

TEST REPORT**Report Number: 17070431HKG-003**

Application for Original Grant of 47 CFR Part 15 Certification
(Bluetooth 4.0 BLE portion)

FCC ID: LDK88321516**PREPARED AND CHECKED BY:****APPROVED BY:**

Signed On File
Yao Xin Lu, Josie
Engineer

Jess Tang
Lead Engineer
Date: August 17, 2017

TEST REPORT**GENERAL INFORMATION**

Applicant Name:	Cisco Systems Inc.
Applicant Address:	125 West Tasman Drive, San Jose, CA 95134-1706.
FCC Specification Standard:	FCC Part 15, October 1, 2015 Edition
FCC ID:	LDK88321516
FCC Model(s):	CP-8832
Type of EUT:	Spread Spectrum Transmitter
Description of EUT:	Cisco IP Conference Phone
Serial Number:	N/A
Sample Receipt Date:	July 07, 2017
Date of Test:	July 07, 2017 to August 11, 2017
Report Date:	August 17, 2017
Environmental Conditions:	Temperature: +10 to 40°C Humidity: 10 to 90%

TEST REPORT**TABLE OF CONTENTS**

1.0 Test Results Summary & Statement of Compliance	4
1.1 Summary of Test Results	4
1.2 Statement of Compliance.....	4
2.0 General Description	5
2.1 Product Description	5
2.2 Test Methodology.....	5
2.3 Test Facility	5
2.4 Related Submittal(s) Grants	5
3.0 System Test Configuration	6
3.1 Justification	6
3.2 EUT Exercising Software.....	7
3.3 Details of EUT and Description of Accessories.....	8
3.4 Measurement Uncertainty.....	8
4.0 Test Results	9
4.1 Maximum Conducted Output Power at Antenna Terminals	9
4.2 Minimum 6dB RF Bandwidth	10
4.3 Maximum Power Spectral Density	13
4.4 Out of Band Conducted Emissions	16
4.5 Field Strength Calculation	22
4.6 Transmitter Radiated Emissions in Restricted Bands and Spurious Emissions	23
4.6.1 Radiated Emission Configuration Photograph.....	23
4.6.2 Radiated Emission Data.....	23
4.6.3 Radiated Emission Test Setup	28
4.6.4 Transmitter Duty Cycle Calculation	29
4.7 AC Power Line Conducted Emission	30
4.7.1 AC Power Line Conducted Emission Configuration Photograph	30
4.7.2 AC Power Line Conducted Emission Data.....	30
4.7.3 Conducted Emission Test Setup	33
5.0 Equipment List	34

TEST REPORT**EXHIBIT 1 TEST RESULTS SUMMARY & STATEMENT OF COMPLIANCE****1.0 TEST RESULTS SUMMARY & STATEMENT OF COMPLIANCE**

1.1 Summary of Test Results

TEST ITEMS	FCC PART 15 SECTION	RESULTS	DETAILS SEE SECTION
Antenna Requirement	15.203	Pass	2.1
Max. Conducted Output Power (Peak)	15.247(b)(3)&(4)	Pass	4.1
Min. 6dB RF Bandwidth	15.247(a)(2)	Pass	4.2
Max. Power Density (peak)	15.247(e)	Pass	4.3
Out of Band Antenna Conducted Emission	15.247(d)	Pass	4.4
Radiated Emission in Restricted Bands and Spurious Emissions	15.247(d), 15.209 & 15.109	Pass	4.6
AC Power Line Conducted Emission	15.207 & 15.107	Pass	4.7

Note: Pursuant to FCC Part 15 Section 15.215(c), the 20dB bandwidth of the emission was contained within the frequency band designated (mentioned as above) which the EUT operated. The effects, if any, from frequency sweeping, frequency hopping, other modulation techniques and frequency stability over expected variations in temperature and supply voltage were considered.

1.2 Statement of Compliance

The equipment under test is found to be complying with the following standard:

FCC Part 15, October 1, 2015 Edition

TEST REPORT

EXHIBIT 2 GENERAL DESCRIPTION

2.0 GENERAL DESCRIPTION

2.1 Product Description

The CP-8832 is a Cisco IP Conference Phone. It is the next generation IP Conference Phone with Wireless Wi-Fi (802.11a/ac/b/g/n) connectivity as well as Wired RJ45 POE Ethernet support, Bluetooth connectivity, and DECT wireless microphone, as well as 3.5mm wired extension microphone support. The EUT was powered by 120AC adaptor or POE.

The EUT can support Bluetooth 3.0 mode, Bluetooth 4.0 BLE mode, 2.4GHz WiFi mode, 5.8GHz WiFi mode and 1.9GHz DECT mode.

For the Bluetooth module:

For Bluetooth 4.0 BLE mode, it occupies a frequency range from 2402MHz to 2480MHz (40 channels with channel spacing of 2MHz). It transmits via GFSK modulation.

The antenna(s) used in the EUT is internal, integral. And the test sample is a prototype.

The circuit description is saved with filename: descri.pdf.

2.2 Test Methodology

Both AC power line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.10 (2013). Preliminary radiated scans and all radiated measurements were performed in radiated emission test sites. All Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "**Justification Section**" of this Application. Antenna port conducted measurements were performed according to ANSI C63.10 (2013) and KDB Publication No.558074 D01 v04 (05-April-2017) All other measurements were made in accordance with the procedures in 47 CFR Part 2.

2.3 Test Facility

The radiated emission test site and antenna port conducted measurement facility used to collect the radiated data and conductive data are at Workshop No. 3, G/F., World-Wide Industrial Centre, 43-47 Shan Mei Street, Fo Tan, Sha Tin, N.T., Hong Kong. This test facility and site measurement data have been fully placed on file with the FCC.

2.4 Related Submittal(s) Grants

This is a single application for certification of a transceiver (Bluetooth 4.0 portion)

TEST REPORT**EXHIBIT 3 SYSTEM TEST CONFIGURATION****3.0 SYSTEM TEST CONFIGURATION****3.1 Justification**

For radiated emissions testing, the equipment under test (EUT) was setup to transmit / receive continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, all cables (if any) were manipulated to produce worst case emissions.

The EUT was powered by 120AC adaptor or POE.

For the measurements, the EUT was attached to a plastic stand if necessary and placed on the wooden turntable. If the base unit attached to peripherals, they were connected and operational (as typical as possible).

The signal was maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization were varied during the search for maximum signal level. The antenna height was varied from 1 to 4 meters. Radiated emissions were taken at three meters unless the signal level was too low for measurement at that distance. If necessary, a pre-amplifier was used and/or the test was conducted at a closer distance.

For any intentional radiator powered by AC power line, measurements of the radiated signal level of the fundamental frequency component of the emission was performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage.

Radiated emission measurement for transmitter were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

Emission that are directly caused by digital circuits in the transmit path and transmitter portion were measured, and the limit are according to FCC Part 15 Section 15.209. Digital circuitries used to control additional functions other than the operation of the transmitter are subject to FCC Part 15 Section 15.109 Limits.

TEST REPORT**3.1 Justification – Cont'd**

Detector function for radiated emissions was in peak mode. Average readings, when required, were taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings. A detailed description for the calculation of the average factor can be found in section 4.8.3.

Determination of pulse desensitization was made according to *Hewlett Packard Application Note 150-2, Spectrum Analysis... Pulsed RF*. The effective period (Teff) was referred to Exhibit 4.8.3. With the resolution bandwidth 1MHz and spectrum analyzer IF bandwidth 3dB, the pulse desensitization factor was 0dB.

For AC line conducted emission test, the EUT along with its peripherals were placed on a 1.0m(W)x1.5m(L) and 0.8m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane. The EUT was connected to power mains through a line impedance stabilization network (LISN), which provided 50ohm coupling impedance for measuring instrument. The LISN housing, measuring instrument case, reference ground plane, and vertical ground plane were bounded together. The excess power cable between the EUT and the LISN was bundled.

All connecting cables of EUT and peripherals were manipulated to find the maximum emission.

All relevant operation modes have been tested, and the worst case data is included in this report.

3.2 EUT Exercising Software

The EUT exercise program (if any) used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use.

TEST REPORT

3.3 Details of EUT and Description of Accessories

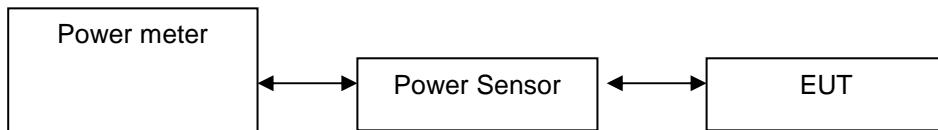
Details of EUT:

An adaptor (provided with the unit) was used to power the device. Its description is listed below.

