

NORTHWEST EMC

Medtronic, Inc.
Percepta, Serena, Solara
FCC 15.247:2016
Bluetooth Low Energy Radio

Report # MDTR0535

NVLAP Lab Code: 200881-0

CERTIFICATE OF TEST

Last Date of Test: December 12, 2016
Medtronic, Inc.
Model: Percepta, Serena, Solara

Radio Equipment Testing

Standards

Specification	Method
FCC 15.247:2016	ANSI C63.10:2013, KDB 558074

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	No	N/A	Not required for a battery powered EUT.
11.6	Duty Cycle	Yes	Pass	
11.8.2	Occupied Bandwidth	Yes	Pass	
11.9.1.1	Output Power	Yes	Pass	
11.10.2	Power Spectral Density	Yes	Pass	
11.11	Band Edge Compliance	Yes	Pass	
11.11	Spurious Conducted Emissions	Yes	Pass	
11.12.1, 11.13.2, 6.5, 6.6	Spurious Radiated Emissions	Yes	Pass	

Deviations from Test Standards

None

Approved By:

Dean Ghizzone, General Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission – Validated by the European Commission as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

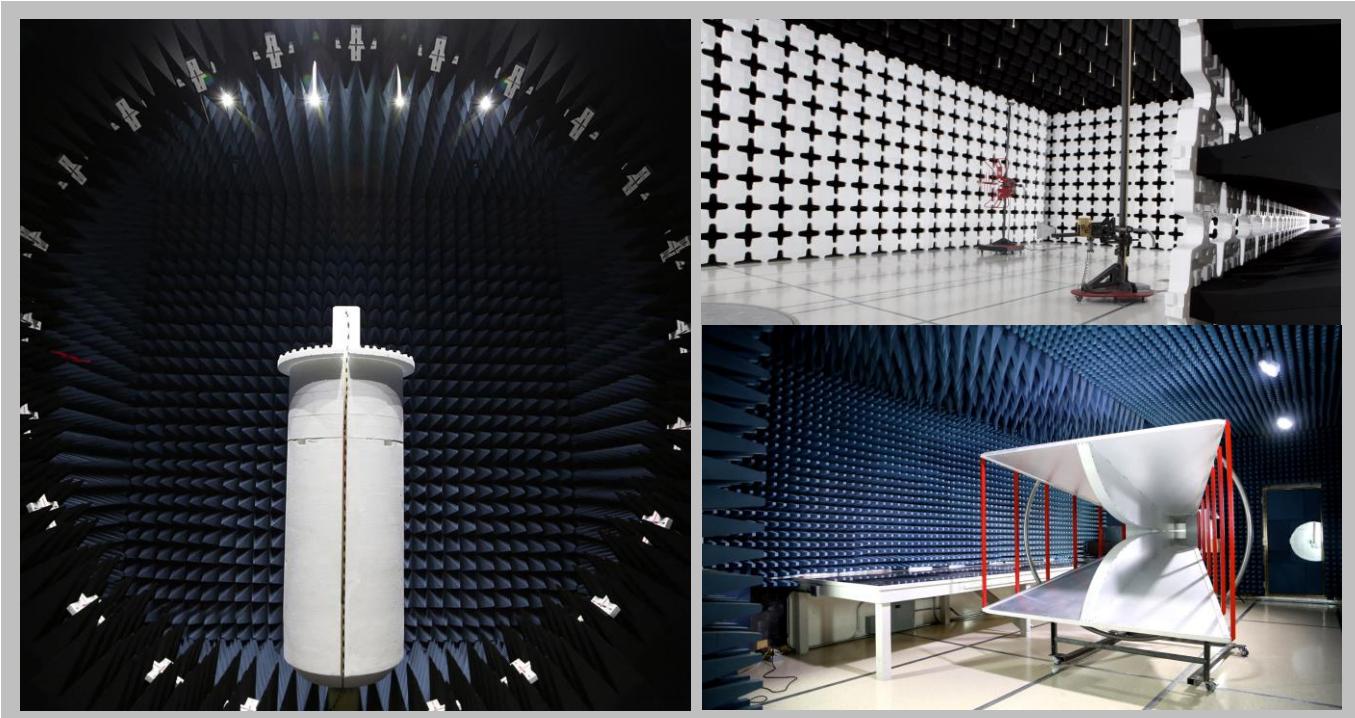
OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:


<http://www.nwemc.com/accreditations/>

<http://gsi.nist.gov/global/docs/cabs/designations.html>

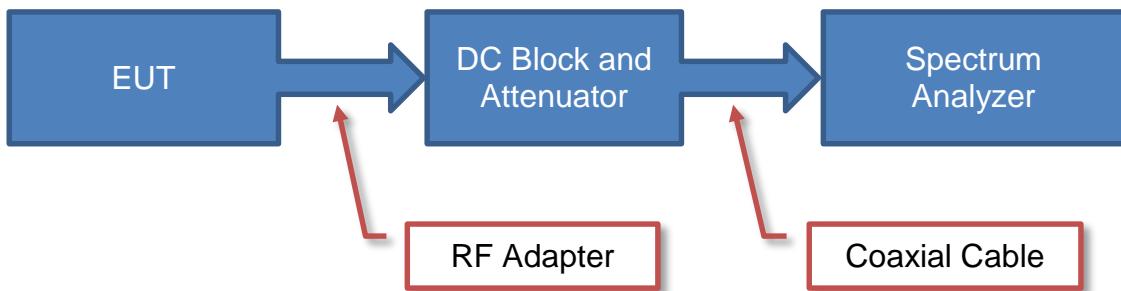
FACILITIES

California	Minnesota	New York	Oregon	Texas	Washington
Labs OC01-13 41 Tesla Irvine, CA 92618 (949) 861-8918	Labs MN01-08, MN10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214	Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066	Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600
NVLAP					
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code: 201049-0	NVLAP Lab Code: 200629-0
Innovation, Science and Economic Development Canada					
2834B-1, 2834B-3	2834E-1	N/A	2834D-1, 2834D-2	2834G-1	2834F-1
BSMI					
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R
VCCI					
A-0029	A-0109	N/A	A-0108	A-0201	A-0110
Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA					
US0158	US0175	N/A	US0017	US0191	US0157

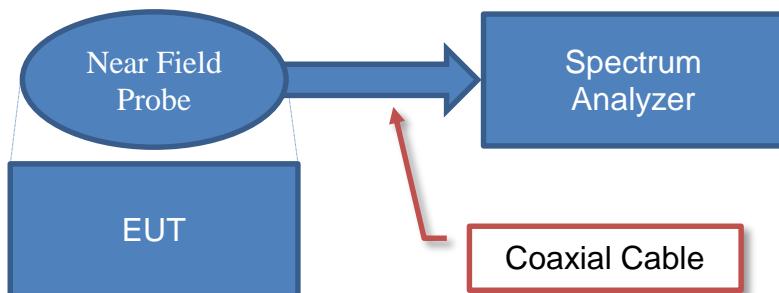
MEASUREMENT UNCERTAINTY

Measurement Uncertainty

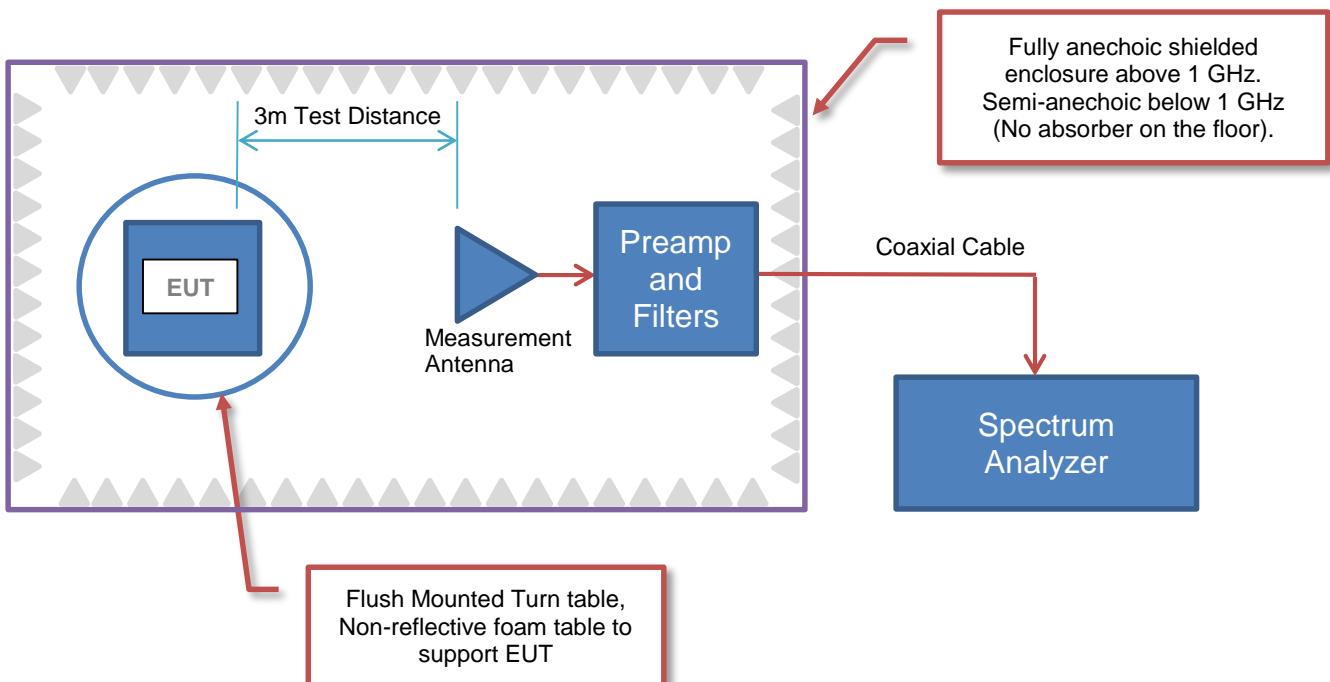
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.


A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) for each test is on each data sheet. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.


Test	+ MU	- MU
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

Test Setup Block Diagrams


Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Medtronic, Inc.
Address:	710 Medtronic Parkway
City, State, Zip:	Minneapolis, MN 55432
Test Requested By:	Jay Axmann
Model:	Percepta Quad CRT-P MRI SureScan
First Date of Test:	December 2, 2016
Last Date of Test:	December 12, 2016
Receipt Date of Samples:	December 2, 2016
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

The CRT-P-Quad implant family will be marketed under 6 different models, as listed below. They all will include the same Bluetooth Low Energy (BLE) radio and antenna. All therapy differences will be activated via FW. The only physical difference will be with the external header. There will be two types - one for the Quad models and one for the standard (Bipolar configuration) models. Both will accommodate 3 connectors, but one connection for the Quad devices will be for a 4-pin connector. Even with these two different connectors, the BLE antenna will be the same.

Testing was performed on two representative Percepta samples, but the results represent the performance of the complete product family. The following list of models are represented by these test results:

Percepta CRT-P-MRI Surescan

Percepta Quad CRT-P-MRI Surescan

Serena CRT-P-MRI Surescan

Serena Quad CRT-P-MRI Surescan

Solara CRT-P-MRI Surescan

Solara Quad CRT-P-MRI Surescan

Transmitter Output Power and Spurious measurements were performed by two methods-

1. Conducted measurements taken at the antenna port performed per ANSI C63.10.

2. Radiated measurements using a human torso simulator and simulation tissue liquid solution with the electrical properties of muscle tissue at 2.44GHz. Tests performed per the radiated methods of ANSI C63.10 for a radio operating in the 2.4GHz - 2.5GHz range. A muscle tissue solution defined in OET Bulletin 65 Supplement C at an implant depth of 2cm to reflect the radiated field from a human torso.

