

**FCC CFR47 PART 15 SUBPART C
CERTIFICATION**

TEST REPORT

FOR

802.11 a/b/g ACCESS POINT

MODEL NUMBER: AIR-AP1131AG-A-K9

FCC ID: LDK102054

REPORT NUMBER: 04U2603-1

ISSUE DATE: AUGUST 30, 2004

Prepared for
CISCO SYSTEMS, INC.
170 WEST TASMAN DRIVE
SAN JOSE, CA 95134

Prepared by
COMPLIANCE CERTIFICATION SERVICES
561F MONTEREY ROAD,
MORGAN HILL, CA 95037, USA
TEL: (408) 463-0885
FAX: (408) 463-0888

TABLE OF CONTENTS

1. TEST RESULT CERTIFICATION.....	3
2. EUT DESCRIPTION.....	4
3. TEST METHODOLOGY	5
4. FACILITIES AND ACCREDITATION	5
5. CALIBRATION AND UNCERTAINTY.....	6
5.1. <i>MEASURING INSTRUMENT CALIBRATION.....</i>	<i>6</i>
5.2. <i>MEASUREMENT UNCERTAINTY.....</i>	<i>6</i>
5.3. <i>TEST AND MEASUREMENT EQUIPMENT.....</i>	<i>7</i>
6. APPLICABLE LIMITS AND TEST RESULTS	11
6.1. <i>6 dB BANDWIDTH</i>	<i>11</i>
6.2. <i>99% BANDWIDTH</i>	<i>18</i>
6.3. <i>PEAK OUTPUT POWER.....</i>	<i>25</i>
6.4. <i>MAXIMUM PERMISSIBLE EXPOSURE</i>	<i>33</i>
6.5. <i>AVERAGE POWER.....</i>	<i>36</i>
6.6. <i>PEAK POWER SPECTRAL DENSITY</i>	<i>37</i>
6.7. <i>CONDUCTED SPURIOUS EMISSIONS.....</i>	<i>44</i>
6.8. <i>CO-LOCATED MAXIMUM PERMISSIBLE EXPOSURE.....</i>	<i>57</i>
6.9. <i>RADIATED EMISSIONS.....</i>	<i>60</i>
6.9.1. <i>LIMITS AND PROCEDURES.....</i>	<i>60</i>
6.9.2. <i>TRANSMITTER ABOVE 1 GHZ.....</i>	<i>63</i>
6.9.3. <i>CO-LOCATED TRANSMITTERS ABOVE 1 GHz.....</i>	<i>81</i>
6.9.4. <i>WORST-CASE BELOW 1 GHz</i>	<i>90</i>
6.10. <i>POWERLINE CONDUCTED EMISSIONS</i>	<i>92</i>
7. SETUP PHOTOS	95

1. TEST RESULT CERTIFICATION

COMPANY NAME: CISCO SYSTEMS, INC.
170 WEST TASMAN DRIVE
SAN JOSE, CA 95134

EUT DESCRIPTION: 802.11 a/b/g Access Point

MODEL: AIR-AP1131AG-A-K9

DATE TESTED: JULY 24 – JULY 29, 2004

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
FCC PART 15 SUBPART C	NO NON-COMPLIANCE NOTED

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: This document reports conditions under which testing was conducted and results of tests performed. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document.

Approved & Released For CCS By:

YAN ZHENG
EMC SUPERVISOR
COMPLIANCE CERTIFICATION SERVICES

Tested By:

DAVID GARCIA
EMC ENGINEER
COMPLIANCE CERTIFICATION SERVICES

2. EUT DESCRIPTION

The EUT is an 802.11a/b/g access point. There are two radios, one for the 2.4 GHz band and the other for the 5 GHz bands. These two radio transmitters may operate simultaneously.

The 2.4 GHz transmitter has a maximum peak conducted output power as follows:

Frequency Band (MHz)	Mode	Output Power (dBm)	Output Power (mW)
2412 - 2462	802.11b	25.64	366.44
2412 - 2462	802.11g	24.82	303.39

The 2.4 GHz radio utilizes two identical internal inverted F antennas for diversity, each with a maximum gain of 4 dBi.

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4/2001, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

4. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <http://www.ccsemc.com>.

No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

5. CALIBRATION AND UNCERTAINTY

5.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

5.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

5.3. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST				
Description	Manufacturer	Model	Serial Number	Cal Due
EMI Test Receiver	R & S	ESIB40	4/24/2174	11/21/2004
Power Meter	Agilent	E4416A	GB41291160	11/7/04
Peak / Average Power Sensor	Agilent	E9327A	US40440755	11/7/04
30MHz----2Ghz	Sunol Sciences	JB1 Antenna	A121003	12/22/04
EMI Receiver, 9 kHz ~ 2.9 GHz	HP	8542E	3942A00286	11/21/04
RF Filter Section	HP	85420E	3705A00256	11/21/04
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	9001-3245	2/4/05
Antenna, Horn, 18 ~ 26 GHz	ARA	MWH-1826/B	1013	2/4/05
Amplifier 1-26GHz	MITEQ	NSP2600-SP	924342	4/25/05
Spectrum Analyzer	Agilent	E4446A	MY43360112	1/13/05

The following test and measurement equipment was utilized for the radiated emissions below 1GHz and AC line conducted tests documented in this report:

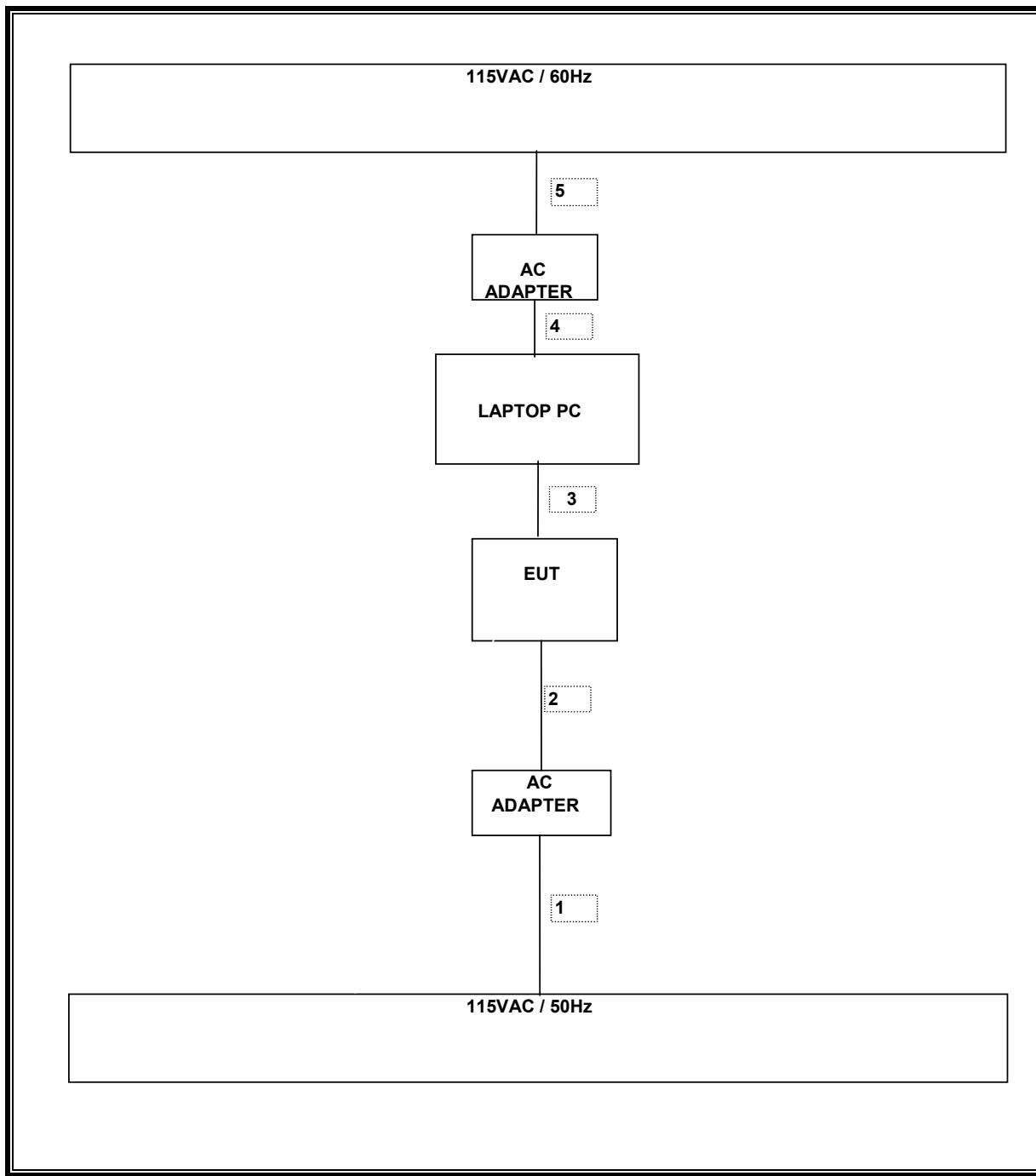
Equip#	Manufacturer/Model	Description	Last Cal	Next Due	Test Number(s)
005678	Hewlett Packard/E7401A	Spectrum Analyzer	18-AUG-2003	18-AUG-2004	[11186], [11189], [11193], [11216]
005680	Hewlett Packard/E7405A	Spectrum Analyzer	11-SEP-2003	11-SEP-2004	[11173], [11174], [11217]
005682	Hewlett Packard/85460A	RF Filter Section	11-JUL-2003	11-JUL-2004	[11173], [11174], [11217]
005684	Hewlett Packard/85462A	EMI Receiver RF Section	11-JUL-2003	11-JUL-2004	[11173], [11174], [11217]
007056	Schaffner-Chase/CBL6112B	Bilog Antenna	23-OCT-2003	23-OCT-2004	[11173], [11174], [11217]
007705	Fischer Custom Communications/FCC-LISN-50/250-50-2-01	LISN	26-AUG-2003	26-AUG-2004	[11186], [11189], [11216]
007893	EMC Test Systems/3144	Log Periodic Antenna	Cal Not Required	N/A	[11176]
008111	Unifield 5m Chamber/Unifield 5m Chamber	Unifield 5m Chamber	12-MAR-2004	12-MAR-2005	[11176], [11207]
008136	Huber + Suhner/SF106A	7m Sucoflex cable	16-JAN-2004	16-JAN-2005	[11176], [11207]
018313	Hewlett Packard/8447D	RF Preamplifier	30-DEC-2003	30-DEC-2004	[11173]
018719	Rohde & Schwarz/ESCS30	EMI Test Receiver, 9kHz-2.75GHz	28-AUG-2003	28-AUG-2004	[11186], [11189], [11193], [11216]
020646	Microwave Associates/7524-PND	N Type Line Coax Switch	17-AUG-2003	17-AUG-2004	[11186], [11189], [11193], [11216]
021676	Amplifier Research/DC7144	Directional Coupler, 0.8-4.2GHz, 40dB Coupling	15-MAR-2004	15-MAR-2005	[11207]

