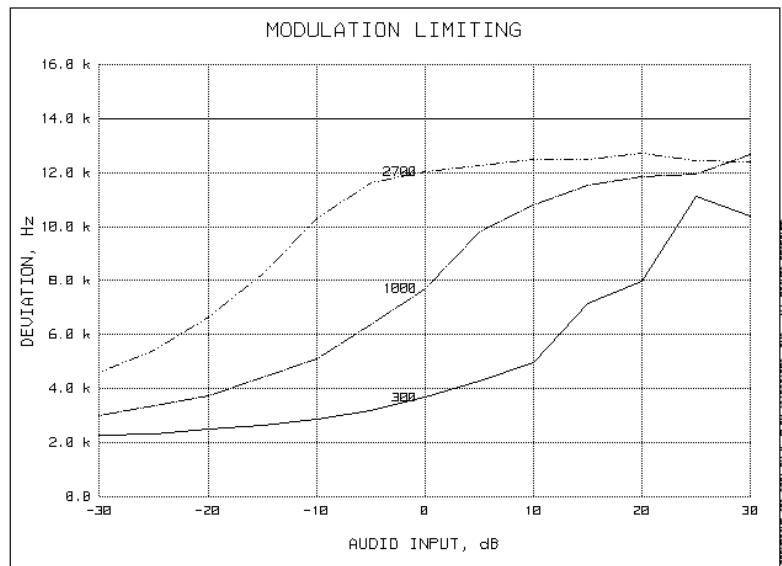
Negative Peaks:

PERFORMED BY:



 Doug Noble, B.A.S. E.E.T.

PAGE NO.


19 of 65.

NAME OF TEST: Modulation Limiting
 g0130143: 2001-Mar-20 Tue 10:21:00
 STATE: 0:General VOICE + SAT

Positive
Peaks:

Negative
Peaks:

PERFORMED BY:

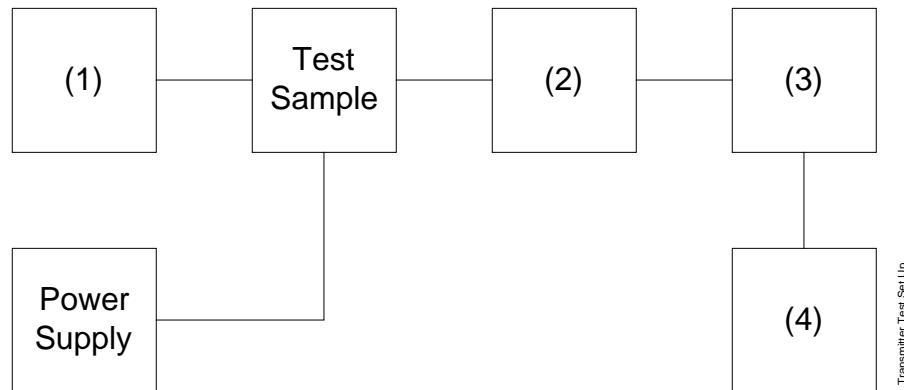
 Doug Noble, B.A.S. E.E.T.

PAGE NO. 20 of 65.

NAME OF TEST: Measurement Of Maximum Deviation

TEST EQUIPMENT: As per attached page

MEASUREMENT PROCEDURE


1. The presentation of tones was obtained by attaching the HP 8903A Oscilloscope to the Modulation Output of the HP 8901 Modulation Analyzer.
2. The EUT was modulated by an HP 8903 Audio Analyzer and/or internally generated signals.
3. Maximum deviation measurements were recorded for the various configurations.
4. MEASUREMENT RESULTS: ATTACHED SUMMARY FOR DEVIATION

PAGE NO.

21 of 65.

TRANSMITTER TEST SET-UP

TEST A. MODULATION CAPABILITY/DISTORTION
 TEST B. AUDIO FREQUENCY RESPONSE
 TEST C. HUM AND NOISE LEVEL
 TEST D. RESPONSE OF LOW PASS FILTER
 TEST E. MODULATION LIMITING

Asset (as applicable)	Description	s/n
(1) <u>Audio Oscillator</u>		
i00010	HP 204D	1105A04683
i00017	HP 8903A	2216A01753
i00118	HP 33120A	US36002064
(2) <u>COAXIAL ATTENUATOR</u>		
i00122	NARDA 766-10	7802
i00123	NARDA 766-10	7802A
i00113	SIERRA 661A-3D	1059
i00069	BIRD 8329 (30 dB)	10066
(3) <u>MODULATION ANALYZER</u>		
i00020	HP 8901A	2105A01087
(4) <u>AUDIO ANALYZER</u>		
i00017	HP 8903A	2216A01753

PAGE NO.

22 of 65.

MEASUREMENT SUMMARY: Measurement Of Maximum Deviation

MODULATION	LIMIT, kHz	DEVIATION, kHz
(a) Voice	$\geq 10.8 \text{ & } \leq 13.2$	10.9
(b) Wideband Data	$\geq 7.2 \text{ & } \leq 8.8$	7.7
(c) SAT	$\geq 1.8 \text{ & } \leq 2.2$	2.2
(d) ST	$\geq 7.2 \text{ & } \leq 8.8$	7.9
(e) SAT + VOICE	N/A	11.5
(f) SAT + DTMF	N/A	10.6
(i) NAMPS VOICE	N/A	N/A
(j) NAMPS DSAT	N/A	N/A
(k) NAMPS ST	N/A	N/A
(l) NAMPS VOICE	N/A	N/A

PERFORMED BY:

Doug Noble, B.A.S. E.E.T.

PAGE NO. 23 of 65.

NAME OF TEST: Emission Masks (Occupied Bandwidth)

SPECIFICATION: 47 CFR 2.1049(c)(1), 22

TEST EQUIPMENT: As per previous page

MEASUREMENT PROCEDURE

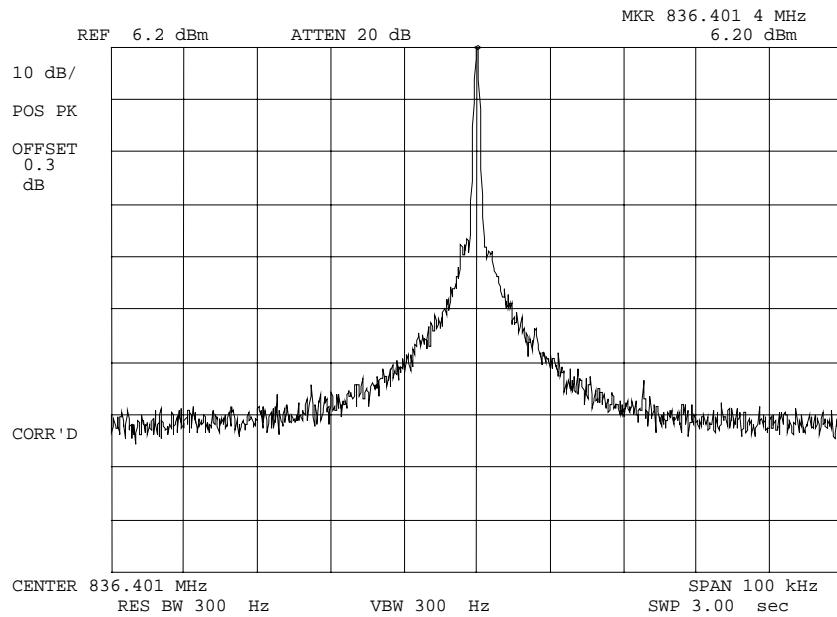
1. The EUT and test equipment were set up as shown on the following page, with the Spectrum Analyzer connected.
2. For EUTs supporting audio modulation, the audio signal generator was adjusted to the frequency of maximum response and with output level set for ± 2.5 kHz deviation (or 50% modulation). With level constant, the signal level was increased 16 dB.
3. For EUTs supporting digital modulation, the digital modulation mode was operated to its maximum extent.
4. The Occupied Bandwidth was measured with the Spectrum Analyzer controls set as shown on the test results.
5. MEASUREMENT RESULTS: ATTACHED

PAGE NO.

24 of 65.

MEASUREMENT SUMMARY: Emission Masks (Occupied Bandwidth)

MODULATION	MEASURED DEVIATION ±kHz (HP 8901A)	LIMIT ±kHz	B/W @-26 dB PLOTS, kHz
NONE	0.0	0.0	0.0
VOICE	10.9	≥ 10.8 & ≤ 13.2	28
WIDEBAND DATA	7.7	≥ 7.2 & ≤ 8.8	30
SAT + VOICE	11.5	N/A	28
SAT + DTMF	10.6	N/A	24
CDMA	N/A	N/A	N/A
TDMA	N/A	N/A	26
NAMPS	N/A	N/A	N/A


PERFORMED BY:

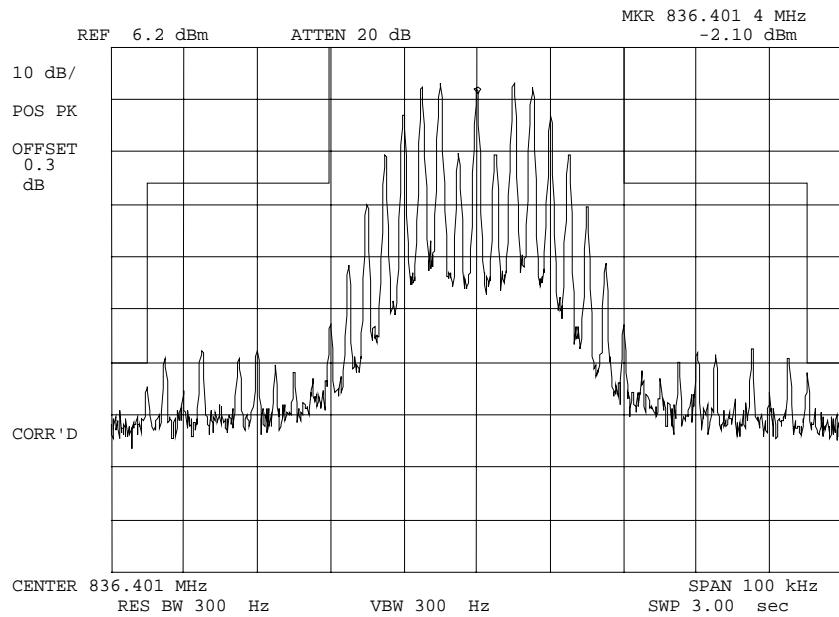
 Doug Noble, B.A.S. E.E.T.

PAGE NO.

25 of 65.