Measured simulated muscle tissue properties at 2.44GHz:

Permittivity = 51.26

Conductivity = 2.08

Testing Objective:

To demonstrate compliance of the Bluetooth Low Energy radio to FCC 15.247 requirements.

PRODUCT DESCRIPTION

EUT Photo:

CONFIGURATIONS

Configuration MDTR0535- 1

Software/Firmware Running during test	
Description	Version
CRT-P Quad Firmware (EMA Board)	5.01

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Implant (EMA Board)	Medtronic, Inc.	Percepta Quad CRT-P MRI SureScan	RVN160015S

Peripherals in test setup boundary			
Description	Manufacturer	Model/Part Number	Serial Number
Laptop	Dell	Latitude E6410	7KGKYN1
AC Adapter (Laptop)	Dell	LA90PM111	CN-0Y4M8K-72438-38R-C8D9-A01
Bluetooth Test Instrument	Medtronic, Inc.	M960127B001	15B0055
DC Power Supply	Lambda Electronics Corp.	LL-902-OV	D13861
Shielded Test Enclosure	Ramsey Electronics, LLC	STE3800	1168

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Cable (Laptop)	No	1.8m	Yes	AC Adapter (Laptop)	Laptop
AC Cable (Laptop)	No	1.8m	No	AC Adapter (Laptop)	AC Mains
USB Cable	Yes	2.0m	No	Laptop	Bluetooth Test Instrument
SMA Cable 2	Yes	0.4m	No	Implant (EMA Board)	Shielded Test Enclosure
SMA Cable 1 (Shielded Test Enclosure)	Yes	0.6m	No	Shielded Test Enclosure	Bluetooth Test Instrument
Banana Cables 2 (x2)	No	0.1m	No	Implant (EMA Board)	Shielded Test Enclosure
Banana Cables 1 (x2, Shielded Test Enclosure)	No	0.9m	No	Shielded Test Enclosure	DC Power Supply

CONFIGURATIONS

Configuration MDTR0535- 3

Software/Firmware Running during test	
Description	Version
CRT-P Quad Firmware	1.23

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Implant	Medtronic, Inc.	Percepta Quad CRT-P MRI SureScan	RNP601017S

Peripherals in test setup boundary			
Description	Manufacturer	Model/Part Number	Serial Number
Atrial Lead	Medtronic, Inc.	5076-65CM	PJN3391150
Right Ventricular Lead	Medtronic, Inc.	5076-65CM	PJN3624359
Left Ventricular Lead	Medtronic, Inc.	4298-88CM	QUA015221V

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	12/2/2016	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
2	12/2/2016	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
3	12/2/2016	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
4	12/2/2016	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
5	12/2/2016	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
6	12/12/2016	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

DUTY CYCLE

TEST DESCRIPTION

The Duty Cycle (x) were measured for each of the EUT operating modes. The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum.

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

The EUT operates at 100% Duty Cycle.

OCCUPIED BANDWIDTH

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

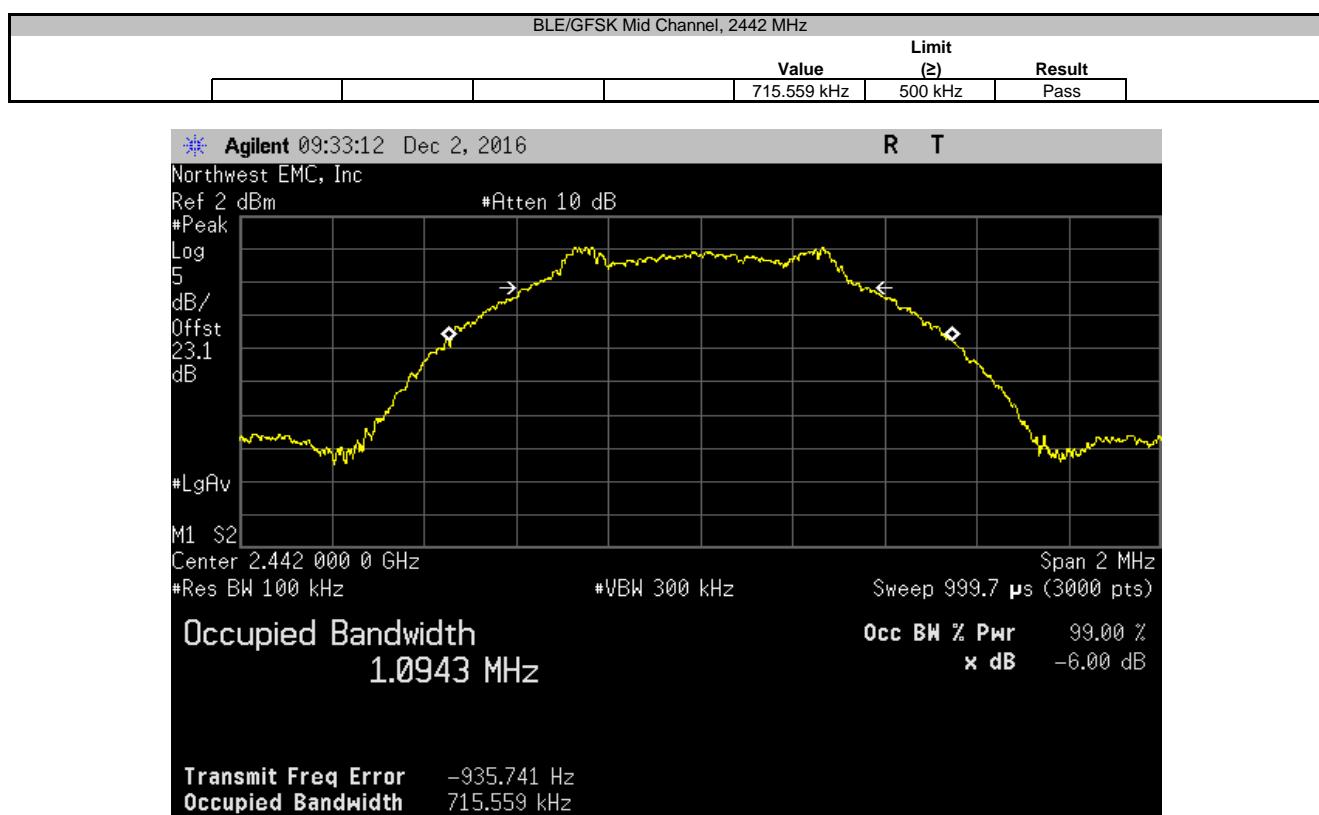
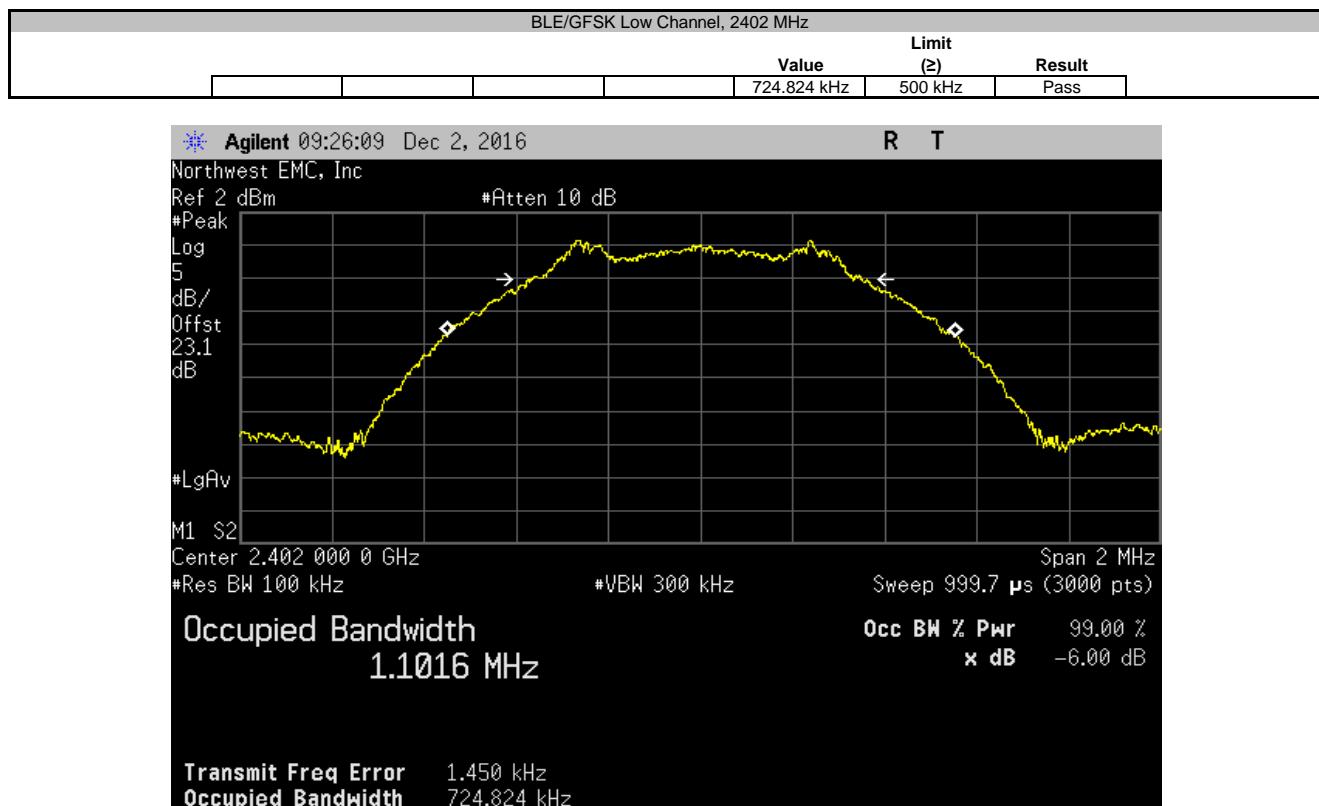
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5183A	TIK	10/17/2014	10/17/2017
Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	9/15/2016	9/15/2017
Attenuator	S.M. Electronics	SA26B-20	RFW	2/26/2016	2/26/2017
Block - DC	Fairview Microwave	SD3379	AMI	9/15/2016	9/15/2017
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	3/24/2016	3/24/2017

