



The University of Michigan  
Radiation Laboratory  
3228 EECS Building  
Ann Arbor, MI 48109-2122  
Tel: (734) 764-0500

Measured Radio Frequency Emissions  
From

**Lionel L.L.C. Transmitter**  
**FCC ID: LIV-PMBR**  
**Model/PN(s): #996 BRIDGE**

Report No. 415031-464  
October 18, 2008

Copyright © 2008

For:  
Lionel L.L.C.  
26750 23 Mile Road,  
Chesterfield, Michigan 48051

Contact:  
Scott Turkington  
sturkington@lionel.com  
Tel: 586-949-4100  
Fax: 586-949-0828

Measurements made by: Valdis V. Liepa  
Test Report written by: Joseph D Brunett

Tests supervised by:  
Report approved by:

Valdis V. Liepa  
Research Scientist

---

## Summary

Tests for compliance with FCC Regulations, Part 15, Subpart C, and for compliance with Industry Canada RSS-310/Gen, were performed on Lionel L.L.C. Transmitter, model/PN(s) #996 BRIDGE. This device is subject to Rules and Regulations as a Transmitter.

In testing completed September 25, 2008, the device tested in the worst case met the allowed specifications for transmitter radiated emissions by 3.5 dB (see p. 7); Class B digital emissions limits by 0.5 dB, and Class B power line conducted emissions limits by 3.6 dB.

## 1. Introduction

Lionel L.L.C. model #996 BRIDGE was(were) tested for compliance with FCC Regulations, Part 15, adopted under Docket 87-389, April 18, 1989 as subsequently amended, and with Industry Canada RSS-210/Gen, Issue 7, June 2007. The tests were performed at the University of Michigan Radiation Laboratory Willow Run Test Range following the procedures described in ANSI C63.4-2003 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The Site description and attenuation characteristics of the Open Site facility are on file with FCC Laboratory, Columbia, Maryland (FCC Reg. No: 91050) and with Industry Canada, Ottawa, ON (File Ref. No: IC 2057A-1).

## 2. Test Procedures and Equipment Used

The pertinent test equipment commonly used in our facility for measurements is listed in Table 2.1 below. The middle column identifies the specific equipment used in these tests. The quality system employed at the University of Michigan Radiation Laboratory Willow Run Test Range has been established to ensure all equipment has a clearly identifiable classification, calibration expiry date, and that all calibrations are traceable to national standards.

**Table 2.1 Test Equipment.**

| Test Instrument                    | Used | Manufacturer/Model                     | Q Number  |
|------------------------------------|------|----------------------------------------|-----------|
| Spectrum Analyzer (9kHz-26GHz)     | X    | Hewlett-Packard 8593E, SN: 3412A01131  | HP8593E1  |
| Spectrum Analyzer (9kHz-6.5GHz)    | X    | Hewlett-Packard 8595E, SN: 3543A01546  | JDB8595E  |
| Power Meter                        |      | Hewlett-Packard, 432A                  | HP432A1   |
| Harmonic Mixer (26-40 GHz)         |      | Hewlett-Packard 11970A, SN: 3003A08327 | HP11970A1 |
| Harmonic Mixer (40-60 GHz)         |      | Hewlett-Packard 11970U, SN: 2332A00500 | HP11970U1 |
| Harmonic Mixer (75-110 GHz)        |      | Hewlett-Packard 11970W, SN: 2521A00179 | HP11970W1 |
| Harmonic Mixer (140-220 GHz)       |      | Pacific Millimeter Prod., GMA, SN: 26  | PMPGMA1   |
| S-Band Std. Gain Horn              |      | S/A, Model SGH-2.6                     | SBAND1    |
| C-Band Std. Gain Horn              |      | University of Michigan, NRL design     | CBAND1    |
| XN-Band Std. Gain Horn             |      | University of Michigan, NRL design     | XNBAND1   |
| X-Band Std. Gain Horn              |      | S/A, Model 12-8.2                      | XBAND1    |
| X-band horn (8.2- 12.4 GHz)        |      | Narda 640                              | XBAND2    |
| X-band horn (8.2- 12.4 GHz)        |      | Scientific Atlanta , 12-8.2, SN: 730   | XBAND3    |
| K-band horn (18-26.5 GHz)          |      | FXR, Inc., K638KF                      | KBAND1    |
| Ka-band horn (26.5-40 GHz)         |      | FXR, Inc., U638A                       | KABAND1   |
| U-band horn (40-60 GHz)            |      | Custom Microwave, HO19                 | UBAND1    |
| W-band horn(75-110 GHz)            |      | Custom Microwave, HO10                 | WBAND1    |
| G-band horn (140-220 GHz)          |      | Custom Microwave, HO5R                 | GBAND1    |
| Bicone Antenna (30-250 MHz)        | X    | University of Michigan, RLBC-1         | LBBIC1    |
| Bicone Antenna (200-1000 MHz)      | X    | University of Michigan, RLBC-2         | HBBIC1    |
| Dipole Antenna Set (30-1000 MHz)   | X    | University of Michigan, RLDP-1,-2,-3   | UMDIP1    |
| Dipole Antenna Set (30-1000 MHz)   |      | EMCO 3121C, SN: 992 (Ref. Antennas)    | EMDIP1    |
| Active Rod Antenna (30 Hz-50 MHz)  |      | EMCO 3301B, SN: 3223                   | EMROD1    |
| Active Loop Antenna (30 Hz-50 MHz) | X    | EMCO 6502, SN:2855                     | EMLOOP1   |
| Ridge-horn Antenna (300-5000 MHz)  | X    | University of Michigan                 | UMRH1     |
| Amplifier (5-1000 MHz)             | X    | Avantek, A11-1, A25-1S                 | AVAMP1    |
| Amplifier (5-4500 MHz)             | X    | Avantek                                | AVAMP2    |
| Amplifier (4.5-13 GHz)             |      | Avantek, AFT-12665                     | AVAMP3    |
| Amplifier (6-16 GHz)               |      | Trek                                   | TRAMP1    |
| Amplifier (16-26 GHz)              |      | Avantek                                | AVAMP4    |
| LISN Box                           | X    | University of Michigan                 | UMLISN1   |
| Signal Generator                   |      | Hewlett-Packard 8657B                  | HPSG1     |

