

TEST REPORT

Test Report No. : UL-RPT-RP15585693-1816A

Customer* : Cisco Systems Norway AS
Model No. / HVIN* : TTC7-29
HMN* : Cisco Desk Pro G2
PMN* : 07100725
Contains FCC ID* : LDKXV2EA2797
Contains IC* : 2461N-XV2EA2797
Technology : *Bluetooth – Low Energy*
Test Standard(s) : FCC Parts 15.209(a) & 15.247(d)
Innovation, Science and Economic Development Canada
RSS-247 Issue 3 August 2023, Section 5.5
RSS-Gen Issue 5 February 2021, Section 6.13 & 8.9
Test Laboratory : UL International (UK) Ltd, Basingstoke, Hampshire, RG24 8AH, United Kingdom

1. This test report shall not be reproduced except in full, without the written approval of UL International (UK) Ltd.
2. The results in this report apply only to the sample(s) tested.
3. The sample tested is in compliance with the above standard(s).
4. The test results in this report are traceable to the national or international standards.
5. All information marked with (*) was provided by the Customer, Applicant or Authorised representative
6. Version 2.0 supersedes all previous versions.

Date of Issue: 08 September 2025

Checked by:

Ben Mercer
Lead Project Engineer, Radio Laboratory

Company Signatory:

Sarah Williams
Staff Engineer, Radio Laboratory

The *Bluetooth*® word mark and logos are owned by the *Bluetooth* SIG, Inc. and any use of such marks by UL International (UK) Ltd is under licence. Other trademarks and trade names are those of their respective owners.

UL International (UK) LTD

Unit 1-4 Horizon, Kingsland Business Park, Wade Road, Basingstoke, Hampshire, RG24 8AH, UK
Telephone: +44 (0)1256 312000

Customer Information

Company Name*:	Cisco Systems Norway AS
Address*:	Philip Pedersens vei 1, 1366 Lysaker, Norway

Manufacturers Information

Manufacturers Name*:	Cisco Systems, Inc.
Address*:	170 West Tasman Drive, San Jose, CA 95134, United States of America

Report Revision History

Version Number	Issue Date	Revision Details	Revised By
1.0	03/06/2025	Initial Version	Ben Mercer
2.0	08/09/2025	TCB feedback addressed	Ben Mercer

Table of Contents

Customer Information.....	2
Manufacturers Information.....	2
Report Revision History	2
Table of Contents.....	3
1 Attestation of Test Results.....	4
1.1 Description of EUT	4
1.2 General Information	4
1.3 Summary of Test Results	4
1.4 Deviations from the Test Specification	4
2 Summary of Testing.....	5
2.1 Facilities and Accreditation	5
2.2 Methods and Procedures	5
2.3 Calibration and Uncertainty	6
2.4 Test and Measurement Equipment	7
3 Equipment Under Test (EUT)	9
3.1 Identification of Equipment Under Test (EUT)	9
3.2 Modifications Incorporated in the EUT	9
3.3 Additional Information Related to Testing	10
3.4 Description of Available Antennas	10
3.5 Description of Test Setup	11
4 Radiated Test Results.....	15
4.1 Transmitter Duty Cycle	15
4.2 Transmitter Radiated Emissions <1 GHz	18
4.3 Transmitter Radiated Emissions >1 GHz	21
4.4 Transmitter Band Edge Radiated Emissions	25

1 Attestation of Test Results

1.1 Description of EUT

The equipment under test (EUT) was a desktop collaboration unit.*

1.2 General Information

Specification Reference:	47CFR15.247
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunication): Part 15 Subpart C (Intentional Radiators) – Section 15.247
Specification Reference:	47CFR15.209
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunication): Part 15 Subpart C (Intentional Radiators) – Section 15.209
Specification Reference:	RSS-247 Issue 3 August 2023
Specification Title:	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
Specification Reference:	RSS-Gen Issue 5 February 2021
Specification Title:	General Requirements for Compliance of Radio Apparatus
Site Registration:	FCC: 685609, ISEDC: 20903
FCC Lab. Designation No.:	UK2011
ISEDC CABID:	UK0001
Location of Testing:	Units 3 & 4 Horizon, Wade Road, Kingsland Business Park, Basingstoke, Hampshire, RG24 8AH, United Kingdom
Test Dates:	27 March 2025 to 20 May 2025

1.3 Summary of Test Results

FCC Reference (47CFR)	ISED Canada Reference	Measurement	Result
Part 15.35(c)	RSS-Gen 8.2	Transmitter Duty Cycle	Note 1
Part 15.247(d) & 15.209(a)	RSS-247 5.5 / RSS-Gen 6.13	Transmitter Radiated Emissions	
Part 15.247(d) & 15.209(a)	RSS-247 5.5 / RSS-Gen 6.13	Transmitter Band Edge Radiated Emissions	
Key to Results			
	= Complied		= Did not comply

Note(s):

1. The measurement was performed to assist in the calculation of emission levels. The EUT cannot transmit continuously and sweep triggering/signal gating cannot be implemented.

1.4 Deviations from the Test Specification

For the measurements contained within this test report, there were no deviations from, additions to, or exclusions from the test specification identified above.

2 Summary of Testing

2.1 Facilities and Accreditation

The test site and measurement facilities used to collect data are located at Units 3 & 4 Horizon, Wade Road, Kingsland Business Park, Basingstoke, Hampshire, RG24 8AH, United Kingdom. The following table identifies which facilities were utilised for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

Site 1	X
Site 17	-
Site 32	-
Site 33	X

UL International (UK) Ltd is accredited by the United Kingdom Accreditation Service (UKAS). UKAS is one of the signatories to the International Laboratory Accreditation Co-operation (ILAC) Arrangement for the mutual recognition of test reports. The tests reported herein have been performed in accordance with its terms of accreditation.

2.2 Methods and Procedures

Reference:	ANSI C63.10-2013
Title:	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
Reference:	KDB 558074 D01 15.247 Meas Guidance v05r02, April 2, 2019
Title:	Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating Under Section 15.247 of the FCC Rules

2.3 Calibration and Uncertainty

Measuring Instrument Calibration

In accordance with UKAS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing.

Measurement Uncertainty & Decision Rule

Overview

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

Decision Rule

Measurement system instrumentation shall be used with an accuracy specification meeting the accuracy specification limits according to IEC/IECEE OD-5014.

As applicable, unless specified otherwise in this quotation, the compliance "Decision Rule" is based on Simple Acceptance. If the measured value is on the limit, the result is defined as a pass. In this case the risk of a false positive is 50%. For further information regarding risk assessment refer to ILAC G8:09/2019.

Measurement Uncertainty

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Measurement Type	Range	Confidence Level (%)	Calculated Uncertainty
Duty Cycle	2.4 GHz to 2.4835 GHz	95%	±1.14 %
Radiated Spurious Emissions	9 kHz to 30 MHz	95%	±5.44 dB
Radiated Spurious Emissions	30 MHz to 1 GHz	95%	±2.98 dB
Radiated Spurious Emissions	1 GHz to 25 GHz	95%	±3.64 dB

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty the published guidance of the appropriate accreditation body is followed.

2.4 Test and Measurement Equipment

Test Equipment Used for Transmitter Radiated Emissions Tests

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M2040	Thermohygrometer	Testo	608-H1	45124934	23 Dec 2025	12
K0001	3m RSE Chamber	Rainford EMC	N/A	N/A	11 Sep 2025	12
M1874	Test Receiver	Rohde & Schwarz	ESU26	100553	26 Jun 2025	12
M236226	Test Receiver	Rohde & Schwarz	ESW26	103134	06 May 2025	12
A3154	Pre-Amplifier	Com-Power	PAM-103	18020012	28 Aug 2025	12
A3112	Attenuator	AtlanTecRF	AN18-06	219706#2	27 Aug 2025	12
A3083	Low Pass Filter	AtlanTecRF	AFL-01000	18010900076	16 Sep 2025	12
A553	Antenna	Chase	CBL6111A	1593	27 Aug 2025	12
A3165	Antenna	ETS-Lindgren	6502	00224383	25 Mar 2026	12
A3139	Antenna	Schwarzbeck	HWRD750	00027	06 Sep 2025	12
A3265	Pre-Amplifier	Schwarzbeck	BBV 9721	9721-069	31 Dec 2025	12
A222867	Pre-Amplifier	Atlantic Microwave	A-LNAKX-380116-S5S5	220705002	24 Feb 2026	12
A2892	Antenna	Schwarzbeck	BBHA 9170	9170-727	02 Jan 2026	12
A227131	High Pass Filter	Micro-Tronics	HPS20722	005	16 Sep 2025	12
K226203	3m RSE Chamber	Albatross Projects	N/A	N/A	10 May 2025	12
M226556	Thermohygrometer	Testo	608-H1	83800306	20 Dec 2025	12
A231864	Pre-Amplifier	Atlantic Microwave	A-LNAKX-380116-S5S5	221044002	25 Apr 2025	12
A227132	High Pass Filter	Micro-Tronics	HPM21019	001	05 Jun 2025	12
A230451	Attenuator	Atlantic Microwave	ATT10KXP-483034-N4N5	#3	10 Jun 2025	12
A231044	Antenna	Schwarzbeck	BBHA 9120 B	00835	29 Apr 2025	12