TEST DESCRIPTION

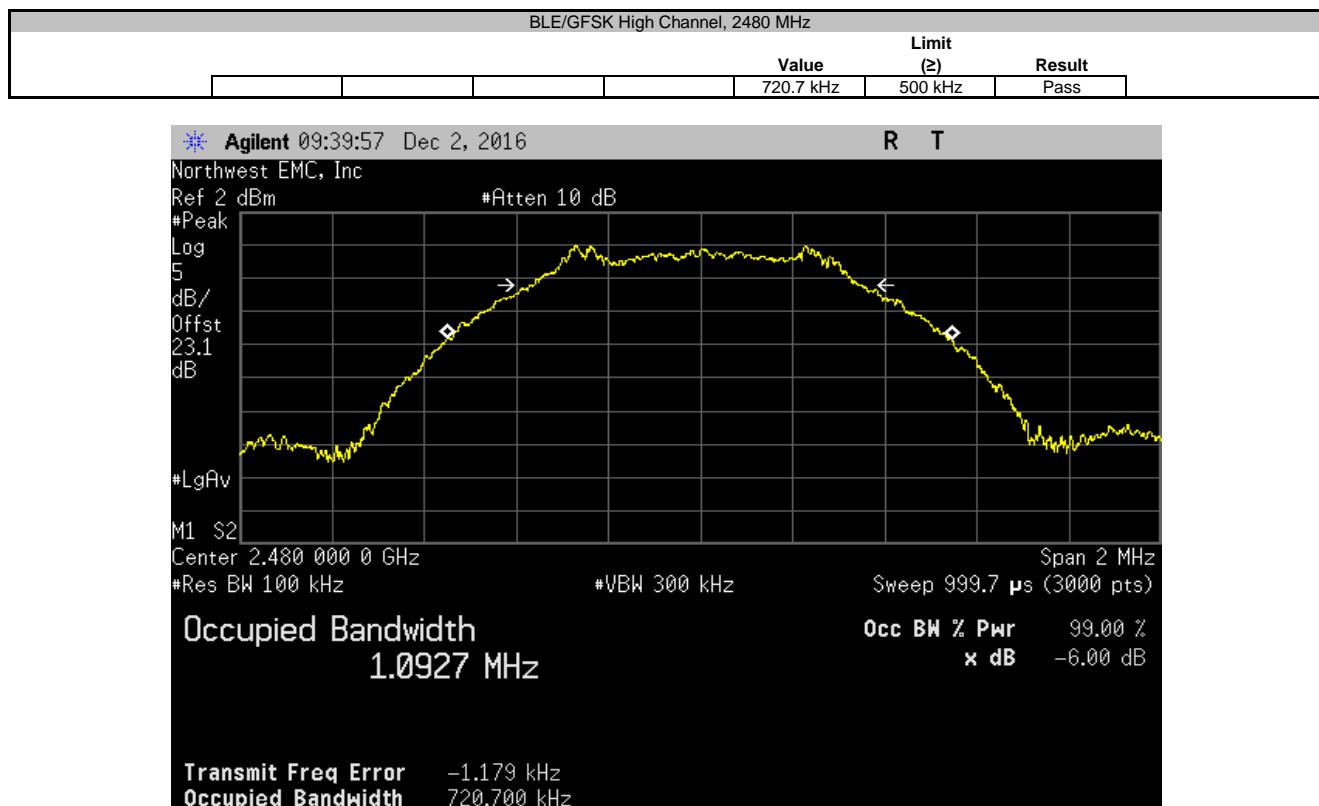
The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was set to the channels and modes listed in the datasheet.

The 6dB occupied bandwidth was measured using 100 kHz resolution bandwidth and 300 kHz video bandwidth. The 99.0% occupied bandwidth was also measured at the same time which can be needed during Output Power depending on the applicable method.

OCCUPIED BANDWIDTH



XMit 2016.09.29

NweTx 2016.09.14.2


EUT:	Percepta Quad CRT-P MRI SureScan		Work Order:	MDTR0535	
Serial Number:	RNV1600155		Date:	12/02/16	
Customer:	Medtronic, Inc.		Temperature:	21.4 °C	
Attendees:	Nick Blake		Humidity:	28.9% RH	
Project:	None		Barometric Pres.:	1026 mbar	
Tested by:	Dustin Sparks	Power:	2.9VDC	Job Site:	MN08
TEST SPECIFICATIONS			Test Method		
FCC 15.247:2016			ANSI C63.10:2013		
COMMENTS					
None					
DEVIATIONS FROM TEST STANDARD					
None					
Configuration #	1	Signature			
			Value	Limit (±)	Result
			724.824 kHz	500 kHz	Pass
			715.559 kHz	500 kHz	Pass
			720.7 kHz	500 kHz	Pass

BLE/GFSK Low Channel, 2402 MHz
 BLE/GFSK Mid Channel, 2442 MHz
 BLE/GFSK High Channel, 2480 MHz

OCCUPIED BANDWIDTH

OCCUPIED BANDWIDTH

OUTPUT POWER

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5183A	TIK	10/17/2014	10/17/2017
Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	9/15/2016	9/15/2017
Attenuator	S.M. Electronics	SA26B-20	RFW	2/26/2016	2/26/2017
Block - DC	Fairview Microwave	SD3379	AMI	9/15/2016	9/15/2017
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	3/24/2016	3/24/2017

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum.

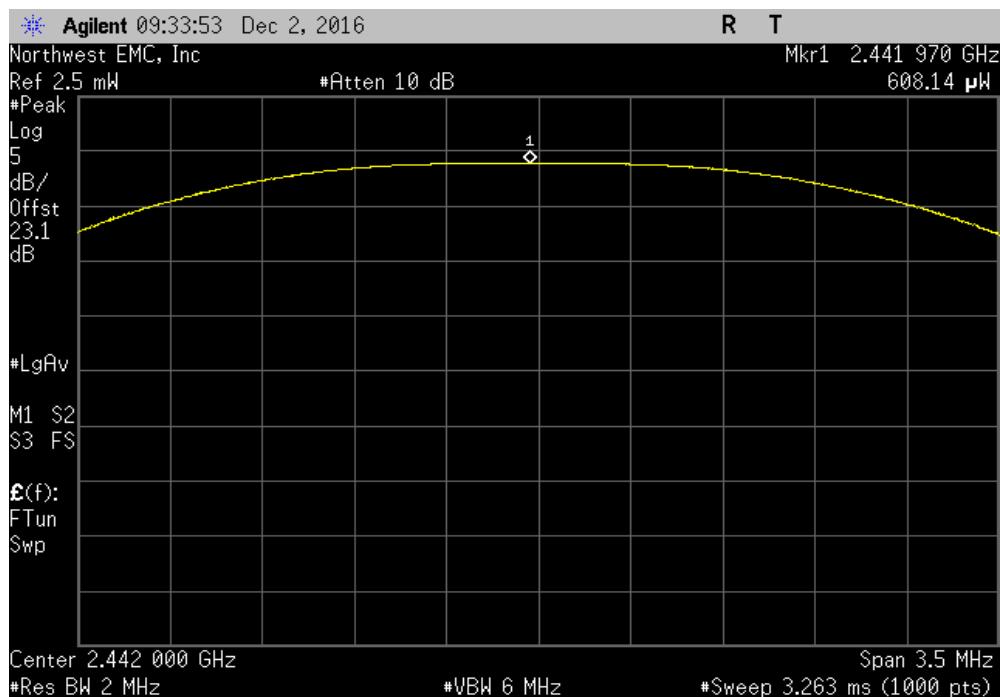
Prior to measuring peak transmit power the DTS bandwidth (B) was measured.

The method found in ANSI C63.10:2013 Section 11.9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.

De Facto EIRP Limit: The EUT meets the de facto EIRP limit of +36 dBm.

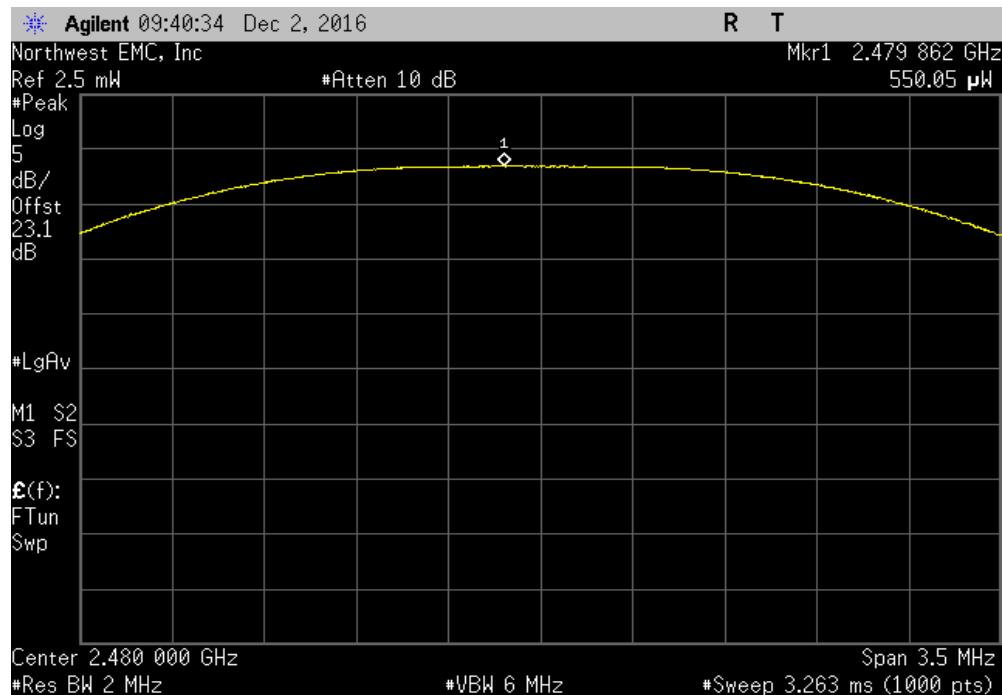
OUTPUT POWER

EUT:	Percepta Quad CRT-P MRI SureScan		Work Order:	MDTR0535	
Serial Number:	RNV1600155		Date:	12/02/16	
Customer:	Medtronic, Inc.		Temperature:	21.5 °C	
Attendees:	Nick Blake		Humidity:	28.6% RH	
Project:	None		Barometric Pres.:	1026 mbar	
Tested by:	Dustin Sparks	Power:	2.9VDC	Job Site:	MN08
TEST SPECIFICATIONS			Test Method		
FCC 15.247:2016			ANSI C63.10:2013		
COMMENTS					
None					
DEVIATIONS FROM TEST STANDARD					
None					
Configuration #	1	Signature			
			Value	Limit (-)	Result
			638.999 uW	1 W	Pass
			608.135 uW	1 W	Pass
			550.047 uW	1 W	Pass

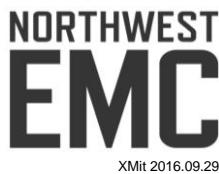

BLE/GFSK Low Channel, 2402 MHz
BLE/GFSK Mid Channel, 2442 MHz
BLE/GFSK High Channel, 2480 MHz

OUTPUT POWER

BLE/GFSK Low Channel, 2402 MHz		
	Value	Limit (<)
	638.999 uW	1 W



BLE/GFSK Mid Channel, 2442 MHz		
	Value	Limit (<)
	608.135 uW	1 W



OUTPUT POWER

BLE/GFSK High Channel, 2480 MHz			Value	Limit (<)	Result
			550.047 uW	1 W	Pass

POWER SPECTRAL DENSITY

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

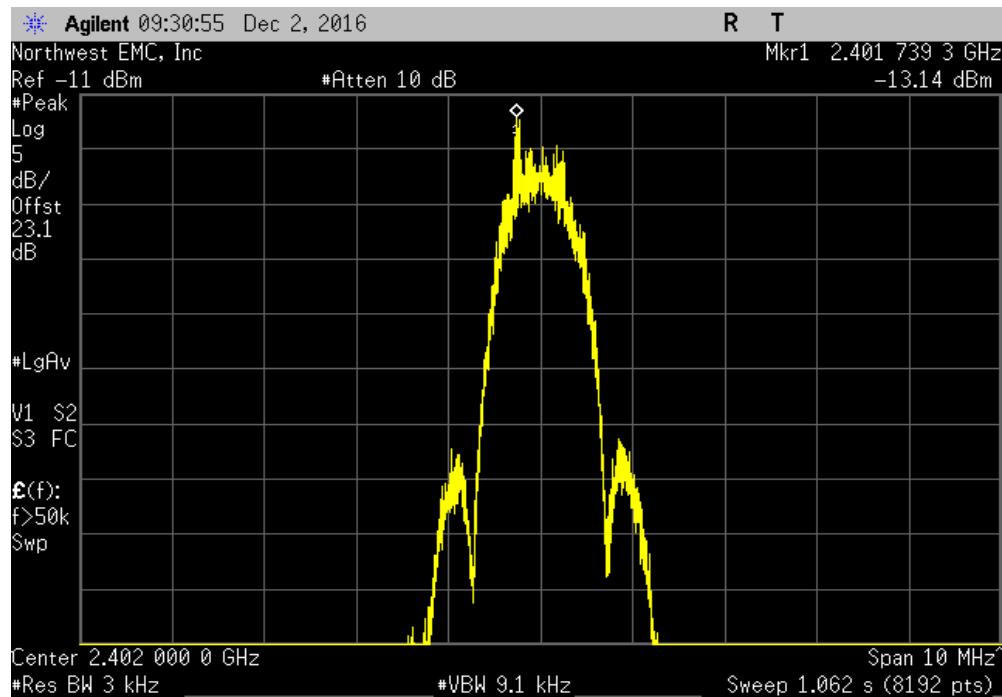
TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5183A	TIK	10/17/2014	10/17/2017
Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	9/15/2016	9/15/2017
Attenuator	S.M. Electronics	SA26B-20	RFW	2/26/2016	2/26/2017
Block - DC	Fairview Microwave	SD3379	AMI	9/15/2016	9/15/2017
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	3/24/2016	3/24/2017