### 3. Device Under Test

#### 3.1 Identification

The device under test is a 27.5 MHz Transmitter designed for communicating with existing toy trains controlled by 27.5 MHz receivers. The device is powered from the 115 VAC mains power and receives commands from an associated command unit via a digital interface cable. It is housed in a plastic case approximately 3 by 2.5 by 12 inches. Transmitting coil is internal. The DUT was designed and manufactured by Lionel L.L.C., 26750 23 Mile Road, Chesterfield, Michigan 48051. It is identified as:

Lionel L.L.C. Transmitter  
Model/PN(s): #996 BRIDGE  
FCC ID: LIV-PMBR  
IC: 7032A-PMBR

#### 3.2 Variants

There is only a single variant of this device, as tested herein.

#### 3.3 Modes of Operation

The device is capable of only a single mode of operation. Data is sent to the DUT via a digital interface cable from a command unit. This data is then transmitted at a fixed data rate by the DUT for reception by a toy train system. For AC mains conducted emissions measurements the antenna was replaced with a 51 Ohm resistor.

#### 3.4 EMI Relevant Modifications

No EMI Relevant Modifications were performed by this test laboratory.

### 4. Emission Limits

#### 4.1 Radiated Emission Limits

The DUT tested falls under the category of an Intentional Radiators and the Digital Devices, subject to Subpart C, Section 15.227; and Subpart B, Section 15.109 (transmitter generated signals excluded); and Subpart A, Section 15.33. The applicable testing frequencies with corresponding emission limits are given in Tables 4.1 and 4.2 below. As a digital device, it is exempt.

Table 4.1. Radiated Emission Limits (FCC: 15.227, 15.35; IC: RSS-310, 3.7)  
(Transmitter)

| Frequency<br>(MHz) | Fundamental and Spurious*<br>( $\mu$ V/m) |
|--------------------|-------------------------------------------|
| 26.96-27.28        | 10,000 (3 meters)                         |
| 0.090-0.110        | 8.291-8.294                               |
| 0.49-0.51          | 8.37625 - 8.38675                         |
| 2.1735-2.190       | 8.41425 - 8.41475                         |
| 3.020-3.026 (IC)   | 12.29 - 12.293                            |
| 4.125-4.128        | 12.51975 - 12.52025                       |
| 4.17725-4.17775    | 12.57675 - 12.57725                       |
| 4.20725-4.20775    | 13.36 - 13.41                             |
| 5.677-5.683 (IC)   | 16.42 - 16.423                            |
| 6.215-6.218        | 16.69475 - 16.69525                       |
| 6.26775-6.26825    | 16.80425 - 16.80475                       |
| 6.31175-6.31225    | 25.5 - 25.67                              |

Restricted  
Bands

\* Harmonics must be below the fundamental.