Test Equipment Used for Transmitter Duty Cycle & Band Edge Radiated Emissions Tests

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M2040	Thermohygrometer	Testo	608-H1	45124934	23 Dec 2025	12
K0001	3m RSE Chamber	Rainford EMC	N/A	N/A	11 Sep 2025	12
A3179	Pre Amplifier	Hewlett Packard	8449B	3008A00934	30 Aug 2025	12
M236226	Test Receiver	Rohde & Schwarz	ESW26	103134	06 May 2025	12
A3138	Antenna	Schwarzbeck	BBHA 9120 B	00702	06 Sep 2025	12
A221643	Attenuator	Atlantic Microwave	ATT06KXP-483034-N4N5	#3	16 Sep 2025	12
K226203	3m RSE Chamber	Albatross Projects	N/A	N/A	29 Apr 2026	12
M226556	Thermohygrometer	Testo	608-H1	83800306	20 Dec 2025	12
M1995	Test Receiver	Rohde & Schwarz	ESU40	100428	19 Mar 2026	12
A231044	Antenna	Schwarzbeck	BBHA 9120 B	00835	28 Apr 2026	12
A230461	Attenuator	Atlantic Microwave	ATT06KXP-483034-N4N5	#5	06 May 2026	12

3 Equipment Under Test (EUT)

3.1 Identification of Equipment Under Test (EUT)

Brand Name* :	Cisco
Model Name or Number / HVIN* :	TTC7-29
HMN* :	Cisco Desk Pro G2
PMN* :	07100725
Test Sample Serial Number* :	FOC2845HUBH (<i>Radiated sample #1</i>)
Hardware Version* :	DVb modified with rev. D main board and camera base board.
Software Version* :	s01874-1.2.0.dev
Firmware Version / FVIN* :	Type-2EA rev2.4.3 NVRAM updated
Contains FCC ID* :	LDKXV2EA2797
Contains IC* :	2461N-XV2EA2797
Date of Receipt:	10 January 2025 (enclosure) 20 March 2025 (mainboard and top camera module)

3.2 Modifications Incorporated in the EUT

No modifications were applied to the EUT during testing.

3.3 Additional Information Related to Testing

Technology Tested:	<i>Bluetooth Low Energy (Digital Transmission System)</i>		
Type of Unit:	Transceiver		
Channel Spacing:	2 MHz		
Modulation:	GFSK		
Data Rate*: LE	1 Mbps		
Data Rate*: LE 2M	2 Mbps		
Data Rate*: LE Coded S2	500 kbps		
Data Rate*: LE Coded S8	125 kbps		
Power Supply Requirement(s)*:	20 VDC via 120 VAC 60 Hz AC/DC supply		
Transmit Frequency Range:	2402 MHz to 2480 MHz		
Transmit Channels Tested:	Channel ID	Channel Number	Channel Frequency (MHz)
	Bottom	37	2402
	Middle	17	2440
	Top	39	2480

3.4 Description of Available Antennas

The radio utilizes an integrated antenna, with the following maximum gain:

Frequency Range (MHz)	Antenna Gain (dBi)*
2400-2480	2.5

3.5 Description of Test Setup

Support Equipment

The following support equipment was used to exercise the EUT during testing:

Customer Supplied*:

Description	Brand Name	Model Name or Number	Serial Number
Switching Power Adaptor	FSP	FSP230-A20C14	FST2841MBJQ

Laboratory Supplied:

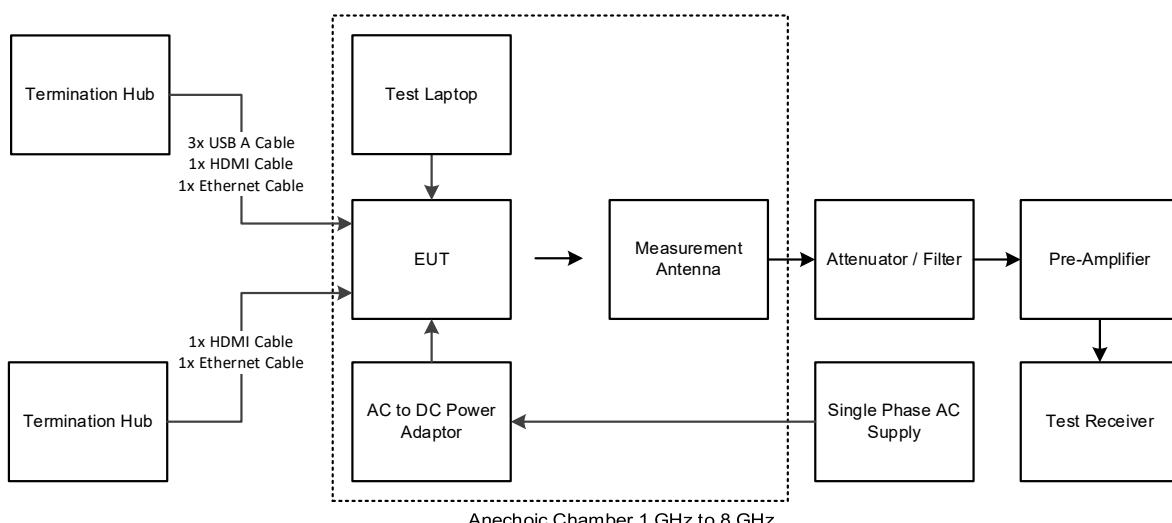
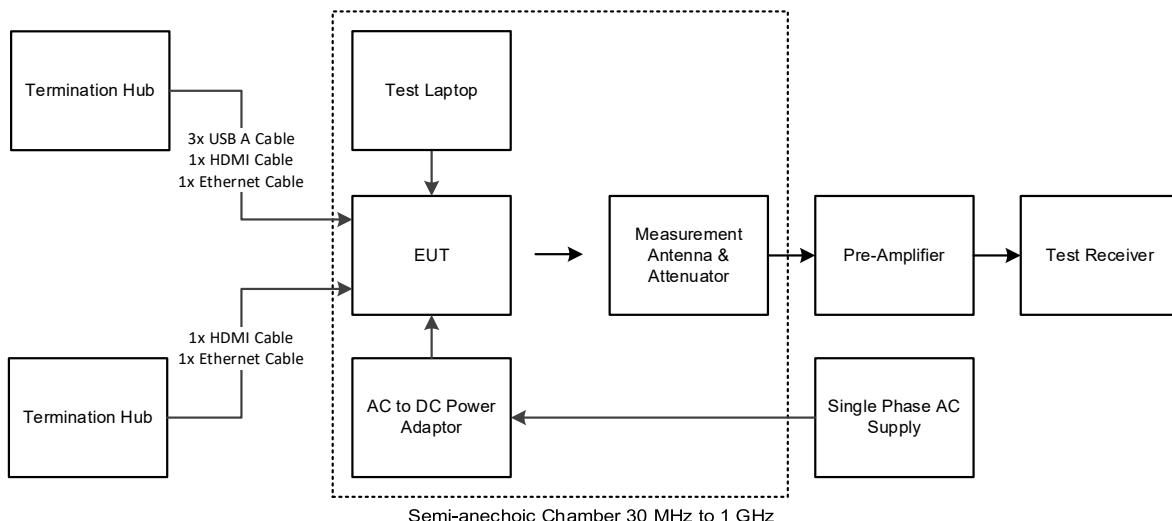
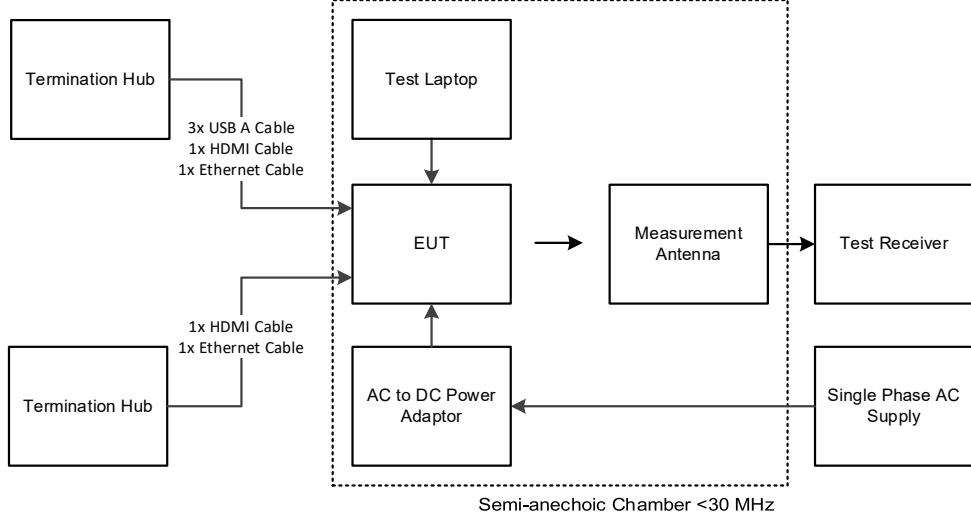
Description	Brand Name	Model Name or Number	Serial Number
Laptop	Lenovo	Thinkpad	PF1EHZQQ
USB to Micro USB Cable	Not marked or stated	Not marked or stated	Not marked or stated
ThinkPad USB-C Dock Gen 2	Lenovo	LDC-G2	Not marked or stated
ThinkPad USB-C Dock Gen 2	Lenovo	LDC-G2	Not marked or stated
Ethernet Cable. Quantity 2.	Not marked or stated	Not marked or stated	Not marked or stated
HDMI Cable. Quantity 2.	Not marked or stated	Not marked or stated	Not marked or stated
USB-A Cable. Quantity 3.	Not marked or stated	Not marked or stated	Not marked or stated
Micro USB Cable. Quantity 3.	Not marked or stated	Not marked or stated	Not marked or stated