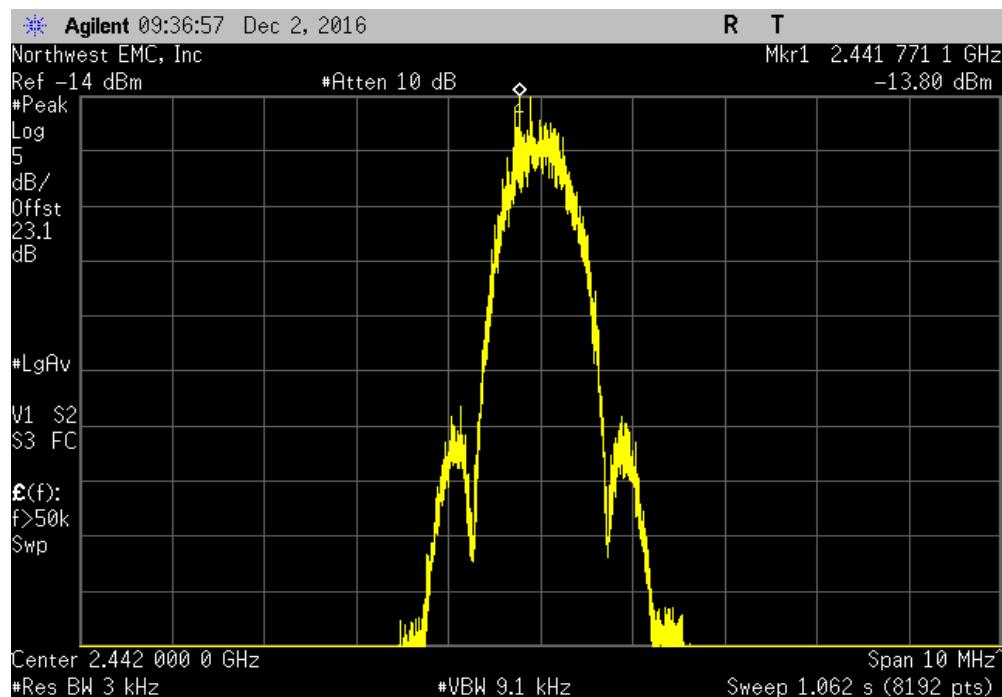
TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The maximum power spectral density measurements was measured using the channels and modes as called out on the following data sheets.

Per the procedure outlined in ANSI C63.10 the peak power spectral density was measured in a 3 kHz RBW.

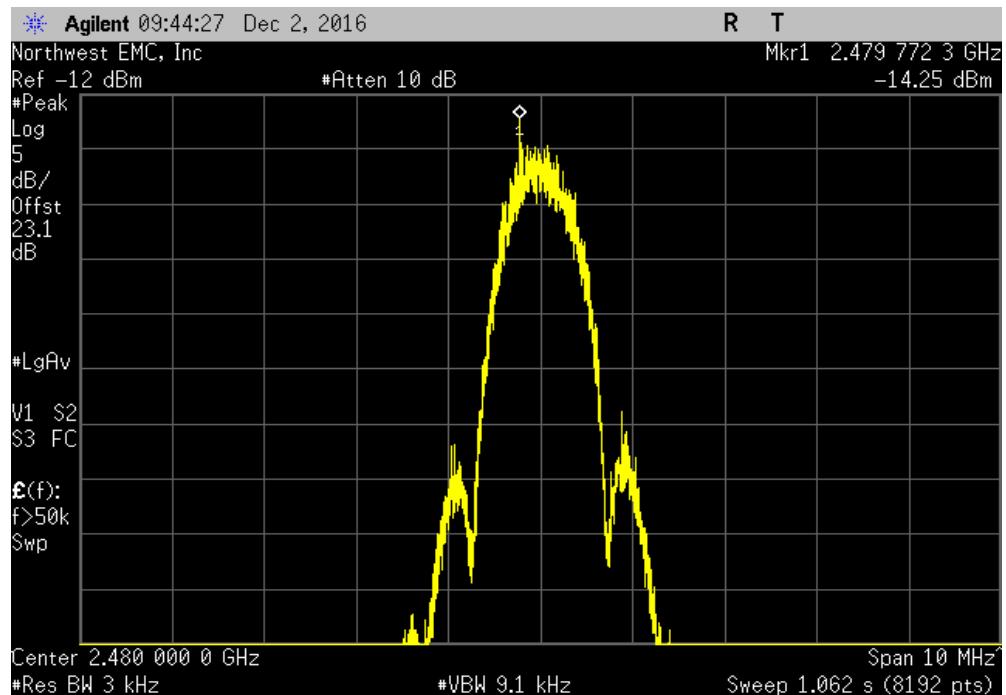

POWER SPECTRAL DENSITY

EUT:	Percepta Quad CRT-P MRI SureScan		Work Order:	MDTR0535	
Serial Number:	RNV1600155		Date:	12/02/16	
Customer:	Medtronic, Inc.		Temperature:	21.6 °C	
Attendees:	Nick Blake		Humidity:	28.6% RH	
Project:	None		Barometric Pres.:	1026 mbar	
Tested by:	Dustin Sparks	Power:	2.9VDC	Job Site:	MN08
TEST SPECIFICATIONS		Test Method			
FCC 15.247:2016		ANSI C63.10:2013			
COMMENTS					
None					
DEVIATIONS FROM TEST STANDARD					
None					
Configuration #	1	Signature			
			Value	Limit	Results
			dBm/3kHz	< dBm/3kHz	
			-13.142	8	Pass
			-13.799	8	Pass
			-14.254	8	Pass


BLE/GFSK Low Channel, 2402 MHz
BLE/GFSK Mid Channel, 2442 MHz
BLE/GFSK High Channel, 2480 MHz

POWER SPECTRAL DENSITY

BLE/GFSK Low Channel, 2402 MHz			
	Value dBm/3kHz	Limit < dBm/3kHz	Results
	-13.142	8	Pass



BLE/GFSK Mid Channel, 2442 MHz			
	Value dBm/3kHz	Limit < dBm/3kHz	Results
	-13.799	8	Pass

POWER SPECTRAL DENSITY

BLE/GFSK High Channel, 2480 MHz			
	Value dBm/3kHz	Limit < dBm/3kHz	Results
	-14.254	8	Pass

BAND EDGE COMPLIANCE

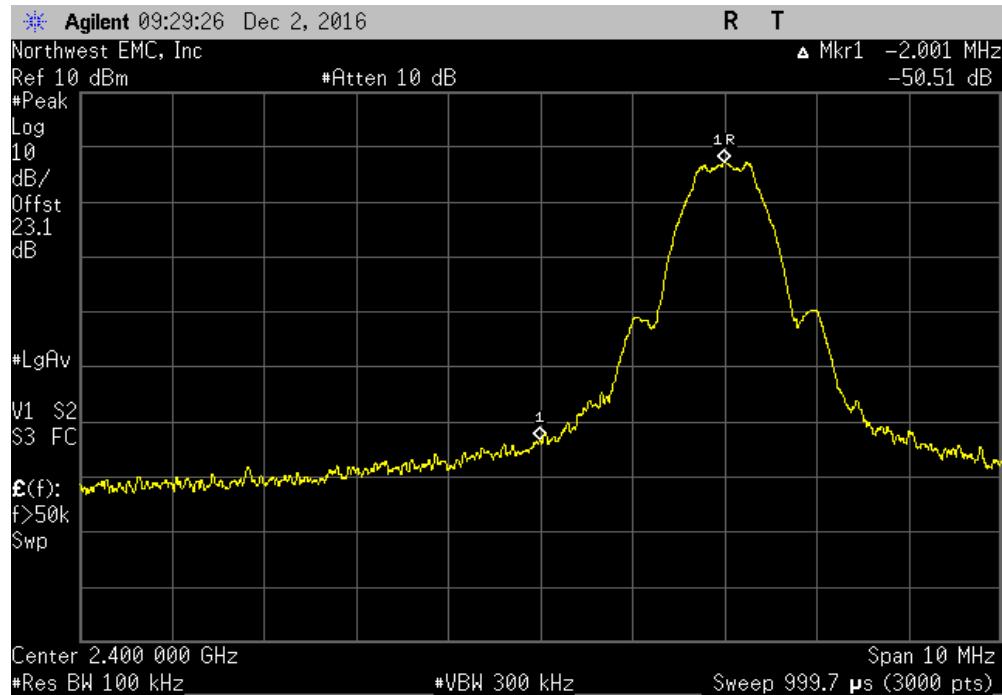
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

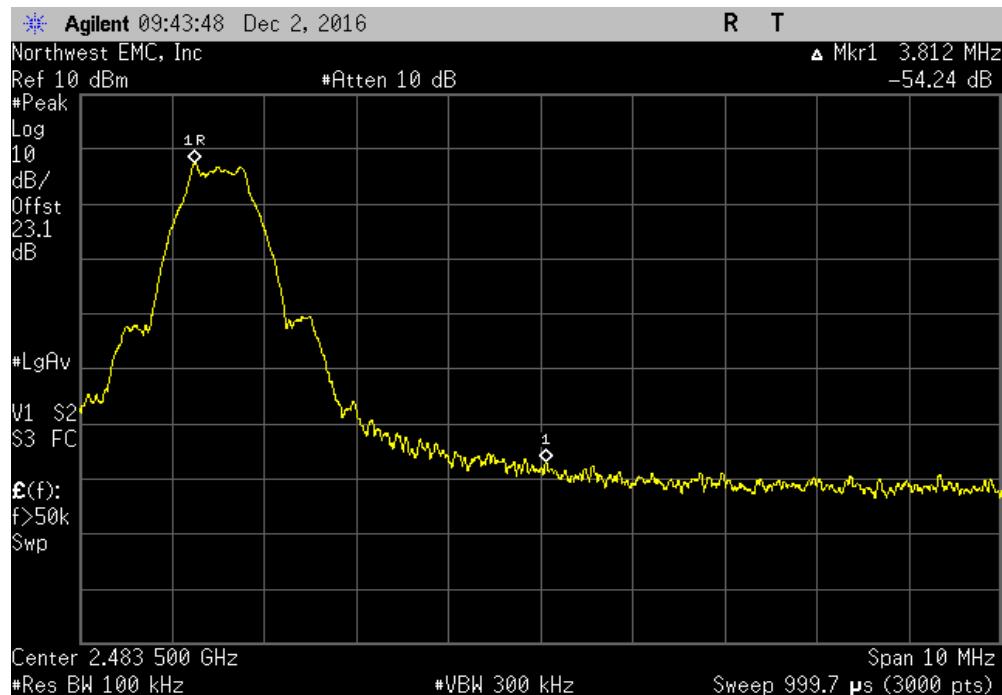
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5183A	TIK	10/17/2014	10/17/2017
Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	9/15/2016	9/15/2017
Attenuator	S.M. Electronics	SA26B-20	RFW	2/26/2016	2/26/2017
Block - DC	Fairview Microwave	SD3379	AMI	9/15/2016	9/15/2017
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	3/24/2016	3/24/2017

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The EUT was transmitting at the data rate(s) listed in the datasheet.