- (1) Adaptor with cable in length of 1.8m, S/N: FCH2119D6L9 (Supplied by Client)

Description of Accessories:

- (1) AC Power Adaptor (Input: 100-240V, 50/60Hz, 0.5A; Output: 5V, 3A/ 9V, 2A/ 12V, 1.5A/ 15V, 1.2A), Model: AQ18A-59CFAC-H (Supplied by Client)
- (2) Bluetooth Headset, Model: BTE6, Brand: Jabra (Supplied by Client)
- (3) Wired Microphone x 2, Brand: Cisco, with cable length of 2.1m (Supplied by Client)
- (4) DECT handset, Model: Speedphone 51, Brand: Deutsche Telekom (Supplied by Client)
- (5) PoE (Power over Ethernet), Brand: TP-LINK, Model: TL-POE150S with Adaptor (Model: MU24-1480050-B2, Input: 100-240V, 50/60Hz, 1.0A; Output: 48V, 0.5A) (Supplied by Intertek)
- (6) LAN cable(s) with 2m in length (Supplied by Intertek)


3.4 Measurement Uncertainty

When determining of the test conclusion, the Measurement Uncertainty of test at a level of confidence of 95% has been considered. The values of the Measurement uncertainty for radiated emission test and RF conducted measurement test are $\pm 5.3\text{dB}$ and $\pm 0.99\text{dB}$ respectively. The value of the Measurement uncertainty for conducted emission test is $\pm 4.2\text{dB}$.

Uncertainty and Compliance - Unless the standard specifically states that measured values are to be extended by the measurement uncertainty in determining compliance, all compliance determinations are based on the actual measured value.

TEST REPORT**EXHIBIT 4 TEST RESULTS****4.0 TEST RESULTS****4.1 Maximum Conducted (peak) Output Power at Antenna Terminals****RF Conduct Measurement Test Setup**

The figure below shows the test setup, which is utilized to make these measurements.

The antenna port of the EUT was connected to the input of a spectrum analyzer.

- The antenna power of the EUT was connected to the input of a power meter. Power was read directly and cable loss correction was added to the reading to obtain power at the EUT antenna terminals. The measurement procedure 9.1.3 was used.
- The EUT should be configured to transmit continuously (at a minimum duty cycle of 98%) at full power over the measurement duration. The measurement procedure AVG1 was used.

Antenna Gain = 3.11 dBi

Frequency (MHz)	Output in dBm	Output in mWatt
Low Channel: 2402	6.9	4.898
Middle Channel: 2440	6.8	4.786
High Channel: 2480	6.9	4.898

Cable loss : 2 dB External Attenuation : 0 dB

Cable loss, external attenuation: included in OFFSET function
 added to SA raw reading

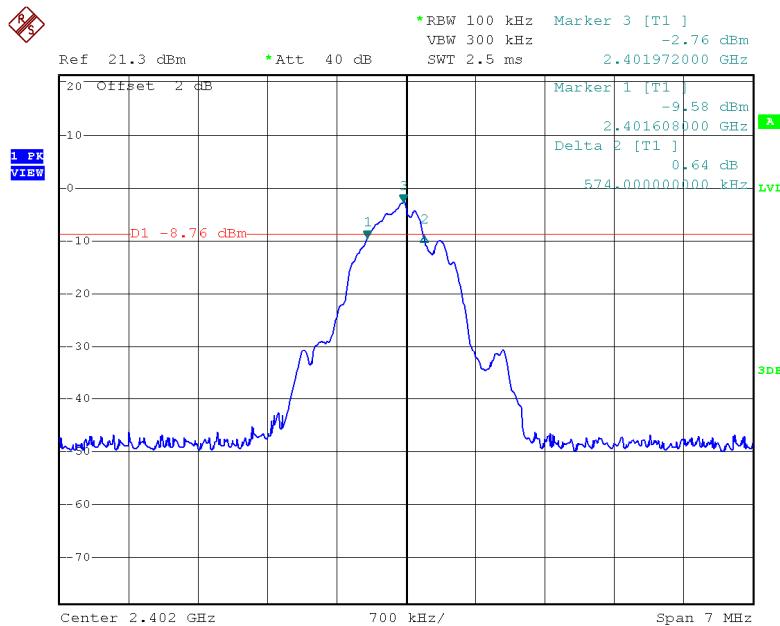
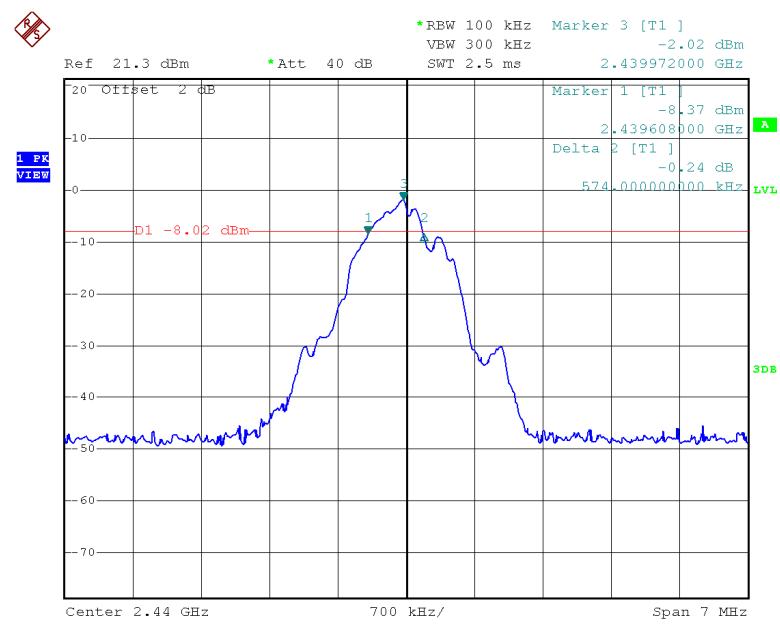
max. conducted (peak) output level = 6.9 dBm

Limits:

1W (30dBm) for antennas with gains of 6dBi or less

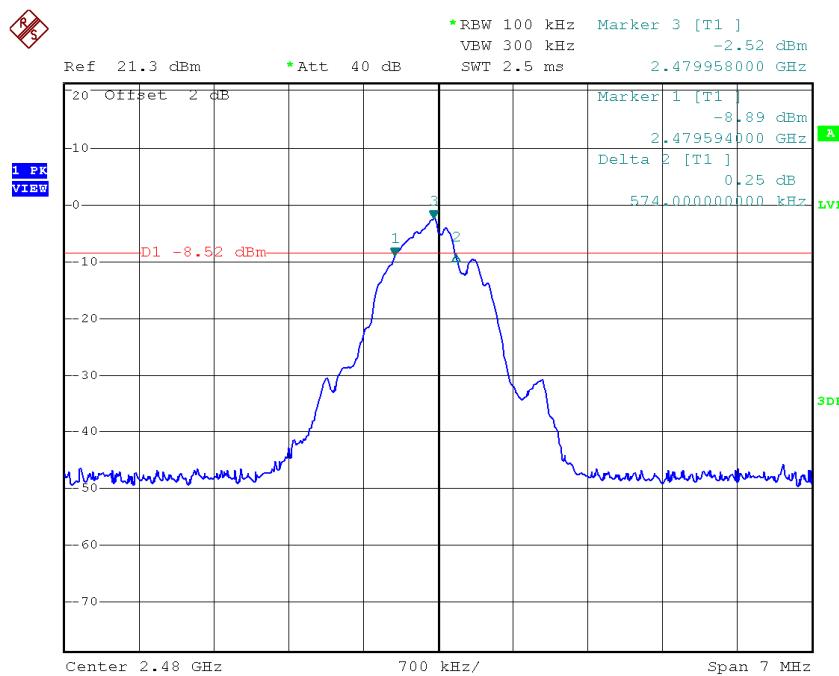
 W (dBm) for antennas with gains more than 6dBi

TEST REPORT**4.2 Minimum 6dB RF Bandwidth**



The antenna port of the EUT was connected to the input of a spectrum analyzer. The EBW measurement procedure was used. A PEAK output reading was taken, a DISPLAY line was drawn 6dB lower than PEAK level. The 6dB bandwidth was determined from where the channel output spectrum intersected the display line.