Table 4.2. Radiated Emission Limits (FCC: 15.33, 15.35, 15.109; IC: RSS-310, Table 3)  
(Digital Class B)

| Freq. (MHz) | $E_{lim}$ (3m) $\mu$ V/m | $E_{lim}$ dB( $\mu$ V/m) |
|-------------|--------------------------|--------------------------|
| 30-88       | 100                      | 40.0                     |
| 88-216      | 150                      | 43.5                     |
| 216-960     | 200                      | 46.0                     |
| > 960       | 500                      | 54.0                     |

Note: Average readings apply above 1000 MHz (1 MHz BW)  
Quasi-Peak readings apply to 1000 MHz (120 kHz BW)

## 4.2 Power Line Conducted Emission Limits

Table 4.3 Conducted Emission Limits (FCC:15.107 (CISPR); IC: RSS-Gen, 7.2.2 Table 2).

| Frequency<br>MHz | Class A (dB $\mu$ V) |         | Class B (dB $\mu$ V) |          |
|------------------|----------------------|---------|----------------------|----------|
|                  | Quasi-peak           | Average | Quasi-peak           | Average  |
| .150 - 0.50      | 79                   | 66      | 66 - 56*             | 56 - 46* |
| 0.50 - 5         | 73                   | 60      | 56                   | 46       |
| 5 - 30           | 73                   | 60      | 60                   | 50       |

Notes:

1. The lower limit shall apply at the transition frequency
2. The limit decreases linearly with the logarithm of the frequency in the range 0.15-0.50 MHz:

\*Class B Quasi-peak:  $dB\mu V = 50.25 - 19.12 \log(f)$

\*Class B Average:  $dB\mu V = 40.25 - 19.12 \log(f)$

3. 9 kHz RBW

## 5. Radiated Emission Tests and Results

### 5.1 Semi-Anechoic Chamber Measurements

To become familiar with the radiated emission behavior of the DUT, the DUT was first studied and measured in a shielded semi-anechoic chamber. In the chamber there is a set-up similar to that of an outdoor 3-meter site, with a turntable, an antenna mast, and a ground plane. Instrumentation includes spectrum analyzers and other equipment as needed. In this case, the receiving antenna was an active loop, placed on a tripod, approximately 1.5 meters above ground.

The DUT was laid on the test table as seen in the included photos. Using the loop antenna we studied emissions up to 30 MHz. The spectrum analyzer resolution and video bandwidths were so as to measure the DUT emission without decreasing the EBW (emission bandwidth) of the device. Emissions were studied for all orientations of the DUT and loop antenna. In the chamber we also recorded the spectrum and modulation characteristics of the carrier. These data are presented in subsequent sections.

## **5.2 Outdoor Measurements**

After the chamber measurements, the emissions on our outdoor 3-meter site were measured. For transmitter emissions a loop antenna was used; the resolution bandwidth maintained at such a level that the EBW (emission bandwidth) of the DUT was not reduced. See the attachment Test Setup Photos for measurement set-up. For digital emissions, bicone and dipole antennas were used. See Section 6.6 for low frequency field extrapolation of transmitter data from 3 m to 300 m.

## **5.3 Computations and Results**

To convert the dBm measured on the spectrum analyzer to dB( $\mu$ V/m), we use expression

$$E_3(\text{dB}\mu\text{V/m}) = 107 + P_R + K_A - K_G + K_E - C_F$$

where  $P_R$  = power recorded on spectrum analyzer, dB, measured at 3 m  
 $K_A$  = antenna factor, dB/m  
 $K_G$  = pre-amplifier gain, including cable loss, dB  
 $K_E$  = pulse operation correction factor, dB (see 6.1)  
 $C_F$  = 3/300 m or 3/30 m conversion factor, dB

When presenting the data, at each frequency the highest measured emission under all of the possible orientations is given. Computations and results are given in Table 5.1. There we see that as a transmitter, the DUT meets the limit by 3.5 dB.

## **6. Other Measurements and Computations**

### **6.1 Correction for Pulse Operation**

The transmitter sends train set commands via a pulse position modulated 27.5 MHz carrier. The minimum pulse period is 85.0 ms. In any given 100 ms window there may be, in the worst case, two 7.00 ms wide pulses. See Figure 6.1. The duty factor is computed to be:

$$K_E = (2 \times 7.00 \text{ ms}) / 100.0 \text{ ms} = 0.140 = 17.1 \text{ dB.}$$

### **6.2 Emission Spectrum**

Using the loop antenna, the emission spectrum was recorded and is shown in Figure 6.2.