NAME OF TEST: Emission Masks (Occupied Bandwidth)
 g0140099: 2001-Apr-19 Thu 08:52:00
 STATE: 1:Low Power

POWER: LOW
 MODULATION: NONE


PERFORMED BY:

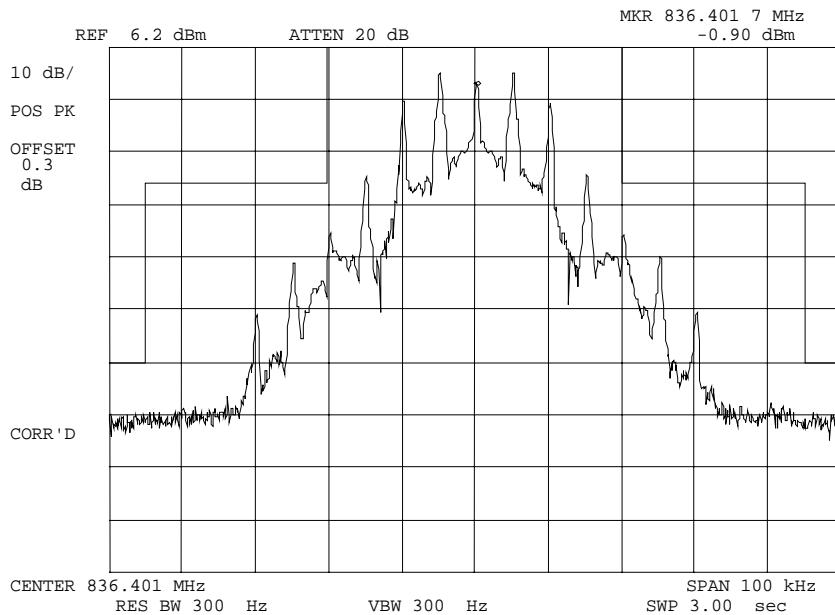
Doug Noble, B.A.S. E.E.T.

PAGE NO.

26 of 65.

NAME OF TEST: Emission Masks (Occupied Bandwidth)
 g0140100: 2001-Apr-19 Thu 08:55:00
 STATE: 1:Low Power

POWER: LOW
 MODULATION: VOICE: 2500 Hz SINE WAVE
 MASK: AMPS CELLULAR,
 F3E/F3D w/LPF


PERFORMED BY:

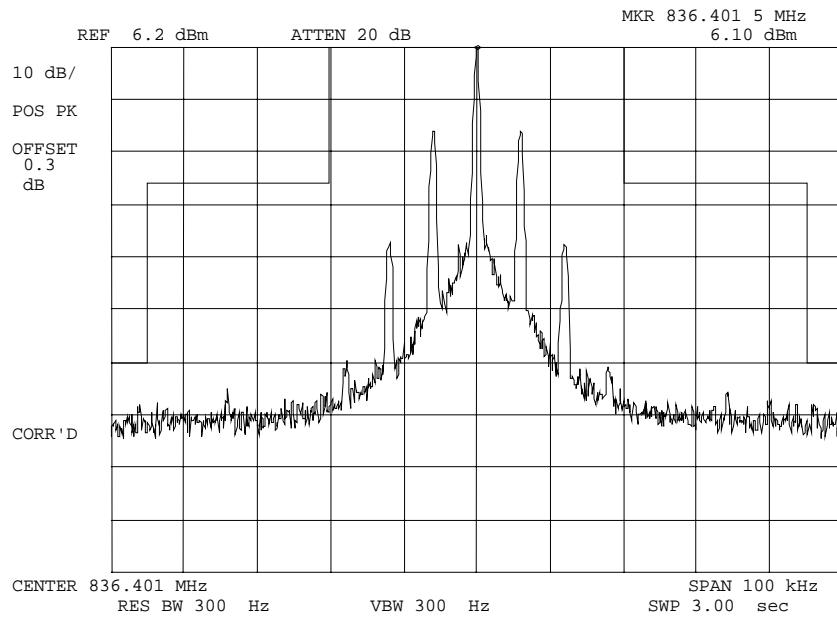
 Doug Noble, B.A.S. E.E.T.

PAGE NO.

27 of 65.

NAME OF TEST: Emission Masks (Occupied Bandwidth)
 g0140115: 2001-Apr-19 Thu 09:36:00
 STATE: 1:Low Power

POWER: LOW
 MODULATION: WBD
 MASK: AMPS CELLULAR F3E/F3D
 W/LPF


PERFORMED BY:

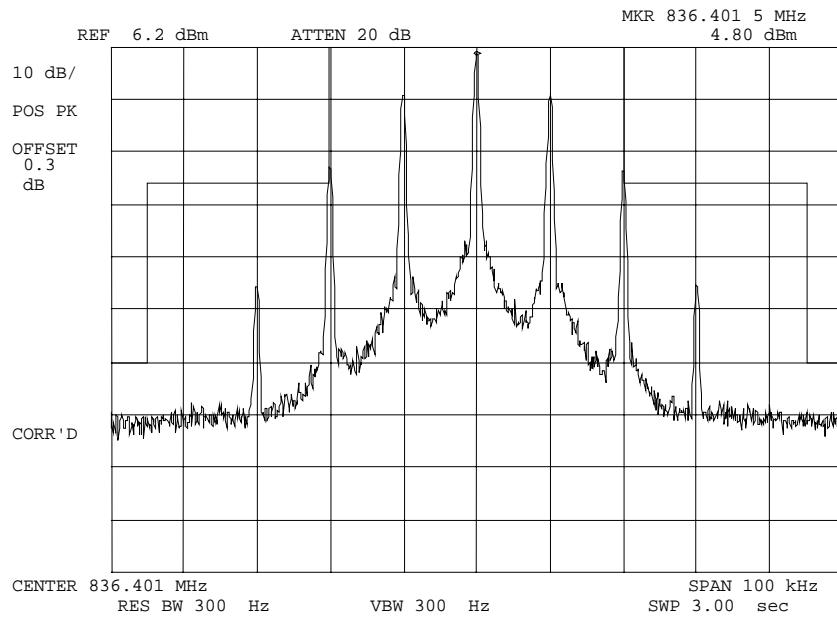
 Doug Noble, B.A.S. E.E.T.

PAGE NO.

28 of 65.

NAME OF TEST: Emission Masks (Occupied Bandwidth)
 g0140104: 2001-Apr-19 Thu 09:01:00
 STATE: 1:Low Power

POWER: LOW
 MODULATION: SAT
 MASK: AMPS CELLULAR,
 F3E/F3D w/LPF


PERFORMED BY:

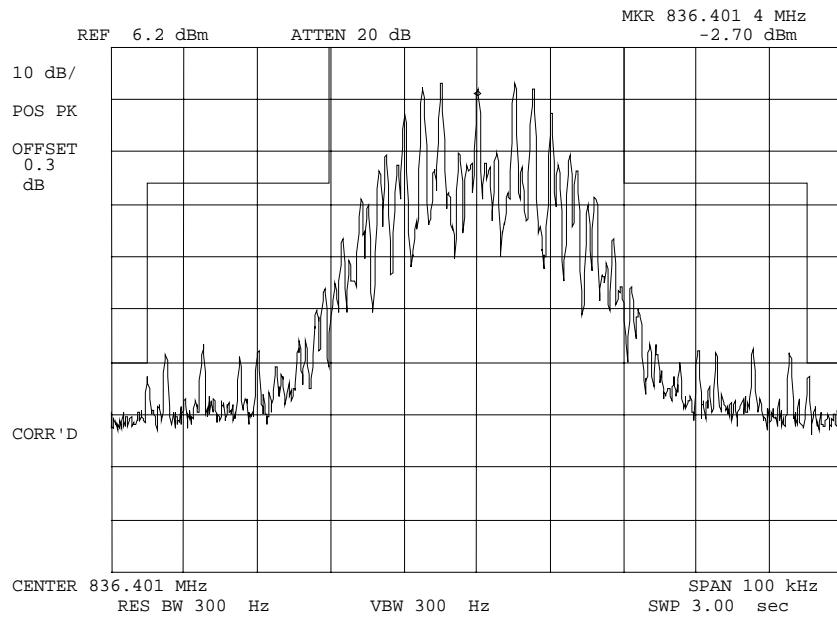
 Doug Noble, B.A.S. E.E.T.

PAGE NO.

29 of 65.

NAME OF TEST: Emission Masks (Occupied Bandwidth)
 g0140108: 2001-Apr-19 Thu 09:13:00
 STATE: 1:Low Power

POWER: LOW
 MODULATION: ST
 MASK: AMPS CELLULAR,
 F3E/F3D w/LPF


PERFORMED BY:

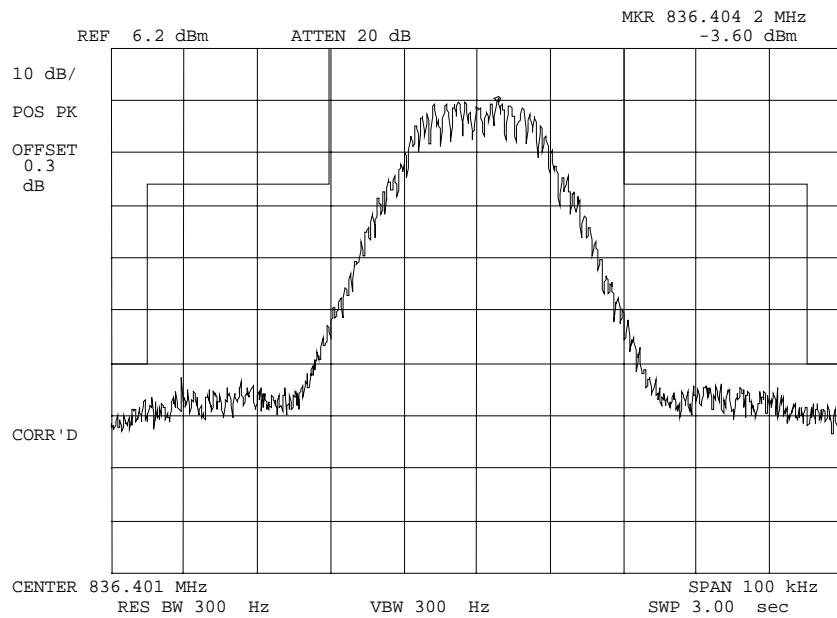
 Doug Noble, B.A.S. E.E.T.

PAGE NO.

30 of 65.

NAME OF TEST: Emission Masks (Occupied Bandwidth)
 g0140103: 2001-Apr-19 Thu 08:59:00
 STATE: 1:Low Power

POWER: LOW
 MODULATION: SAT+VOICE
 MASK: AMPS CELLULAR,
 F3E/F3D w/LPF


PERFORMED BY:

 Doug Noble, B.A.S. E.E.T.