Frequency (MHz)	6dB Bandwidth (MHz)
Low Channel:	2402
Middle Channel:	2440
High Channel:	2480

Limits


6 dB bandwidth shall be at least 500kHz

The plots of 6dB RF bandwidth are saved as below.

TEST REPORT
PLOTS OF 6dB RF BANDWIDTH
Lowest Channel

Middle Channel

TEST REPORT
PLOTS OF 6dB RF BANDWIDTH

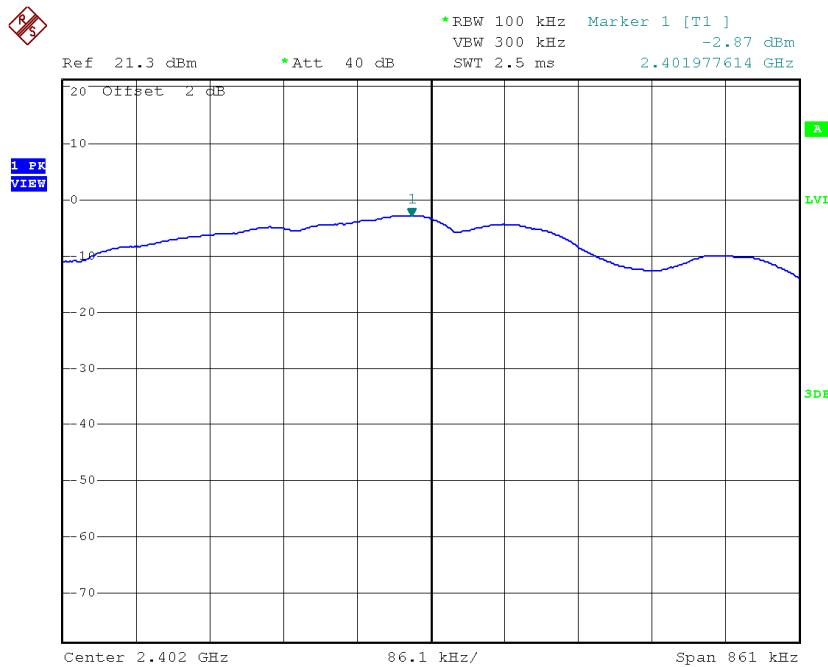
Highest Channel

TEST REPORT**4.3 Maximum Power Spectral Density**

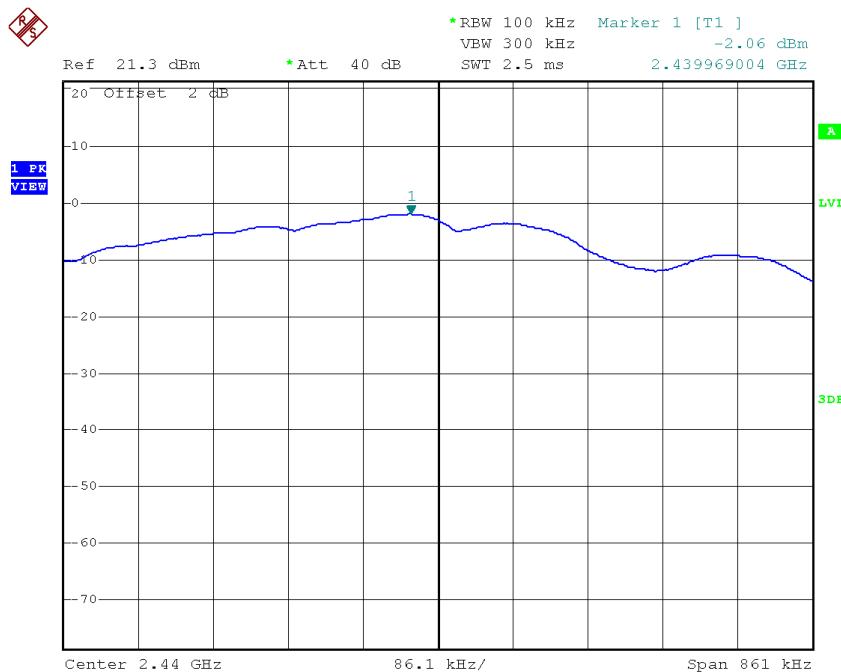
Antenna output of the EUT was coupled directly to spectrum analyzer. The measurement procedure 10.2 PKPSD-1 was used. If an external attenuator and/or cable was used, these losses are compensated for using the OFFSET function of the analyser.

Frequency (MHz)	PSD in 100kHz (dBm)
Low Channel: 2402	-2.87
Middle Channel: 2440	-2.06
High Channel: 2480	-2.49

Cable Loss: 2 dB

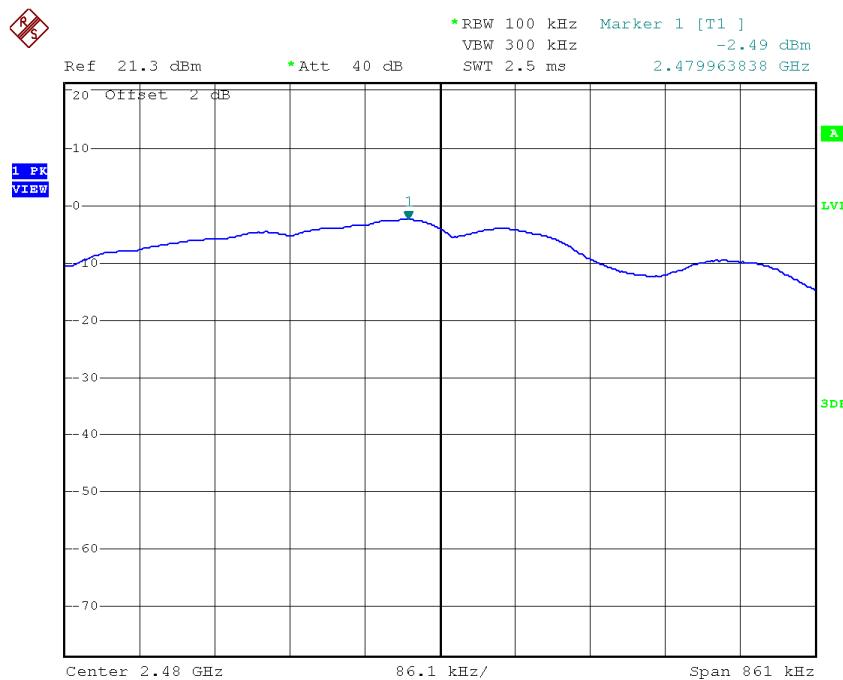

Limit:
8dBm

The plots of power spectral density are as below.


TEST REPORT

PLOTS OF POWER SPECTRAL DENSITY

Lowest channel



Middle channel

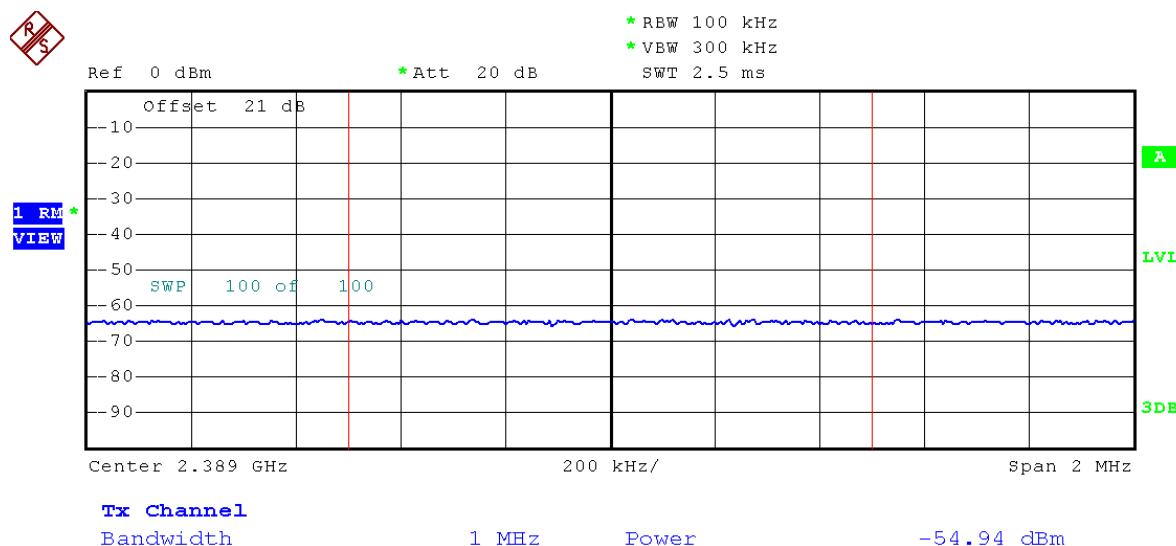
TEST REPORT**PLOTS OF POWER SPECTRAL DENSITY**