### **6.3 Bandwidth of the Emission Spectrum**

The measured spectrum of the signal is shown in Figure 6.3. From the plot we see that the -20 dB bandwidth is 12.7 kHz and the band edge emission is 50.2 dBc.

### **6.4 Effect of Supply Voltage Variation**

For this test, the relative power radiated was measured at the fundamental as the voltage was varied from 60.0 to 140.0 volts AC. The emission variation is shown in Figure 6.4.

### **6.5 Input Voltage and Current**

$$V = 115.0 \text{ V AC}$$

$$I = 20 \text{ mA AC (pulsed emission)}$$

### **6.6 AC Mains Conducted Emissions**

AC mains conducted emissions are shown in Figure 6.5 and tabulated in table 5.2.

**Table 5.1 Highest Radiated Emissions Measured**

| <b>Radiated Emission (Fundamental+Harmonics)</b> |              |              |              |           |              |            |          |                     |                       |            | Lionel Bridge Tx; FCC/IC |
|--------------------------------------------------|--------------|--------------|--------------|-----------|--------------|------------|----------|---------------------|-----------------------|------------|--------------------------|
| #                                                | Freq.<br>MHz | Ant.<br>Used | Ant.<br>Pol. | Pr<br>dBm | Det.<br>Used | Ka<br>dB/m | Kg<br>dB | E3*<br>dB $\mu$ V/m | E3lim<br>dB $\mu$ V/m | Pass<br>dB | Comments                 |
| 1                                                | 27.3         | Loop         | perp         | -19.6     | Pk           | 7.6        | 24.7     | 53.2                | 80.0                  | 26.8       |                          |
| 2                                                | 27.3         | Loop         | para         | -12.7     | Pk           | 7.6        | 24.7     | 60.1                | 80.0                  | 19.9       |                          |
| 3                                                | 27.3         | Loop         | horiz        | -21.6     | Pk           | 7.6        | 24.7     | 51.2                | 80.0                  | 28.8       |                          |
| 4                                                | 54.5         | Bic          | H            | -60.1     | Pk           | 8.6        | 24.4     | 31.1                | 40.0                  | 8.9        |                          |
| 5                                                | 54.5         | Bic          | V            | -54.7     | Pk           | 8.6        | 24.4     | 36.5                | 40.0                  | <b>3.5</b> |                          |
| 6                                                | 81.8         | Bic          | H            | -58.7     | Pk           | 7.6        | 24.0     | 31.9                | 40.0                  | 8.1        |                          |
| 7                                                | 81.8         | Bic          | V            | -60.3     | Pk           | 7.6        | 24.0     | 30.3                | 40.0                  | 9.7        |                          |
| 8                                                | 109.0        | Bic          | H            | -79.1     | Pk           | 9.1        | 23.6     | 13.4                | 43.5                  | 30.1       |                          |
| 9                                                | 109.0        | Bic          | V            | -67.4     | Pk           | 9.1        | 23.6     | 25.1                | 43.5                  | 18.4       |                          |
| 10                                               | 136.3        | Bic          | H            | -82.8     | Pk           | 11.4       | 23.2     | 12.3                | 43.5                  | 31.2       |                          |
| 11                                               | 136.3        | Bic          | V            | -81.5     | Pk           | 11.4       | 23.2     | 13.6                | 43.5                  | 29.9       |                          |
| 12                                               | 163.5        | Bic          | H            | -74.4     | Pk           | 13.4       | 22.9     | 23.1                | 43.5                  | 20.4       |                          |
| 13                                               | 163.5        | Bic          | V            | -80.4     | Pk           | 13.4       | 22.9     | 17.1                | 43.5                  | 26.4       |                          |
| 14                                               | 190.8        | Bic          | H            | -78.9     | Pk           | 14.5       | 22.5     | 20.1                | 43.5                  | 23.4       |                          |
| 15                                               | 190.8        | Bic          | V            | -78.3     | Pk           | 14.5       | 22.5     | 20.7                | 43.5                  | 22.8       |                          |
| 16                                               | 218.1        | Bic          | H            | -84.6     | Pk           | 14.8       | 22.2     | 15.0                | 46.0                  | 31.0       |                          |
| 17                                               | 218.1        | Bic          | V            | -82.6     | Pk           | 14.8       | 22.2     | 17.0                | 46.0                  | 29.0       |                          |
| 18                                               | 245.3        | Bic          | H            | -84.6     | Pk           | 14.6       | 21.8     | 15.2                | 46.0                  | 30.8       |                          |
| 19                                               | 245.3        | Bic          | V            | -87.4     | Pk           | 14.6       | 21.8     | 12.4                | 46.0                  | 33.6       |                          |
| 20                                               | 272.6        | SBic         | H            | -88.2     | Pk           | 16.7       | 21.5     | 14.0                | 46.0                  | 32.0       |                          |
| 21                                               | 272.6        | SBic         | V            | -90.2     | Pk           | 16.7       | 21.5     | 12.0                | 46.0                  | 34.0       |                          |
| 22                                               |              |              |              |           |              |            |          |                     |                       |            |                          |
| 23                                               |              |              |              |           |              |            |          |                     |                       |            |                          |