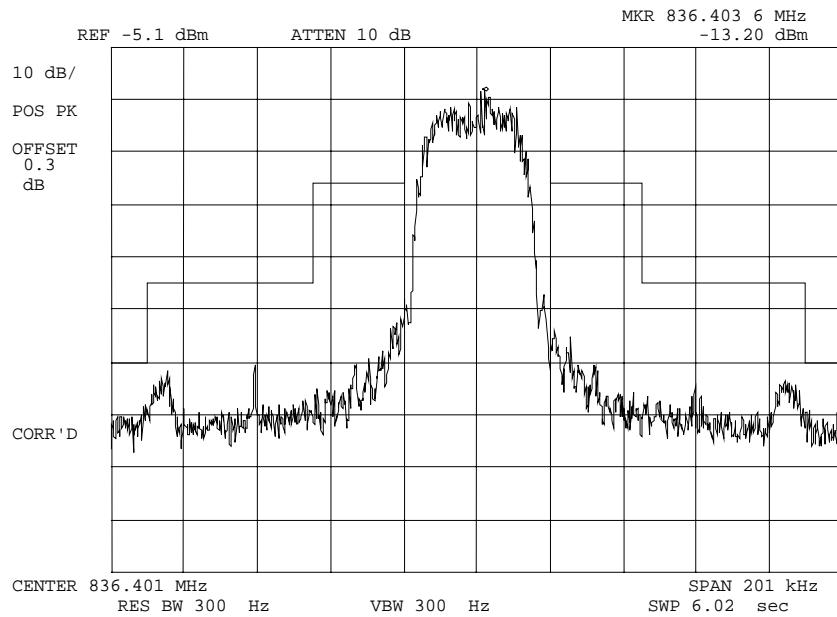
PAGE NO.

31 of 65.

NAME OF TEST: Emission Masks (Occupied Bandwidth)
 g0140107: 2001-Apr-19 Thu 09:08:00
 STATE: 1:Low Power

POWER:
 MODULATION:

LOW
 SAT+DTMF
 MASK: AMPS CELLULAR,
 F3E/F3D w/LPF


PERFORMED BY:

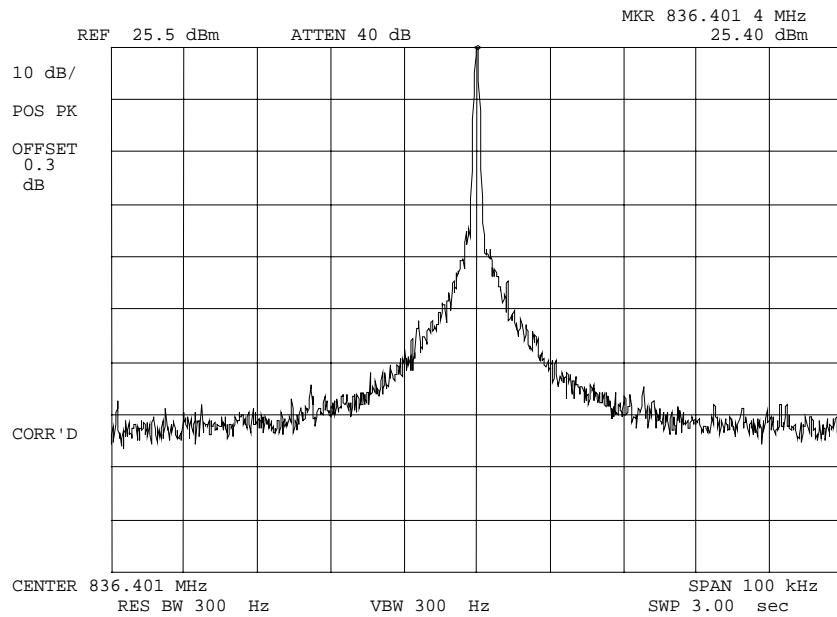
 Doug Noble, B.A.S. E.E.T.

PAGE NO.

32 of 65.

NAME OF TEST: Emission Masks (Occupied Bandwidth)
 g0140119: 2001-Apr-19 Thu 10:05:00
 STATE: 1:Low Power

POWER: LOW
 MODULATION: TDMA
 MASK: AMPS CELLULAR, F1D,
 DATA


PERFORMED BY:

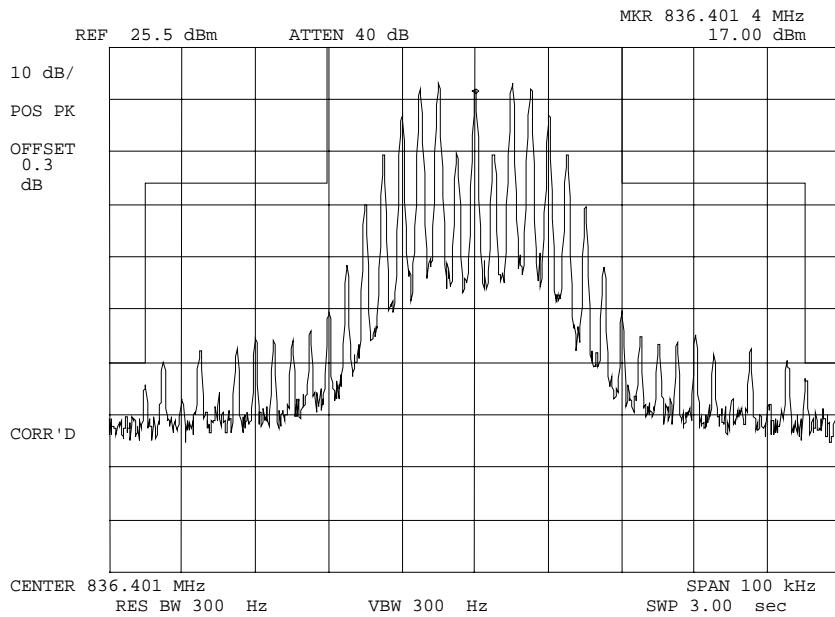
 Doug Noble, B.A.S. E.E.T.

PAGE NO.

33 of 65.

NAME OF TEST: Emission Masks (Occupied Bandwidth)
 g0140098: 2001-Apr-19 Thu 08:50:00
 STATE: 2:High Power

POWER: HIGH
 MODULATION: NONE


PERFORMED BY:

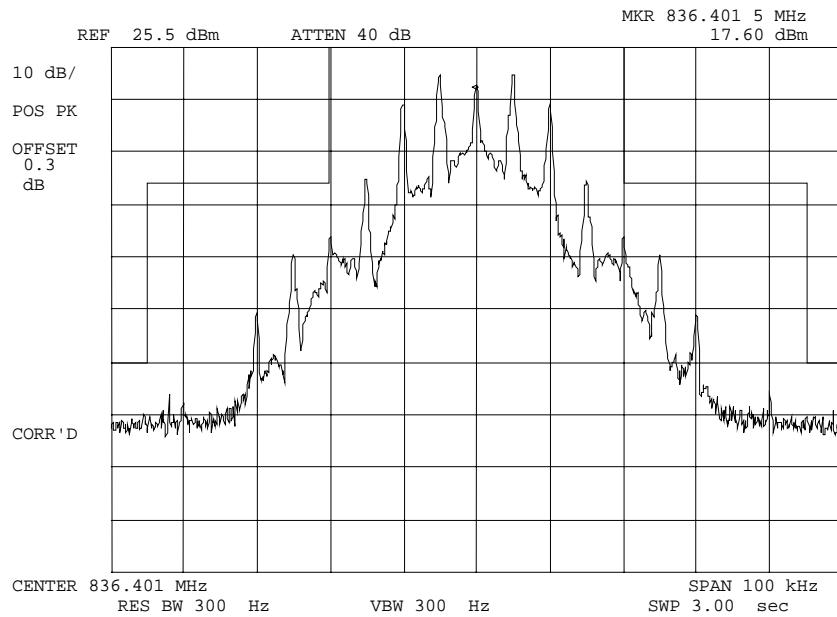
 Doug Noble, B.A.S. E.E.T.

PAGE NO.

34 of 65.

NAME OF TEST: Emission Masks (Occupied Bandwidth)
 g0140101: 2001-Apr-19 Thu 08:56:00
 STATE: 2:High Power

POWER: HIGH
 MODULATION: VOICE: 2500 Hz SINE WAVE
 MASK: AMPS CELLULAR,
 F3E/F3D w/LPF


PERFORMED BY:

 Doug Noble, B.A.S. E.E.T.

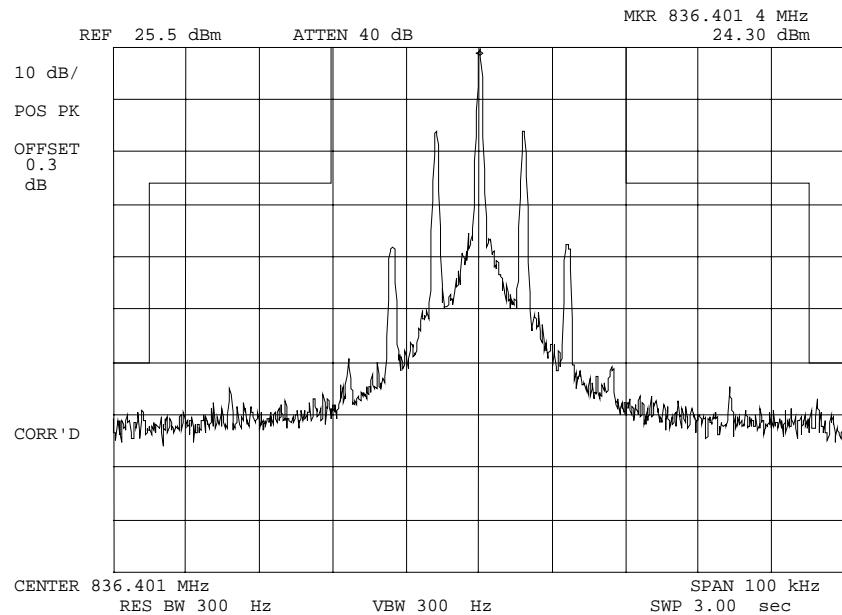
PAGE NO.

35 of 65.

NAME OF TEST: Emission Masks (Occupied Bandwidth)
 g0140114: 2001-Apr-19 Thu 09:33:00
 STATE: 2:High Power

POWER:
 MODULATION:

HIGH
 WBD
 MASK: AMPS CELLULAR F3E/F3D
 W/LPF


PERFORMED BY:

 Doug Noble, B.A.S. E.E.T.

