

TEST REPORT

Test Report No.: UL-RPT-RP15585693-2016A

Customer* Cisco Systems Norway AS

Model Name / HVIN* TTC7-29

HMN* Cisco Desk Pro G2

PMN* 07100725

Contains FCC ID* LDKXV2EA2797

Contains IC* 2461N-XV2EA2797

Technology Bluetooth Classic, 2.4G WLAN, 5G WLAN & 6G WLAN

Test Standard(s) FCC Parts 15.209(a), 15.247(d) & 15.407(b)

ISED Canada RSS-Gen 6.13; RSS-247 5.5, 6.2.1.2 & 6.2.4.3,

RSS-248 4.6.2

1. This test report shall not be reproduced except in full, without the written approval of UL International (UK) Ltd.

- 2. The results in this report apply only to the sample(s) tested.
- This sample tested is in compliance with the above standard(s). 3.
- The test results in this report are traceable to the national or international standards. 4.
- 5. All information marked with (*) was provided by the Customer, Applicant or Authorised representative
- Version 2.0 supersedes all previous versions. 6.

Date of Issue: 08 September 2025

Checked by:

Ben Mercer

seh Williams

Lead Project Engineer, Radio Laboratory

Issued by:

Sarah Williams

RF Operations Leader, Radio Laboratory

The Bluetooth® word mark and logos are owned by the Bluetooth SIG, Inc. and any use of such marks by UL International (UK) Ltd is under licence. Other trademarks and trade names are those of their respective owners.

Telephone: +44 (0)1256 312000 Facsimile: +44 (0)1256 312001

Customer Information

Company Name*:	Cisco Systems Norway AS	
Address*:	Philip Pedersens vei 1, 1366 Lysaker, Norway	

Manufacturers Information

Manufacturers Name*:	Cisco Systems, Inc.
Address*:	170 West Tasman Drive, San Jose, CA 95134, United States of America

Report Revision History

Version Number	Issue Date	Revision Details	Revised By
1.0	13/05/2025	Draft Version	Ben Mercer
2.0	08/09/2025	TCB feedback addressed	Ben Mercer

Table of Contents

Customer Information	2
Manufacturers Information	2
Report Revision History	2
Attestion of Test Results 1.1. Description of EUT	.
1.1. Description of E01 1.2. General Information	4
1.3. Summary of Test Results	5
1.4. Deviations from the Test Specification	5
2 Summary of Testing	6
2.1 Facilities and Accreditation	6
2.2. Methods and Procedures	6
2.3. Calibration and Uncertainty	7
2.4 Test and Measurement Equipment	8
3. Equipment Under Test (EUT)	9
3.1. Identification of Equipment Under Test (EUT)	9
3.2. Modifications Incorporated in the EUT	9
3.3. Additional Information Related to Testing	10
3.4. Description of Test Setup	12
4. Radiated Test Results	16
4.1. Transmitter Out of Band Radiated Emissions (Combination 1)	16
4.2. Transmitter Out of Band Radiated Emissions (Combination 2)	19
4.3. Transmitter Out of Band Radiated Emissions (Combination 3)	22

1. Attestion of Test Results

1.1. Description of EUT

The equipment under test (EUT) was a desktop collaboration unit.*

1.2. General Information

Specification Reference:	47CFR15.247
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) - Section 15.247
Specification Reference: 47CFR15.209	
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) - Section 15.209
Specification Reference:	47CFR15.407
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart E (Unlicensed National Information Infrastructure Devices) – Section 15.407
Specification Reference:	RSS-Gen Issue 5 February 2021
Specification Title:	General Requirements and Information for the Certification of Radio Apparatus
Specification Reference:	RSS-247 Issue 3 August 2023
Specification Title:	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
Specification Reference:	RSS-248 Issue 3 October 11 2024
Specification Title:	Radio Local Area Network (RLAN) Devices Operating in the 5925-7125 MHz band
Site Registration:	FCC: 685609, ISEDC: 20903
FCC Lab. Designation No.:	UK2011
ISEDC CABID:	UK0001
Location of Testing:	Unit 3 Horizon, Wade Road, Kingsland Business Park, Basingstoke, Hampshire, RG24 8AH, United Kingdom
Test Dates:	23 April 2025 & 24 April 2025