\*Duty factor of 17.1 dB applied to fundamental only.

| <b>Digital Radiated Emissions</b> |              |              |              |           |              |            |          |                    |                       |            |          |
|-----------------------------------|--------------|--------------|--------------|-----------|--------------|------------|----------|--------------------|-----------------------|------------|----------|
| #                                 | Freq.<br>MHz | Ant.<br>Used | Ant.<br>Pol. | Pr<br>dBm | Det.<br>Used | Ka<br>dB/m | Kg<br>dB | E3<br>dB $\mu$ V/m | E3lim<br>dB $\mu$ V/m | Pass<br>dB | Comments |
| 24                                | 32.2         | Bic          | V            | -68.8     | Pk           | 12.6       | 24.7     | 26.1               | 40.0                  | 13.9       |          |
| 25                                | 36.2         | Bic          | H            | -72.4     | Pk           | 11.6       | 24.7     | 21.5               | 40.0                  | 18.5       |          |
| 26                                | 36.2         | Bic          | V            | -65.4     | Pk           | 11.6       | 24.7     | 28.5               | 40.0                  | 11.5       |          |
| 27                                | 44.2         | Bic          | V            | -62.4     | Pk           | 10.0       | 24.6     | 30.0               | 40.0                  | 10.0       |          |
| 28                                | 48.2         | Bic          | V            | -61.3     | Pk           | 9.3        | 24.5     | 30.5               | 40.0                  | 9.5        |          |
| 29                                | 52.2         | Bic          | H            | -66.3     | Pk           | 8.8        | 24.5     | 25.1               | 40.0                  | 14.9       |          |
| 30                                | 52.2         | Bic          | V            | -51.9     | Pk           | 8.8        | 24.5     | 39.5               | 40.0                  | <b>0.5</b> |          |
| 31                                | 56.2         | Bic          | V            | -60.1     | Pk           | 8.4        | 24.4     | 30.9               | 40.0                  | 9.1        |          |
| 32                                | 64.2         | Bic          | V            | -66.8     | Pk           | 7.8        | 24.3     | 23.7               | 40.0                  | 16.3       |          |
| 33                                | 68.2         | Bic          | H            | -61.4     | Pk           | 7.7        | 24.2     | 29.0               | 40.0                  | 11.0       |          |
| 34                                | 76.2         | Bic          | H            | -65.3     | Pk           | 7.5        | 24.1     | 25.1               | 40.0                  | 14.9       |          |
| 35                                | 80.2         | Bic          | H            | -68.6     | Pk           | 7.6        | 24.1     | 21.9               | 40.0                  | 18.1       |          |
| 36                                | 116.3        | Bic          | V            | -73.5     | Pk           | 9.7        | 23.5     | 19.7               | 43.5                  | 23.8       |          |
| 37                                | 124.3        | Bic          | V            | -78.2     | Pk           | 10.3       | 23.4     | 15.8               | 43.5                  | 27.7       |          |
| 38                                | 260.0        | SBic         | H            | -85.5     | Pk           | 14.7       | 21.6     | 14.6               | 46.0                  | 31.4       | noise    |
| 39                                |              |              |              |           |              |            |          |                    |                       |            |          |
| 40                                |              |              |              |           |              |            |          |                    |                       |            |          |

Meas.09/25/08; U of Mich.

**Table 5.2 Highest Conducted Emissions Measured**

\*Average limit

Since  $V_{peak} \geq V_{ap} \geq V_{ave}$  and if  $V_{testpeak} < V_{avelim}$ , then  $V_{aplim}$  and  $V_{avelim}$  are met.

Meas. 09/25/2008: U of Mich.