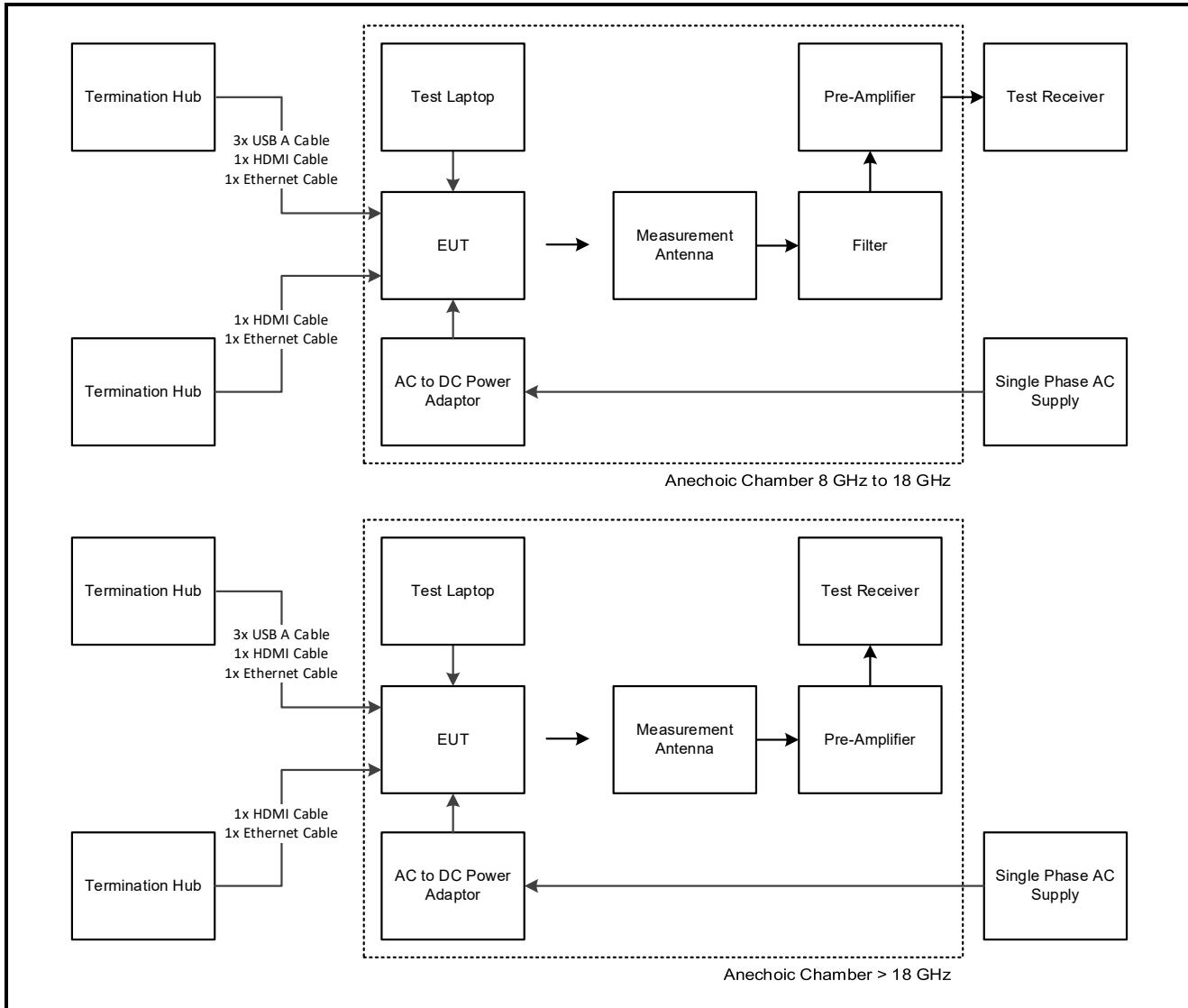
Operating Modes

The EUT was tested in the following operating mode(s):

- Transmitting at maximum power in *Bluetooth* LE mode with modulation, maximum possible data length available and Pseudorandom Bit Sequence 9.
- Transmitting at maximum power in *Bluetooth* LE 2M mode with modulation, maximum possible data length available and Pseudorandom Bit Sequence 9.
- Transmitting at maximum power in *Bluetooth* LE Coded S2 mode with modulation, maximum possible data length available and Pseudorandom Bit Sequence 9.
- Transmitting at maximum power in *Bluetooth* LE Coded S8 mode with modulation, maximum possible data length available and Pseudorandom Bit Sequence 9.

Configuration and Peripherals




The EUT was tested in the following configuration(s):


- Controlled using a terminal application on the test laptop connected to the EUT via the USB cable. The application was used to enable continuous transmission and to select the test channels as required.
- Transmitter radiated spurious emissions tests were performed with the EUT transmitting in LE mode as this was found to transmit the highest power.
- The EUT was powered from an AC to DC Power Supply. The input was connected to a 120 VAC 60 Hz single phase mains supply.
- All active ports were terminated using appropriate terminations.