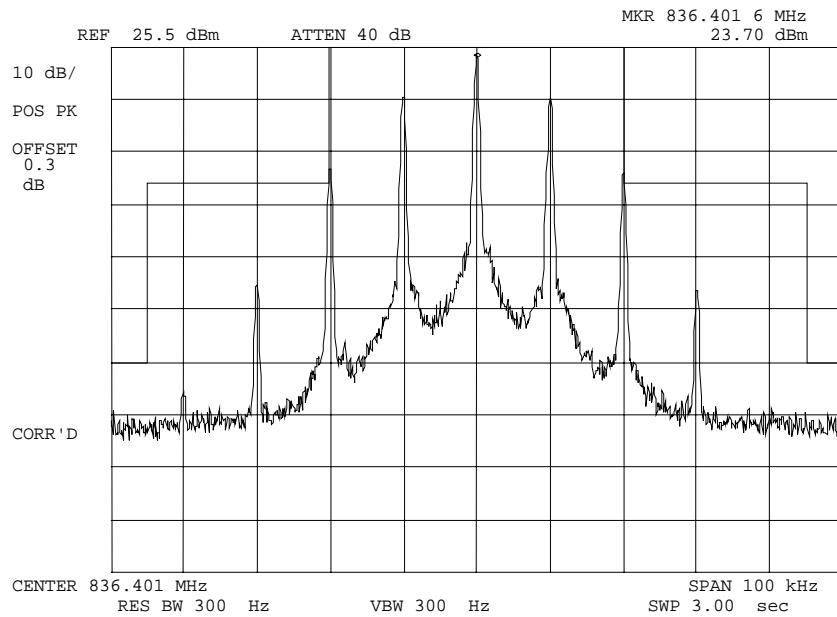
PAGE NO.

36 of 65.

NAME OF TEST: Emission Masks (Occupied Bandwidth)
 g0140105: 2001-Apr-19 Thu 09:04:00
 STATE: 2:High Power

POWER: HIGH
 MODULATION: SAT
 MASK: AMPS CELLULAR,
 F3E/F3D w/LPF

PERFORMED BY:



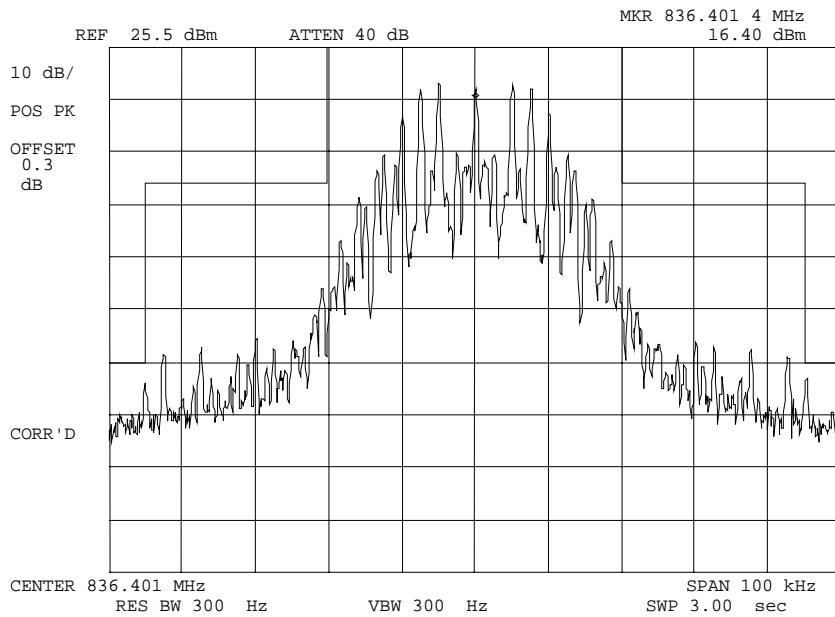
Doug Noble, B.A.S. E.E.T.

PAGE NO.

37 of 65.

NAME OF TEST: Emission Masks (Occupied Bandwidth)
 g0140109: 2001-Apr-19 Thu 09:14:00
 STATE: 2:High Power

POWER: HIGH
 MODULATION: ST
 MASK: AMPS CELLULAR,
 F3E/F3D w/LPF


PERFORMED BY:

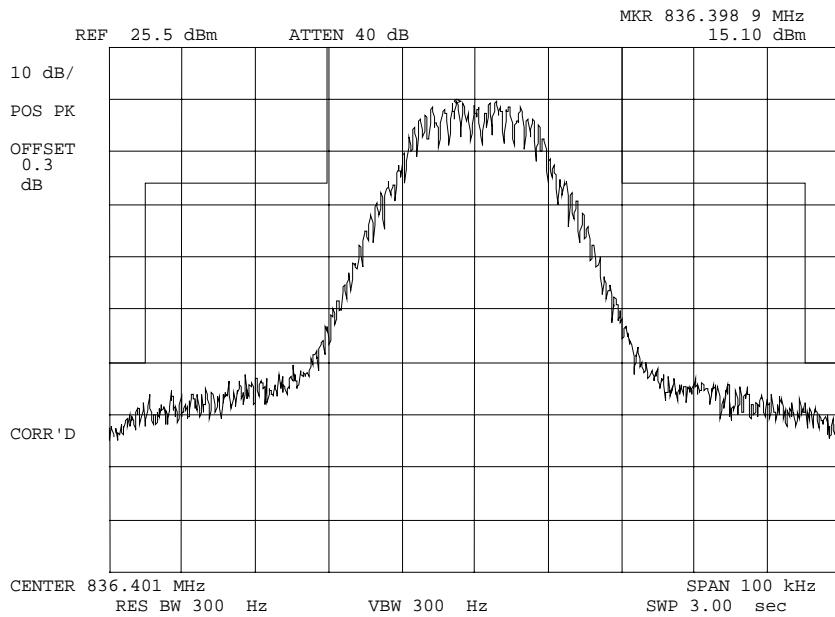
 Doug Noble, B.A.S. E.E.T.

PAGE NO.

38 of 65.

NAME OF TEST: Emission Masks (Occupied Bandwidth)
 g0140102: 2001-Apr-19 Thu 08:58:00
 STATE: 2:High Power

POWER: HIGH
 MODULATION: SAT+VOICE
 MASK: AMPS CELLULAR,
 F3E/F3D w/LPF


PERFORMED BY:

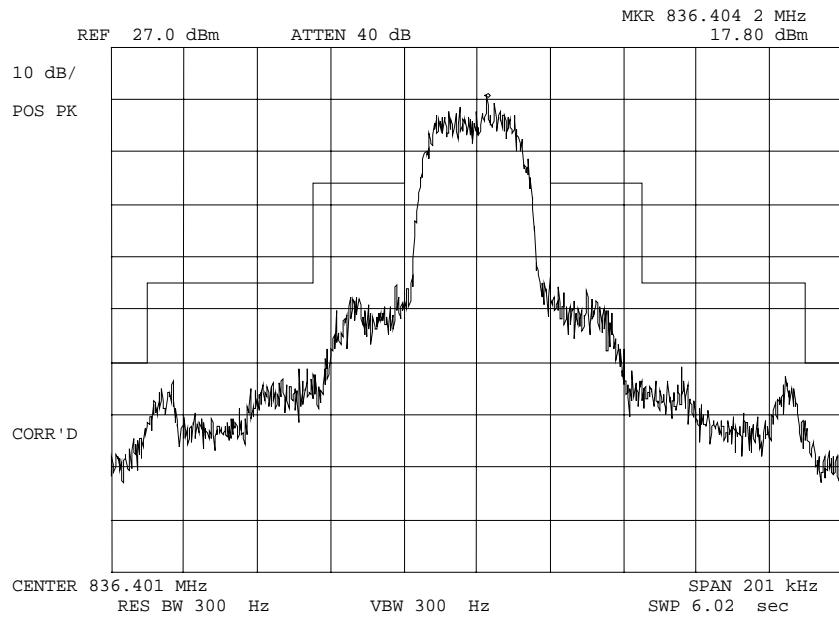
 Doug Noble, B.A.S. E.E.T.

PAGE NO.

39 of 65.

NAME OF TEST: Emission Masks (Occupied Bandwidth)
 g0140106: 2001-Apr-19 Thu 09:06:00
 STATE: 2:High Power

POWER: HIGH
 MODULATION: SAT+DTMF
 MASK: AMPS CELLULAR,
 F3E/F3D w/LPF


PERFORMED BY:

 Doug Noble, B.A.S. E.E.T.

PAGE NO.

40 of 65.

NAME OF TEST: Emission Masks (Occupied Bandwidth)
 g0140118: 2001-Apr-19 Thu 10:03:00
 STATE: 2:High Power

POWER: HIGH
 MODULATION: TDMA
 MASK: AMPS CELLULAR, F1D,
 DATA

PERFORMED BY:

 Doug Noble, B.A.S. E.E.T.

PAGE NO. 41 of 65.

NAME OF TEST: Emission Requirements -
Worst Case Modulation & Wideband Data

SPECIFICATION: 47 CFR 22.917

TEST EQUIPMENT: As per previous page

MEASUREMENT PROCEDURE

1. The EUT was connected to a coaxial attenuator and then to a spectrum analyzer. The unmodulated carrier was set for 0 dB reference level.
2. A notch filter was introduced to reduce or eliminate any spectrum analyzer internally generated spurious for measurements of the harmonics and the carrier level.
3. Spectrum analyzer bandwidth was set to section 22.917(h) as applicable.
4. Measurements were made on channels 380, 799 and 991. The equipment was first modulated for the Worst Case Modulation, then for Wideband Data (F8W, F1D).
5. All other spurious emissions over the range of 0 the beyond the 10th harmonic (10 GHz) were 20 dB or more below the limit
6. The data presented here is for the Worst Case.
7. MEASUREMENT RESULTS: ATTACHED

PAGE NO. 42 of 65.

MEASUREMENT SUMMARY: Emission Requirements -
Worst Case Modulation

WORST CASE MODULATION = VOICE +_SAT

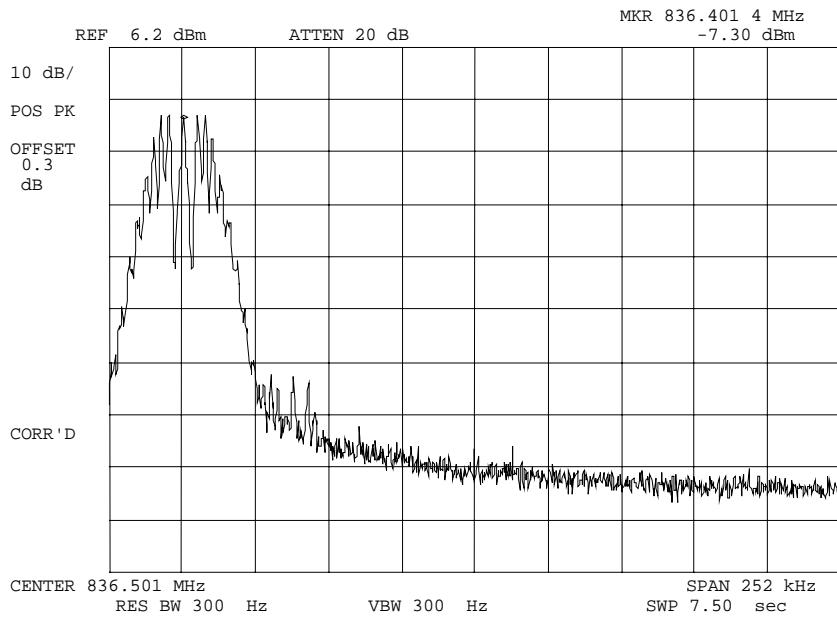
EMISSION, MHz/HARM.	LIMIT, dBc	SPURIOUS EMISSIONS, dBc	
		Lo	Hi
F0 + 20 kHz To F0 + 45 kHz	≤-26	≤-37	≤-37
F0 + 45 kHz To 2 nd Harmonic	≤-60 or 43 + 10 log P	≤-63	≤-64
2 nd to 10 th	(≤-13 dBm)	≤-70.1	≤-56.3

MEASUREMENT RESULTS = ATTACHED OFFSET PLOTS

EMISSION IN THE RECEIVER CRITICAL BAND

EMISSION, MHz/HARM.	LIMIT, dBm	SPURIOUS EMISSIONS, dBm	
		Lo	Hi
869 to 894	≤-80	≤-86.5	≤-86.3

MEASUREMENT RESULTS = ATTACHED PLOTS


PERFORMED BY:

 Doug Noble, B.A.S. E.E.T.