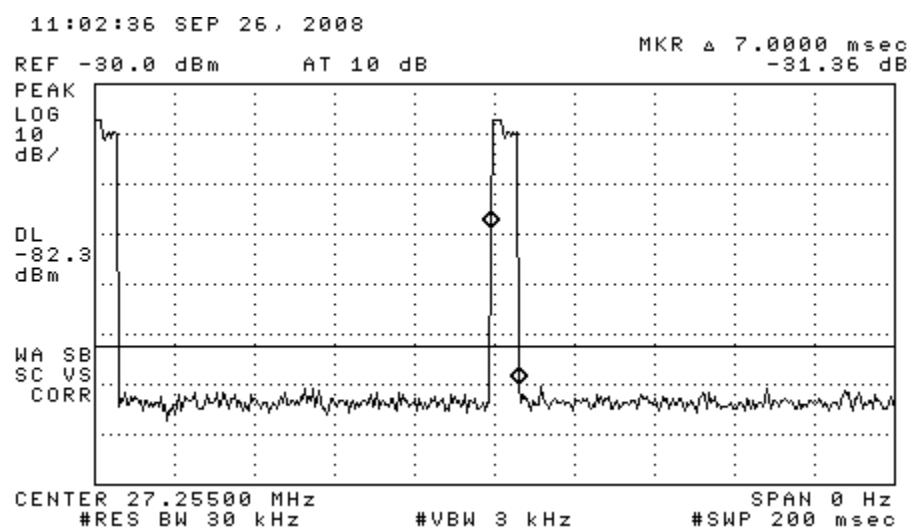
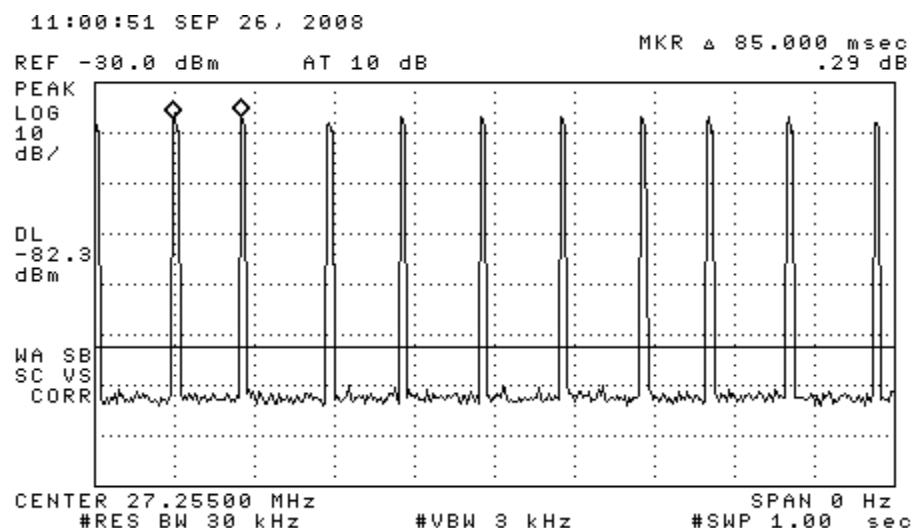




Figure 6.1. Transmission modulation characteristics.  
(top) minimum pulse period, (bottom) maximum pulse width.

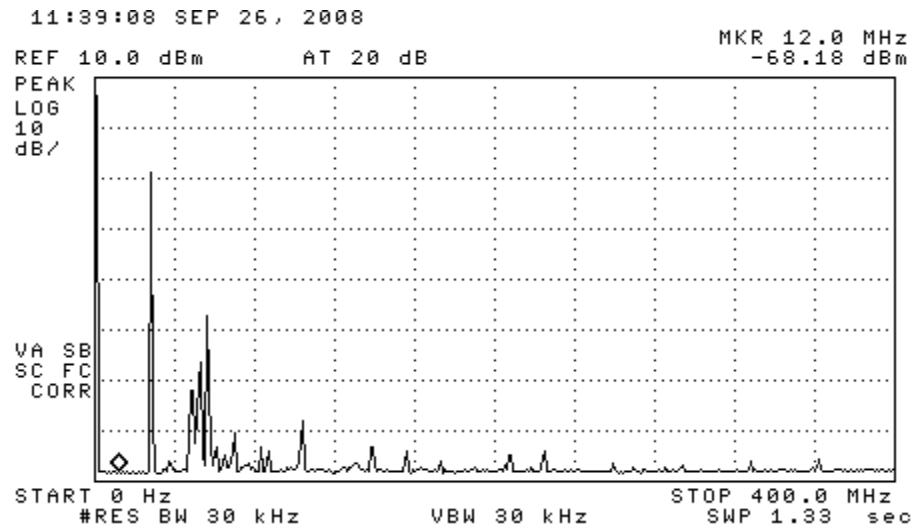



Figure 6.2. Emission spectrum of the DUT. The amplitudes are only indicative (not calibrated).