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST			
Description	Manufacturer	Model	Serial Number
Laptop PC	IBM	T20	78-F2737
AC Adapter	IBM	AA21131	N/A
AC Adapter	Cisco	PSA18U-480C	N/A

I/O CABLES

I/O CABLE LIST						
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks
1	AC	1	AC	Unshielded	1.8	N/A
2	DC	1	DC	Unshielded	1.5	N/A
3	Serial	1	dB9 to RJ45	Unshielded	1.5	N/A
4	DC	1	DC	Unshielded	1.5	N/A
5	AC	1	AC	Unshielded	1.8	N/A


The following support equipment was utilized for the radiated emissions below 1GHz and AC line conducted tests documented in this report:

Sample Number	Equipment Details	Serial Number	Part Number
S01	AIR-AP1131G-x-K9	FHH08202078	
S02	AIR-PWRINJ3	FOC0750M0PK	
S03	AC Adapter	PHI07390EL8	34-1977-03
S04	IBM T20 Laptop	78-F2668	
S05	TBM T20 with AIR-CB21AG		
S06	IBM T20 with AIR-CB21AG		

TEST SETUP

The EUT is a stand alone access point. It was connected to a laptop PC via series port and test software was used to exercise the radio.

SETUP DIAGRAM FOR TESTS

6. APPLICABLE LIMITS AND TEST RESULTS

6.1. 6 dB BANDWIDTH

LIMIT

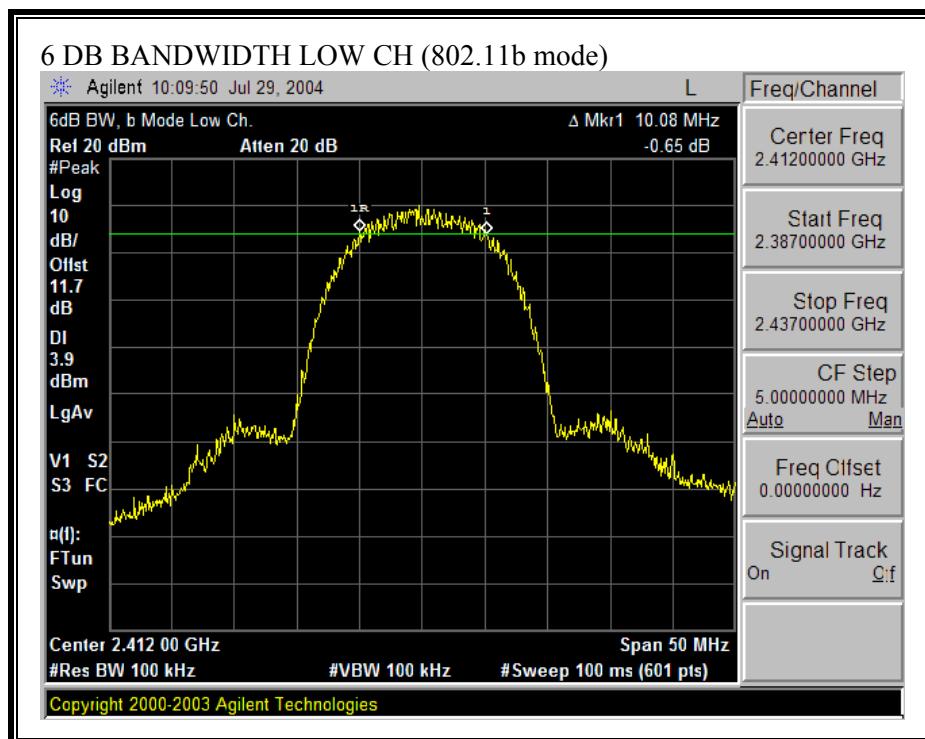
§15.247 (a) (2) For direct sequence systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

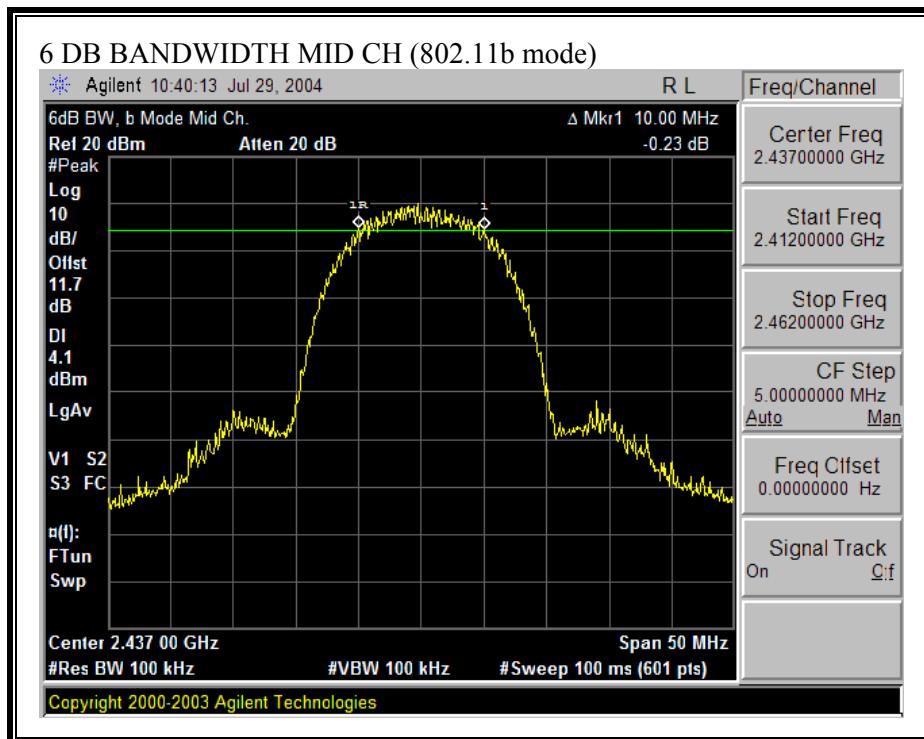
TEST PROCEDURE

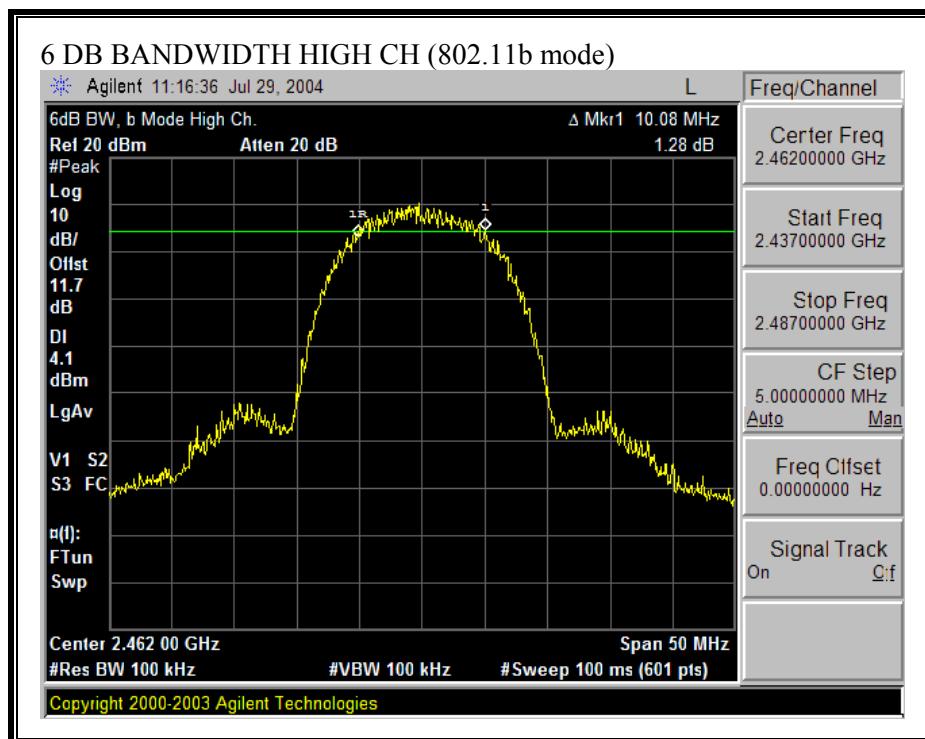
The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled.