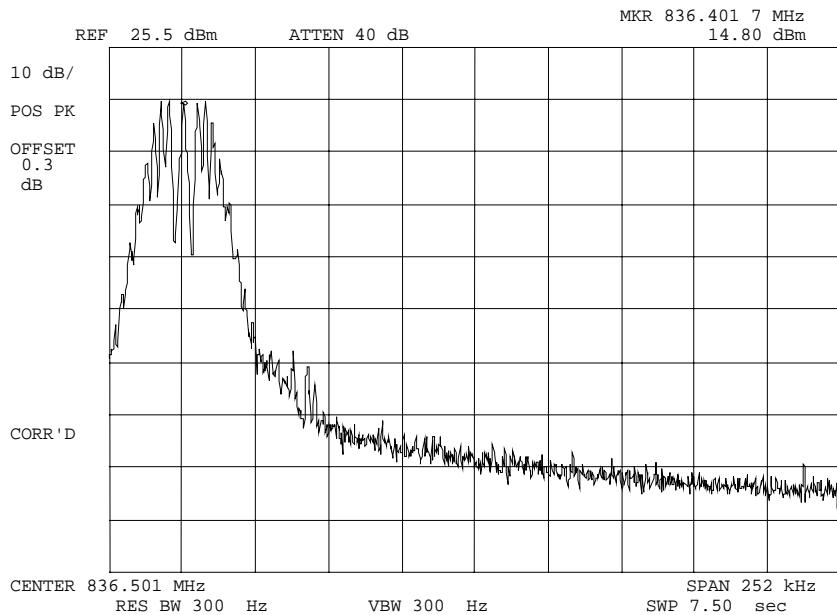
PAGE NO.

43 of 65.

NAME OF TEST: Emission Masks (Occupied Bandwidth)
 g0140117: 2001-Apr-19 Thu 09:43:00
 STATE: 1:Low Power

POWER: LOW
 MODULATION: SAT+VOICE
 OFFSET OCCUPIED BANDWIDTH

PERFORMED BY:



Doug Noble, B.A.S. E.E.T.

PAGE NO.

44 of 65.

NAME OF TEST: Emission Masks (Occupied Bandwidth)
 g0140116: 2001-Apr-19 Thu 09:40:00
 STATE: 2:High Power

POWER: HIGH
 MODULATION: SAT+VOICE
 OFFSET OCCUPIED BANDWIDTH

PERFORMED BY:

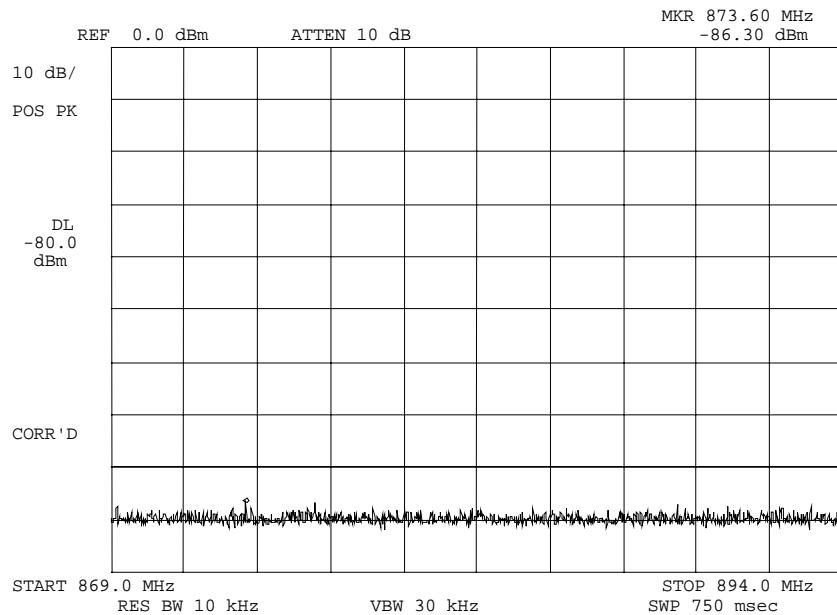
Doug Noble, B.A.S. E.E.T.

PAGE NO.

45 of 65.

NAME OF TEST: Emission Masks (Occupied Bandwidth)
 g0130215: 2001-Mar-21 Wed 14:12:00
 STATE: 1:Low Power

POWER: LOW
 MODULATION: ANY
 TX SPURS IN RX CRITICAL
 BAND


PERFORMED BY:

 Doug Noble, B.A.S. E.E.T.

PAGE NO.

46 of 65.

NAME OF TEST: Emission Masks (Occupied Bandwidth)
 g0130216: 2001-Mar-21 Wed 14:13:00
 STATE: 2:High Power

POWER: HIGH
 MODULATION: ANY
 TX SPURS IN RX CRITICAL
 BAND

PERFORMED BY:

 Doug Noble, B.A.S. E.E.T.

PAGE NO.

47 of 65.

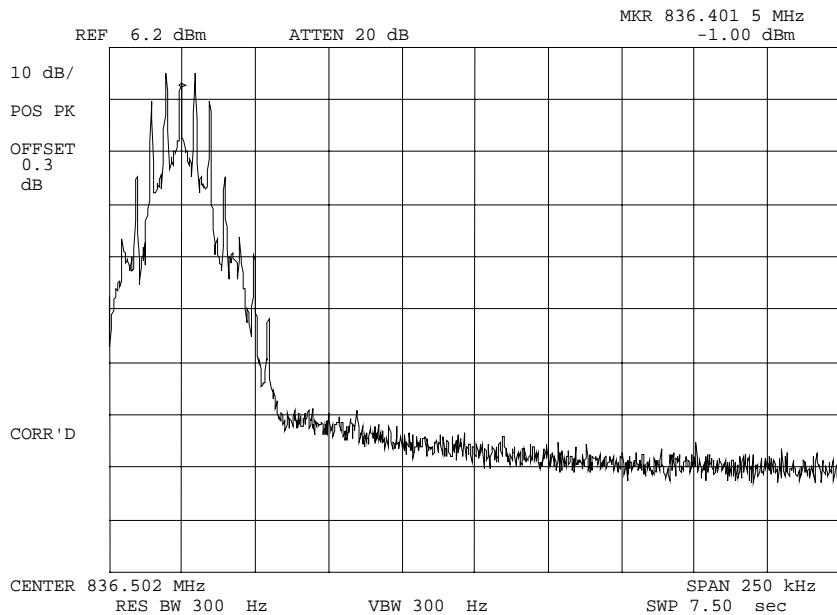
MEASUREMENT SUMMARY: Emission Requirements -
Wideband Data (F1D, 10 kb/s)

EMISSION, MHz/HARM.	LIMIT, dBc	SPURIOUS EMISSIONS, dBc	
		Lo	Hi
F0 + 20 kHz to F0 + 45 kHz	≤-26	≤-38	≤-37
F0 + 45 kHz to F0 + 90 kHz	≤-45	≤-70	≤-69
F0 + 90 kHz to 2 nd Harmonic	≤-60 (≤-13 dBm)	≤-78.1	≤-73.5
2 nd to 10 th	(≤-13 dBm)	≤-70.1	≤-56.3

MEASUREMENT RESULTS = ATTACHED OFFSET PLOTS

EMISSION IN THE RECEIVER CRITICAL BAND

EMISSION, MHz/HARM.	LIMIT, dBm	SPURIOUS EMISSIONS, dBm	
		Lo	Hi
869 to 894	≤-80	≤-86.5	≤-86.3
MEASUREMENT RESULTS		= ATTACHED PLOTS	


PERFORMED BY:

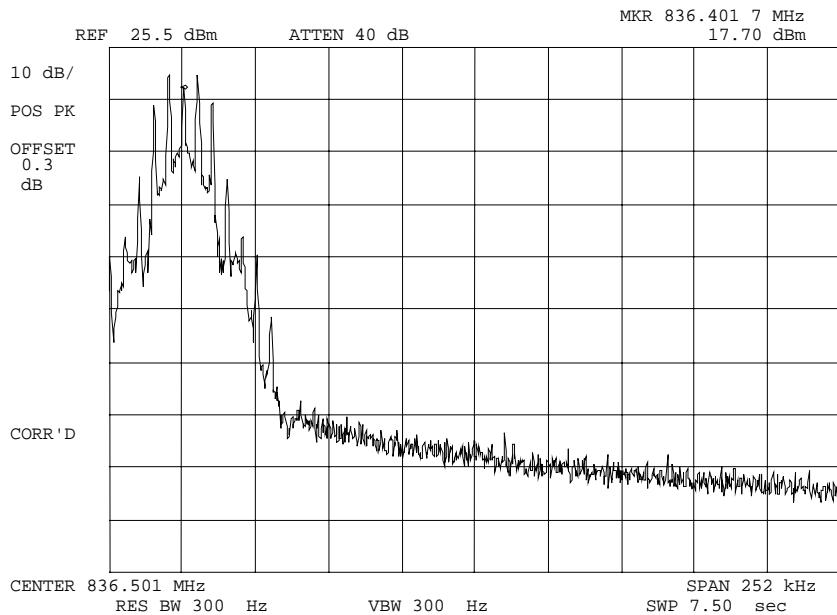
 Doug Noble, B.A.S. E.E.T.

PAGE NO.

48 of 65.