The spectrum was scanned below the lower band edge and above the higher band edge.

BAND EDGE COMPLIANCE


EUT:	Percepta Quad CRT-P MRI SureScan		Work Order:	MDTR0535		
Serial Number:	RNV1600155		Date:	12/02/16		
Customer:	Medtronic, Inc.		Temperature:	21.3 °C		
Attendees:	Nick Blake		Humidity:	28.6% RH		
Project:	None		Barometric Pres.:	1026 mbar		
Tested by:	Dustin Sparks	Power:	2.9VDC	Job Site:	MN08	
TEST SPECIFICATIONS		Test Method				
FCC 15.247:2016		ANSI C63.10:2013				
COMMENTS						
None						
DEVIATIONS FROM TEST STANDARD						
None						
Configuration #	1	Signature	Dustin Sparks	Value (dBc)	Limit ≤ (dBc)	Result
				-50.51	-20	Pass
				-54.24	-20	Pass
BLE/GFSK Low Channel, 2402 MHz						
BLE/GFSK High Channel, 2480 MHz						

BAND EDGE COMPLIANCE

BLE/GFSK Low Channel, 2402 MHz			
	Value (dBc)	Limit ≤ (dBc)	Result
	-50.51	-20	Pass

BLE/GFSK High Channel, 2480 MHz			
	Value (dBc)	Limit ≤ (dBc)	Result
	-54.24	-20	Pass

SPURIOUS CONDUCTED EMISSIONS

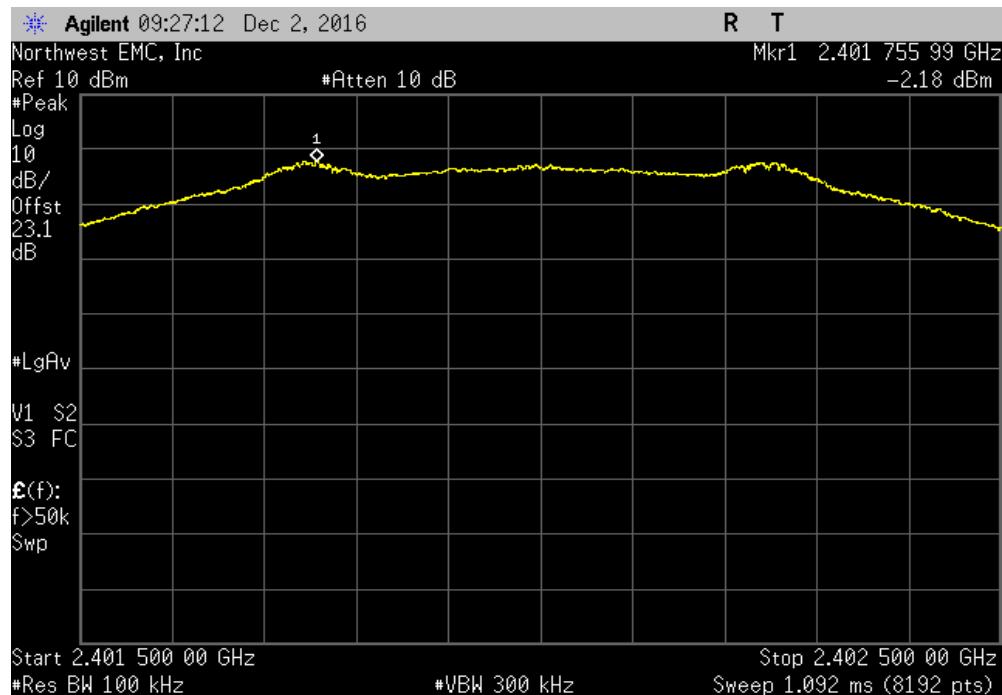
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

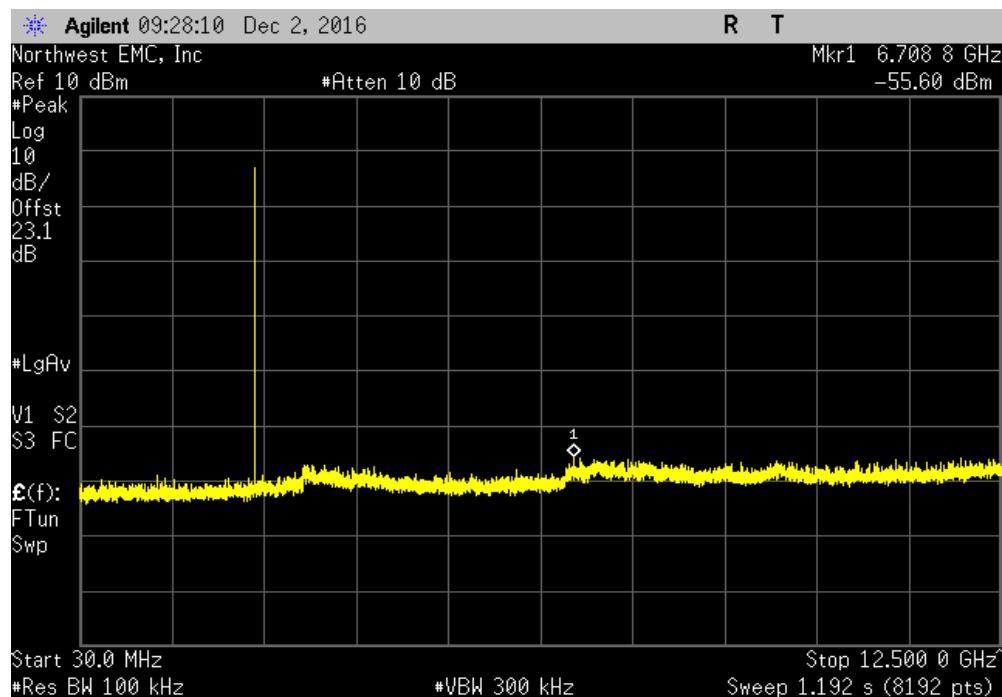
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	N5183A	TIK	10/17/2014	10/17/2017
Cable	ESM Cable Corp.	TTBJ141 KMMK-72	MNU	9/15/2016	9/15/2017
Attenuator	S.M. Electronics	SA26B-20	RFW	2/26/2016	2/26/2017
Block - DC	Fairview Microwave	SD3379	AMI	9/15/2016	9/15/2017
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	3/24/2016	3/24/2017