1.3. Summary of Test Results

FCC Reference (47CFR)	ISED Canada Reference	Measurement	Result		
Transmit Mode; Bluetooth Classic and 2.4G WLAN					
15.209(a) / 15.247(d) & 15.407(b)	RSS-Gen 6.13 RSS-247 5.5 & 6.2	Transmitter Out of Band Radiated Emissions	Ø		
Transmit Mode; Bluet	Transmit Mode; Bluetooth Classic and 5G WLAN				
15.209(a) / 15.247(d) & 15.407(b)	RSS-Gen 6.13 RSS-247 5.5 & 6.2	Transmitter Out of Band Radiated Emissions	Ø		
Transmit Mode; Bluetooth Classic and 6G WLAN					
15.209(a) / 15.247(d) & 15.407(b)	RSS-Gen 6.13 RSS-248 4.6.2	Transmitter Out of Band Radiated Emissions	Ø		
Key to Results O = Complied S = E	Did not comply				

1.4. Deviations from the Test Specification

For the measurements contained within this test report, there were no deviations from, additions to, or exclusions from the test specification identified above.

2 Summary of Testing

2.1 Facilities and Accreditation

The test site and measurement facilities used to collect data are located at Unit 3 Horizon, Wade Road, Kingsland Business Park, Basingstoke, Hampshire, RG24 8AH, United Kingdom. The following table identifies which facilities were utilised for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

Site 1	X
Site 17	-
Site 32	-
Site 33	-

UL International (UK) Ltd is accredited by the United Kingdom Accreditation Service (UKAS). UKAS is one of the signatories to the International Laboratory Accreditation Co-operation (ILAC) Arrangement for the mutual recognition of test reports. The tests reported herein have been performed in accordance with its terms of accreditation.

2.2. Methods and Procedures

Reference:	ANSI C63.10-2013
Title:	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
Reference:	KDB 558074 D01 15.247 Meas Guidance v05r02, April 2, 2019
Title:	Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating Under Section 15.247 of the FCC Rules
Reference:	KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 December 14, 2017
Title:	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices (Part 15, Subpart E)
Reference:	KDB 987594 D02 U-NII 6 GHz EMC Measurement v03 October 10, 2024
Title:	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure 6 GHz (U-NII) Devices Part 15, Subpart E

2.3. Calibration and Uncertainty

Measuring Instrument Calibration

In accordance with UKAS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing.

Measurement Uncertainty & Decision Rule

Overview

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

Decision Rule

Measurement system instrumentation shall be used with an accuracy specification meeting the accuracy specification limits according to IEC/IECEE OD-5014.

As applicable, unless specified otherwise in this quotation, the compliance "Decision Rule" is based on Simple Acceptance. If the measured value is on the limit, the result is defined as a pass. In this case the risk of a false positive is 50%. For further information regarding risk assessment refer to ILAC G8:09/2019.

Measurement Uncertainty

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Measurement Type	Range	Confidence Level (%)	Calculated Uncertainty
Radiated Spurious Emissions	9 kHz to 30 MHz	95%	±5.44 dB
Radiated Spurious Emissions	30 MHz to 1000 MHz	95%	±2.98 dB
Radiated Spurious Emissions	1 GHz to 40 GHz	95%	±3.64 dB

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty the published guidance of the appropriate accreditation body is followed.