Test Setup Diagrams

Radiated Tests:

Test Setup for Transmitter Radiated Emissions

Test Setup Diagrams (continued)**Test Setup for Transmitter Radiated Emissions (continued)**

4 Radiated Test Results

4.1 Transmitter Duty Cycle

Test Summary:

Test Engineers:	Nick Steele & John Ferdinand	Test Dates:	10 April 2025 & 20 May 2025
Test Sample Serial Number:	FOC2845HUBH		

FCC Reference:	Part 15.35(c)
ISED Canada Reference:	RSS-Gen 8.2
Test Method Used:	KDB 558074 Section 6 referencing ANSI C63.10 Section 11.6

Environmental Conditions:

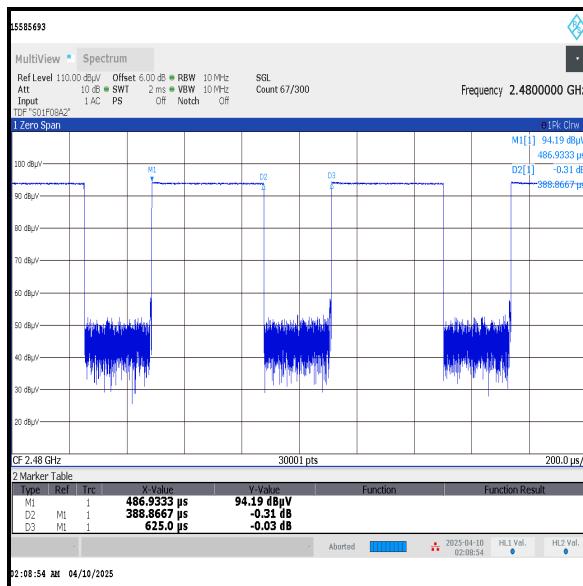
Temperature (°C):	21 to 22
Relative Humidity (%):	33 to 40

Note(s):

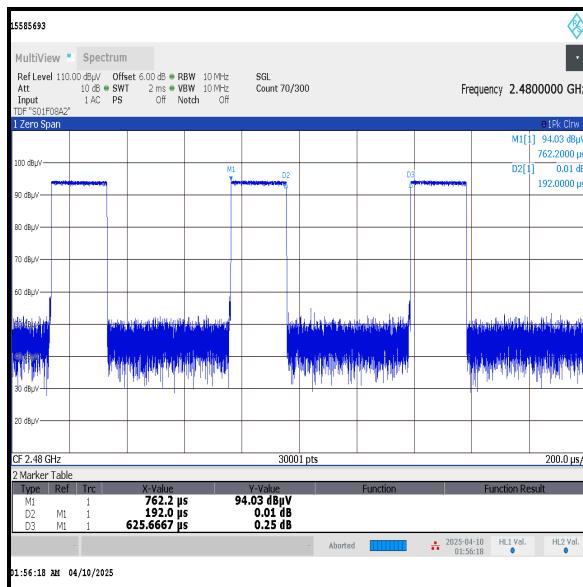
1. In order to assist with the determination of the average level of spurious emissions field strength, measurements were made of duty cycle to determine the transmission duration and the silent period time of the transmitter. The transmitter duty cycle was measured using a signal analyser in the time domain and calculated by using the following calculation:

$$10 \log (1 / (\text{On Time} / [\text{Period or } 100 \text{ ms whichever is the lesser}])).$$

$$\text{LE duty cycle: } 10 \log (1 / (388.867 \mu\text{s} / 625.000 \mu\text{s})) = 2.1 \text{ dB}$$

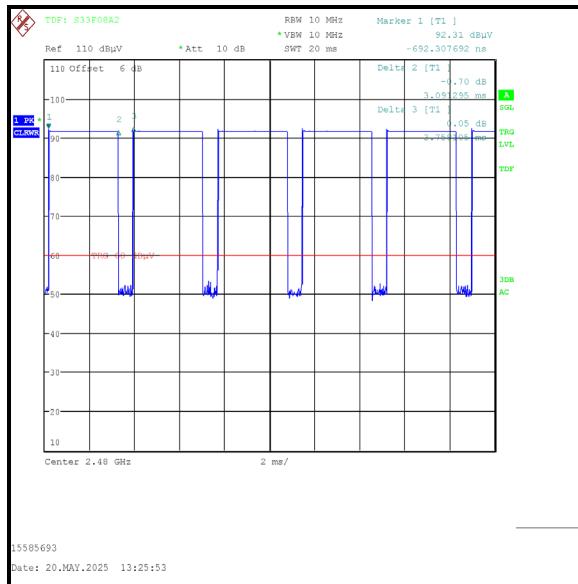

$$\text{LE 2M duty cycle: } 10 \log (1 / (192.000 \mu\text{s} / 625.667 \mu\text{s})) = 5.1 \text{ dB}$$

$$\text{LE Coded S2 duty cycle: } 10 \log (1 / (3.091 \text{ ms} / 3.758 \text{ ms})) = 0.8 \text{ dB}$$

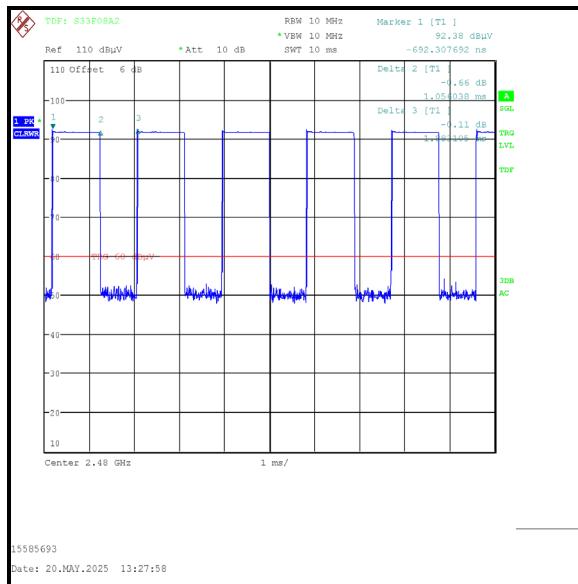

$$\text{LE Coded S8 duty cycle: } 10 \log (1 / (1.056 \text{ ms} / 1.883 \text{ ms})) = 2.5 \text{ dB}$$

Transmitter Duty Cycle (continued)**Results: LE**

Pulse Duration (μ s)	Period (μ s)	Duty Cycle (dB)
388.867	625.000	2.1


Results: LE 2M

Pulse Duration (μ s)	Period (μ s)	Duty Cycle (dB)
192.000	625.667	5.1



Transmitter Duty Cycle (continued)**Results: LE Coded S2**

Pulse Duration (ms)	Period (ms)	Duty Cycle (dB)
3.091	3.758	0.8

Results: LE Coded S8

Pulse Duration (ms)	Period (ms)	Duty Cycle (dB)
1.056	1.883	2.5

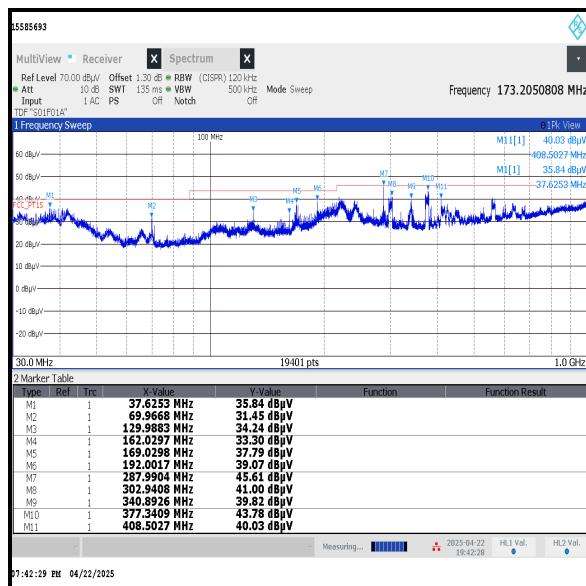
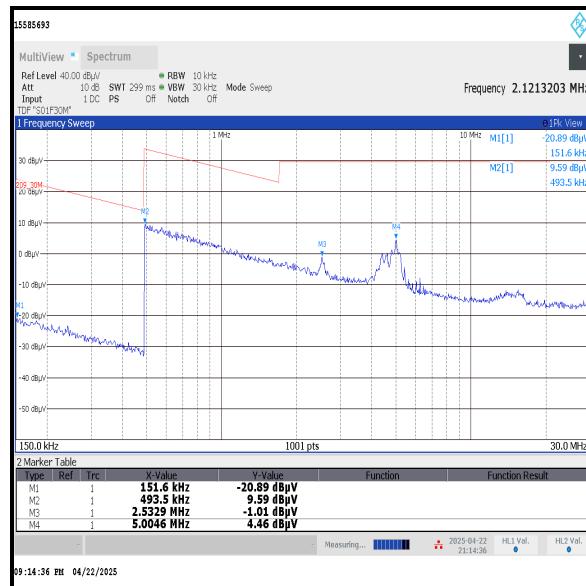
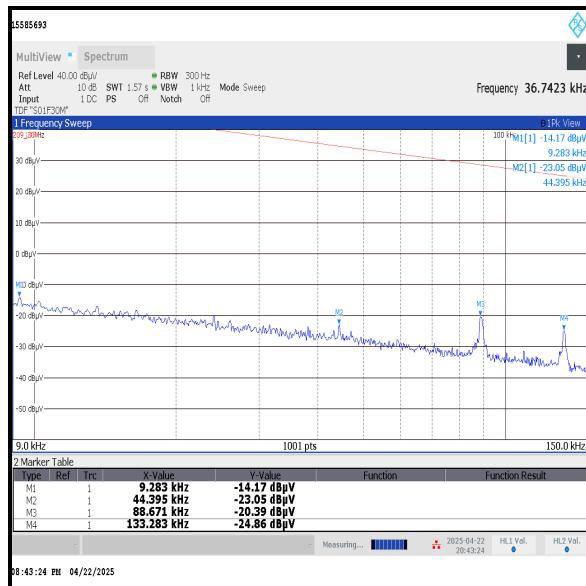
4.2 Transmitter Radiated Emissions <1 GHz