Highest channel

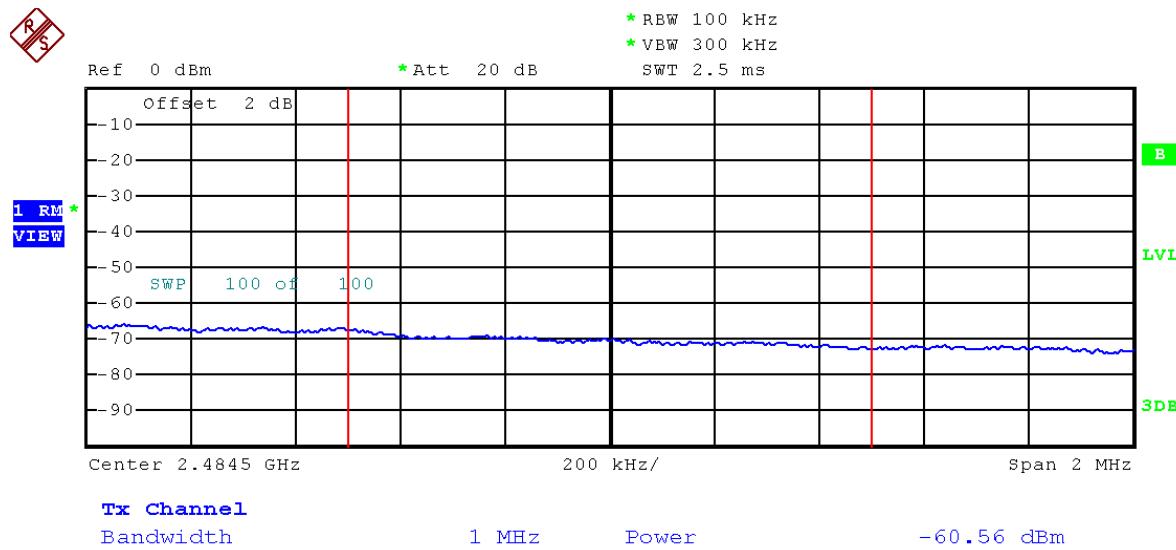
TEST REPORT**4.4 Out of Band Conducted Emissions**

For Bluetooth 4.0 BLE Mode, the maximum conducted (peak) output power was used to demonstrate compliance as described in 9.1. Then the display line (in red) shown in the following plots denotes the limit at 20dB below maximum measured in-band peak PSD level in 100 KHz bandwidth for Bluetooth 4.0 BLE Mode.

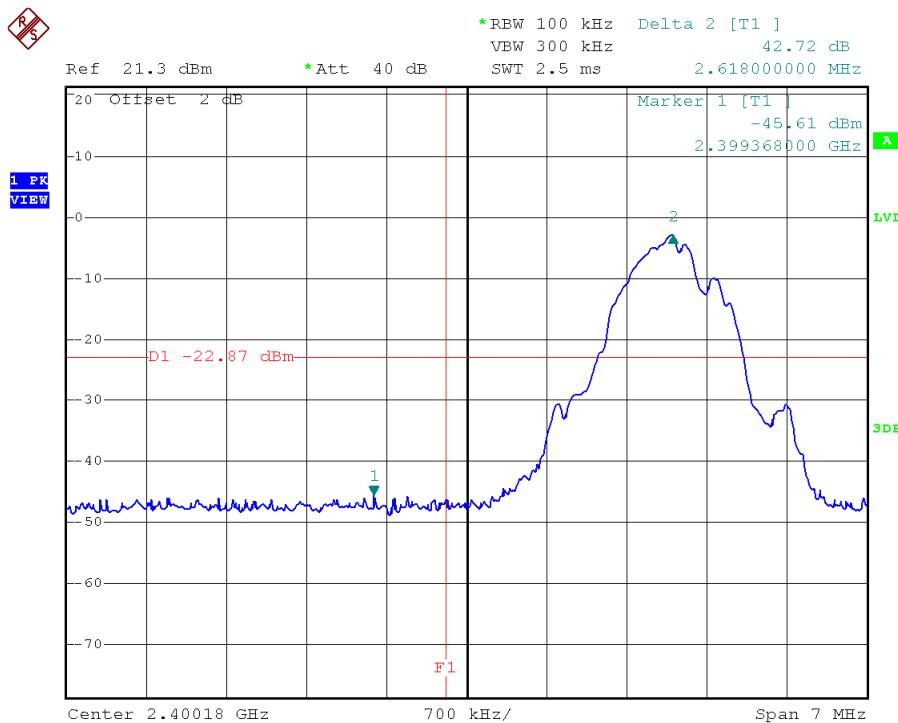
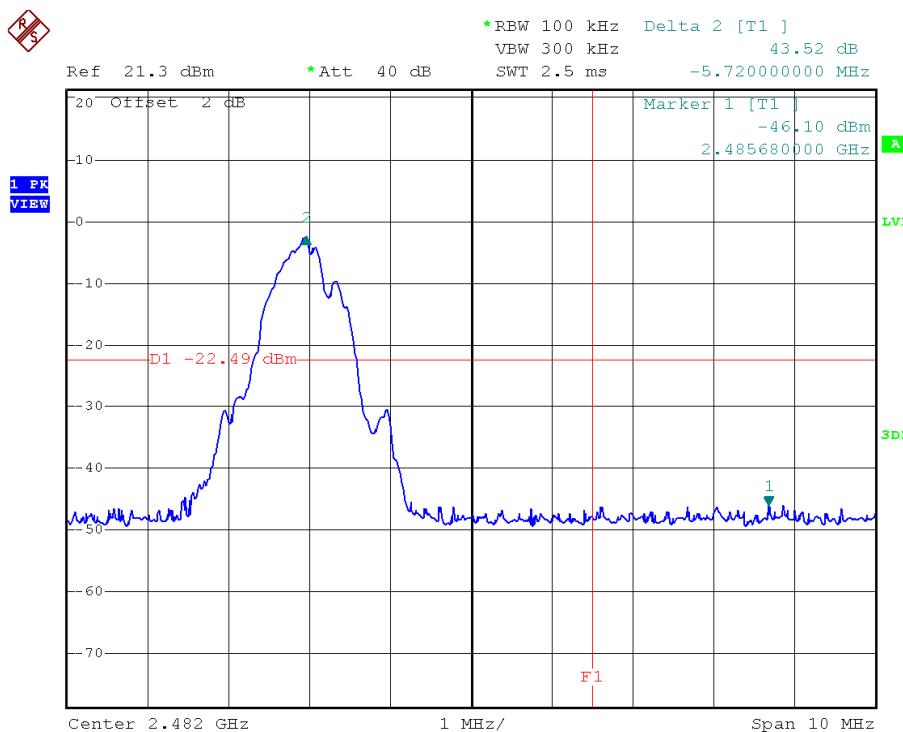
The measurement procedures under sections 11 of KDB558074 D01 v04 (05-April-2017) were used.