2.4 Test and Measurement Equipment

<u>Test Equipment Used for Transmitter Out of Band Radiated Emissions:</u>

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M2040	Thermohygrometer	Testo	608-H1	45124934	23 Dec 2025	12
K0001	3m RSE Chamber	Rainford EMC	N/A	N/A	11 Sep 2025	12
M236226	Test Receiver	Rohde & Schwarz	ESW26	103134	06 May 2025	12
A3198	Magnetic Loop Antenna	ETS-Lindgren	6502	00221887	05 Nov 2025	12
A3112	Attenuator	AtlanTecRF	AN18-06	219706#2	27 Aug 2025	12
A3154	Pre-Amplifier	Com-Power	PAM-103	18020012	28 Aug 2025	12
A3083	Low Pass Filter	AtlanTecRF	AFL-01000	18010900076	16 Sep 2025	12
A553	Antenna	Chase	CBL6111A	1593	27 Aug 2025	12
A3179	Pre-Amplifier	Hewlett Packard	HPS207228449B	3008A00934	30 Aug 2025	12
A2523	Attenuator	AtlanTecRF	AN18W5-10	832827#1	16 Sep 2025	12
A3138	Antenna	Schwarzbeck	BBHA 9120 B	00702	06 Sep 2025	12
A3093	High Pass Filter	AtlanTecRF	AFH-03000	18051800077	16 Sep 2025	12
A3087	Low Pass Filter	AtlanTecRF	AFL-04000	18051600007	16 Sep 2025	12
A212041	High Pass Filter	Micro-Tronics	HPS20723	001	16 Sep 2025	12
A3139	Antenna	Schwarzbeck	HWRD750	00027	06 Sep 2025	12
A222867	Pre-Amplifier	Atlantic Microwave	A-LNAKX- 380116-S5S5	220705002	24 Feb 2026	12
A2895	Antenna	Schwarzbeck	BBHA 9170	9170-728	08 Apr 2026	12
A2896	Pre-Amplifier	Schwarzbeck	BBV 9721	9721 - 023	04 Apr 2026	12
M227313	Test Receiver	Rohde & Schwarz	FSW43	102471	20 Sep 2025	12

3. Equipment Under Test (EUT)

3.1. Identification of Equipment Under Test (EUT)

Brand Name*:	Cisco	
Model Name or Number / HVIN*:	TTC7-29	
HMN*:	Cisco Desk Pro G2	
PMN*:	07100725	
Test Sample Serial Number*:	FOC2845HUBH (Radiated sample #1)	
Hardware Version*:	DVb modified with rev. D main board and camera base board.	
Software Version*:	s01874-1.2.0.dev	
Firmware Version / FVIN*:	Type-2EA rev2.4.3 NVRAM updated	
Contains FCC ID*:	LDKXV2EA2797	
Contains IC*:	2461N-XV2EA2797	
Date of Receipt:	10 January 2025 (enclosure) 20 March 2025 (mainboard and top camera module)	

3.2. Modifications Incorporated in the EUT

No modifications were applied to the EUT during testing.

3.3. Additional Information Related to Testing

Technology Tested:	Bluetooth Classic			
Type of Radio Device:	Transceiver			
Mode:	Basic Rate			
Modulation:	GFSK			
Channel Spacing:	1 MHz			
Data Rate:	DH5			
Transmit Frequency Range:	2402 MHz to 2480 MHz			
Transmit Channels Tested:	Channel ID Channel Number Street		Channel Frequency (MHz)	
	Bottom	0	2402	
	Тор	78	2480	

Technology Tested:	Digital Transmission	Digital Transmission System IEEE 802.11		
Type of Radio Device:	Transceiver			
Modulation:	DBPSK			
Channel Spacing:	20 MHz	20 MHz		
Data Rate:	802.11b 1 Mbps (SI	802.11b 1 Mbps (SISO)		
Transmit Frequency Range:	2412 MHz to 2462 M	2412 MHz to 2462 MHz		
Transmit Channels Tested:	Channel ID	Channel Number	Channel Frequency (MHz)	
	Тор	11	2462	

Additional Information Related to Testing (continued)

Technology Tested:	WLAN (IEEE 802.11a,n,ac) / U-NII			
Type of Unit:	Transceiver			
Modulation:	BPSK			
Data rates:	802.11a	802.11a 6 Mbps (SISO)		
Channel Spacing:	20 MHz			
Transmit Frequency Band:	5150 MHz to 5250 MHz			
Transmit Channels Tested:	Channel ID	Channel Number	Channel Frequency (MHz)	
	Bottom	36	5180	

Technology Tested:	WLAN (IEEE 802.11ax) / Digital Transmission System		
Type of Unit:	Transceiver		
Modulation Type:	BPSK		
Data Rates*:	802.11ax HE20 MCS0 (1 spatial stream) (MIMO) SU 242		
Channel Spacing:	20 MHz		
Transmit Frequency Band:	5925 MHz to 6425 MHz (U-NII-5)		
Transmit Channels Tested:	Channel ID	Channel Number	Channel Frequency (MHz)
	Bottom	93	6415

3.4. Description of Test Setup

Support Equipment

The following support equipment was used to exercise the EUT during testing:

Customer Supplied*:

Description	Brand Name	Model Name or Number	Serial Number
Switching Power Adaptor	FSP	FSP230-A20C14	FST2841MBJQ

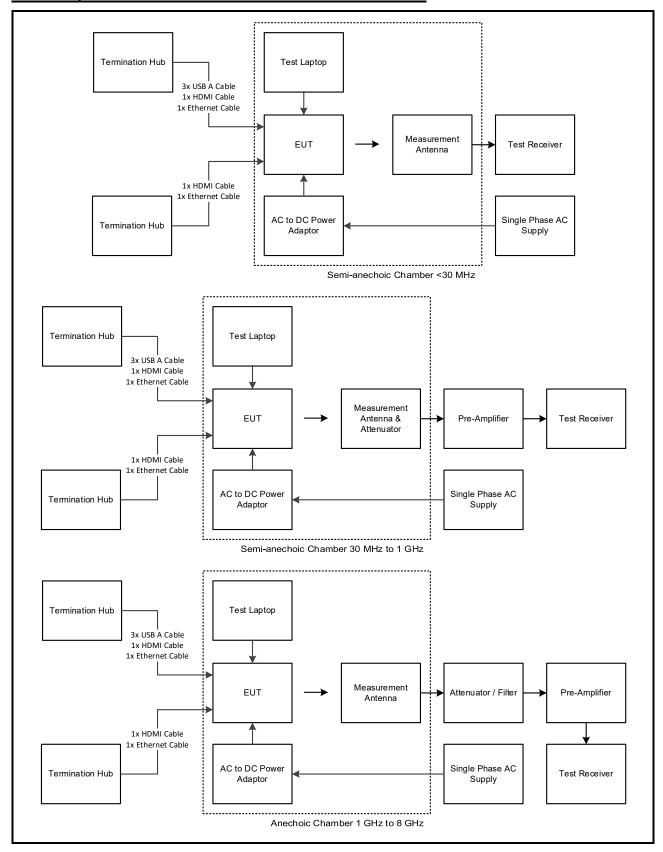
Laboratory Supplied:

Description	Brand Name	Model Name or Number	Serial Number
Laptop	Lenovo	Thinkpad	PF1EHZQQ
USB to Micro USB Cable	Not marked or stated	Not marked or stated	Not marked or stated
ThinkPad USB-C Dock Gen 2	Lenovo	LDC-G2	Not marked or stated
ThinkPad USB-C Dock Gen 2	Lenovo	LDC-G2	Not marked or stated
Ethernet Cable. Quantity 2.	Not marked or stated	Not marked or stated	Not marked or stated
HDMI Cable. Quantity 2.	Not marked or stated	Not marked or stated	Not marked or stated
USB-A Cable. Quantity 3.	Not marked or stated	Not marked or stated	Not marked or stated
Micro USB Cable. Quantity 3.	Not marked or stated	Not marked or stated	Not marked or stated

Operating Modes

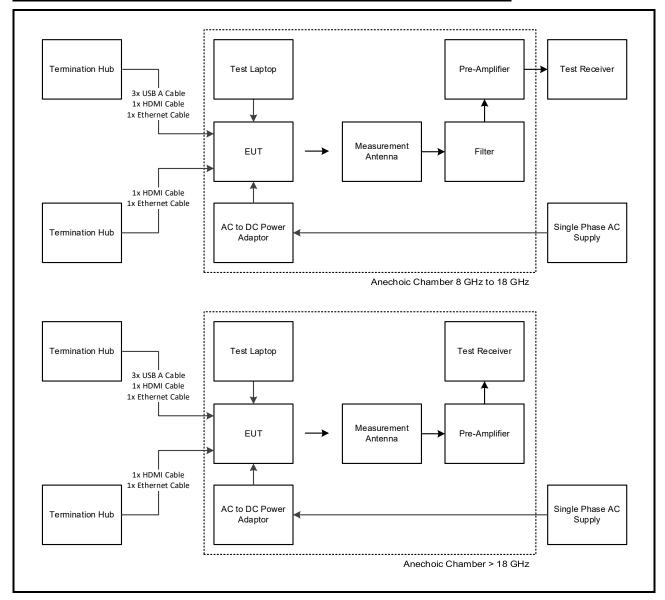
The EUT was tested in the following operating mode(s):

- Transmitting simultaneously with Bluetooth Classic and 2.4G WLAN both at maximum power.
- Transmitting simultaneously with Bluetooth Classic and 5G WLAN both at maximum power.
- Transmitting simultaneously with Bluetooth Classic and 6G WLAN both at maximum power.