Test Summary:

Test Engineers:	John Ferdinand & Nick Steele	Test Dates:	22 April 2025 & 23 April 2025
Test Sample Serial Number:	FOC2845HUBH		

FCC Reference:	Parts 15.247(d) & 15.209(a)
ISED Canada Reference:	RSS-247 5.5 / RSS-Gen 6.13 & 8.9
Test Method Used:	ANSI C63.10 Sections 6.3, 6.4 and 6.5
Frequency Range	9 kHz 1000 MHz

Environmental Conditions:




Temperature (°C):	20
Relative Humidity (%):	38 to 39

Transmitter Radiated Emissions (continued)**Note(s):**

1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
2. Filters and/or attenuators were used as appropriate. The insertion loss was added to the test receiver as a reference level offset.
3. The preliminary scans showed similar emission levels below 1 GHz, for each channel of operation and each radio technology. Therefore final radiated emissions measurements were performed with the EUT set to 2.4 GHz WLAN middle channel only.
4. All other emissions were > 20 dB below the appropriate limit or below the noise floor of the measurement system.
5. Measurements below 30 MHz were performed in a semi-anechoic chamber (Asset Number K0001) at a distance of 3 metres. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. As allowed by ANSI C63.10 clause 5.2; an alternative test site that can demonstrate equivalence to an open area test site may be used for measurements below 30 MHz. Therefore, measurements were performed in a semi-anechoic chamber. The correlation data between semi-anechoic chamber and an open field test site is available upon request.
6. The measured values at 3 metres were extrapolated to the required measurement distances of 300 metres and 30 metres and compared to the specified limits at those distances:
 - 9 kHz to 490 kHz: measured value extrapolated from 3 metres to 300 metres by subtracting 80 dB at 40 dB / decade
 - 490 kHz to 30 MHz: measured value extrapolated from 3 metres to 30 metres by subtracting 40 dB at 40 dB / decade
7. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X kHz resulted in a level of Y dB μ V/m, which is equivalent to $Y - 51.5 = Z$ dB μ A/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to the 15.209(a) limit.
8. Measurements from 30 MHz to 1 GHz were performed in a semi-anechoic chamber (Asset Number K0001) at a distance of 3 metres. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres.
9. Pre-scans were performed and markers placed on the highest measured levels. The test receiver was configured as follows: For 9 kHz to 150 kHz, the resolution bandwidth was set to 300 Hz and video bandwidth 1 kHz. A peak detector was used and trace mode was Max Hold. For 150 kHz to 30 MHz, the resolution bandwidth was set to 10 kHz and video bandwidth 30 kHz, trace mode was Max Hold. For 30 MHz to 1 GHz, the resolution bandwidth was set to 120 kHz and video bandwidth 500 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold.
10. Final measurements were performed on the marker frequencies and the results entered into the table below. The test receiver resolution bandwidth was set to 120 kHz, using a CISPR quasi-peak detector and measurement time set to 15 seconds.

Transmitter Radiated Emissions (continued)**Results: Quasi-Peak / Middle Channel / LE**

Frequency (MHz)	Antenna Polarity	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
37.522	Vertical	39.0	40.0	1.0	Complied
127.57	Horizontal	35.7	43.5	7.8	Complied
162.032	Horizontal	42.7	43.5	0.8	Complied
168.808	Horizontal	37.3	43.5	6.2	Complied
240.875	Horizontal	38.2	46.0	7.8	Complied
270.004	Horizontal	34.8	46.0	11.2	Complied

Note: These plots are pre-scans and for indication purposes only. For final measurements, see accompanying table.

4.3 Transmitter Radiated Emissions >1 GHz

Test Summary:

Test Engineer:	Nick Steele	Test Dates:	27 March 2025 to 09 April 2025
Test Sample Serial Number:	FOC2845HUBH		

FCC Reference:	Parts 15.247(d) & 15.209(a)
ISED Canada Reference:	RSS-247 5.5 / RSS-Gen 6.13 & 8.9
Test Method Used:	FCC KDB 558074 Sections 8.1 c)3), 8.5 & 8.6 referencing ANSI C63.10 Sections 6.3, 6.6, 11.11 & 11.12
Frequency Range	1 GHz to 25 GHz

Environmental Conditions:

Temperature (°C):	21 to 22
Relative Humidity (%):	35 to 40

Note(s):

1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
2. Filters and/or attenuators were used as appropriate. The insertion loss was added to the test receiver as a reference level offset.
3. All other emissions shown on the pre-scans were investigated and found to be ambient, or > 20 dB below the appropriate limit or below the noise floor of the measurement system.
4. The emission shown on the 1 GHz to 3 GHz plot is the EUT fundamental.
5. #In accordance with ANSI C63.10 Section 6.6.4.3, Note 1, if the peak measured value complies with the average limit, it is unnecessary to perform an average measurement.
6. Pre-scans above 1 GHz were performed in a fully anechoic chamber (Asset Number K0001) at a distance of 3 metres. The EUT was placed at a height of 1.5 metres above the test chamber floor in the centre of the chamber turntable. All measurement antennas were placed at a fixed height of 1.5 metres above the test chamber floor, in line with the EUT.
7. Final measurements above 1 GHz were performed in a semi-anechoic chamber (Asset Number K0001) at a distance of 3 metres. The EUT was placed at a height of 1.5 m above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres.
8. Pre-scans were performed and a marker placed on the highest measured level of the appropriate plot. The test receiver resolution bandwidth was set to 1 MHz and video bandwidth 3 MHz. The sweep time was set to auto. Peak and average measurements were performed with their respective detectors during the pre-scan measurements.

Transmitter Radiated Emissions (continued)**Results: Bottom Channel / Peak / LE**

Frequency (MHz)	Antenna Polarity	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
1022.940	Horizontal	57.1	74.0	16.9	Complied
4008.033	Vertical	47.2	54.0 [#]	6.8	Complied
4803.385	Horizontal	46.8	54.0 [#]	7.2	Complied

Results: Bottom Channel / Average / LE

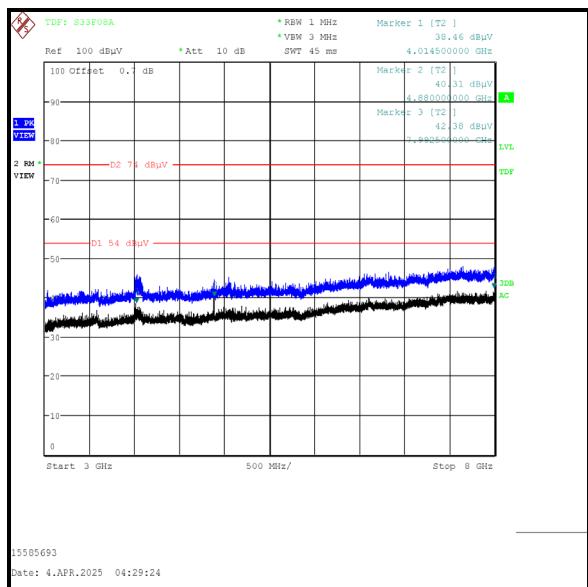
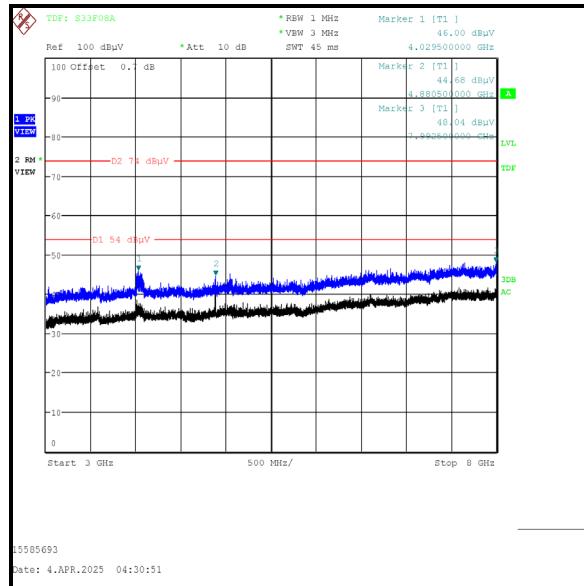
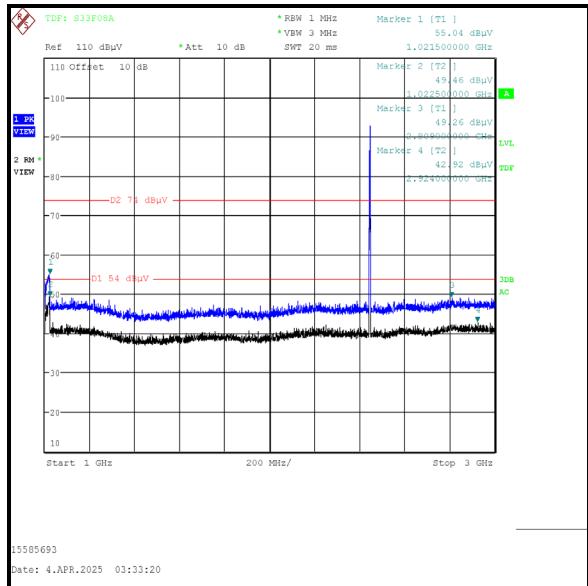
Frequency (MHz)	Antenna Polarity	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
1020.160	Horizontal	42.4	54.0	11.6	Complied