RESULTS

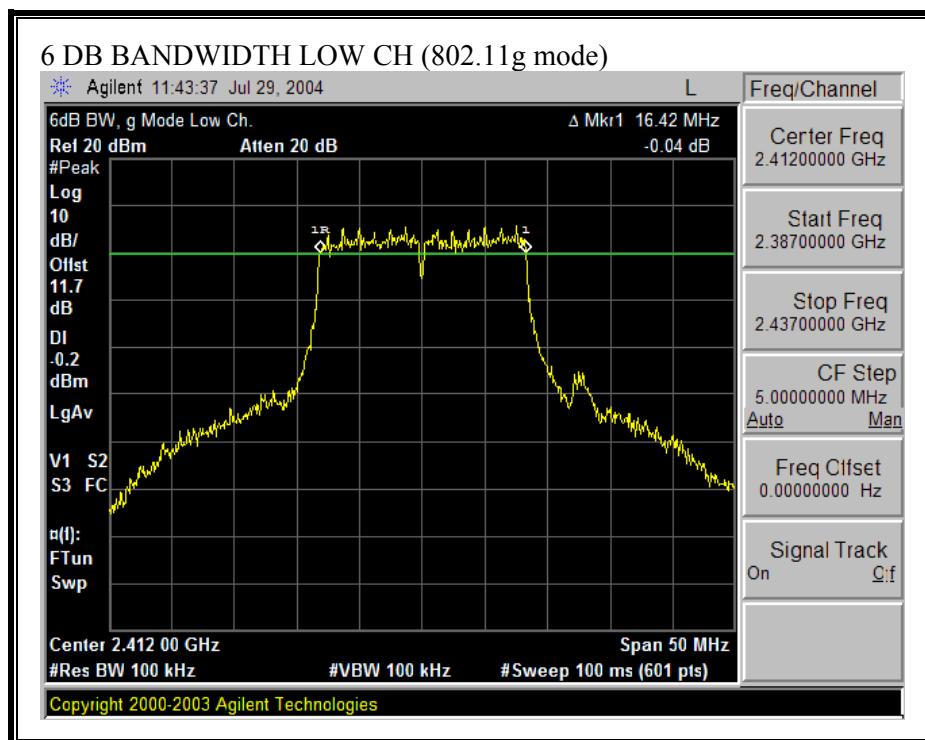
No non-compliance noted:

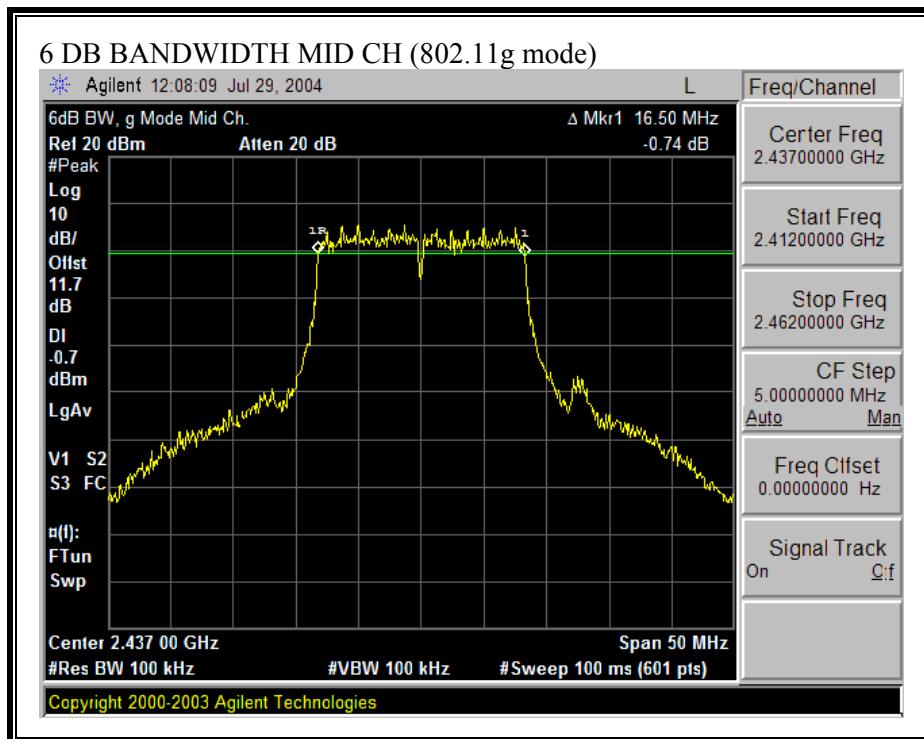

802.11b Mode


Channel	Frequency (MHz)	6 dB Bandwidth (kHz)	Minimum Limit (kHz)	Margin (kHz)
Low	2412	10083.33	500	9583
Middle	2437	10000.00	500	9500
High	2462	10083.33	500	9583


802.11g Mode

Channel	Frequency (MHz)	6 dB Bandwidth (kHz)	Minimum Limit (kHz)	Margin (kHz)
Low	2412	16416.67	500	15917
Middle	2437	16500.00	500	16000
High	2462	16416.67	500	15917


6 DB BANDWIDTH (802.11b MODE)



6 DB BANDWIDTH (802.11g MODE)

6.2. 99% BANDWIDTH

LIMIT

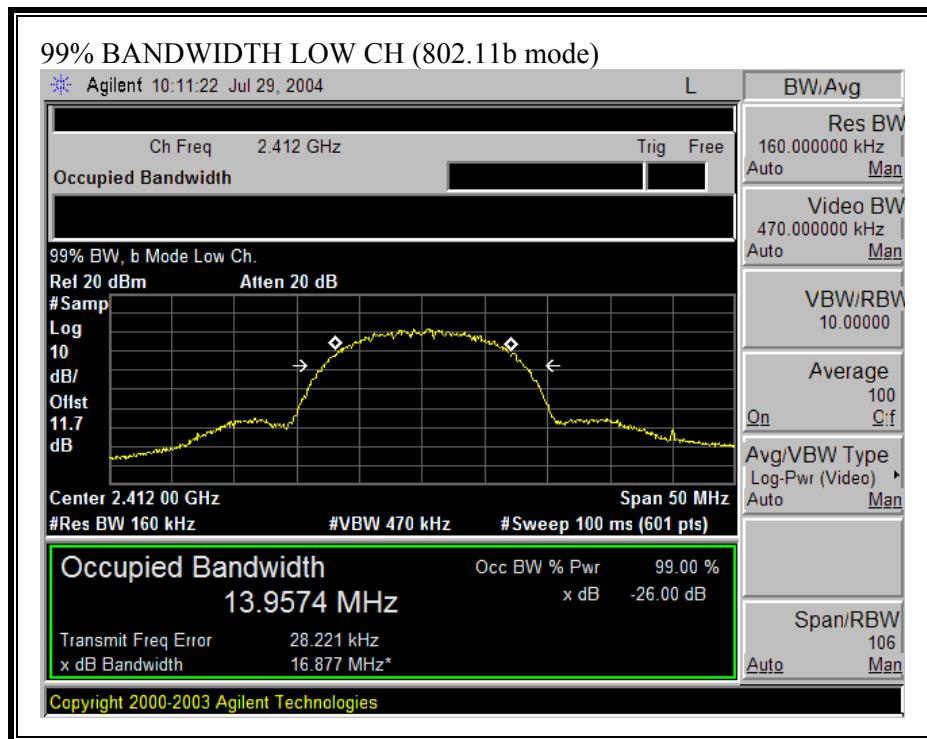
None; for reporting purposes only.