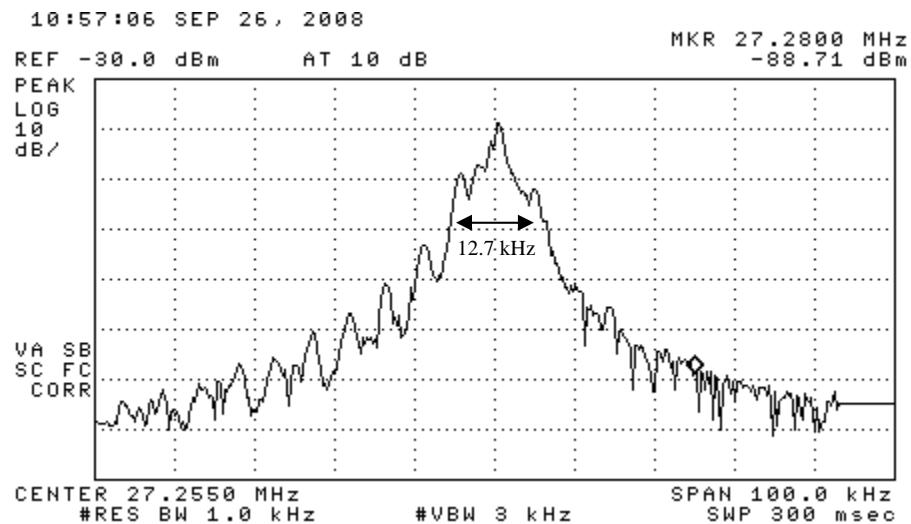



Figure 6.3. Measured 20 dB (99%) bandwidth of the DUT. (pulsed)

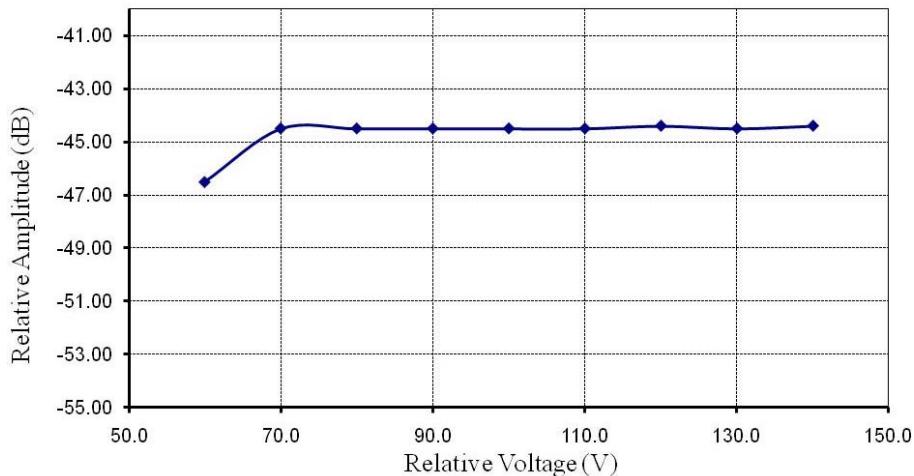



Figure 6.4. Relative emission at 27.5 MHz vs. supply voltage.