Configuration and Peripherals

The EUT was tested in the following configuration(s):

- Bluetooth Classic and 2.4G WLAN co-location, with the EUT configured to simultaneously transmit two signals at maximum output power (Bluetooth on bottom channel and 2.4G WLAN 802.11b SISO on top channel)
- Bluetooth Classic and 5G WLAN co-location, with the EUT configured to simultaneously transmit two signals at maximum output power (Bluetooth on top channel and 5G WLAN 802.11a SISO on bottom channel)
- Bluetooth Classic and 6G WLAN co-location, with the EUT configured to simultaneously transmit two signals at maximum output power (Bluetooth on bottom channel and 6G WLAN 802.11ax SISO on top channel)
- The Bluetooth Classic, 2.4G WLAN, 5G WLAN and 6G WLAN test modes were enabled by using a terminal application on the test laptop connected to the EUT via the USB cable. The application was used to enable continuous transmission and to select the test channels as required.
- The EUT was powered from an AC to DC Power Supply. The input was connected to a 120 VAC 60 Hz single phase mains supply.
- Tests were performed with the EUT in its normal orientation.
- All active ports were terminated using appropriate terminations.


Test Setup Diagrams

Test Setup for Transmitter Out of Band Radiated Emissions

Test Setup Diagrams (continued)

Test Setup for Transmitter Out of Band Radiated Emissions (continued)

4. Radiated Test Results

4.1. Transmitter Out of Band Radiated Emissions (Combination 1)

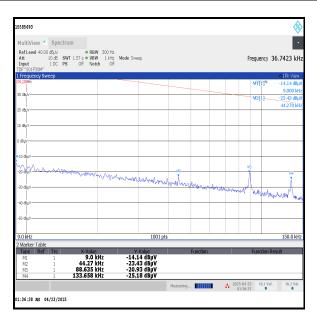
Test Summary:

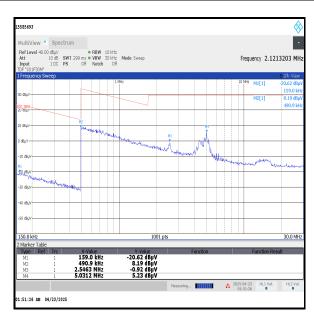
Test Engineer:	Nick Steele	Test Dates:	23 April 2025 & 24 April 2025
Test Sample Serial Number:	FOC2845HUBH		

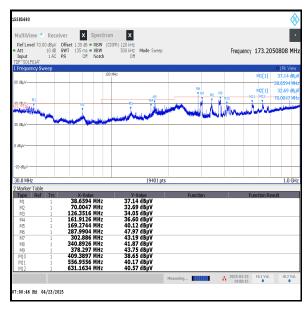
FCC Reference:	Parts 15.209(a), 15.247(d)
Industry Canada Reference:	RSS-Gen 6.13, RSS-247 5.5, 6.2.1.2
Test Method Used:	ANSI C63.10 Sections 6.3, 6.4, 6.5, 6.6, 11.11, 11.12
Frequency Range:	9 kHz to 40 GHz
Configuration:	Bluetooth Classic DH5 Channel 0 2.4G WLAN 802.11b 1 Mbps SISO Ant 1 Channel 11

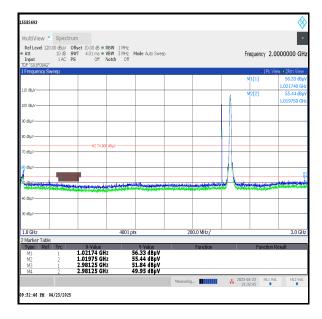
Environmental Conditions:

Temperature (°C):	21 to 22
Relative Humidity (%):	39 to 40

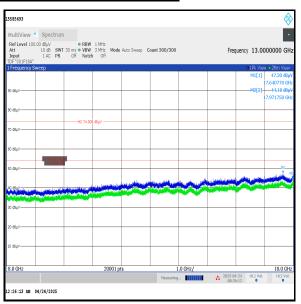

Note(s):