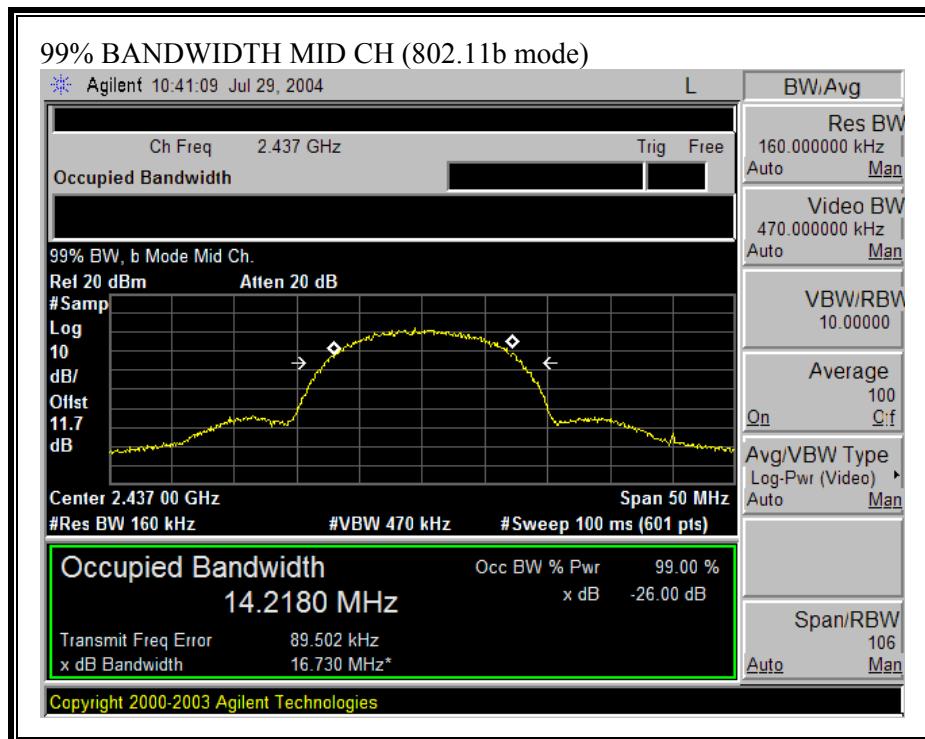
TEST PROCEDURE

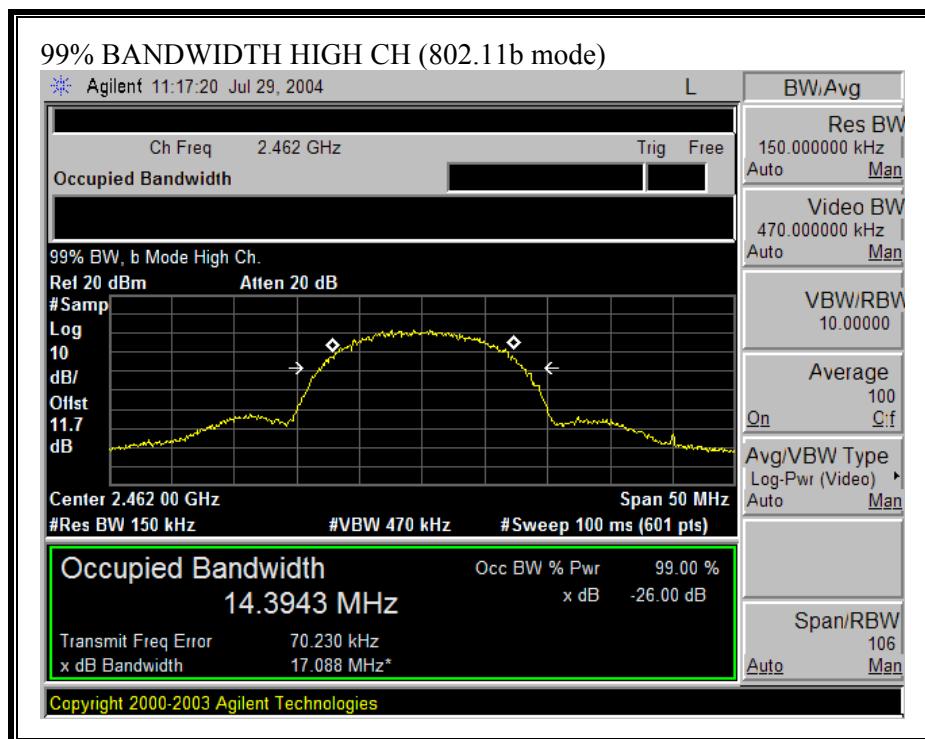
The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

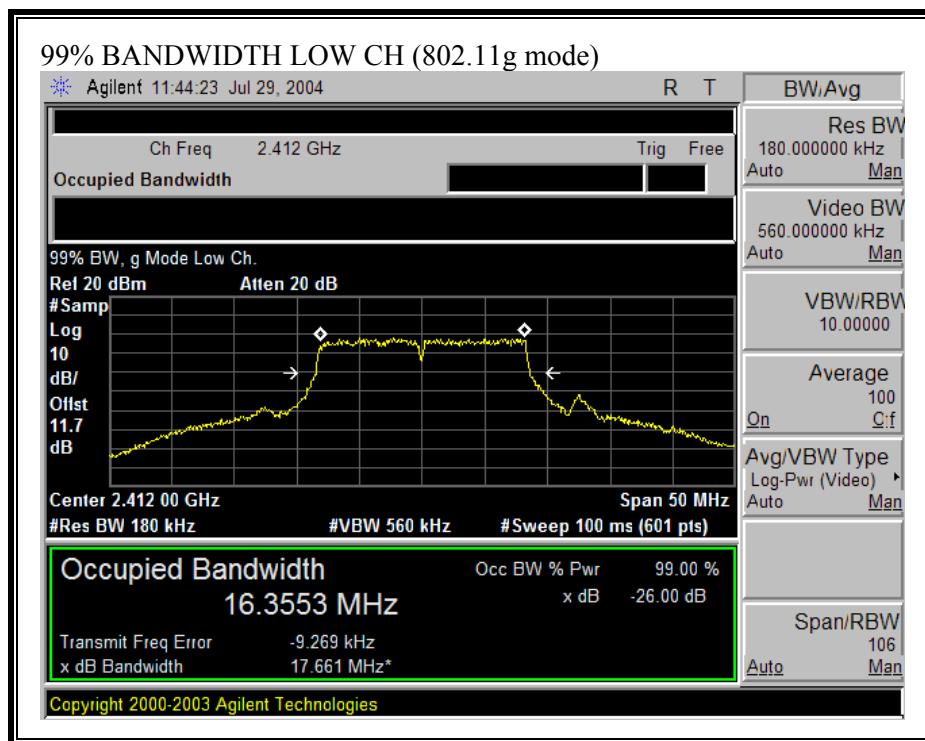
No non-compliance noted:

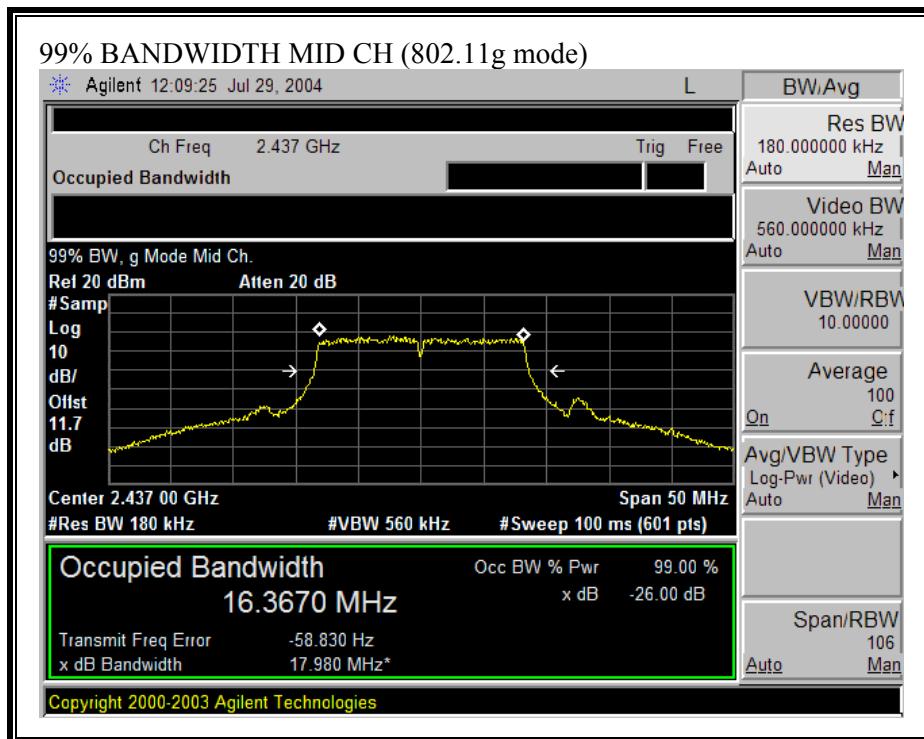

802.11b Mode

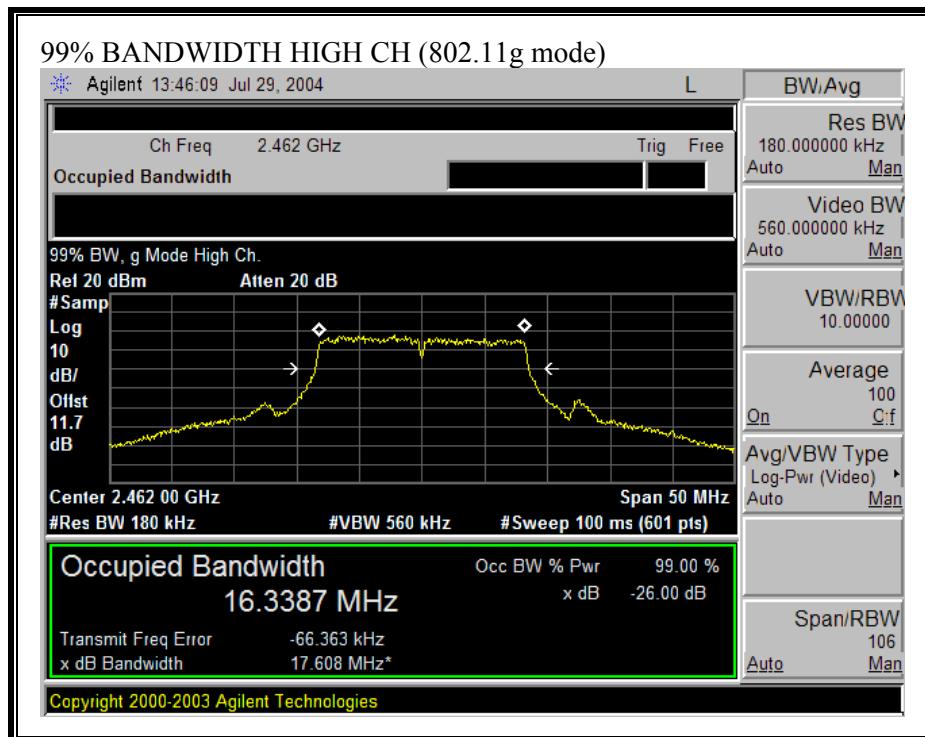

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2412	13.957
Middle	2437	14.218
High	2462	14.394


802.11g Mode

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2412	16.355
Middle	2437	16.367
High	2462	16.339


99% BANDWIDTH (802.11b MODE)





99% BANDWIDTH (802.11g MODE)

6.3. PEAK OUTPUT POWER

PEAK POWER LIMIT

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

§15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz , and 5725-5850 MHz bands: 1 watt.

§15.247 (b) (4) Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

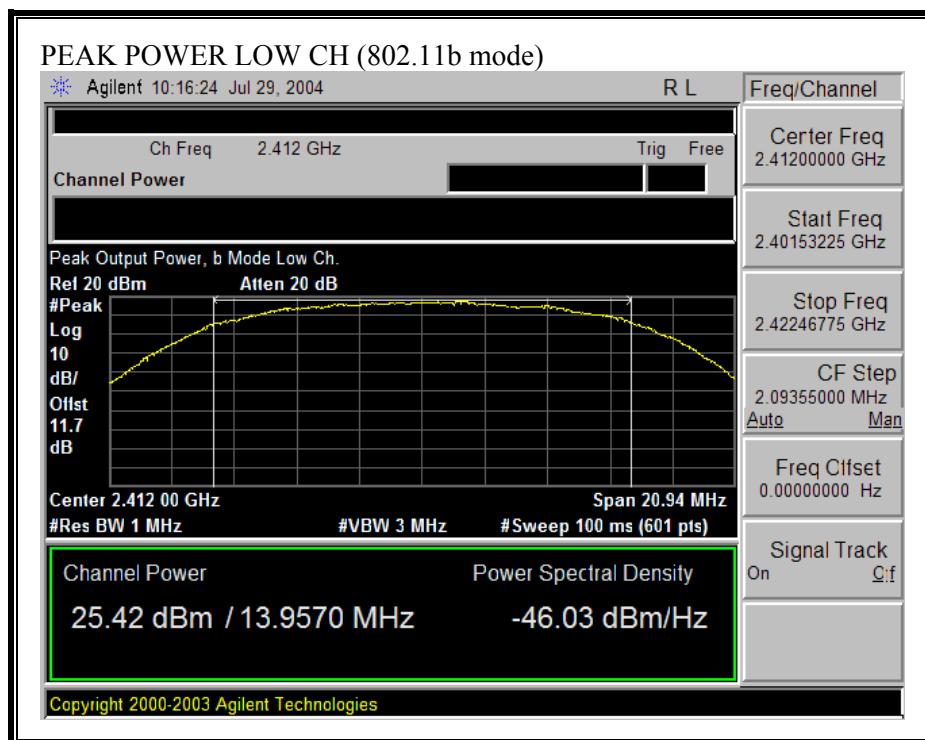
The maximum antenna gain is 4 dBi, therefore the limit is 30 dBm.

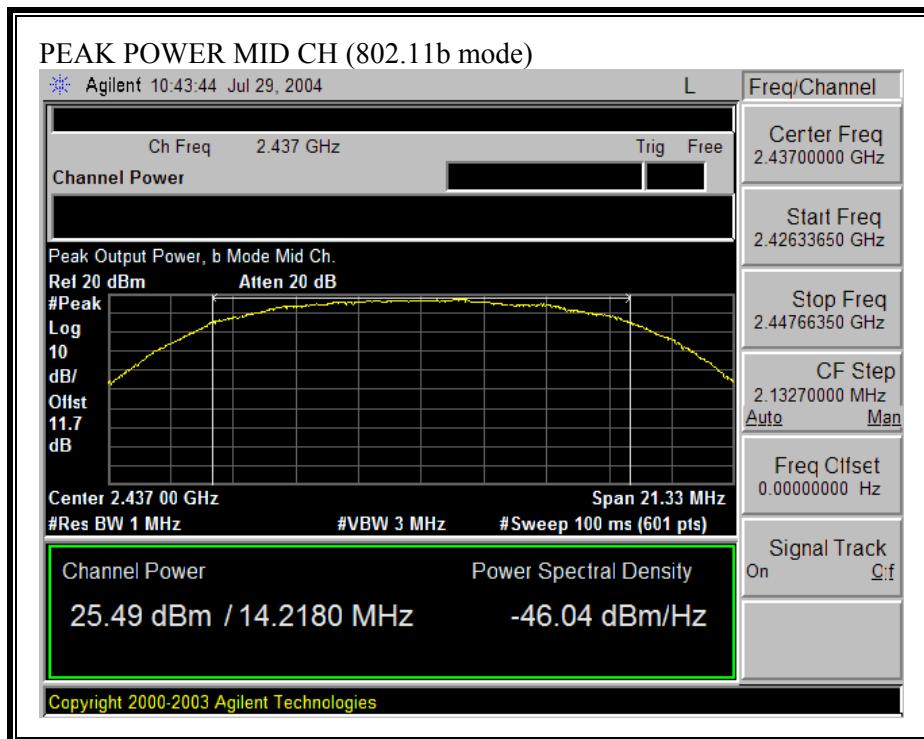
TEST PROCEDURE

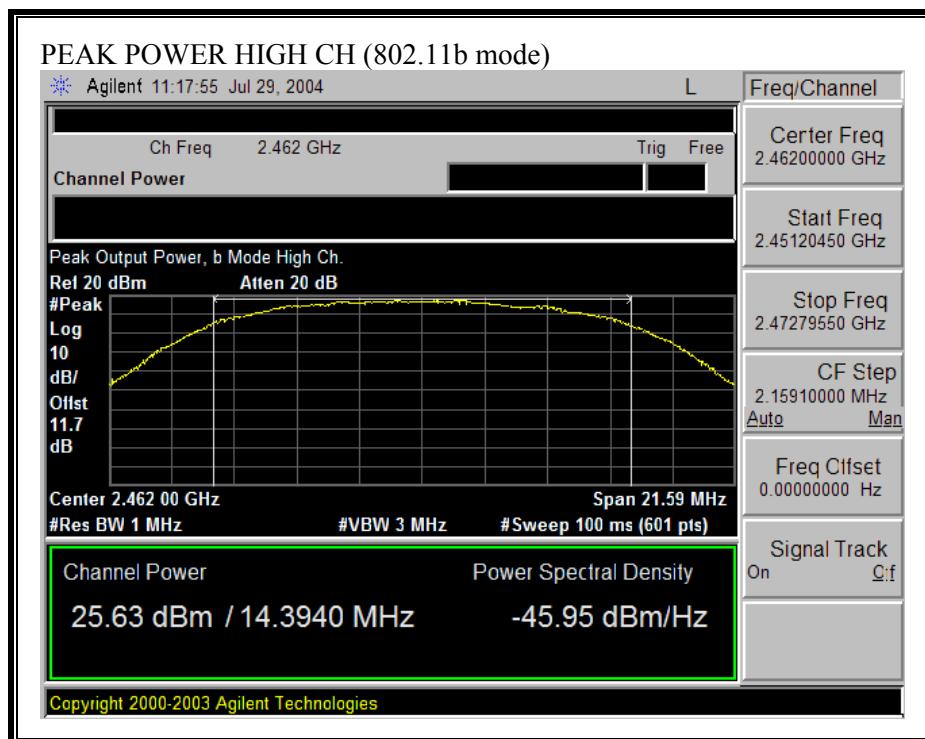
The transmitter output is connected to a spectrum analyzer and the analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99% bandwidth.