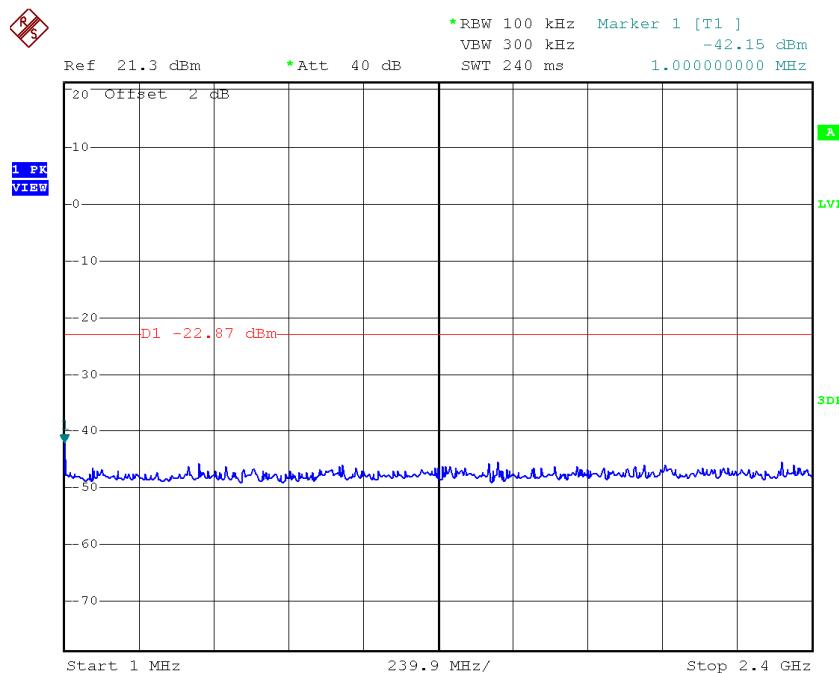
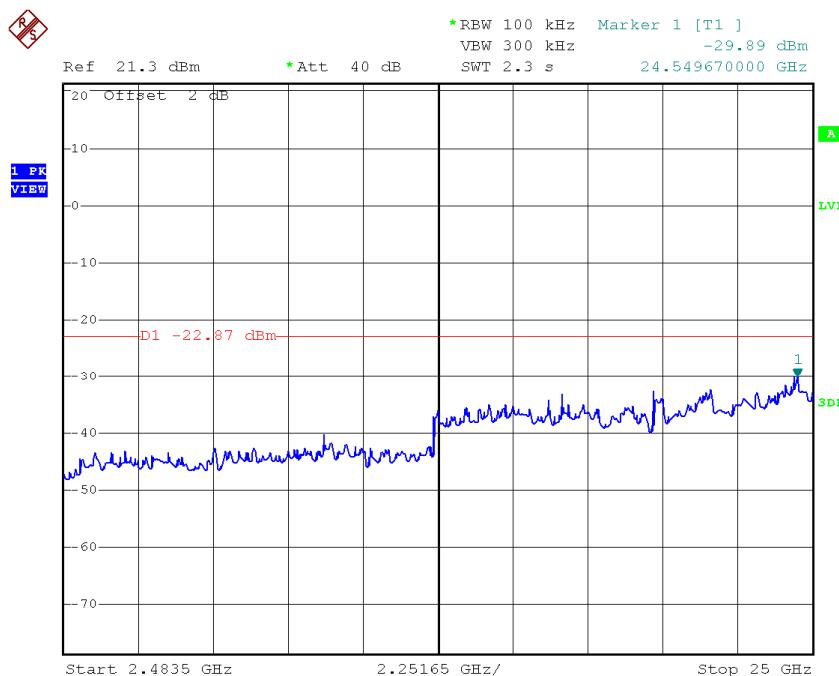

Furthermore, delta measurement technique for measuring bandedge emissions was incorporated in the test of the edge at 2483.5MHz.

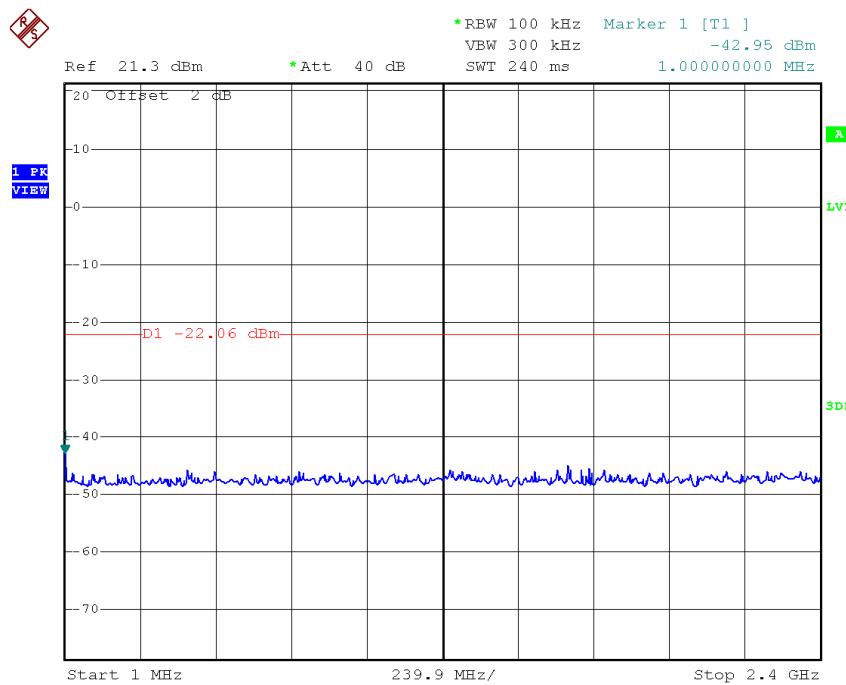
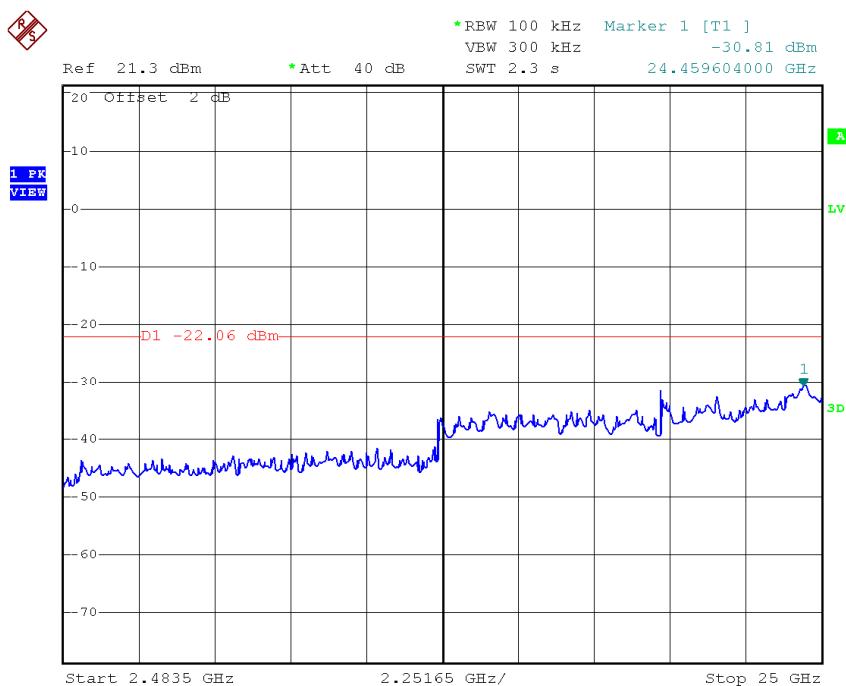
Limits:

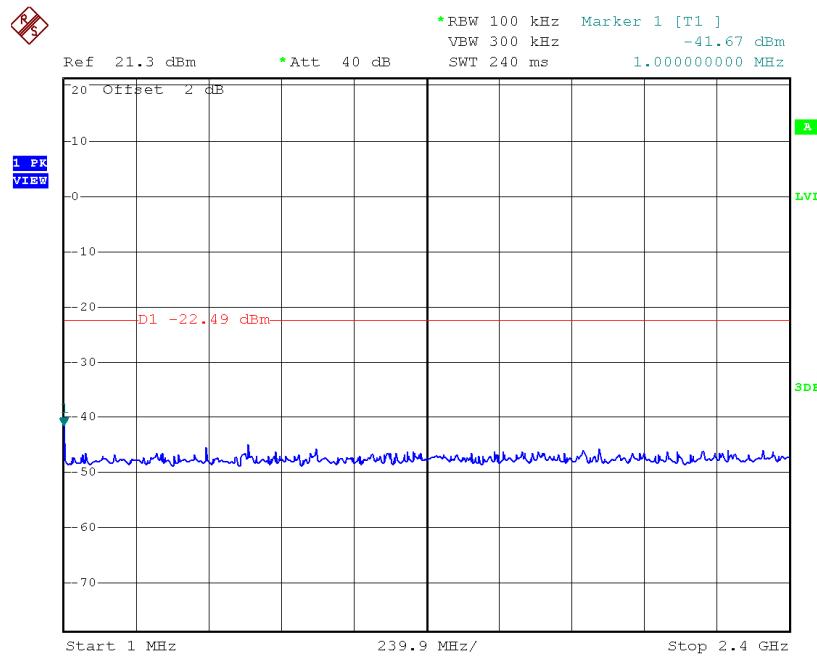
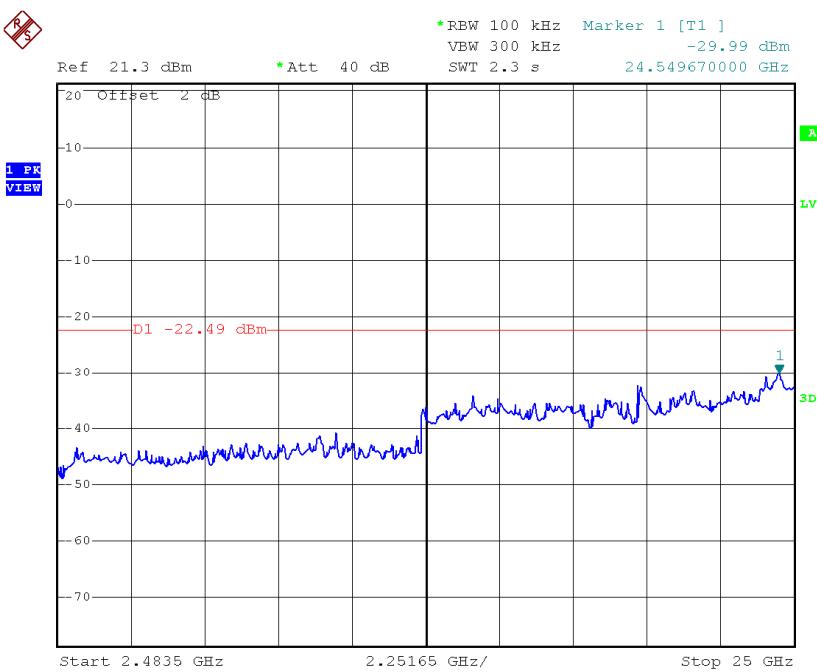