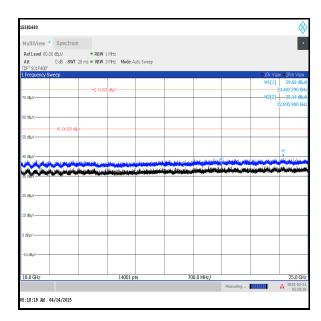

- 1. All intermodulation products were below the noise floor level or greater than 20 dB below the specification limit.
- 2. Filters and/or attenuators were used as appropriate. The insertion loss was added to the test receiver as a reference level offset.
- 3. The 2.4G WLAN and Bluetooth Classic carriers are shown on the 1 GHz to 3 GHz plot.
- 4. Pre-scans were made against the FCC Part 15 general limits for radiated emissions.
- 5. The emission at 4804.070 MHz is the second harmonic of the *Bluetooth* signal and was therefore not measured.
- 6. The emission at 4924.406 MHz is the second harmonic of the 2.4G WLAN signal and was therefore not measured.
- 7. The emission at 7206.683 MHz is the third harmonic of the *Bluetooth* signal and was therefore not measured.
- 8. Pre-scans from 9 kHz to 150 kHz measurements, the resolution bandwidth was set to 300 Hz and video bandwidth 1 kHz. A peak detector was used and trace mode was Max Hold. For 150 kHz to 30 MHz, the resolution bandwidth was set to 10 kHz and video bandwidth 30 kHz, trace mode was Max Hold
- 9. Pre-scans from 30 MHz to 1 GHz were performed and markers placed on the highest measured levels. The test receiver resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. The sweep time was set to auto. A peak detector was used and trace mode was Max Hold.
- 10. Pre-scans from 1 GHz to 25 GHz were performed and a marker placed on the highest measured level of the appropriate plot. The test receiver resolution bandwidth was set to 1 MHz and video bandwidth 3 MHz. The sweep time was set to auto. Peak and average measurements were performed with their respective detectors.


Transmitter Out of Band Radiated Emissions (Combination 1) (continued)


Results:

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
		See note 1		





Transmitter Out of Band Radiated Emissions (Combination 1) (continued)

4.2. Transmitter Out of Band Radiated Emissions (Combination 2)

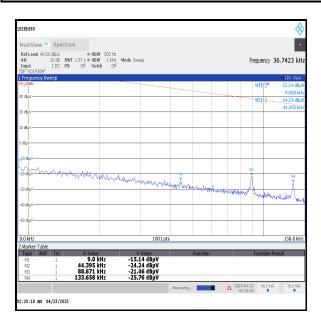
Test Summary:

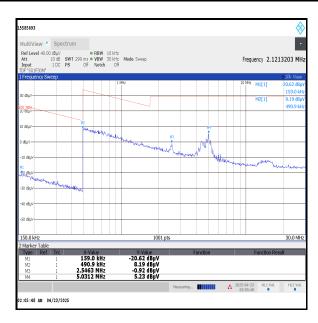
Test Engineer:	Nick Steele	Test Dates:	23 April 2025 & 24 April 2025
Test Sample Serial Number:	FOC2845HUBH		

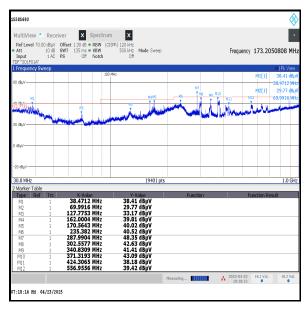
FCC Reference:	Parts 15.209(a), 15.407(b)(4)
Industry Canada Reference:	RSS-Gen 6.13, RSS-247 5.5, 6.2.4.3
Test Method Used:	ANSI C63.10 Sections 6.3, 6.4, 6.5, 6.6, 11.11, 11.12
Frequency Range:	9 kHz to 40 GHz
Configuration:	Bluetooth Classic DH5 Channel 78 5G WLAN 802.11a 6 Mbps SISO Ant 1 Channel 36