Results: Middle Channel / Peak / LE

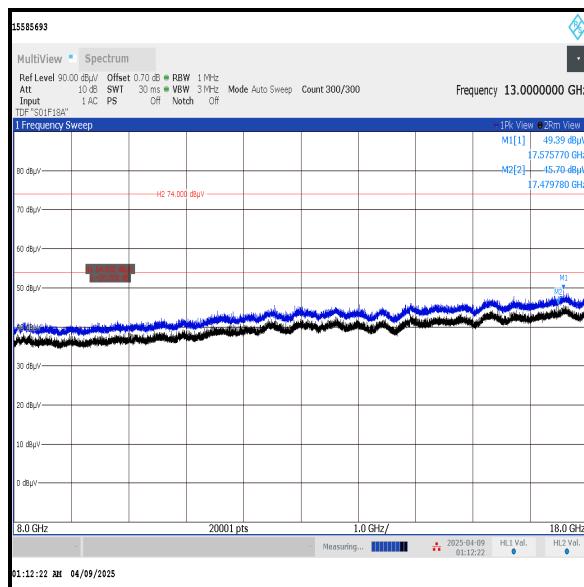
Frequency (MHz)	Antenna Polarity	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
1022.940	Horizontal	57.1	74.0	16.9	Complied
4008.033	Vertical	47.2	54.0 [#]	6.8	Complied
4879.930	Horizontal	48.8	54.0 [#]	5.2	Complied

Results: Middle Channel / Average / LE

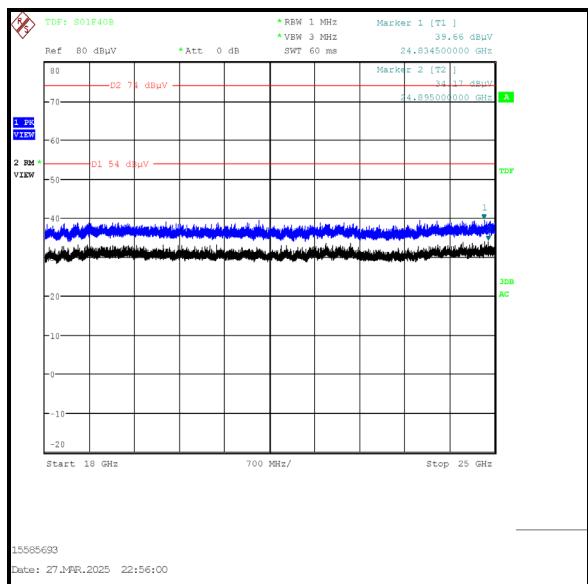
Frequency (MHz)	Antenna Polarity	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
1020.160	Horizontal	42.4	54.0	11.6	Complied




Results: Top Channel / Peak / LE

Frequency (MHz)	Antenna Polarity	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
1022.940	Horizontal	57.1	74.0	16.9	Complied
4008.033	Vertical	47.2	54.0 [#]	6.8	Complied
4959.715	Horizontal	48.0	54.0 [#]	6.0	Complied


Results: Top Channel / Average / LE

Frequency (MHz)	Antenna Polarity	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
1020.160	Horizontal	42.4	54.0	11.6	Complied


Transmitter Radiated Emissions (continued)

Average Markers

Transmitter Radiated Emissions (continued)

Note: These plots are pre-scans and for indication purposes only. For final measurements, see accompanying tables.

4.4 Transmitter Band Edge Radiated Emissions

Test Summary:

Test Engineers:	Nick Steele & John Ferdinand	Test Dates:	10 April 2025 & 20 May 2025
Test Sample Serial Number:	FOC2845HUBH		

FCC Reference:	Parts 15.247(d) & 15.209(a)
ISED Canada Reference:	RSS-247 5.5 / RSS-Gen 6.13
Test Method Used:	KDB 558074 Section 8.7 referencing ANSI C63.10 Sections 11.11, 11.12 & 11.13

Environmental Conditions:

Temperature (°C):	21 to 22
Relative Humidity (%):	33 to 40

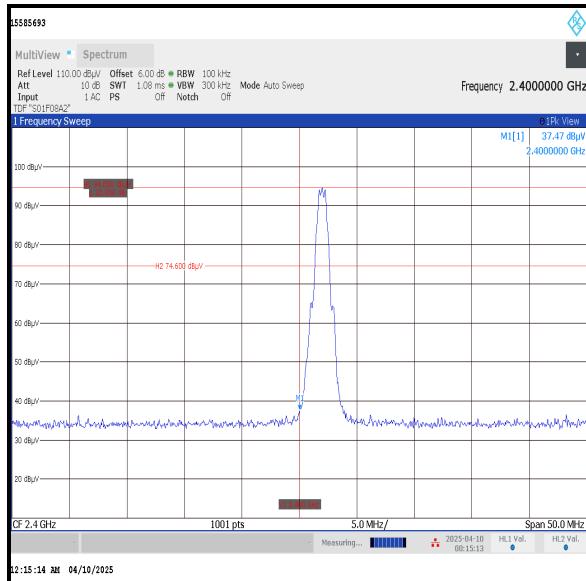
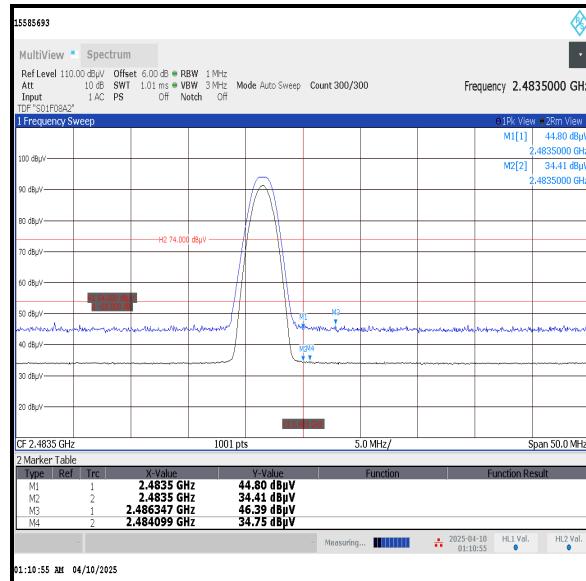
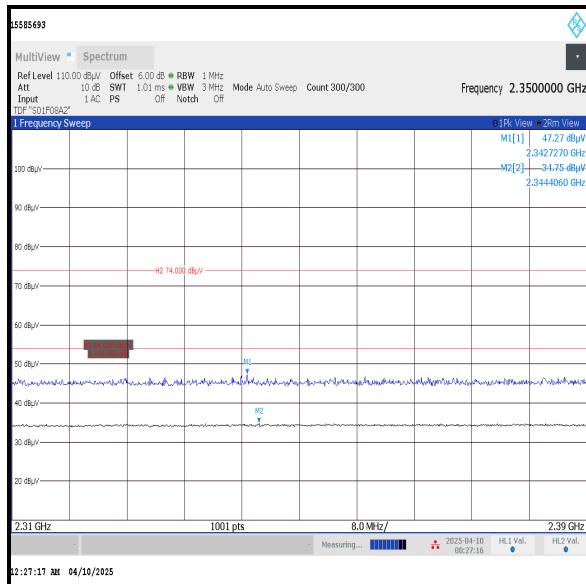
Note(s):