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

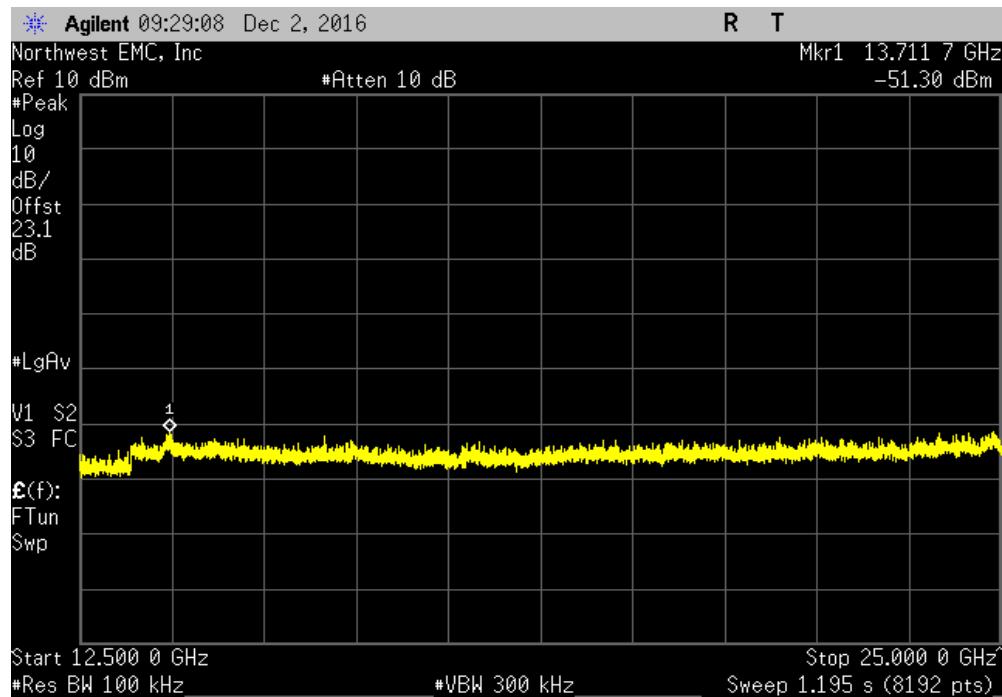

SPURIOUS CONDUCTED EMISSIONS

NORTHWEST
EMC
 XMit 2016.09.29
 NweTx 2016.09.14.2

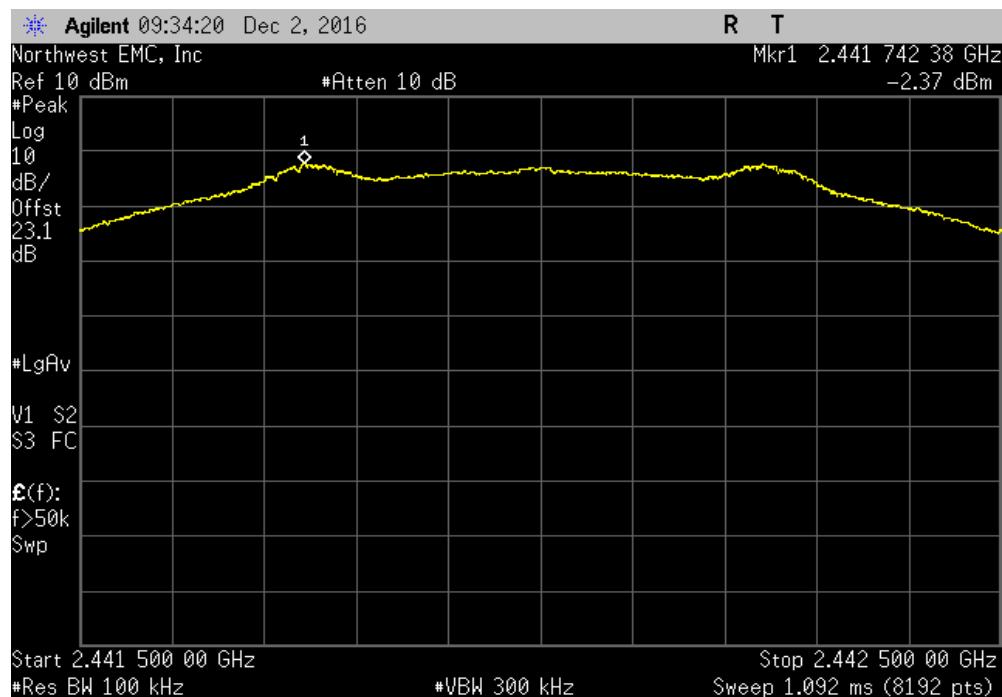

EUT:	Percepta Quad CRT-P MRI SureScan		Work Order:	MDTR0535		
Serial Number:	RNV1600155		Date:	12/02/16		
Customer:	Medtronic, Inc.		Temperature:	21.5 °C		
Attendees:	Nick Blake		Humidity:	28.5% RH		
Project:	None		Barometric Pres.:	1026 mbar		
Tested by:	Dustin Sparks	Power:	2.9VDC	Job Site:	MN08	
TEST SPECIFICATIONS		Test Method				
FCC 15.247:2016		ANSI C63.10:2013				
COMMENTS						
None						
DEVIATIONS FROM TEST STANDARD						
None						
Configuration #	1	Signature	Frequency Range	Max Value (dBc)	Limit ≤ (dBc)	Result
BLE/GFSK Low Channel, 2402 MHz			Fundamental	N/A	N/A	N/A
BLE/GFSK Low Channel, 2402 MHz			30 MHz - 12.5 GHz	-53.42	-20	Pass
BLE/GFSK Low Channel, 2402 MHz			12.5 GHz - 25 GHz	-49.12	-20	Pass
BLE/GFSK Mid Channel, 2442 MHz			Fundamental	N/A	N/A	N/A
BLE/GFSK Mid Channel, 2442 MHz			30 MHz - 12.5 GHz	-52.73	-20	Pass
BLE/GFSK Mid Channel, 2442 MHz			12.5 GHz - 25 GHz	-48.53	-20	Pass
BLE/GFSK High Channel, 2480 MHz			Fundamental	N/A	N/A	N/A
BLE/GFSK High Channel, 2480 MHz			30 MHz - 12.5 GHz	-52.17	-20	Pass
BLE/GFSK High Channel, 2480 MHz			12.5 GHz - 25 GHz	-48.87	-20	Pass

SPURIOUS CONDUCTED EMISSIONS

BLE/GFSK Low Channel, 2402 MHz					
Frequency Range		Max Value (dBc)	Limit \leq (dBc)	Result	
Fundamental		N/A	N/A	N/A	

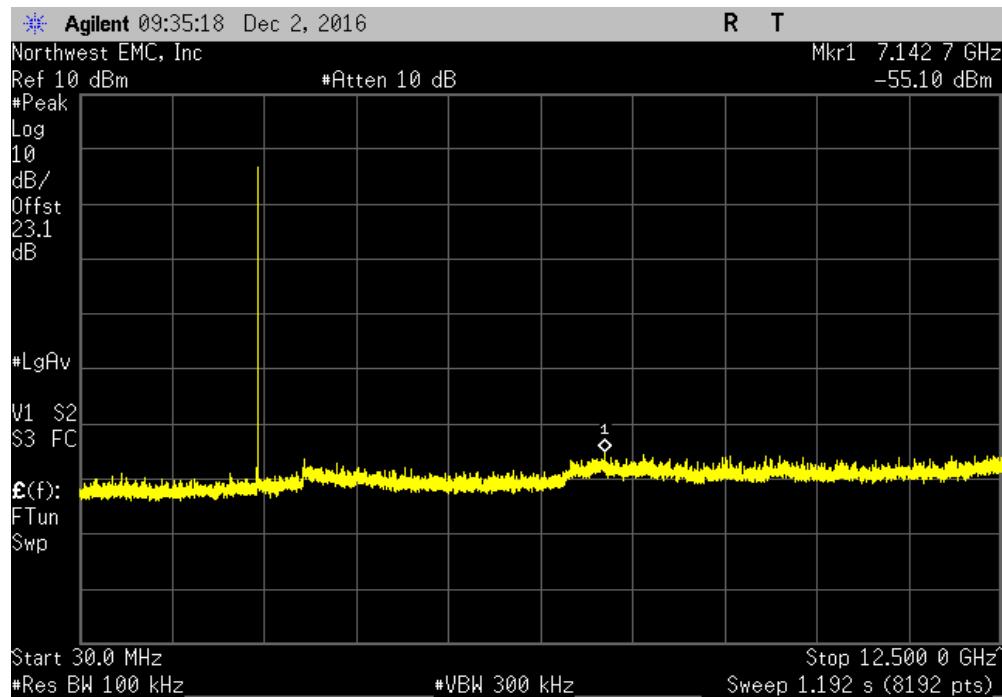


BLE/GFSK Low Channel, 2402 MHz					
Frequency Range		Max Value (dBc)	Limit \leq (dBc)	Result	
30 MHz - 12.5 GHz		-53.42	-20	Pass	

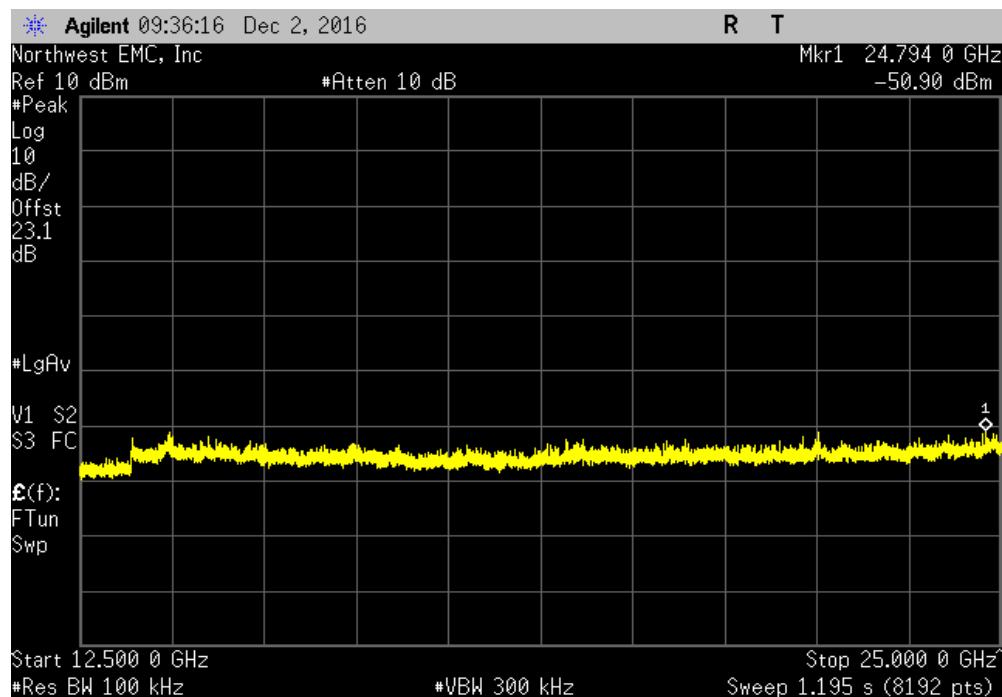


SPURIOUS CONDUCTED EMISSIONS

BLE/GFSK Low Channel, 2402 MHz			
Frequency Range	Max Value (dBc)	Limit \leq (dBc)	Result
12.5 GHz - 25 GHz	-49.12	-20	Pass

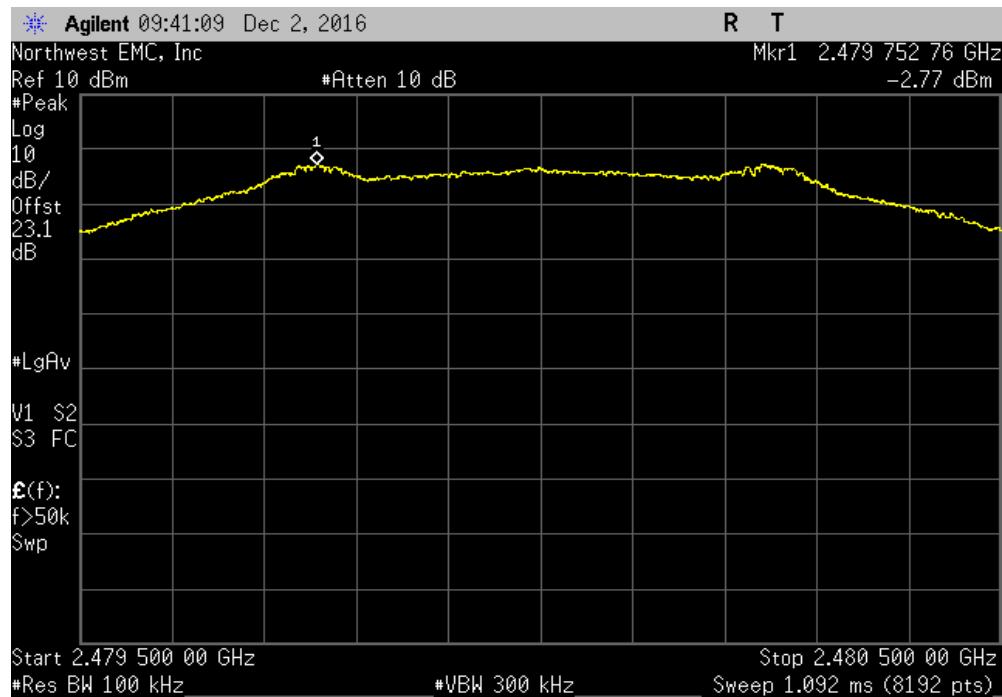


BLE/GFSK Mid Channel, 2442 MHz			
Frequency Range	Max Value (dBc)	Limit \leq (dBc)	Result
Fundamental	N/A	N/A	N/A

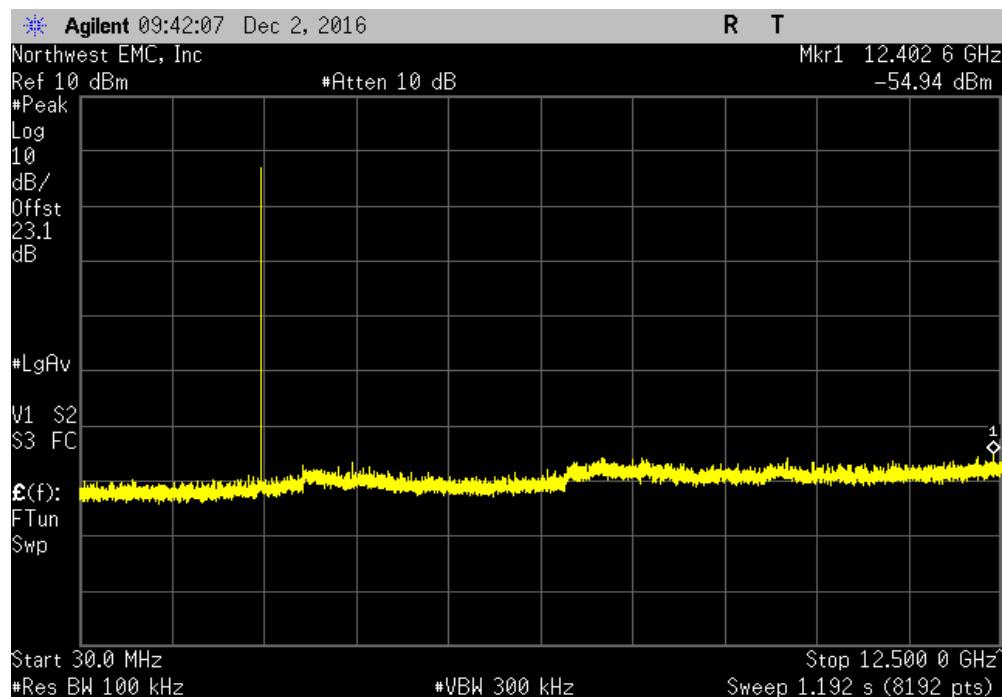


SPURIOUS CONDUCTED EMISSIONS

BLE/GFSK Mid Channel, 2442 MHz				
Frequency Range		Max Value (dBc)	Limit \leq (dBc)	Result
30 MHz - 12.5 GHz		-52.73	-20	Pass