NAME OF TEST: Emission Masks (Occupied Bandwidth)
 g0140112: 2001-Apr-19 Thu 09:25:00
 STATE: 1:Low Power

POWER: LOW
 MODULATION: WBD
 OFFSET OCCUPIED BANDWIDTH


PERFORMED BY:

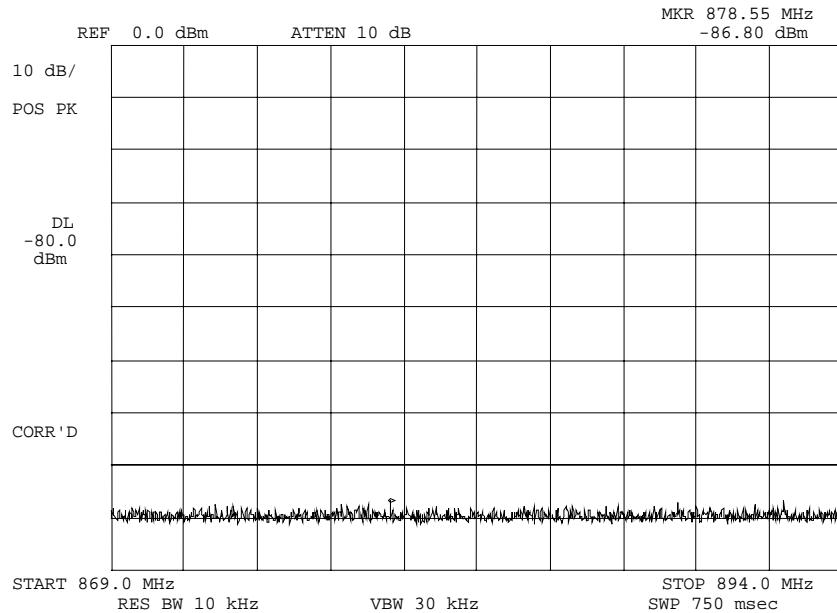
 Doug Noble, B.A.S. E.E.T.

PAGE NO.

49 of 65.

NAME OF TEST: Emission Masks (Occupied Bandwidth)
 g0140113: 2001-Apr-19 Thu 09:29:00
 STATE: 2:High Power

POWER: HIGH
 MODULATION: WBD
 OFFSET OCCUPIED BANDWIDTH


PERFORMED BY:

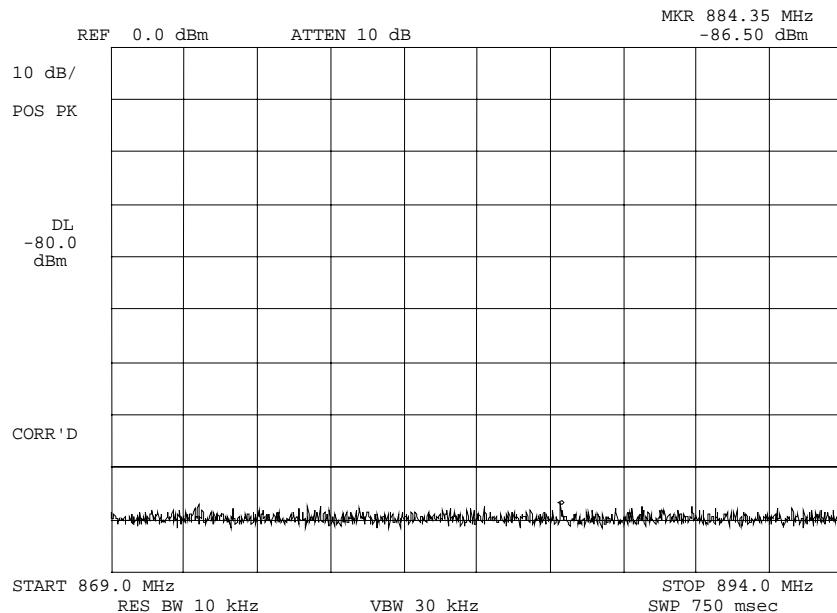
 Doug Noble, B.A.S. E.E.T.

PAGE NO.

50 of 65.

NAME OF TEST: Emission Masks (Occupied Bandwidth)
 g0130211: 2001-Mar-21 Wed 14:03:00
 STATE: 1:Low Power

POWER: LOW
 MODULATION: ANY
 TX SPURS IN RX CRITICAL
 BAND


PERFORMED BY:

 Doug Noble, B.A.S. E.E.T.

PAGE NO.

51 of 65.

NAME OF TEST: Emission Masks (Occupied Bandwidth)
 g0130212: 2001-Mar-21 Wed 14:04:00
 STATE: 2:High Power

POWER: HIGH
 MODULATION: ANY
 TX SPURS IN RX CRITICAL
 BAND

PERFORMED BY:

 Doug Noble, B.A.S. E.E.T.

PAGE NO. 52 of 65.

NAME OF TEST: Spurious Emissions at Antenna Terminals

SPECIFICATION: 47 CFR 2.1051, 22.917

TEST EQUIPMENT: As per attached page

MEASUREMENT PROCEDURE

1. The EUT was connected to a coaxial attenuator and then to a Spectrum Analyzer.
2. A notch filter was introduced to reduce or eliminate spurious emission which could be generated internally in the spectrum analyzer.
3. Measurements were made over the range from 45 kHz to 10 GHz for the worst case modulation so both the highest and lowest R.F. power settings.
4. All other emissions were 20 dB or more below the limit.
5. Spectrum analyzer bandwidth was set to section 22.917(h) as applicable.
6. MEASUREMENT RESULTS: ATTACHED

PAGE NO.

53 of 65.

NAME OF TEST: Unwanted Emissions (Transmitter Conducted)
 g0140127: 2001-Apr-19 Thu 11:33:00
 STATE: 1:Low Power AMPS

FREQUENCY TUNED, MHz	FREQUENCY EMISSION, MHz	LEVEL, dBm	LEVEL, dBc	MARGIN, dB
824.040000	1648.066000	-72.5	-78.7	-52.5
836.400000	1672.811000	-72.8	-79	-52.8
848.970000	1697.967000	-73	-79.2	-53
824.040000	2472.153000	-67.5	-73.7	-47.5
836.400000	2509.208000	-67.4	-73.6	-47.4
848.970000	2546.898000	-69.1	-75.3	-49.1
824.040000	3296.330000	-75.7	-81.9	-55.7
836.400000	3345.324000	-74.6	-80.8	-54.6
848.970000	3396.368000	-75.5	-81.7	-55.5
824.040000	4119.712000	-75.3	-81.5	-55.3
836.400000	4182.244000	-76.1	-82.3	-56.1
848.970000	4244.745000	-75	-81.2	-55
824.040000	4944.234000	-75.2	-81.4	-55.2
836.400000	5018.825000	-75.8	-82	-55.8
848.970000	5093.523000	-75.5	-81.7	-55.5
824.040000	5768.542000	-75.5	-81.7	-55.5
836.400000	5854.975000	-69.9	-76.1	-49.9
848.970000	5943.030000	-69.9	-76.1	-49.9
824.040000	6592.222000	-70.2	-76.4	-50.2
836.400000	6691.148000	-68.9	-75.1	-48.9
848.970000	6791.596000	-70.3	-76.5	-50.3
824.040000	7416.733000	-70.3	-76.5	-50.3
836.400000	7527.661000	-69.7	-75.9	-49.7
848.970000	7640.451000	-69	-75.2	-49
824.040000	8240.208000	-69.5	-75.7	-49.5
836.400000	8363.714000	-69.8	-76	-49.8
848.970000	8489.247000	-70.4	-76.6	-50.4
824.040000	9063.965000	-69.5	-75.7	-49.5
836.400000	9200.230000	-70	-76.2	-50
848.970000	9338.475000	-70	-76.2	-50
824.040000	9888.716000	-69.8	-76	-49.8
836.400000	10037.097000	-69.6	-75.8	-49.6
848.970000	10188.067000	-69.3	-75.5	-49.3
824.040000	10712.175000	-71	-77.2	-51
836.400000	10873.035000	-69.8	-76	-49.8
848.970000	11037.009000	-70	-76.2	-50
824.040000	11536.080000	-69.4	-75.6	-49.4
836.400000	11709.815000	-70.2	-76.4	-50.2
848.970000	11885.668000	-70.3	-76.5	-50.3
824.040000	12360.567000	-69.5	-75.7	-49.5
836.400000	12546.374000	-65.4	-71.6	-45.4
848.970000	12734.209000	-64.2	-70.4	-44.2

PAGE NO.

54 of 65.

NAME OF TEST: Unwanted Emissions (Transmitter Conducted)
 g0140126: 2001-Apr-19 Thu 11:31:00
 STATE: 2:High Power AMPS

FREQUENCY TUNED, MHz	FREQUENCY EMISSION, MHz	LEVEL, dBm	LEVEL, dBc	MARGIN, dB
824.040000	1648.086000	-43.6	-69	-23.6
836.400000	1672.813000	-49.8	-75.2	-29.8
848.970000	1697.959000	-48.1	-73.5	-28.1
824.040000	2472.124000	-32.5	-57.9	-12.5
836.400000	2509.188000	-31.4	-56.8	-11.4
848.970000	2546.895000	-30.9	-56.3	-10.9
824.040000	3296.207000	-51.8	-77.2	-31.8
836.400000	3345.572000	-51.3	-76.7	-31.3
848.970000	3395.848000	-48.3	-73.7	-28.3
824.040000	4119.942000	-55.6	-81	-35.6
836.400000	4182.227000	-55.2	-80.6	-35.2
848.970000	4245.125000	-56.2	-81.6	-36.2
824.040000	4944.733000	-55.3	-80.7	-35.3
836.400000	5018.096000	-54.1	-79.5	-34.1
848.970000	5093.508000	-55.7	-81.1	-35.7
824.040000	5768.523000	-55.1	-80.5	-35.1
836.400000	5855.181000	-49.9	-75.3	-29.9
848.970000	5942.803000	-50	-75.4	-30
824.040000	6592.529000	-49.6	-75	-29.6
836.400000	6691.510000	-49.5	-74.9	-29.5
848.970000	6792.231000	-49.9	-75.3	-29.9
824.040000	7416.820000	-50.5	-75.9	-30.5
836.400000	7527.498000	-48.6	-74	-28.6
848.970000	7640.523000	-50.7	-76.1	-30.7
824.040000	8240.071000	-50.2	-75.6	-30.2
836.400000	8363.982000	-50.2	-75.6	-30.2
848.970000	8490.089000	-50.1	-75.5	-30.1
824.040000	9064.567000	-50.9	-76.3	-30.9
836.400000	9200.214000	-50.1	-75.5	-30.1
848.970000	9338.249000	-49.8	-75.2	-29.8
824.040000	9888.540000	-49.4	-74.8	-29.4
836.400000	10037.002000	-49.2	-74.6	-29.2
848.970000	10187.463000	-49.2	-74.6	-29.2
824.040000	10712.126000	-49.8	-75.2	-29.8
836.400000	10872.968000	-49.4	-74.8	-29.4
848.970000	11036.246000	-49.6	-75	-29.6
824.040000	11536.970000	-50.4	-75.8	-30.4
836.400000	11709.428000	-48.9	-74.3	-28.9
848.970000	11885.814000	-49.3	-74.7	-29.3
824.040000	12360.270000	-48.9	-74.3	-28.9
836.400000	12546.258000	-45.4	-70.8	-25.4
848.970000	12734.553000	-45.7	-71.1	-25.7

PAGE NO.

55 of 65.