All spurious emission and up to the tenth harmonic was measured and they were found to be at least 20dB for Bluetooth 4.0 BLE Mode below the maximum measured in-band peak PSD level.

TEST REPORT
PLOTS OF BAND EDGE (Integration Method)



Lowest Channel, Plot A



Highest Channel, Plot B

Frequency (MHz)	conducted output power (dBm)	Antenna Gain (dBi)	EIRP (dBm)	Electrical Field Strength (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
2390.000	-54.94	3.11	-51.83	43.43	54.0	-10.57
2483.500	-60.56	3.11	-57.45	37.81	54.0	-16.19

TEST REPORT
PLOTS OF OUT OF BAND CONDUCTED EMISSIONS
Lowest Channel, Plot A

Highest Channel, Plot B

TEST REPORT
PLOTS OF OUT OF BAND CONDUCTED EMISSIONS
Lowest Channel, Plot A

Lowest Channel, Plot B

TEST REPORT
PLOTS OF OUT OF BAND CONDUCTED EMISSIONS
Middle Channel, Plot A

Middle Channel, Plot B

TEST REPORT**PLOTS OF OUT OF BAND CONDUCTED EMISSIONS****Highest Channel, Plot A****Highest Channel, Plot B**

TEST REPORT**4.5 Field Strength Calculation**

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

$$FS = RA + AF + CF - AG + PD + AV$$

Where FS = Field Strength in $\text{dB}\mu\text{V}/\text{m}$

RA = Receiver Amplitude (including preamplifier) in $\text{dB}\mu\text{V}$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

PD = Pulse Desensitization in dB

AV = Average Factor in -dB

In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

$$FS = RA + AF + CF - AG + PD + AV$$

Example

Assume a receiver reading of 62.0 $\text{dB}\mu\text{V}$ is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29.0 dB is subtracted. The pulse desensitization factor of the spectrum analyzer is 0.0 dB, and the resultant average factor is -10.0 dB. The net field strength for comparison to the appropriate emission limit is 32.0 $\text{dB}\mu\text{V}/\text{m}$. This value in $\text{dB}\mu\text{V}/\text{m}$ is converted to its corresponding level in $\mu\text{V}/\text{m}$.

RA = 62.0 $\text{dB}\mu\text{V}$

AF = 7.4 dB

CF = 1.6 dB

AG = 29.0 dB

PD = 0.0 dB

AV = -10 dB

$$FS = 62.0 + 7.4 + 1.6 - 29.0 + 0.0 + (-10.0) = 32.0 \text{ dB}\mu\text{V}/\text{m}$$

$$\text{Level in } \mu\text{V}/\text{m} = \text{Common Antilogarithm } [(32.0 \text{ dB}\mu\text{V}/\text{m})/20] = 39.8 \mu\text{V}/\text{m}$$

TEST REPORT**4.6 Transmitter Radiated Emissions in Restricted Bands and Spurious Emissions**

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

The data on the following pages list the significant emission frequencies, the limit and the margin of compliance.

4.6.1 Radiated Emission Configuration Photograph

Worst Case Restricted Band Radiated Emission
at

62.743 MHz

The worst case radiated emission configuration photographs are saved with filename: config photos.pdf

4.6.2 Radiated Emission Data

The data in tables 1-4 list the significant emission frequencies, the limit and the margin of compliance.

Judgement -

Passed by 1.2 dB margin

TEST REPORT

RADIATED EMISSION DATA

Mode: TX-Channel 00

Table 1
 IEEE 802.11b (DSSS, 1 Mbps)

Polari-zation	Frequency (MHz)	Reading (dB μ V)	Pre-Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dB μ V/m)	Average Limit at 3m (dB μ V/m)	Margin (dB)
H	4804.000	29.9	33	34.9	31.8	54.0	-22.2
H	12010.000	30.3	33	40.5	37.8	54.0	-16.2

Polari-zation	Frequency (MHz)	Reading (dB μ V)	Pre-Amp Gain (dB)	Antenna Factor (dB)	Net at 3m - Peak (dB μ V/m)	Peak Limit at 3m (dB μ V/m)	Margin (dB)
H	4804.000	41.6	33	34.9	43.5	74.0	-30.5
H	12010.000	40.8	33	40.5	48.3	74.0	-25.7

NOTES:

1. Peak detector is used for the emission measurement.
2. Average detector is used for the average data of emission measurement.
3. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
4. Negative value in the margin column shows emission below limit.
5. Horn antenna is used for the emission over 1000MHz.
6. Emission (the row indicated by ***bold italic***) within the restricted band meets the requirement of FCC Part 15 Section 15.205.
7. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth.
8. For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth.

TEST REPORT

Mode: TX-Channel 19

Table 2
 IEEE 802.11b (DSSS, 1 Mbps)

Polari-zation	Frequency (MHz)	Reading (dB μ V)	Pre-Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dB μ V/m)	Average Limit at 3m (dB μ V/m)	Margin (dB)
H	4880.000	29.6	33	34.9	31.5	54.0	-22.5
V	7320.000	27.3	33	37.9	32.2	54.0	-21.8
H	12200.000	29.7	33	40.5	37.2	54.0	-16.8

Polari-zation	Frequency (MHz)	Reading (dB μ V)	Pre-Amp Gain (dB)	Antenna Factor (dB)	Net at 3m - Peak (dB μ V/m)	Peak Limit at 3m (dB μ V/m)	Margin (dB)
H	4880.000	41.9	33	34.9	43.8	74.0	-30.2
V	7320.000	36.6	33	37.9	41.5	74.0	-32.5
H	12200.000	40.7	33	40.5	48.2	74.0	-25.8

NOTES:

1. Peak detector is used for the emission measurement.
2. Average detector is used for the average data of emission measurement
3. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
4. Negative value in the margin column shows emission below limit.
5. Horn antenna is used for the emission over 1000MHz.
6. Emission (the row indicated by ***bold italic***) within the restricted band meets the requirement of FCC Part 15 Section 15.205.
7. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth.
8. For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth.