RESULTS

No non-compliance noted:

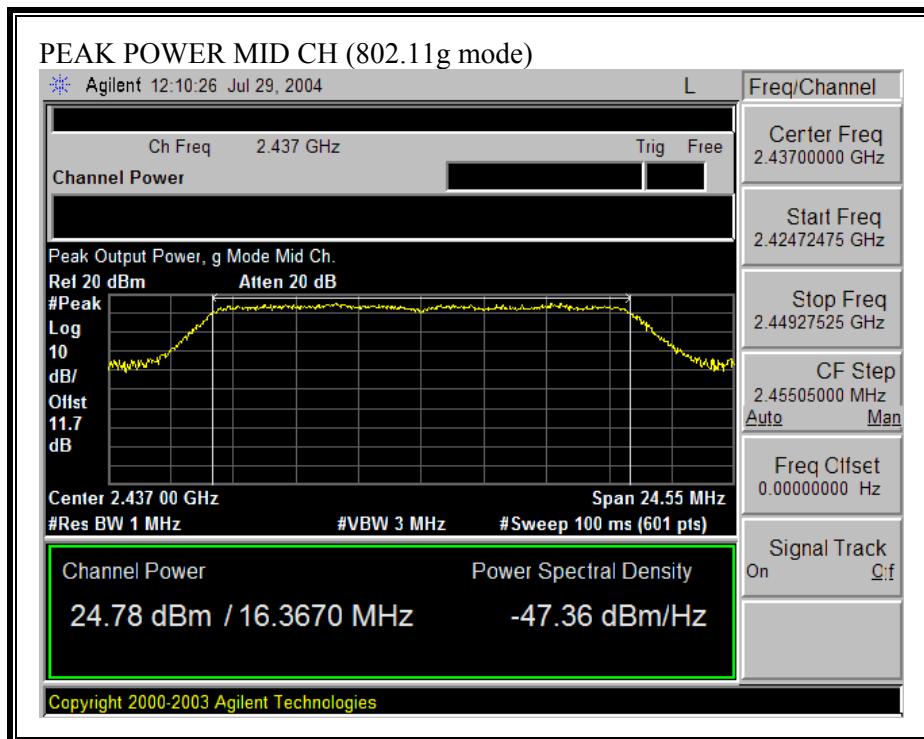

802.11b Mode

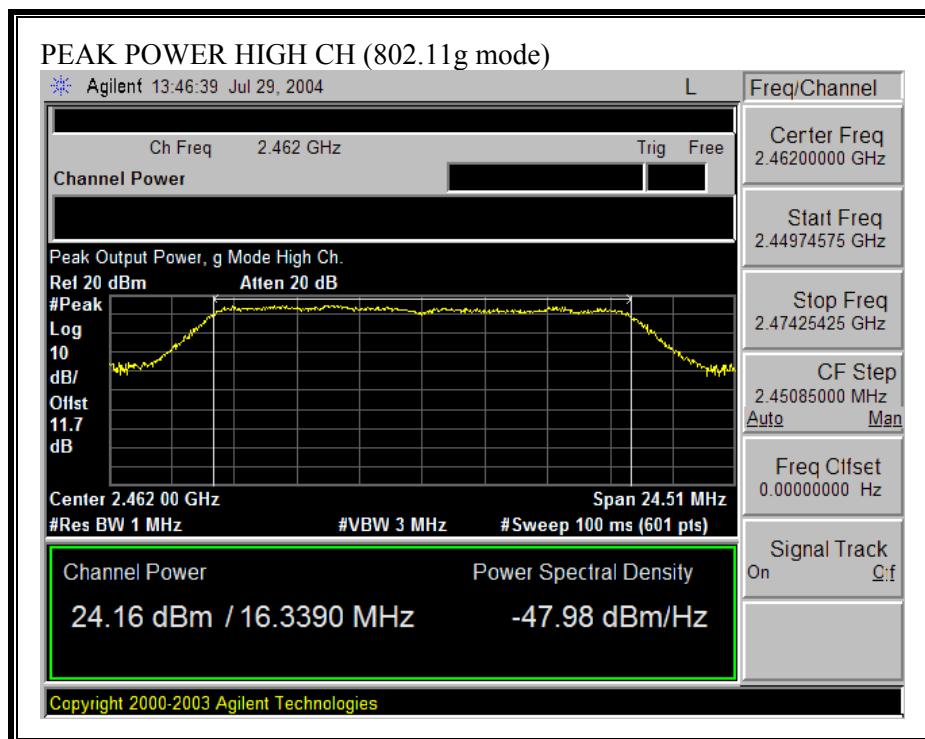

Channel	Frequency (MHz)	Peak Power (dBm)	Limit (dBm)	Margin (dB)
Low	2412	25.42	30	-4.58
Middle	2437	25.49	30	-4.51
High	2462	25.64	30	-4.36


802.11g Mode

Channel	Frequency (MHz)	Peak Power (dBm)	Limit (dBm)	Margin (dB)
Low	2412	24.82	30	-5.18
Middle	2437	24.78	30	-5.22
High	2462	24.16	30	-5.84


OUTPUT POWER (802.11b MODE)





OUTPUT POWER (802.11g MODE)

6.4. MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
(A) Limits for Occupational/Controlled Exposures				
0.3–3.0	614	1.63	*(100)	6
3.0–30	1842f	4.89/f	*(900/f ²)	6
30–300	61.4	0.163	1.0	6
300–1500	f/300	6
1500–100,000	5	6
(B) Limits for General Population/Uncontrolled Exposure				
0.3–1.34	614	1.63	*(100)	30
1.34–30	824f	2.19/f	*(180/f ²)	30

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)—Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
30–300	27.5	0.073	0.2	30
300–1500	f/1500	30
1500–100,000	1.0	30

f = frequency in MHz

* = Plane-wave equivalent power density

NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

CALCULATIONS

Given

$$E = \sqrt{(30 * P * G) / d}$$

and

$$S = E^2 / 3770$$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

$$d = \sqrt{(30 * P * G) / (3770 * S)}$$

Changing to units of Power to mW and Distance to cm, using:

$$P (\text{mW}) = P (\text{W}) / 1000 \text{ and}$$

$$d (\text{cm}) = 100 * d (\text{m})$$

yields

$$d = 100 * \sqrt{(30 * (P / 1000) * G) / (3770 * S)}$$

$$d = 0.282 * \sqrt{(P * G / S)}$$

where

d = distance in cm

P = Power in mW

G = Numeric antenna gain

S = Power Density in mW/cm²

Substituting the logarithmic form of power and gain using:

$$P (\text{mW}) = 10^{(P (\text{dBm}) / 10)} \text{ and}$$

$$G (\text{numeric}) = 10^{(G (\text{dBi}) / 10)}$$

yields

$$d = 0.282 * 10^{(P + G) / 20} / \sqrt{S} \quad \text{Equation (1)}$$

where

d = MPE distance in cm

P = Power in dBm

G = Antenna Gain in dBi

S = Power Density Limit in mW/cm²

Equation (1) and the measured peak power is used to calculate the MPE distance.

LIMITS

From §1.1310 Table 1 (B), S = 1.0 mW/cm²

RESULTS

No non-compliance noted:

Mode	Power Density Limit (mW/cm ²)	Output Power (dBm)	Antenna Gain (dBi)	MPE Distance (cm)
802.11b	1.0	25.64	4.00	8.56
802.11g	1.0	24.82	4.00	7.78

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

6.5. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

No non-compliance noted:

The cable assembly insertion loss of 11.7 dB (including 10 dB pad and 1.7 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

802.11b Mode

Channel	Frequency (MHz)	Average Power (dBm)
Low	2412	19.90
Middle	2437	19.70
High	2462	19.90

802.11g Mode

Channel	Frequency (MHz)	Average Power (dBm)
Low	2412	17.00
Middle	2437	16.60
High	2462	16.90