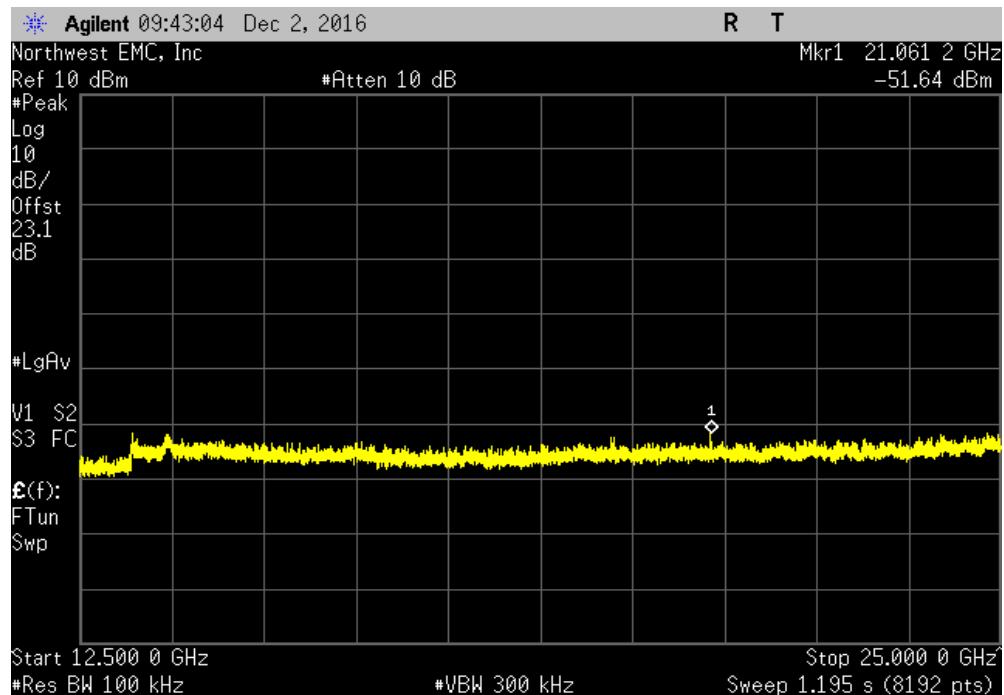


BLE/GFSK Mid Channel, 2442 MHz				
Frequency Range		Max Value (dBc)	Limit \leq (dBc)	Result
12.5 GHz - 25 GHz		-48.53	-20	Pass



SPURIOUS CONDUCTED EMISSIONS

Frequency Range		Max Value (dBc)	Limit \leq (dBc)	Result
Fundamental		N/A	N/A	N/A



Frequency Range		Max Value (dBc)	Limit \leq (dBc)	Result
30 MHz - 12.5 GHz		-52.17	-20	Pass

SPURIOUS CONDUCTED EMISSIONS

BLE/GFSK High Channel, 2480 MHz			
Frequency Range	Max Value (dBc)	Limit \leq (dBc)	Result
12.5 GHz - 25 GHz	-48.87	-20	Pass

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting BLE, PN15, see data comments for channel and frequency.

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

MDTR0535 - 3

FREQUENCY RANGE INVESTIGATED

Start Frequency	30 MHz	Stop Frequency	26 GHz
-----------------	--------	----------------	--------

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Amplifier - Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	9/15/2016	12 mo
Cable	Northwest EMC	18-26GHz Standard Gain Horn Cable	MNP	9/15/2016	12 mo
Antenna - Standard Gain	ETS Lindgren	3160-09	AHG	NCR	0 mo
Attenuator	Fairview Microwave	SA18E-10	TYA	9/23/2016	12 mo
Attenuator	Fairview Microwave	SA18E-20	TWZ	9/23/2016	12 mo
Cable	ESM Cable Corp.	Standard Gain Horn Cables	MNJ	7/29/2016	12 mo
Cable	ESM Cable Corp.	Bilog Cables	MNH	12/1/2016	12 mo
Filter - High Pass	Micro-Tronics	HPM50111	LFN	9/23/2016	12 mo
Antenna - Biconilog	Teseq	CBL 6141B	AYD	1/6/2016	24 mo
Antenna - Standard Gain	ETS Lindgren	3160-07	AXP	NCR	0 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVW	3/1/2016	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVV	3/1/2016	12 mo
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AVO	12/1/2016	12 mo
Antenna - Standard Gain	ETS Lindgren	3160-08	AIQ	NCR	0 mo
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVT	3/1/2016	12 mo
Cable	ESM Cable Corp.	Double Ridge Guide Horn Cables	MNI	12/1/2016	12 mo
Antenna - Double Ridge	ETS Lindgren	3115	AJA	6/23/2016	24 mo
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	1/27/2016	12 mo

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

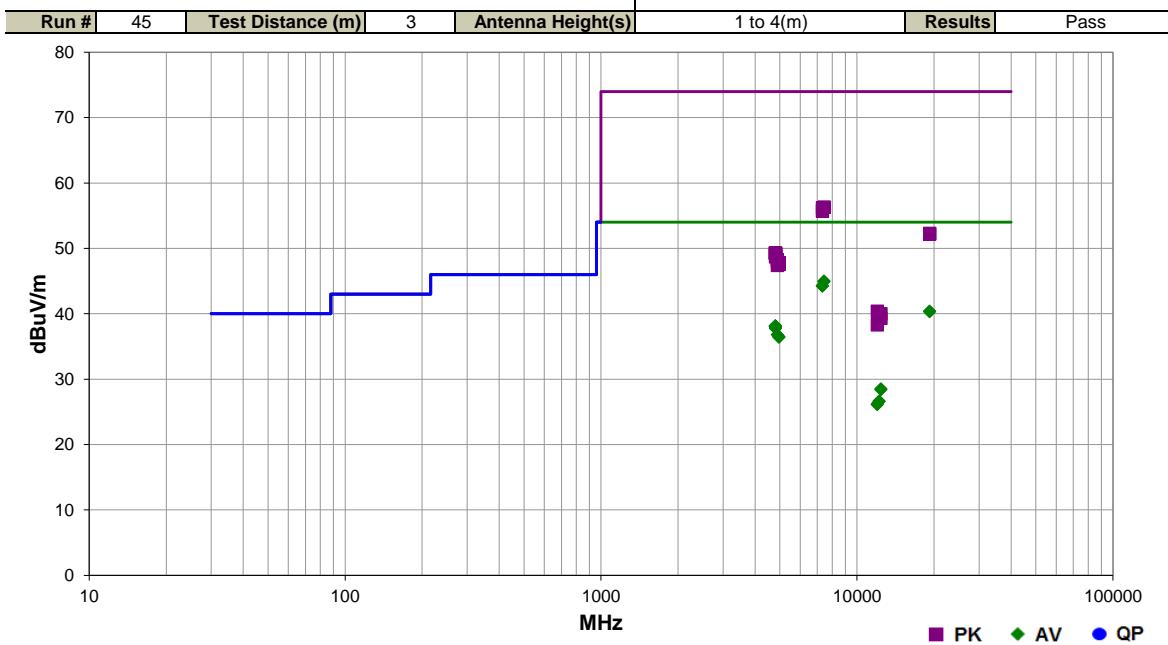
For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector
PK = Peak Detector
AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

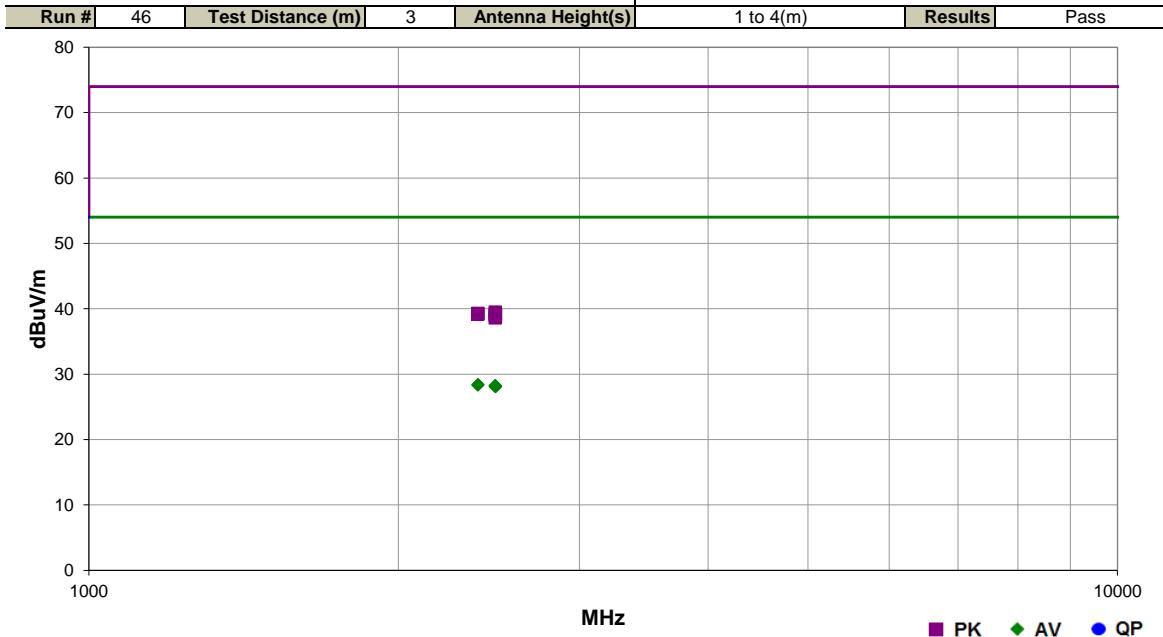

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

SPURIOUS RADIATED EMISSIONS

NORTHWEST
EMC
PSA-ESCI 2016.09.30
EmiR5 2016.08.26

Work Order:	MDTR0535	Date:	12/12/16	
Project:	None	Temperature:	23 °C	
Job Site:	MN05	Humidity:	17.8% RH	
Serial Number:	RNP601017S	Barometric Pres.:	1020 mbar	
EUT:	Percepta Quad CRT-P MRI SureScan	Tested by:	Cole Ghizzone, Kyle McMullen	
Configuration:	3			
Customer:	Medtronic, Inc.			
Attendees:	Nick Blake			
EUT Power:	Battery			
Operating Mode:	Transmitting BLE, PN15, see data comments for channel and frequency.			
Deviations:	None			
Comments:	See data comments for EUT orientation			