TEST REPORT

Mode: TX-Channel 39

 Table 3
 IEEE 802.11b (DSSS, 1 Mbps)

Polari-zation	Frequency (MHz)	Reading (dB μ V)	Pre-Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dB μ V/m)	Average Limit at 3m (dB μ V/m)	Margin (dB)
H	4960.000	29.5	33	34.9	31.4	54.0	-22.6
V	7440.000	27.7	33	37.9	32.6	54.0	-21.4
H	12400.000	29.6	33	40.5	37.1	54.0	-16.9

Polari-zation	Frequency (MHz)	Reading (dB μ V)	Pre-Amp Gain (dB)	Antenna Factor (dB)	Net at 3m - Peak (dB μ V/m)	Peak Limit at 3m (dB μ V/m)	Margin (dB)
H	4960.000	41.5	33	34.9	43.4	74.0	-30.6
V	7440.000	36.4	33	37.9	41.3	74.0	-32.7
H	12400.000	41.0	33	40.5	48.5	74.0	-25.5

NOTES:

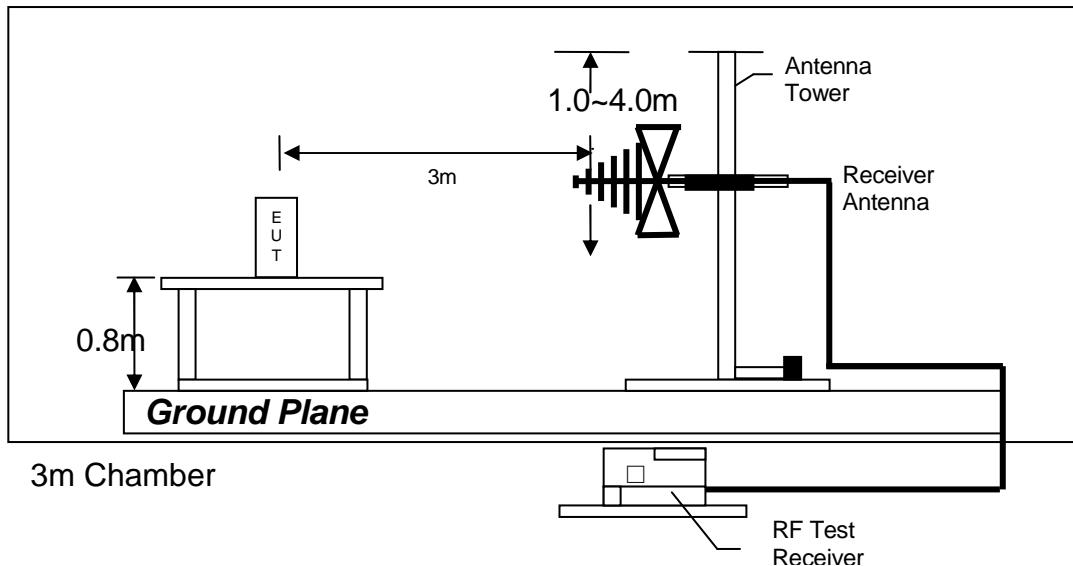
1. Peak detector is used for the emission measurement.
2. Average detector is used for the average data of emission measurement
3. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
4. Negative value in the margin column shows emission below limit.
5. Horn antenna is used for the emission over 1000MHz.
6. Emission (the row indicated by ***bold italic***) within the restricted band meets the requirement of FCC Part 15 Section 15.205.
7. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth.
8. For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth.

TEST REPORT

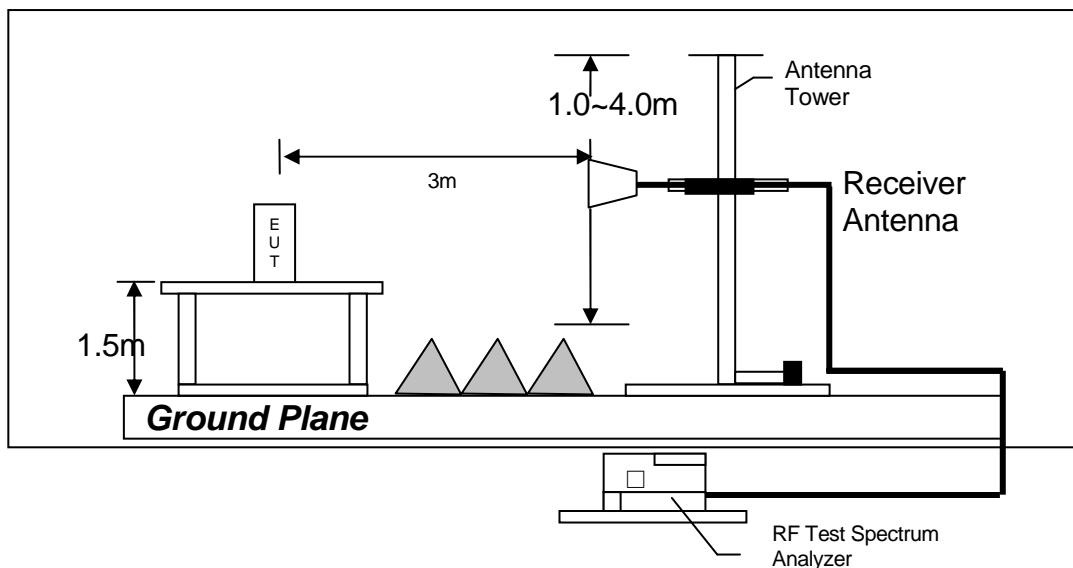
Mode: Bluetooth on with LAN transmission and powered by POE

Table 4

Polarization	Frequency (MHz)	Reading (dB μ V)	Pre-amp (dB)	Antenna Factor (dB)	Net at 3m (dB μ V/m)	Limit at 3m (dB μ V/m)	Margin (dB)
V	56.435	43.2	16	11.0	38.2	40.0	-1.8
V	58.612	43.6	16	11.0	38.6	40.0	-1.4
V	62.743	44.8	16	10.0	38.8	40.0	-1.2
V	73.168	48.4	16	6.0	38.4	40.0	-1.6
V	115.489	43.7	16	14.0	41.7	43.5	-1.8
V	159.613	40.9	16	16.0	40.9	43.5	-2.6
V	185.446	39.3	16	16.0	39.3	43.5	-4.2
V	202.902	37.5	16	16.0	37.5	43.5	-6.0
V	319.416	33.3	16	23.0	40.3	46.0	-5.7
H	663.533	27.1	16	29.0	40.1	46.0	-5.9
V	761.865	27.8	16	30.0	41.8	46.0	-4.2
H	850.019	26.4	16	31.0	41.4	46.0	-4.6
H	958.413	24.2	16	33.0	41.2	46.0	-4.8


NOTES:

1. Peak detector is used for the emission measurement.
2. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
3. Negative value in the margin column shows emission below limit.
4. Emission (the row indicated by ***bold italic***) within the restricted band meets the requirement of FCC Part 15 Section 15.205.


TEST REPORT

4.6.3 Radiated Emission Test Setup

The figure below shows the test setup, which is utilized to make these measurements.

Test setup of radiated emissions up to 1GHz

Test setup of radiated emissions above 1GHz

TEST REPORT**4.6.4 Transmitter Duty Cycle Calculation**

Not applicable – No average factor is required.

TEST REPORT**4.7 AC Power Line Conducted Emission**

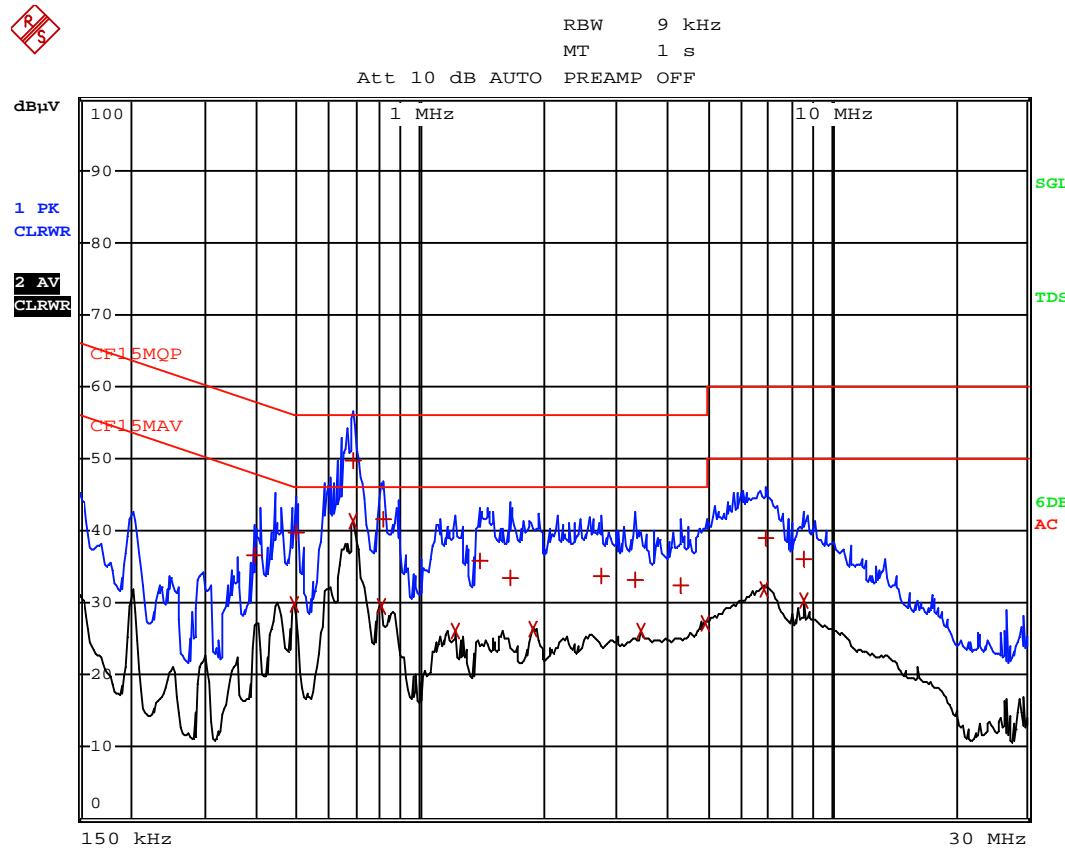
- Not applicable – EUT is only powered by battery for operation.
- EUT connects to AC power line. Emission Data is listed in following pages.
- Base Unit connects to AC power line and has transmission. Handset connects to AC power line but has no transmission. Emission Data of Base Unit is listed in following pages.