NAME OF TEST: Unwanted Emissions (Transmitter Conducted)
 g0140131: 2001-Apr-19 Thu 13:25:00
 STATE: 2:Low Power TDMA

FREQUENCY TUNED, MHz	FREQUENCY EMISSION, MHz	LEVEL, dBm	LEVEL, dBc	MARGIN, dB
824.040000	1647.831000	-84.1	-79	-64.1
836.400000	1672.857000	-83.2	-78.1	-63.2
848.970000	1698.166000	-84.4	-79.3	-64.4
824.040000	2472.188000	-83.3	-78.2	-63.3
836.400000	2509.219000	-82.3	-77.2	-62.3
848.970000	2546.914000	-81.4	-76.3	-61.4
824.040000	3295.749000	-86.1	-81	-66.1
836.400000	3345.431000	-85.6	-80.5	-65.6
848.970000	3396.298000	-84.4	-79.3	-64.4
824.040000	4120.201000	-86.1	-81	-66.1
836.400000	4182.349000	-85.3	-80.2	-65.3
848.970000	4244.923000	-84	-78.9	-64
824.040000	4943.939000	-85.5	-80.4	-65.5
836.400000	5018.317000	-85	-79.9	-65
848.970000	5093.751000	-85.1	-80	-65.1
824.040000	5768.685000	-84.5	-79.4	-64.5
836.400000	5854.492000	-79.7	-74.6	-59.7
848.970000	5942.532000	-80.3	-75.2	-60.3
824.040000	6592.435000	-80.1	-75	-60.1
836.400000	6691.163000	-79.5	-74.4	-59.5
848.970000	6791.813000	-79.5	-74.4	-59.5
824.040000	7416.029000	-79.6	-74.5	-59.6
836.400000	7527.407000	-79.8	-74.7	-59.8
848.970000	7640.318000	-80.3	-75.2	-60.3
824.040000	8240.865000	-78.5	-73.4	-58.5
836.400000	8363.653000	-79	-73.9	-59
848.970000	8489.576000	-80.3	-75.2	-60.3
824.040000	9064.793000	-79.5	-74.4	-59.5
836.400000	9200.814000	-79.7	-74.6	-59.7
848.970000	9339.163000	-80.3	-75.2	-60.3
824.040000	9888.723000	-80.5	-75.4	-60.5
836.400000	10036.459000	-79.3	-74.2	-59.3
848.970000	10187.169000	-80.2	-75.1	-60.2
824.040000	10712.567000	-79.4	-74.3	-59.4
836.400000	10873.292000	-80.1	-75	-60.1
848.970000	11036.530000	-79.6	-74.5	-59.6
824.040000	11536.432000	-79.1	-74	-59.1
836.400000	11709.652000	-79.7	-74.6	-59.7
848.970000	11886.024000	-78.4	-73.3	-58.4
824.040000	12360.624000	-79.2	-74.1	-59.2
836.400000	12545.571000	-75.5	-70.4	-55.5
848.970000	12734.641000	-75.2	-70.1	-55.2

PAGE NO.

56 of 65.

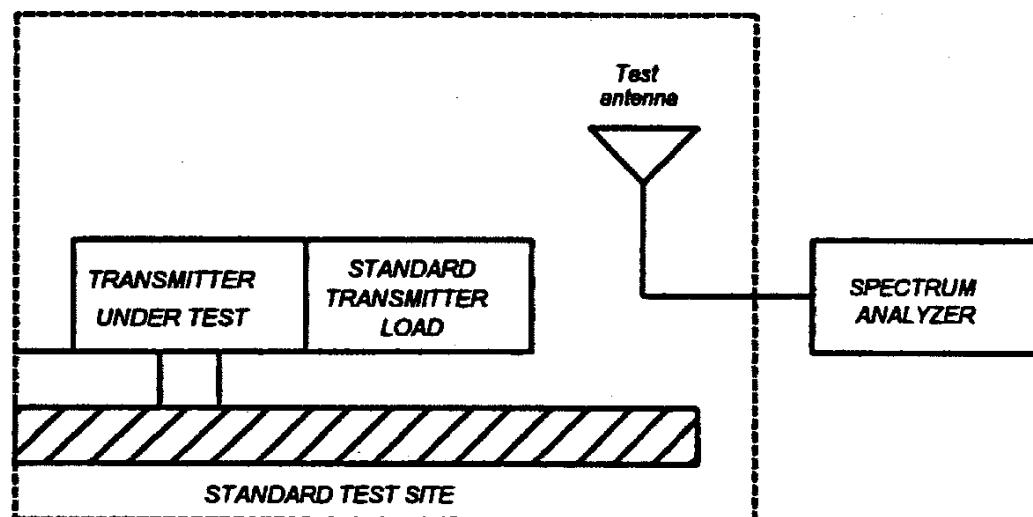
NAME OF TEST: Unwanted Emissions (Transmitter Conducted)
 g0140132: 2001-Apr-19 Thu 13:23:00
 STATE: 2:High Power TDMA

FREQUENCY TUNED, MHz	FREQUENCY EMISSION, MHz	LEVEL, dBm	LEVEL, dBc	MARGIN, dB
824.040000	1648.271000	-53.4	-80.4	-33.4
836.400000	1672.806000	-48.7	-75.7	-28.7
848.970000	1697.719000	-54.5	-81.5	-34.5
824.040000	2472.098000	-52.7	-79.7	-32.7
836.400000	2509.661000	-54.7	-81.7	-34.7
848.970000	2547.272000	-54.9	-81.9	-34.9
824.040000	3296.147000	-50.2	-77.2	-30.2
836.400000	3345.577000	-54.3	-81.3	-34.3
848.970000	3395.760000	-55.4	-82.4	-35.4
824.040000	4120.042000	-54.8	-81.8	-34.8
836.400000	4181.602000	-54.3	-81.3	-34.3
848.970000	4244.991000	-53.9	-80.9	-33.9
824.040000	4944.515000	-54.4	-81.4	-34.4
836.400000	5018.183000	-53.8	-80.8	-33.8
848.970000	5094.097000	-55.1	-82.1	-35.1
824.040000	5768.092000	-55.7	-82.7	-35.7
836.400000	5854.452000	-49.6	-76.6	-29.6
848.970000	5943.108000	-48.8	-75.8	-28.8
824.040000	6592.065000	-49	-76	-29
836.400000	6690.846000	-49.9	-76.9	-29.9
848.970000	6792.200000	-48.7	-75.7	-28.7
824.040000	7416.707000	-49.9	-76.9	-29.9
836.400000	7527.324000	-49.9	-76.9	-29.9
848.970000	7641.008000	-50.1	-77.1	-30.1
824.040000	8240.076000	-49.9	-76.9	-29.9
836.400000	8364.018000	-50.3	-77.3	-30.3
848.970000	8489.559000	-49.9	-76.9	-29.9
824.040000	9064.740000	-48.9	-75.9	-28.9
836.400000	9200.396000	-50.4	-77.4	-30.4
848.970000	9339.158000	-50.5	-77.5	-30.5
824.040000	9888.451000	-49.5	-76.5	-29.5
836.400000	10037.179000	-49.6	-76.6	-29.6
848.970000	10187.829000	-49.9	-76.9	-29.9
824.040000	10712.117000	-49	-76	-29
836.400000	10873.209000	-48.8	-75.8	-28.8
848.970000	11036.713000	-48	-75	-28
824.040000	11537.054000	-49.2	-76.2	-29.2
836.400000	11709.498000	-49.1	-76.1	-29.1
848.970000	11885.854000	-49	-76	-29
824.040000	12360.280000	-50	-77	-30
836.400000	12546.232000	-45.4	-72.4	-25.4
848.970000	12734.072000	-44.6	-71.6	-24.6

PAGE NO. 57 of 65.

NAME OF TEST: Field Strength of Spurious Radiation

SPECIFICATION: 47 CFR 2.1053(a)


GUIDE: ANSI/TIA/EIA-603-1992, Paragraph 1.2.12

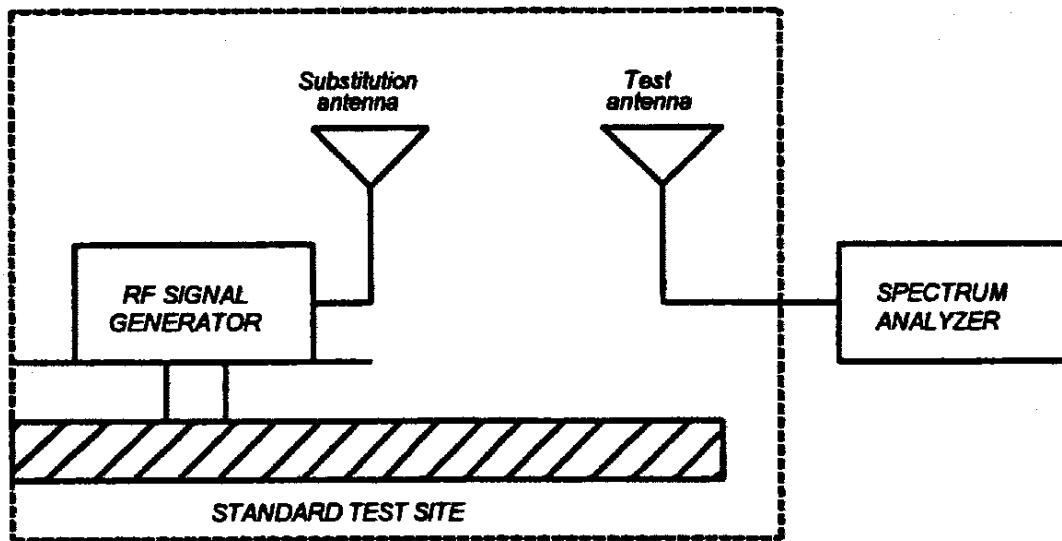
MEASUREMENT PROCEDURE

1.2.12.1 Definition: Radiated spurious emissions are emissions from the equipment when transmitting into a non-radiating load on a frequency or frequencies which are outside an occupied band sufficient to ensure transmission of information of required quality for the class of communications desired.

1.2.12.2 Method of Measurement

- A) Connect the equipment as illustrated
- B) Adjust the spectrum analyzer for the following settings:
 - 1) Resolution Bandwidth ≤ 3 kHz.
 - 2) Video Bandwidth ≥ 10 kHz
 - 3) Sweep Speed ≤ 2000 Hz/second
 - 4) Detector Mode = Positive Peak
- C) Place the transmitter to be tested on the turntable in the standard test site. The transmitter is transmitting into a non-radiating load which is placed on the turntable. The RF cable to this load should be of minimum length.

PAGE NO.


58 of 65.

NAME OF TEST: Field Strength of Spurious Radiation (Cont.)

D) For each spurious measurement the test antenna should be adjusted to the correct length for the frequency involved. This length may be determined from a calibration ruler supplied with the equipment. Measurements shall be made from the lowest radio frequency generated in the equipment to the tenth harmonic of the carrier, except for the region close to the carrier equal to \pm the test bandwidth (see section 1.3.4.4).