Test Specifications	Test Method
FCC 15.247:2016	ANSI C63.10:2013


Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
7440.067	29.7	15.3	1.0	154.0	3.0	0.0	Vert	AV	0.0	45.0	54.0	-9.0	High Ch. 2480 MHz, EUT vert.
7438.492	29.6	15.3	1.0	271.0	3.0	0.0	Horz	AV	0.0	44.9	54.0	-9.1	High Ch. 2480 MHz, EUT vert.
7323.783	29.1	15.2	2.2	146.0	3.0	0.0	Horz	AV	0.0	44.3	54.0	-9.7	Mid Ch. 2442 MHz, EUT vert
7324.642	29.0	15.2	3.7	84.1	3.0	0.0	Vert	AV	0.0	44.2	54.0	-9.8	Mid Ch. 2442 MHz, EUT vert
19215.900	27.8	12.6	1.0	336.9	3.0	0.0	Horz	AV	0.0	40.4	54.0	-13.6	Low Ch. 2402 MHz, EUT vert
19215.920	27.7	12.6	1.0	286.0	3.0	0.0	Vert	AV	0.0	40.3	54.0	-13.7	Low Ch. 2402 MHz, EUT vert
4801.517	31.4	6.7	1.0	151.0	3.0	0.0	Vert	AV	0.0	38.1	54.0	-15.9	Low Ch. 2402 MHz, EUT horz.
4801.533	31.4	6.7	3.6	137.1	3.0	0.0	Horz	AV	0.0	38.1	54.0	-15.9	Low Ch. 2402 MHz, EUT horz.
4801.517	31.4	6.7	1.0	151.0	3.0	0.0	Vert	AV	0.0	38.1	54.0	-15.9	Low Ch. 2402 MHz, EUT horz.
4801.533	31.4	6.7	3.6	137.1	3.0	0.0	Horz	AV	0.0	38.1	54.0	-15.9	Low Ch. 2402 MHz, EUT horz.
4802.705	31.4	6.7	1.0	196.1	3.0	0.0	Horz	AV	0.0	38.1	54.0	-15.9	Low Ch. 2402 MHz, EUT vert
4802.550	31.2	6.7	1.0	34.1	3.0	0.0	Vert	AV	0.0	37.9	54.0	-16.1	Low Ch. 2402 MHz, EUT on side
4802.745	31.1	6.7	1.0	99.0	3.0	0.0	Horz	AV	0.0	37.8	54.0	-16.2	Low Ch. 2402 MHz, EUT on side
4802.555	31.1	6.7	2.9	293.9	3.0	0.0	Vert	AV	0.0	37.8	54.0	-16.2	Low Ch. 2402 MHz, EUT vert
4886.208	30.2	6.6	1.0	250.0	3.0	0.0	Vert	AV	0.0	36.8	54.0	-17.2	Mid Ch. 2442 MHz, EUT vert
4962.133	29.8	6.7	1.0	46.0	3.0	0.0	Vert	AV	0.0	36.5	54.0	-17.5	High Ch. 2480 MHz, EUT vert.
4962.092	29.7	6.7	1.0	343.9	3.0	0.0	Horz	AV	0.0	36.4	54.0	-17.6	High Ch. 2480 MHz, EUT vert.
7442.433	41.0	15.3	1.0	271.0	3.0	0.0	Horz	PK	0.0	56.3	74.0	-17.7	High Ch. 2480 MHz, EUT vert.
7441.758	41.0	15.3	1.0	154.0	3.0	0.0	Vert	PK	0.0	56.3	74.0	-17.7	High Ch. 2480 MHz, EUT vert.
7325.442	41.1	15.1	2.2	146.0	3.0	0.0	Horz	PK	0.0	56.2	74.0	-17.8	Mid Ch. 2442 MHz, EUT vert
7323.575	40.5	15.2	3.7	84.1	3.0	0.0	Vert	PK	0.0	55.7	74.0	-18.3	Mid Ch. 2442 MHz, EUT vert
19215.170	39.7	12.6	1.0	336.9	3.0	0.0	Horz	PK	0.0	52.3	74.0	-21.7	Low Ch. 2402 MHz, EUT vert
19214.150	39.6	12.6	1.0	286.0	3.0	0.0	Vert	PK	0.0	52.2	74.0	-21.8	Low Ch. 2402 MHz, EUT vert

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
4801.675	42.6	6.7	1.0	151.0	3.0	0.0	Vert	PK	0.0	49.3	74.0	-24.7	Low Ch. 2402 MHz, EUT horz.
4801.675	42.6	6.7	1.0	151.0	3.0	0.0	Vert	PK	0.0	49.3	74.0	-24.7	Low Ch. 2402 MHz, EUT horz.
4803.075	42.6	6.7	1.0	99.0	3.0	0.0	Horz	PK	0.0	49.3	74.0	-24.7	Low Ch. 2402 MHz, EUT on side
4802.458	42.5	6.7	3.6	137.1	3.0	0.0	Horz	PK	0.0	49.2	74.0	-24.8	Low Ch. 2402 MHz, EUT horz.
4802.458	42.5	6.7	3.6	137.1	3.0	0.0	Horz	PK	0.0	49.2	74.0	-24.8	Low Ch. 2402 MHz, EUT horz.
4803.205	42.5	6.7	1.0	34.1	3.0	0.0	Vert	PK	0.0	49.2	74.0	-24.8	Low Ch. 2402 MHz, EUT horz.
4805.250	42.2	6.7	1.0	196.1	3.0	0.0	Horz	PK	0.0	48.9	74.0	-25.1	Low Ch. 2402 MHz, EUT vert
4802.610	42.0	6.7	2.9	293.9	3.0	0.0	Vert	PK	0.0	48.7	74.0	-25.3	Low Ch. 2402 MHz, EUT vert
12399.290	27.8	0.7	1.0	275.1	3.0	0.0	Horz	AV	0.0	28.5	54.0	-25.5	High Ch. 2480 MHz, EUT vert.
12399.490	27.7	0.7	1.0	189.0	3.0	0.0	Vert	AV	0.0	28.4	54.0	-25.6	High Ch. 2480 MHz, EUT vert.
4883.717	41.7	6.6	1.0	250.0	3.0	0.0	Vert	PK	0.0	48.3	74.0	-25.7	Mid Ch. 2442 MHz, EUT vert
4884.083	41.5	6.6	1.0	306.0	3.0	0.0	Horz	PK	0.0	48.1	74.0	-25.9	Mid Ch. 2442 MHz, EUT vert
4962.317	41.1	6.7	1.0	46.0	3.0	0.0	Vert	PK	0.0	47.8	74.0	-26.2	High Ch. 2480 MHz, EUT vert.
4959.325	40.9	6.7	1.0	343.9	3.0	0.0	Horz	PK	0.0	47.6	74.0	-26.4	High Ch. 2480 MHz, EUT vert.
4883.925	40.8	6.6	1.0	250.0	3.0	0.0	Vert	PK	0.0	47.4	74.0	-26.6	Mid Ch. 2442 MHz, EUT vert
12208.660	27.1	-0.5	1.0	48.1	3.0	0.0	Horz	AV	0.0	26.6	54.0	-27.4	Mid Ch. 2442 MHz, EUT vert
12208.860	27.1	-0.5	1.0	282.9	3.0	0.0	Vert	AV	0.0	26.6	54.0	-27.4	Mid Ch. 2442 MHz, EUT vert
12008.540	27.3	-1.1	3.8	51.2	3.0	0.0	Horz	AV	0.0	26.2	54.0	-27.8	Low Ch. 2402 MHz, EUT vert
12008.960	27.2	-1.1	1.0	227.1	3.0	0.0	Vert	AV	0.0	26.1	54.0	-27.9	Low Ch. 2402 MHz, EUT vert
12008.750	41.5	-1.1	3.8	51.2	3.0	0.0	Horz	PK	0.0	40.4	74.0	-33.6	Low Ch. 2402 MHz, EUT vert
12399.640	39.3	0.7	1.0	275.1	3.0	0.0	Horz	PK	0.0	40.0	74.0	-34.0	High Ch. 2480 MHz, EUT vert.
12211.310	40.0	-0.5	1.0	282.9	3.0	0.0	Vert	PK	0.0	39.5	74.0	-34.5	Mid Ch. 2442 MHz, EUT vert
12399.480	38.6	0.7	1.0	189.0	3.0	0.0	Vert	PK	0.0	39.3	74.0	-34.7	High Ch. 2480 MHz, EUT vert.
12211.080	39.8	-0.5	1.0	48.1	3.0	0.0	Horz	PK	0.0	39.3	74.0	-34.7	Mid Ch. 2442 MHz, EUT vert
12009.190	39.4	-1.1	1.0	227.1	3.0	0.0	Vert	PK	0.0	38.3	74.0	-35.7	Low Ch. 2402 MHz, EUT vert

SPURIOUS RADIATED EMISSIONS

NORTHWEST
EMC
PSA-ESCI 2016.09.30
EmiR5 2016.08.26

Work Order:	MDTR0535	Date:	12/12/16	
Project:	None	Temperature:	23 °C	
Job Site:	MN05	Humidity:	17.8% RH	
Serial Number:	RNP601017S	Barometric Pres.:	1020 mbar	
EUT:	Percepta Quad CRT-P MRI SureScan	Tested by:	Cole Ghizzone	
Configuration:	3			
Customer:	Medtronic, Inc.			
Attendees:	Nick Blake			
EUT Power:	Battery			
Operating Mode:	Transmitting BLE, PN15, see data comments for channel and frequency.			
Deviations:	None			
Comments:	See data comments for EUT orientation			

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2389.813	30.8	-2.4	1.0	137.1	3.0	0.0	Vert	AV	0.0	28.4	54.0	-25.6	Low Ch. 2402 MHz, EUT vert
2389.360	30.7	-2.4	1.5	107.0	3.0	0.0	Horz	AV	0.0	28.3	54.0	-25.7	Low Ch. 2402 MHz, EUT vert
2485.203	30.8	-2.6	1.0	347.0	3.0	0.0	Horz	AV	0.0	28.2	54.0	-25.8	High Ch. 2480 MHz, EUT vert.
2484.253	30.8	-2.6	1.0	245.0	3.0	0.0	Vert	AV	0.0	28.2	54.0	-25.8	High Ch. 2480 MHz, EUT vert.
2483.877	30.8	-2.6	1.0	239.0	3.0	0.0	Horz	AV	0.0	28.2	54.0	-25.8	High Ch. 2480 MHz, EUT on side
2483.567	30.8	-2.6	1.4	307.0	3.0	0.0	Vert	AV	0.0	28.2	54.0	-25.8	High Ch. 2480 MHz, EUT on side
2485.357	30.7	-2.6	1.7	4.1	3.0	0.0	Horz	AV	0.0	28.1	54.0	-25.9	High Ch. 2480 MHz, EUT horz.
2485.303	30.7	-2.6	2.0	177.1	3.0	0.0	Vert	AV	0.0	28.1	54.0	-25.9	High Ch. 2480 MHz, EUT horz.
2484.120	42.1	-2.6	1.0	245.0	3.0	0.0	Vert	PK	0.0	39.5	74.0	-34.5	High Ch. 2480 MHz, EUT vert.
2484.740	41.9	-2.6	1.7	4.1	3.0	0.0	Horz	PK	0.0	39.3	74.0	-34.7	High Ch. 2480 MHz, EUT horz.
2389.663	41.7	-2.4	1.0	137.1	3.0	0.0	Vert	PK	0.0	39.3	74.0	-34.7	Low Ch. 2402 MHz, EUT vert
2389.010	41.6	-2.4	1.5	107.0	3.0	0.0	Horz	PK	0.0	39.2	74.0	-34.8	Low Ch. 2402 MHz, EUT vert
2483.717	41.7	-2.6	1.0	347.0	3.0	0.0	Horz	PK	0.0	39.1	74.0	-34.9	High Ch. 2480 MHz, EUT vert.
2485.070	41.7	-2.6	1.0	239.0	3.0	0.0	Horz	PK	0.0	39.1	74.0	-34.9	High Ch. 2480 MHz, EUT on side
2484.607	41.4	-2.6	1.4	307.0	3.0	0.0	Vert	PK	0.0	38.8	74.0	-35.2	High Ch. 2480 MHz, EUT on side
2483.977	41.2	-2.6	2.0	177.1	3.0	0.0	Vert	PK	0.0	38.6	74.0	-35.4	High Ch. 2480 MHz, EUT horz.