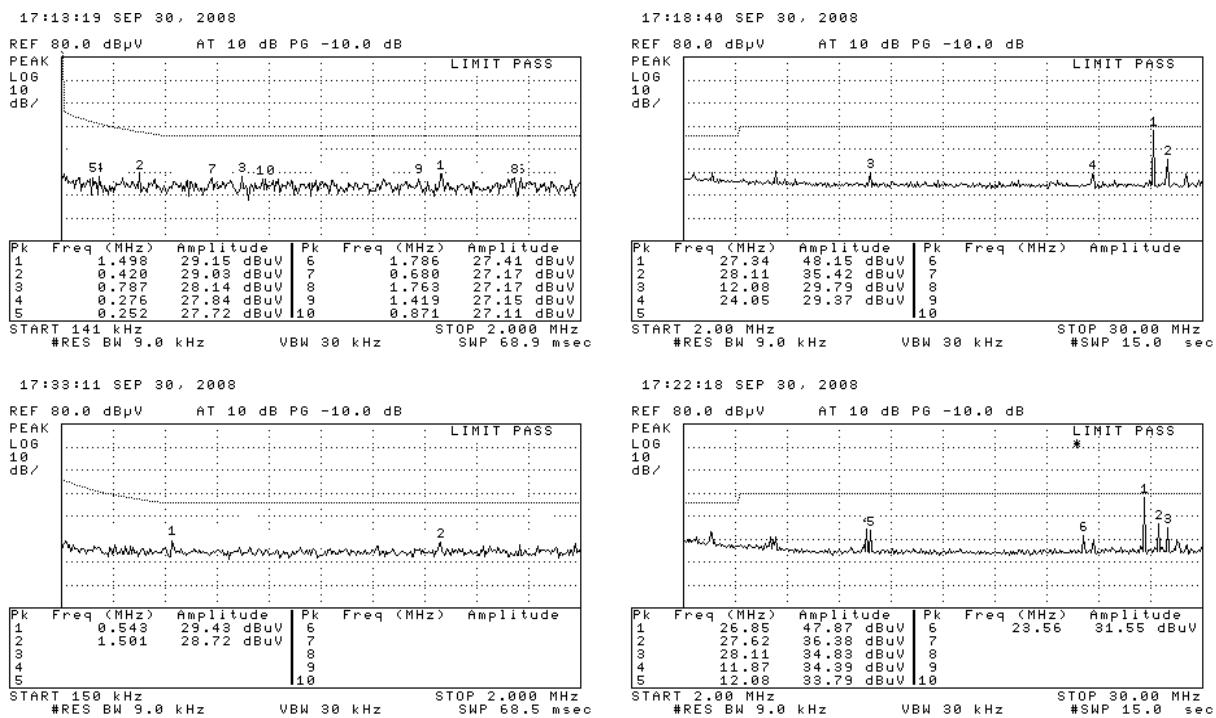
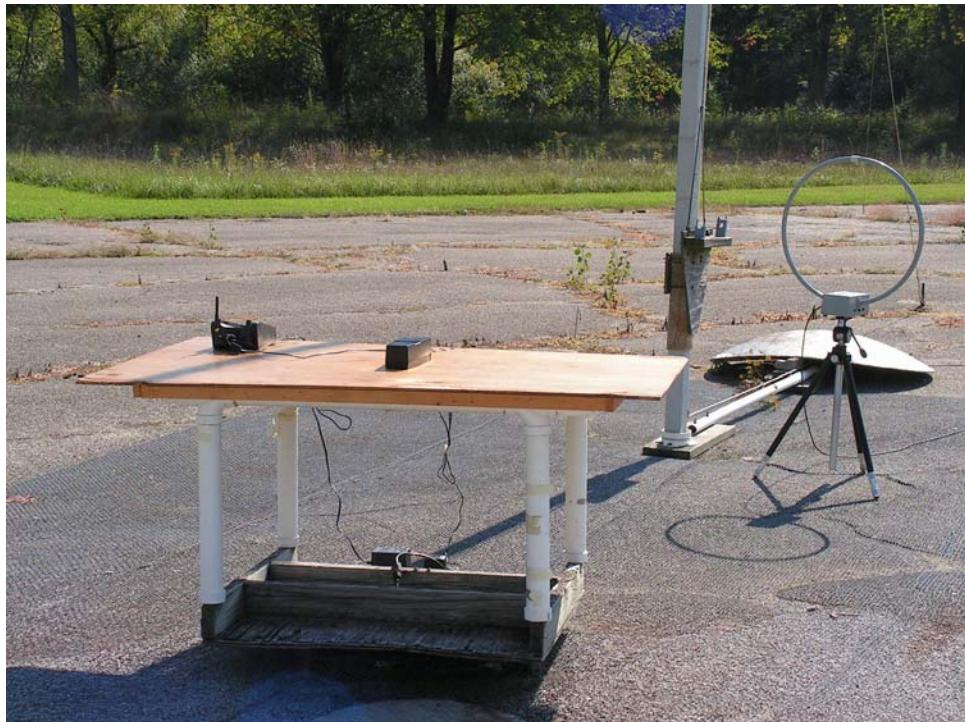




Figure 6.5. AC Mains Conducted Emissions. (top) Hi Line, (bottom) Lo Line.



DUT on OATS – one of three antenna axes tested



DUT on OATS (close-up) – one of three antenna axes tested