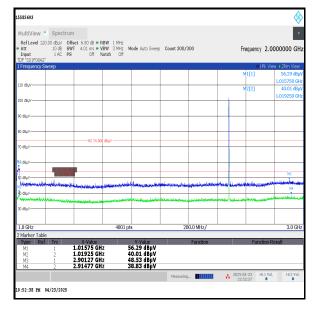
Environmental Conditions:

Temperature (°C):	21 to 22
Relative Humidity (%):	39 to 40

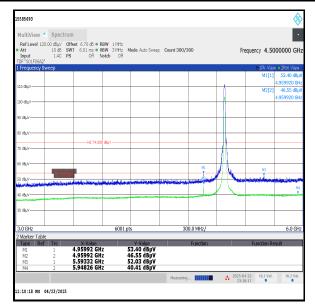

Note(s):

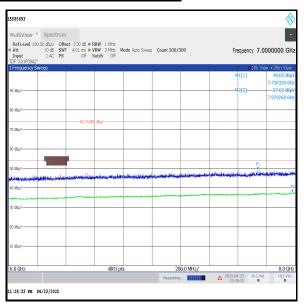

- 1. All intermodulation products were below the noise floor level or greater than 20 dB below the specification limit.
- 2. Filters and/or attenuators were used as appropriate. The insertion loss was added to the test receiver as a reference level offset.
- 3. The Bluetooth Classic carrier is shown on the 1 GHz to 3 GHz plot.
- 4. The 5G WLAN carrier is shown on the 3 GHz to 6 GHz plot.
- 5. Pre-scans were made against the FCC Part 15 general limits for radiated emissions.
- 6. The emission at 4959.92 MHz is the second harmonic of the *Bluetooth* signal and was therefore not measured.
- 7. Pre-scans from 9 kHz to 150 kHz measurements, the resolution bandwidth was set to 300 Hz and video bandwidth 1 kHz. A peak detector was used and trace mode was Max Hold. For 150 kHz to 30 MHz, the resolution bandwidth was set to 10 kHz and video bandwidth 30 kHz, trace mode was Max Hold
- 8. Pre-scans from 30MHz to 1GHz were performed and markers placed on the highest measured levels. The test receiver resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. The sweep time was set to auto. A peak detector was used and trace mode was Max Hold.
- 9. Pre-scans from 1GHz to 40GHz were performed and a marker placed on the highest measured level of the appropriate plot. The test receiver resolution bandwidth was set to 1 MHz and video bandwidth 3 MHz. The sweep time was set to auto. Peak and average measurements were performed with their respective detectors.

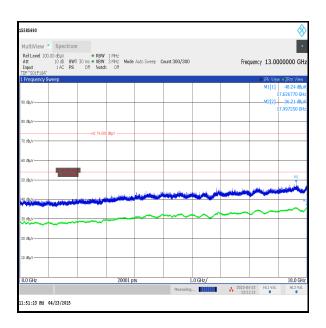

Transmitter Out of Band Radiated Emissions (Combination 2) (continued)

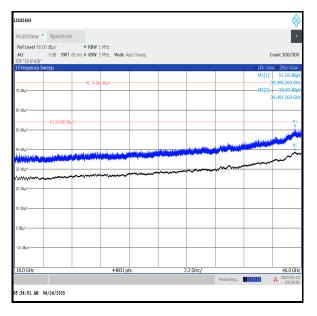

Results:

Frequency	Level	Limit	Margin	Result
(MHz)	(dBμV/m)	(dBμV/m)	(dB)	
		See note 1		









Transmitter Out of Band Radiated Emissions (Combination 2) (continued)

4.3. Transmitter Out of Band Radiated Emissions (Combination 3)

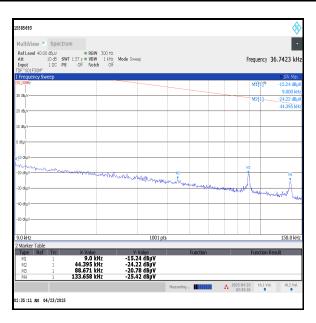
Test Summary:

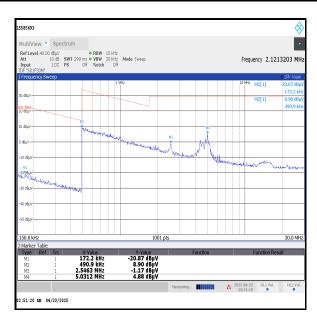
Test Engineer:	Nick Steele	Test Dates:	23 April 2025 & 24 April 2025
Test Sample Serial Number:	FOC2845HUBH		