1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
2. Filters and/or attenuators were used as appropriate. The insertion loss was added to the test receiver as a reference level offset.
3. The lower band edge is adjacent to a non-restricted band. The test receiver resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The test receiver was left to sweep for a sufficient length of time in order to maximise the carrier level and out-of-band emissions. A marker and corresponding reference level line were placed on the peak of the carrier. A marker was placed on the band edge spot frequencies and a second marker placed on the highest emission level in the adjacent band (where a higher level emission was present). Marker frequencies and levels were recorded.
4. The upper band edge is adjacent to a restricted band. Both peak and average measurements were recorded by placing a marker at the edge of the band. For peak measurements the test receiver resolution bandwidth was set to 1 MHz and the video bandwidth 3 MHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. For average measurements the test receiver resolution bandwidth was set to 1 MHz and the video bandwidth 3 MHz. An RMS detector was used, sweep time was set to auto and trace mode was trace averaging over 300 sweeps. A marker was placed on the band edge spot frequencies and a second marker placed on the highest emission level in the adjacent restricted band of operation (where a higher level emission was present). Marker frequencies and levels were recorded.
5. There is a restricted band 10 MHz below the lower band edge. The test receiver was set up as follows: the RBW set to 1 MHz, the VBW set to 3 MHz, with the sweep time set to auto couple. Peak and average measurements were performed with peak and RMS detectors respectively. Markers were placed on the highest point on each trace.
6. # -20 dBc limit.
7. As the EUT had a duty cycle < 98% the duty cycle correction factor calculated in section 4.1 has been applied to the relevant results below.

Transmitter Band Edge Radiated Emissions (continued)**Results: Peak / LE**

Frequency (MHz)	Antenna Polarity	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
2400.0	Horizontal	37.5	74.6 [#]	37.1	Complied
2483.5	Horizontal	44.8	74.0	29.2	Complied
2486.347	Horizontal	46.4	74.0	27.6	Complied

Results: Average / LE




Frequency (MHz)	Antenna Polarity	Level (dB μ V/m)	Duty cycle correction (dB)	Corrected Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
2483.5	Horizontal	34.4	2.1	36.5	54.0	17.5	Complied
2484.099	Horizontal	34.8	2.1	36.9	54.0	17.1	Complied

Results: 2310 MHz to 2390 MHz Restricted Band / Peak / LE

Frequency (MHz)	Antenna Polarity	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
2342.727	Horizontal	47.3	74.0	26.7	Complied

Results: 2310 MHz to 2390 MHz Restricted Band / Average / LE

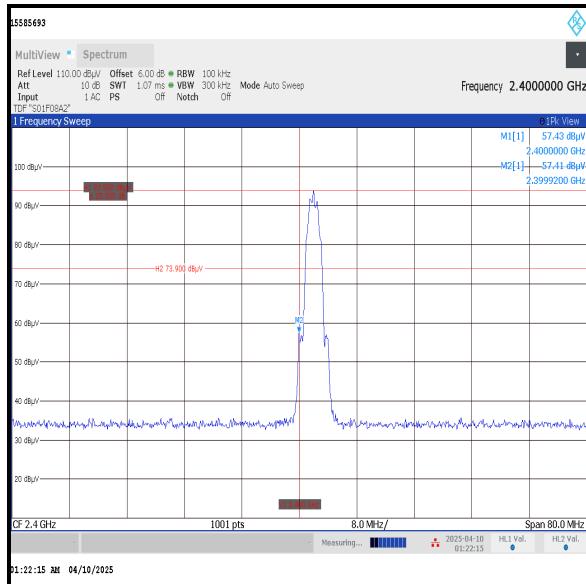
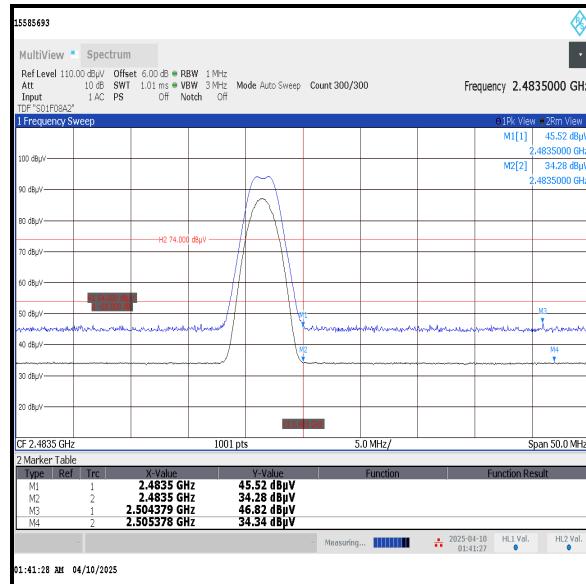
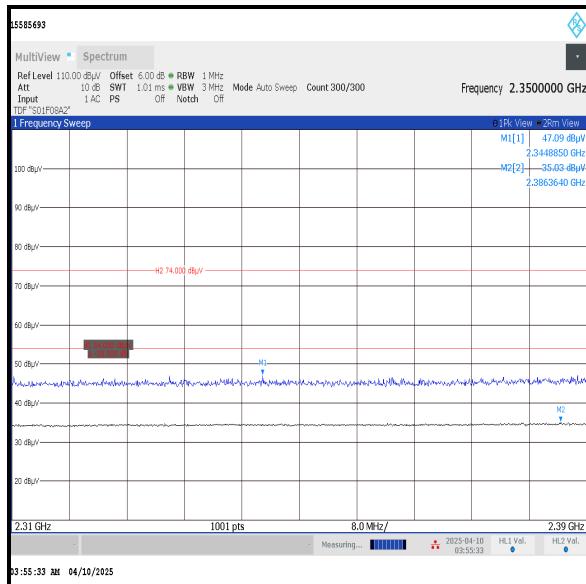
Frequency (MHz)	Antenna Polarity	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
2344.406	Horizontal	34.8	54.0	19.2	Complied

Transmitter Band Edge Radiated Emissions (continued)**Results: LE****Lower Band Edge****Upper Band Edge****2310 MHz to 2390 MHz Restricted Band**

Transmitter Band Edge Radiated Emissions (continued)**Results: Peak / LE 2M**

Frequency (MHz)	Antenna Polarity	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
2400.0	Horizontal	57.4	73.9 [#]	16.5	Complied
2483.5	Horizontal	45.5	74.0	28.5	Complied

Results: Average / LE 2M




Frequency (MHz)	Antenna Polarity	Level (dB μ V/m)	Duty cycle correction (dB)	Corrected Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
2483.5	Horizontal	34.3	5.1	39.4	54.0	14.6	Complied

Results: 2310 MHz to 2390 MHz Restricted Band / Peak / LE 2M

Frequency (MHz)	Antenna Polarity	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
2386.204	Horizontal	47.1	74.0	26.9	Complied

Results: 2310 MHz to 2390 MHz Restricted Band / Average / LE 2M

Frequency (MHz)	Antenna Polarity	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
2383.327	Horizontal	35.0	54.0	19.0	Complied

Transmitter Band Edge Radiated Emissions (continued)**Results: LE 2M****Lower Band Edge****Upper Band Edge****2310 MHz to 2390 MHz Restricted Band**