E) For each spurious frequency, raise and lower the test antenna from 1 m to 4 m to obtain a maximum reading on the spectrum analyzer with the test antenna at horizontal polarity. Repeat this procedure to obtain the highest possible reading. Record this maximum reading.

F) Repeat step E) for each spurious frequency with the test antenna polarized vertically.

G) Reconnect the equipment as illustrated.

H) Keep the spectrum analyzer adjusted as in step B).

I) Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground.

PAGE NO.

59 of 65.

NAME OF TEST: Field Strength of Spurious Radiation (Cont.)

J) Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a non-radiating cable. With the antennas at both ends horizontally polarized and with the signal generator tuned to a particular spurious frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.

K) Repeat step J) with both antennas vertically polarized for each spurious frequency.

L) Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps J) and K) by the power loss in the cable between the generator and the antenna and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna.

M) The levels recorded in step L) are absolute levels of radiated spurious emissions in dBm. The radiated spurious emissions in dB can be calculated by the following:

Radiated spurious emissions dB =
 $10\log_{10}(\text{TX power in watts}/0.001) - \text{the levels in step 1}$

NOTE: It is permissible that other antennas provided can be referenced to a dipole.

Test Equipment:

Asset (as applicable)	Description	s/n	Cycle	Last Cal
Per ANSI C63.4-1992/2000 Draft, 10.1.4				
<u>TRANSDUCER</u>				
i00088	EMCO 3109-B 25MHz-300MHz	2336	12 mo.	Sep-00
i00065	EMCO 3301-B Active Monopole	2635	12 mo.	Sep-00
i00089	Aprel 2001 200MHz-1GHz	001500	12 mo.	Sep-00
i00103	EMCO 3115 1GHz-18GHz	9208-3925	12 mo.	Sep-00
<u>AMPLIFIER</u>				
i00028	HP 8449A	2749A00121	12 mo.	Mar-01
Per ANSI C63.4-1992/2000 Draft, 10.1.4				
Per ANSI C63.4-1992/2000 Draft, 10.1.4				
<u>SPECTRUM ANALYZER</u>				
i00029	HP 8563E	3213A00104	12 mo.	Aug-00
i00033	HP 85462A	3625A00357	12 mo.	May-00
i00048	HP 8566B	2511AD1467	6 mo.	Nov-00

PAGE NO. 60 of 65.

MEASUREMENT RESULTS: FIELD STRENGTH OF SPURIOUS RADIATION

Measurement Distance, m = 3

Spectrum Searched, GHz = 0 to 10

AMPS:

TUNED, MHz	CHANNEL NUMBER	EMISSION MHz/HARM.	LEVEL, dBc	
			Lo	Hi
824.040	991	2 nd - 10 th	<-60	<-60
836.400	380	2 nd - 10 th	<-60	<-60
848.970	799	2 nd - 10 th	<-60	<-60

TDMA:

TUNED, MHz	CHANNEL NUMBER	EMISSION MHz/HARM.	LEVEL, dBc	
			Lo	Hi
824.040	991	2 nd - 10 th	<-58	<-58
836.400	380	2 nd - 10 th	<-58	<-58
848.970	799	2 nd - 10 th	<-58	<-58

NOTE:

For channels 380, 799 and 991, the field strength of spurious radiation over the above noted range measured 20 dB or more below the limit.

PERFORMED BY:

Doug Noble, B.A.S. E.E.T.

PAGE NO.

61 of 65.

AMPS

g0140096: 2001-Apr-18 Wed 10:20:00

FREQUENCY TUNED, MHz	FREQUENCY EMISSION, MHz	METER, dBuV/m	CF, dB	ERP, dBm	ERP, Watts 10^{-6}
836.400000	1672.793333	58.33	-0.38	-39.4	35.7
836.400000	2509.196667	59.83	3.06	-34.5	35.7
836.400000	3345.600000	46.67	5.7	-45	\leq 35.7
836.400000	4182.011600	37.83	7.53	-52	\leq 35.7
836.400000	5018.376301	35	9.26	-53.1	\leq 35.7
836.400000	5854.802967	32.5	10.78	-54.1	\leq 35.7
836.400000	6691.211301	31.33	12.2	-53.8	\leq 35.7
836.400000	7527.637967	31.83	13.5	-52	\leq 35.7
836.400000	8364.019634	31.5	14.55	-51.3	\leq 35.7

TDMA

g0140097: 2001-Apr-18 Wed 11:36:00

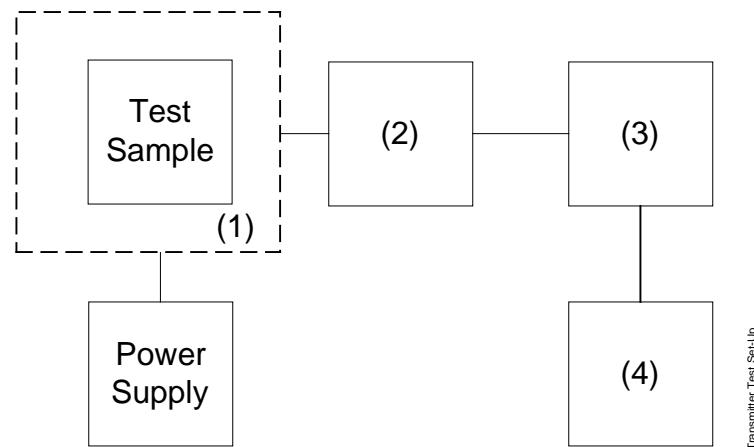
FREQUENCY TUNED, MHz	FREQUENCY EMISSION, MHz	METER, dBuV/m	CF, dB	ERP, dBm	ERP, Watts 10^{-6}
836.400000	1672.821301	61.5	-0.38	-36.3	0.96
836.400000	2509.232967	64.17	3.06	-30.1	0.96
836.400000	3345.648801	54.33	5.7	-37.3	\leq 0.96
836.400000	4182.023801	40.5	7.53	-49.3	\leq 0.96
836.400000	5018.470468	34.5	9.26	-53.6	\leq 0.96
836.400000	5854.882968	32.83	10.78	-53.8	\leq 0.96
836.400000	6691.272134	32.67	12.2	-52.5	\leq 0.96
836.400000	7527.757968	33.83	13.5	-50	\leq 0.96
836.400000	8364.087968	31	14.55	-51.8	\leq 0.96

PAGE NO. 62 of 65.

NAME OF TEST: Frequency Stability (Temperature Variation)

SPECIFICATION: 47 CFR 2.1055(a)(1)

TEST CONDITIONS: As Indicated


TEST EQUIPMENT: As per attached page

MEASUREMENT PROCEDURE

1. The EUT and test equipment were set up as shown on the following page.
2. With all power removed, the temperature was decreased to -30°C and permitted to stabilize for three hours. Power was applied and the maximum change in frequency was noted within one minute.
3. With power OFF, the temperature was raised in 10°C steps. The sample was permitted to stabilize at each step for at least one-half hour. Power was applied and the maximum frequency change was noted within one minute.
4. The temperature tests were performed for the worst case.
5. MEASUREMENT RESULTS: ATTACHED

TRANSMITTER TEST SET-UP

TEST A. OPERATIONAL STABILITY
 TEST B. CARRIER FREQUENCY STABILITY
 TEST C. OPERATIONAL PERFORMANCE STABILITY
 TEST D. HUMIDITY
 TEST E. VIBRATION
 TEST F. ENVIRONMENTAL TEMPERATURE
 TEST G. FREQUENCY STABILITY: TEMPERATURE VARIATION
 TEST H. FREQUENCY STABILITY: VOLTAGE VARIATION

Transmitter Test Set Up

Asset (as applicable)	Description	s/n
(1) TEMPERATURE, HUMIDITY, VIBRATION		
i00027	Tenney Temp. Chamber	9083-765-234
i00	Weber Humidity Chamber	
i00	L.A.B. RVH 18-100	
(2) COAXIAL ATTENUATOR		
i00122	NARDA 766-10	7802
i00123	NARDA 766-10	7802A
i00113	SIERRA 661A-3D	1059
i00069	BIRD 8329 (30 dB)	10066
(3) R.F. POWER		
i00014	HP 435A POWER METER	1733A05839
i00039	HP 436A POWER METER	2709A26776
i00020	HP 8901A POWER MODE	2105A01087
(4) FREQUENCY COUNTER		
i00042	HP 5383A	1628A00959
i00019	HP 5334B	2704A00347
i00020	HP 8901A	2105A01087

PAGE NO. 64 of 65.
FCC, AMPS MODE

NAME OF TEST: Frequency Stability (Temperature Variation)

°C	Change, Hz	Change, ppm
-30	255	0.30
-20	253	0.30
-10	261	0.31
0	256	0.31
10	259	0.31
20	314	0.38
25	315	0.38
30	300	0.36
40	293	0.35
50	269	0.32
60	284	0.34

FCC, TDMA MODE

NAME OF TEST: Frequency Stability (Temperature Variation)

Subscriber equipment is synchronized to base station frequency. No variance in transmitter frequency stability observed under any variation of temperature and/or voltage.

PAGE NO. 65 of 65.

NAME OF TEST: Frequency Stability (Voltage Variation)

SPECIFICATION: 47 CFR 2.1055 (b)(1)

TEST EQUIPMENT: As per previous page

MEASUREMENT PROCEDURE

1. The EUT was placed in a temperature chamber at $25\pm5^{\circ}\text{C}$ and connected as for "Frequency Stability - Temperature Variation" test.
2. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
3. The variation in frequency was measured for the worst case.

AMPS MODE:

RESULTS: Frequency Stability (Voltage Variation)

BATTERY END POINT (Voltage) = 3.2

% of STV	Voltage	Frequency, MHz	Change, Hz	Change, ppm
85	3.3	836.400316	316	0.38
100	3.9	836.400315	315	0.38
115	4.5	836.400310	310	0.37
B.E.P.	3.2	836.400310	310	0.37

TDMA MODE:

RESULTS: Frequency Stability (Voltage Variation)

BATTERY END POINT (Voltage) = 3.2

Subscriber equipment is synchronized to base station frequency. No variance in transmitter frequency stability observed under any variation of temperature and/or voltage.

PERFORMED BY:

Doug Noble, B.A.S. E.E.T.

END OF TEST REPORT

TESTIMONIAL
AND
STATEMENT OF CERTIFICATION

THIS IS TO CERTIFY THAT:

1. THAT the application was prepared either by, or under the direct supervision of, the undersigned.
2. THAT the technical data supplied with the application was taken under my direction and supervision.
3. THAT the data was obtained on representative units, randomly selected.
4. THAT, to the best of my knowledge and belief, the facts set forth in the application and accompanying technical data are true and correct.

CERTIFYING ENGINEER:

Morton Flom, P. Eng.