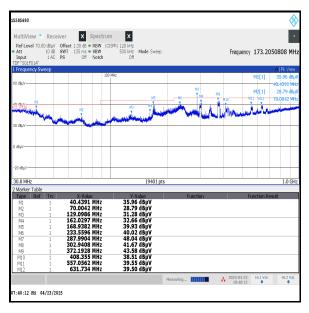
FCC Reference:	Parts 15.209(a), 15.407(b)(6)	
Industry Canada Reference:	RSS-Gen 6.13, RSS-248 4.6.2	
Test Method Used:	ANSI C63.10 Sections 6.3, 6.4, 6.5, 6.6, 11.11, 11.12	
Frequency Range:	9 kHz to 40 GHz	
Configuration:	Bluetooth Classic DH5 Channel 78 6G WLAN 802.11ax MCS0 MIMO Channel 93	

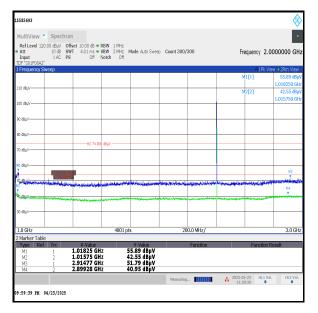
Environmental Conditions:

Temperature (°C):	21 to 22
Relative Humidity (%):	39 to 40

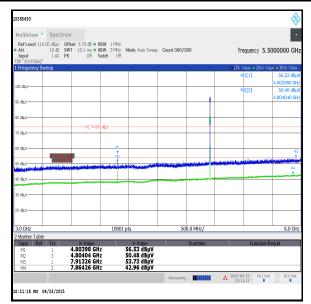

Note(s):

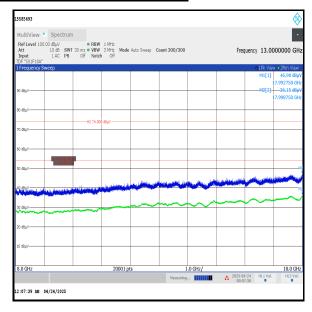

- 1. All intermodulation products were below the noise floor level or greater than 20 dB below the specification limit.
- 2. Filters and/or attenuators were used as appropriate. The insertion loss was added to the test receiver as a reference level offset.
- 3. The Bluetooth Classic carrier is shown on the 1 GHz to 3 GHz plot.
- 4. The 6G WLAN carrier is shown on the 3 GHz to 8 GHz plot.
- 5. Pre-scans were made against the FCC Part 15 general limits for radiated emissions.
- 6. The emission at 4804.04 MHz is the second harmonic of the *Bluetooth* signal and was therefore not measured.
- 7. Pre-scans from 9 kHz to 150 kHz measurements, the resolution bandwidth was set to 300 Hz and video bandwidth 1 kHz. A peak detector was used and trace mode was Max Hold. For 150 kHz to 30 MHz, the resolution bandwidth was set to 10 kHz and video bandwidth 30 kHz, trace mode was Max Hold
- 8. Pre-scans from 30MHz to 1GHz were performed and markers placed on the highest measured levels. The test receiver resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. The sweep time was set to auto. A peak detector was used and trace mode was Max Hold.
- 9. Pre-scans from 1GHz to 40GHz were performed and a marker placed on the highest measured level of the appropriate plot. The test receiver resolution bandwidth was set to 1 MHz and video bandwidth 3 MHz. The sweep time was set to auto. Peak and average measurements were performed with their respective detectors during the pre-scan measurements.

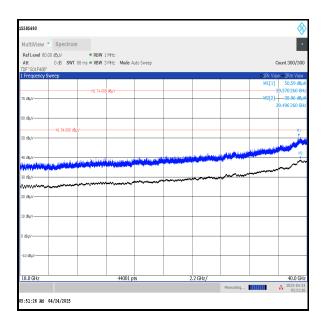

Transmitter Out of Band Radiated Emissions (Combination 3) (continued)


Results:

Frequency (MHz)	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Result	
See note 1					







Transmitter Out of Band Radiated Emissions (Combination 3) (continued)

--- END OF REPORT ---