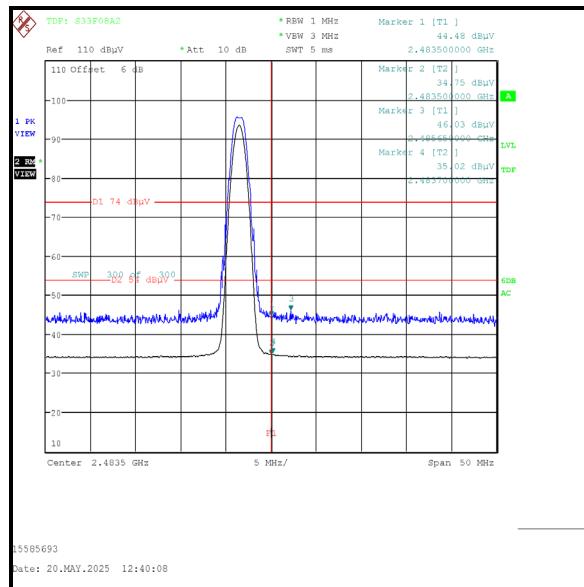
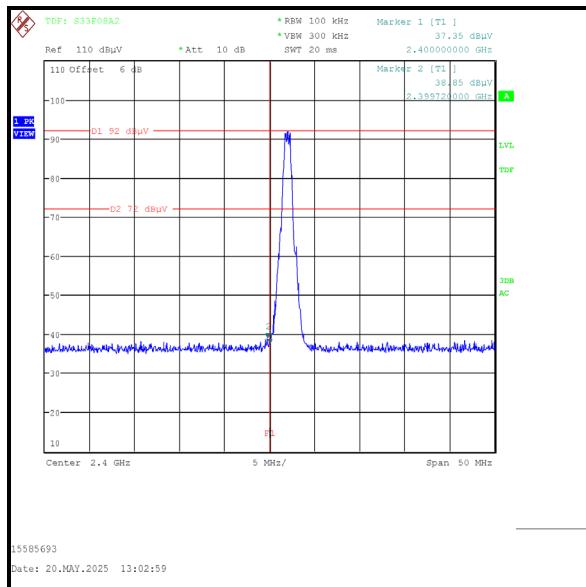
Transmitter Band Edge Radiated Emissions (continued)**Results: Peak / LE Coded S2**

Frequency (MHz)	Antenna Polarity	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
2399.720	Horizontal	38.9	72.0 [#]	33.1	Complied
2400.0	Horizontal	37.4	72.0 [#]	34.6	Complied
2483.5	Horizontal	44.5	74.0	29.5	Complied
2485.650	Horizontal	46.0	74.0	28.0	Complied

Results: Average / LE Coded S2

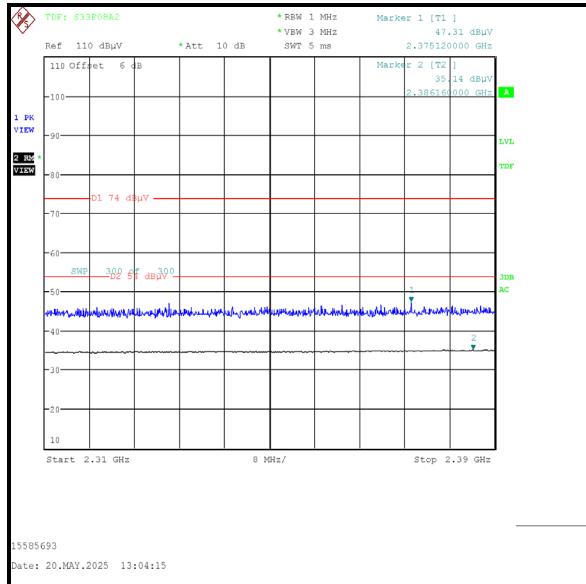
Frequency (MHz)	Antenna Polarity	Level (dB μ V/m)	Duty cycle correction (dB)	Corrected Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
2483.5	Horizontal	34.8	0.8	35.6	54.0	18.4	Complied
2483.7	Horizontal	35.0	0.8	35.8	54.0	18.2	Complied

Results: 2310 MHz to 2390 MHz Restricted Band / Peak / LE Coded S2



Frequency (MHz)	Antenna Polarity	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
2375.120	Horizontal	47.3	74.0	26.7	Complied

Results: 2310 MHz to 2390 MHz Restricted Band / Average / LE Coded S2

Frequency (MHz)	Antenna Polarity	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
2386.160	Horizontal	35.1	54.0	18.9	Complied


Transmitter Band Edge Radiated Emissions (continued)

Results: LE Coded S2

Lower Band Edge

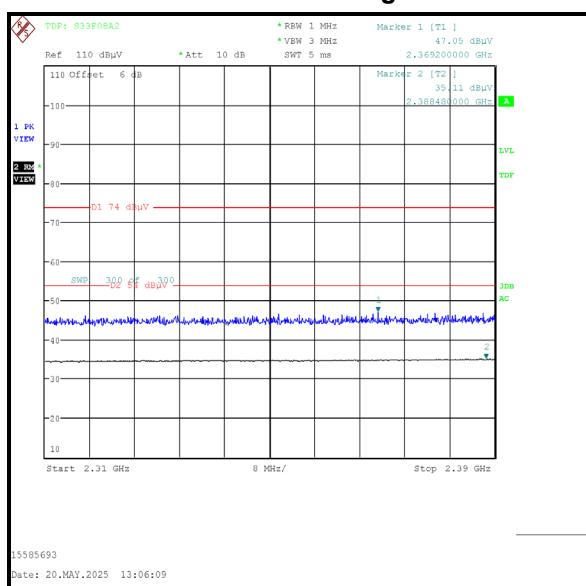
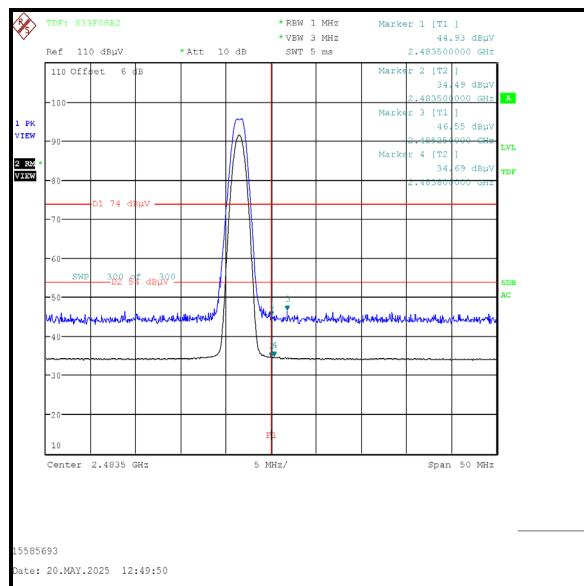
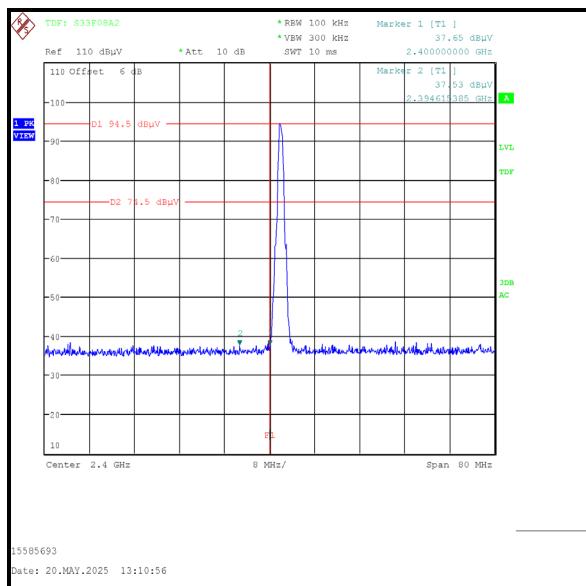
Upper Band Edge

2310 MHz to 2390 MHz Restricted Band

Transmitter Band Edge Radiated Emissions (continued)**Results: Peak / LE Coded S8**

Frequency (MHz)	Antenna Polarity	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
2400.0	Horizontal	37.7	74.5 [#]	36.8	Complied
2483.5	Horizontal	44.9	74.0	29.1	Complied
2485.250	Horizontal	46.6	74.0	27.4	Complied

Results: Average / LE Coded S8




Frequency (MHz)	Antenna Polarity	Level (dB μ V/m)	Duty cycle correction (dB)	Corrected Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
2483.5	Horizontal	34.5	2.5	37.0	54.0	17.0	Complied
2483.800	Horizontal	34.7	2.5	37.2	54.0	16.8	Complied

Results: 2310 MHz to 2390 MHz Restricted Band / Peak / LE Coded S8

Frequency (MHz)	Antenna Polarity	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
2369.200	Horizontal	47.1	74.0	26.9	Complied

Results: 2310 MHz to 2390 MHz Restricted Band / Average / LE Coded S8

Frequency (MHz)	Antenna Polarity	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Result
2388.480	Horizontal	35.1	54.0	18.9	Complied

Transmitter Band Edge Radiated Emissions (continued)**Results: LE Coded S8****2310 MHz to 2390 MHz Restricted Band****--- END OF REPORT ---**