4.7.1 AC Power Line Conducted Emission Configuration Photograph

Worst Case Line-Conducted Configuration
at

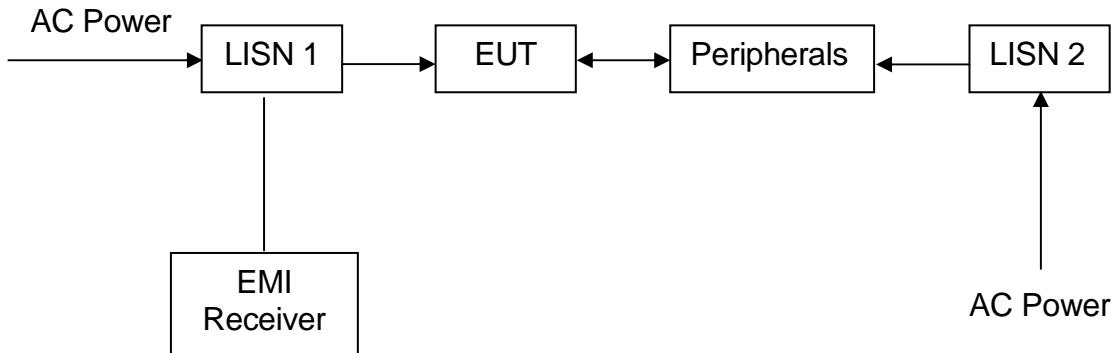
685.5 kHz

The worst case line conducted configuration photographs are attached in the Appendix and saved with filename: config photos.pdf


4.7.2 AC Power Line Conducted Emission Data

The plot(s) and data in the following pages list the significant emission frequencies, the limit and the margin of compliance.

Passed by 4.61 dB margin compare with CISPR Average limit


TEST REPORT
AC POWER LINE CONDUCTED EMISSION

Worst Case: Bluetooth on with LAN transmission and powered by AC Adaptor

TEST REPORT**Worst Case: Bluetooth on with LAN transmission and powered by AC Adaptor**

EDIT PEAK LIST (Final Measurement Results)				
Trace1:	CF15MQP			
Trace2:	CF15MAV			
Trace3:	---			
TRACE	FREQUENCY	LEVEL dB μ V	DELTA	LIMIT dB
1 Quasi Peak	393 kHz	36.73 L1	-21.26	
2 CISPR Average	492 kHz	29.83 L1	-16.30	
1 Quasi Peak	496.5 kHz	39.79 L1	-16.26	
1 Quasi Peak	685.5 kHz	49.76 N	-6.23	
2 CISPR Average	685.5 kHz	41.39 L1	-4.61	
2 CISPR Average	802.5 kHz	29.62 L1	-16.37	
1 Quasi Peak	811.5 kHz	41.48 L1	-14.51	
2 CISPR Average	1.221 MHz	26.09 N	-19.90	
1 Quasi Peak	1.4055 MHz	35.89 L1	-20.11	
1 Quasi Peak	1.6575 MHz	33.34 N	-22.65	
2 CISPR Average	1.887 MHz	26.38 L1	-19.61	
1 Quasi Peak	2.751 MHz	33.83 N	-22.17	
1 Quasi Peak	3.3495 MHz	33.08 L1	-22.91	
2 CISPR Average	3.4485 MHz	26.09 N	-19.90	
1 Quasi Peak	4.2945 MHz	32.30 L1	-23.69	
2 CISPR Average	4.965 MHz	27.11 N	-18.88	
2 CISPR Average	6.8955 MHz	31.87 L1	-18.12	
1 Quasi Peak	6.9765 MHz	38.95 N	-21.05	
2 CISPR Average	8.619 MHz	30.33 N	-19.67	
1 Quasi Peak	8.6235 MHz	35.97 L1	-24.02	

TEST REPORT**4.7.3 Conducted Emission Test Setup**

TEST REPORT
EXHIBIT 5 EQUIPMENT LIST
5.0 EQUIPMENT LIST
1) Radiated Emissions Test

Equipment	Biconical Antenna	EMI Test Receiver (9kHz to 26.5GHz)	Double Ridged Guide Antenna
Registration No.	EW-0571	EW-3156	EW-0194
Manufacturer	EMCO	ROHDESCHWARZ	EMCO
Model No.	3104C	ESR26	3115
Calibration Date	May. 18, 2016	Dec. 06. 2016	Aug. 10, 2016
Calibration Due Date	Nov. 18, 2017	Dec. 06, 2017	Feb. 10, 2018

Equipment	Log Periodic Antenna	Pyramidal Horn Antenna	Spectrum Analyzer
Registration No.	EW-0447	EW-0905	EW-2249
Manufacturer	EMCO	EMCO	R&S
Model No.	3146	3160-09	FSP30
Calibration Date	May. 18, 2016	Feb. 12, 2016	Dec. 23, 2016
Calibration Due Date	Nov. 18, 2017	Aug. 12, 2017	Nov. 27, 2017

Equipment	Active Loop H-field (9kHz to 30MHz)	RF Cable 9kHz to 1000MHz	RF Cable (up to 40GHz)
Registration No.	EW-2313	EW-3170	EW-3155
Manufacturer	ELECTROMETRI	N/A	N/A
Model No.	EM-6876	9kHz to 1000MHz	1-40 GHz
Calibration Date	May. 18, 2016	Mar. 20, 2017	Dec. 05, 2016
Calibration Due Date	Nov. 18, 2017	Mar. 20, 2018	Dec. 05, 2017

Equipment	Solid State Low Noise Preamplifier Assembly (1 - 18)GHz	RF Pre-amplifier 3 pcs (9kHz to 40GHz)	Notch Filter (cutoff frequency 2.4GHz to 2.5GHz)
Registration No.	EW-3229	EW-3006	EW-3155
Manufacturer	BONN ELEKTRO	SCHWARZBECK	MICROTRONICS
Model No.	BLMA 0118-5G	BBV 9744	BRM50701-02
Calibration Date	Oct. 24, 2016	Mar. 23, 2017	May. 26, 2017
Calibration Due Date	Oct. 24, 2017	Mar. 23, 2018	May. 26, 2018

2) Conducted Emissions Test

Equipment	EMI Test Receiver	RF Cable 9kHz to 1000MHz	LISN
Registration No.	EW-3156	EW-3170	EW-2874
Manufacturer	ROHDESCHWARZ	N/A	R&S
Model No.	ESR26	9kHz to 1000MHz	ENV-216
Calibration Date	Dec. 06. 2016	Mar. 20, 2017	Mar. 16, 2017
Calibration Due Date	Dec. 06, 2017	Mar. 20, 2018	Mar. 16, 2018

TEST REPORT

3) Conductive Measurement Test

Equipment	Spectrum Analyzer	RF Cable (up to 40GHz) 1.5m length	RF Power Meter with Power Sensor (N1921A)
Registration No.	EW-2249	EW-3104	EW-2270
Manufacturer	R&S	N/A	AGILENTTECH
Model No.	FSP30	SMA-M to SMA-M	N1911A
Calibration Date	Dec. 23, 2016	Feb. 28, 2017	Jan. 04, 2017
Calibration Due Date	Nov. 27. 2017	Feb. 28, 2018	Jan. 04, 2018

- End of Report -