6.6. PEAK POWER SPECTRAL DENSITY

LIMIT

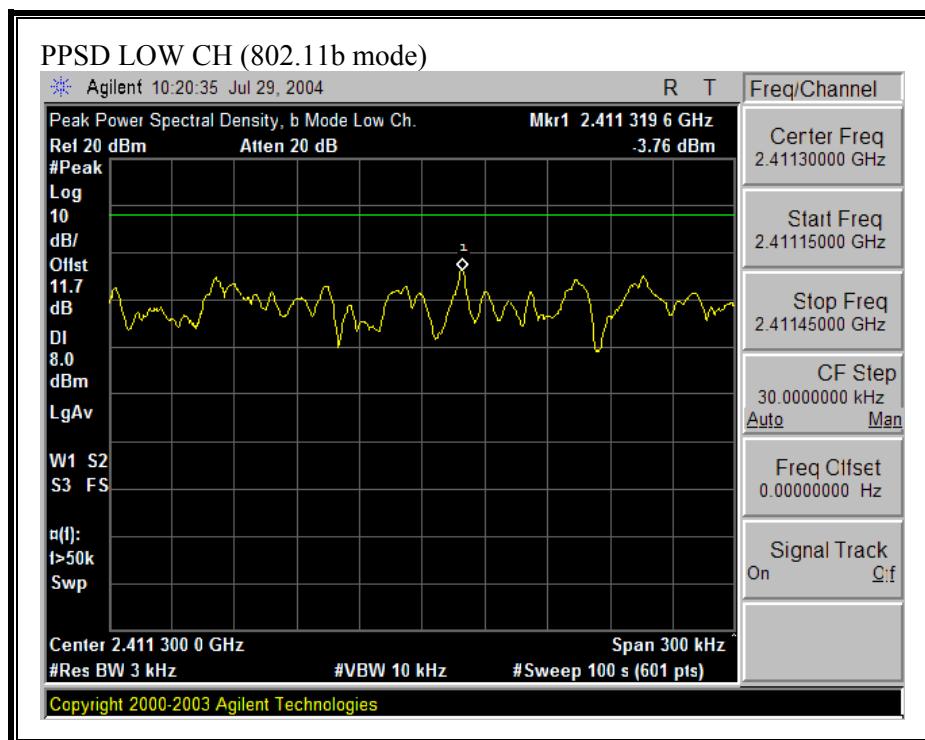
§15.247 (d) For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

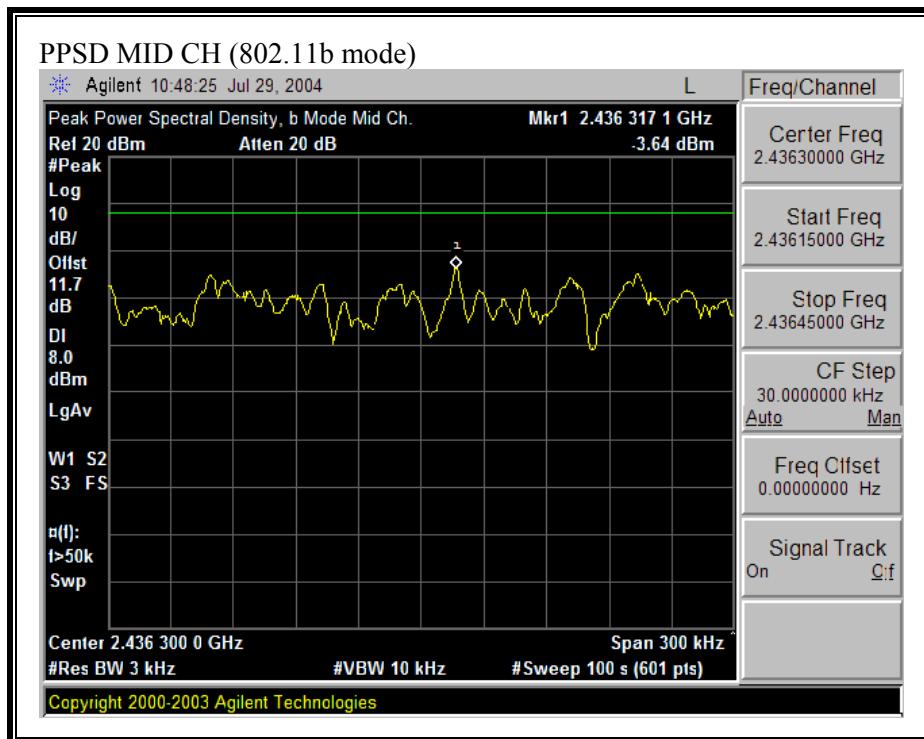
TEST PROCEDURE

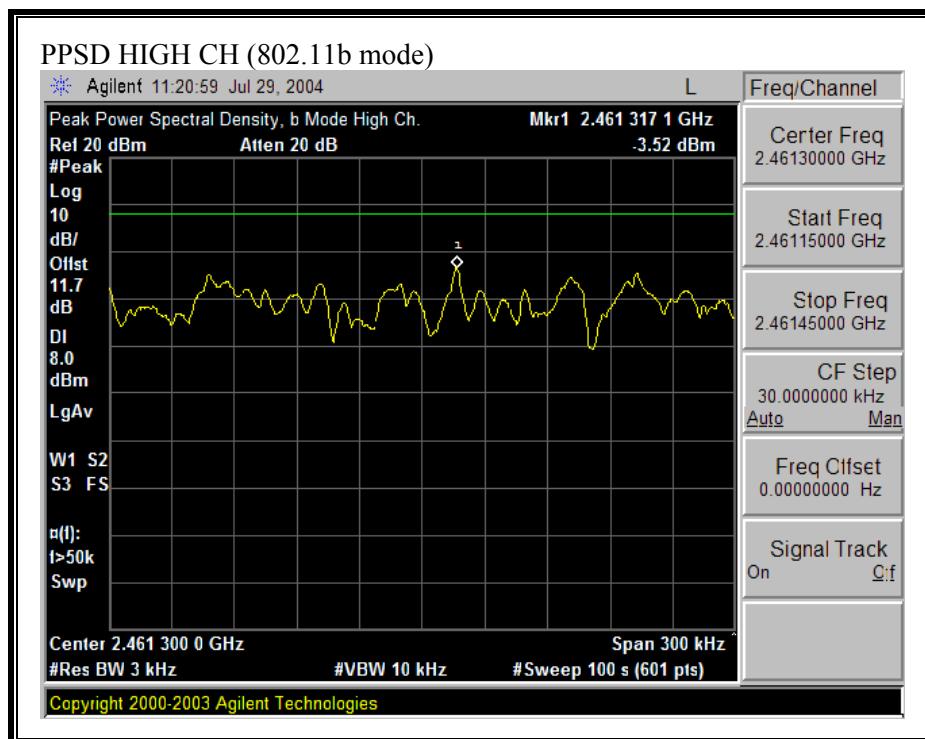
The transmitter output is connected to a spectrum analyzer, the maximum level in a 3 kHz bandwidth is measured with the spectrum analyzer using RBW = 3 kHz and VBW > 3 kHz, sweep time = span / 3 kHz, and video averaging is turned off. The PPSD is the highest level found across the emission in any 3 kHz band.

RESULTS

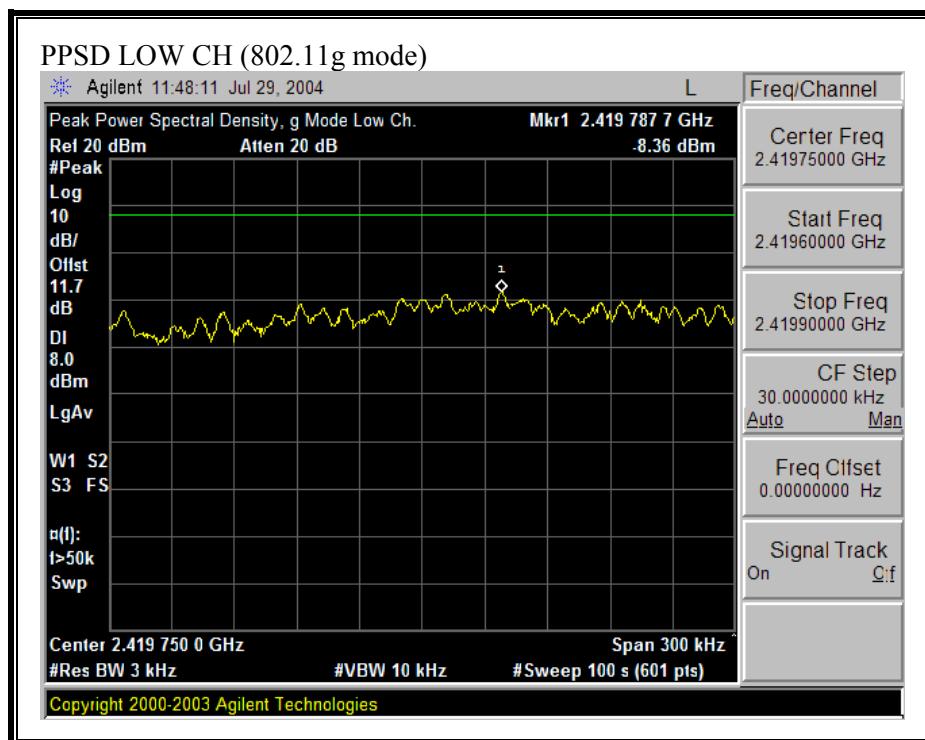
No non-compliance noted:

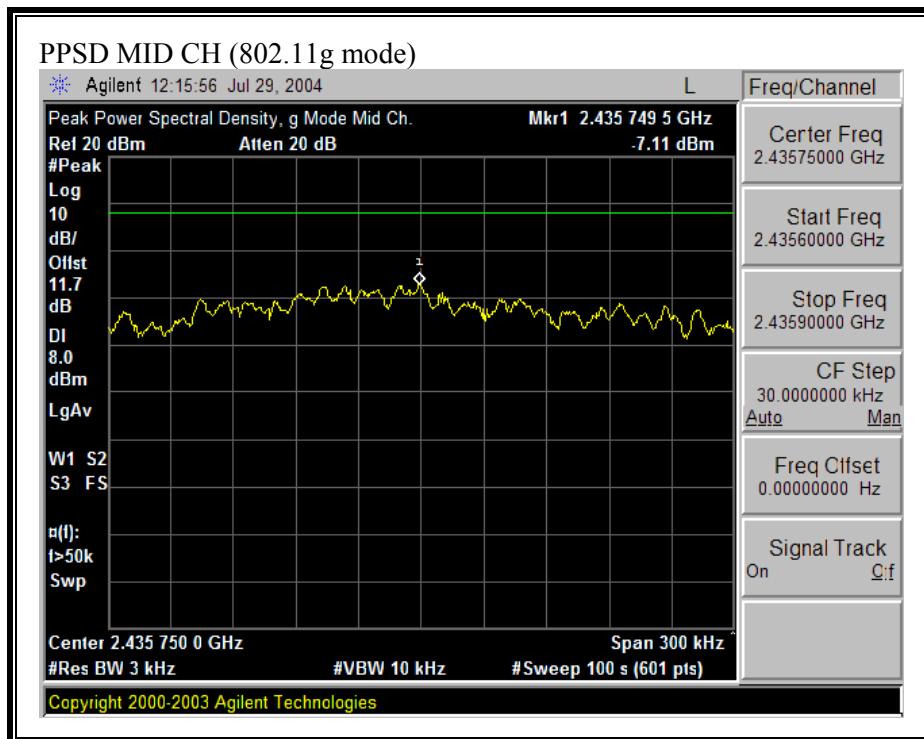

802.11b Mode

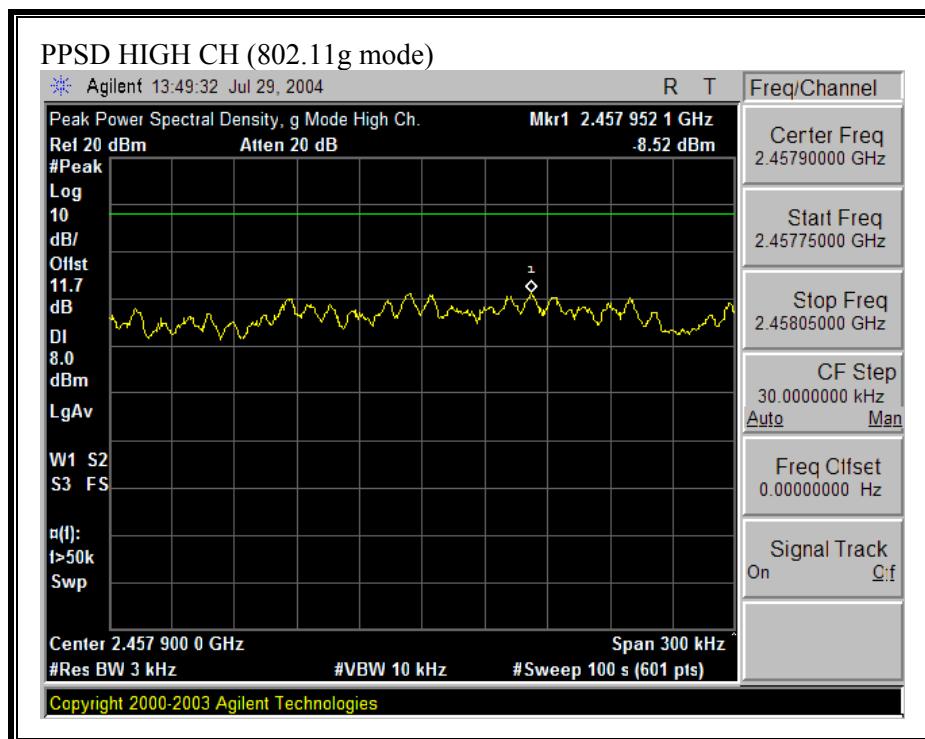

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Margin (dB)
Low	2412	-3.76	8	-11.76
Middle	2437	-3.64	8	-11.64
High	2462	-3.52	8	-11.52


802.11g Mode

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Margin (dB)
Low	2412	-8.36	8	-16.36
Middle	2437	-7.11	8	-15.11
High	2462	-8.52	8	-16.52


PEAK POWER SPECTRAL DENSITY (802.11b MODE)





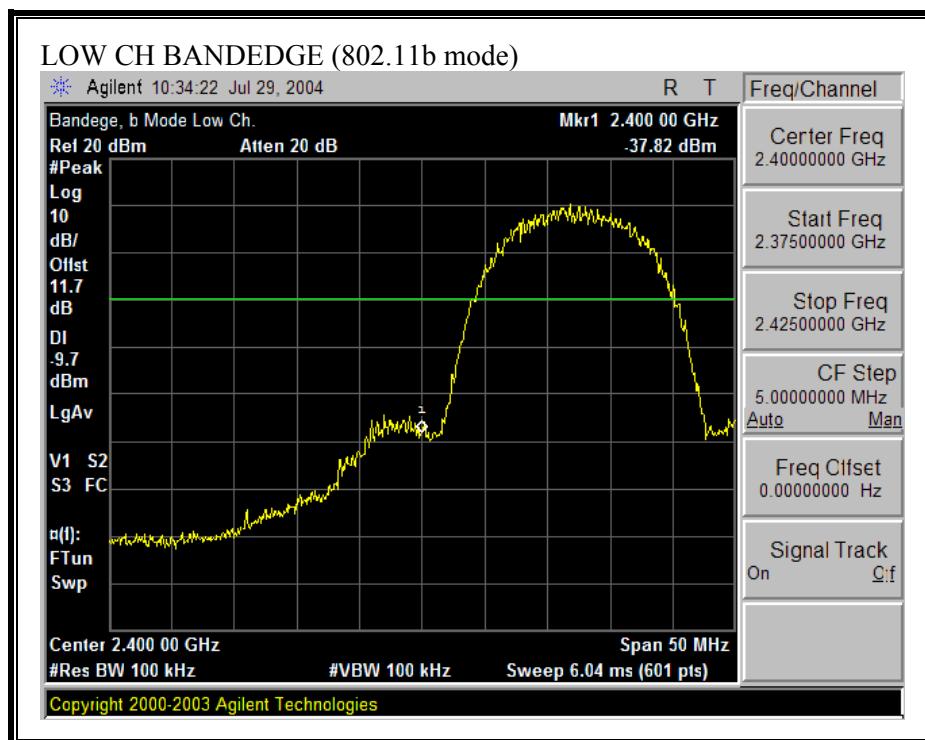
PEAK POWER SPECTRAL DENSITY (802.11g MODE)

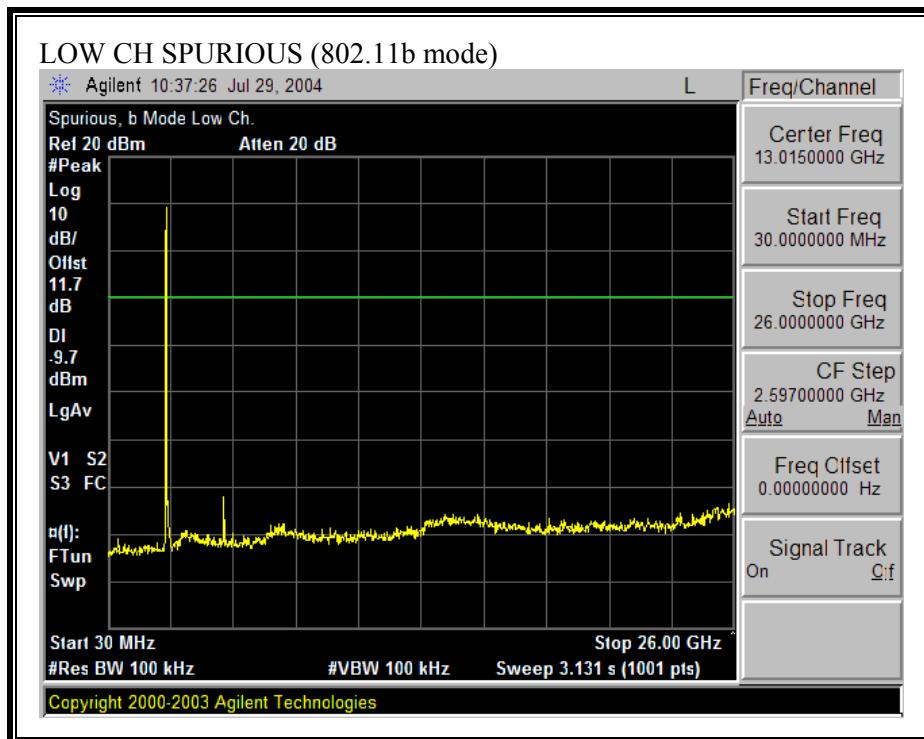
6.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

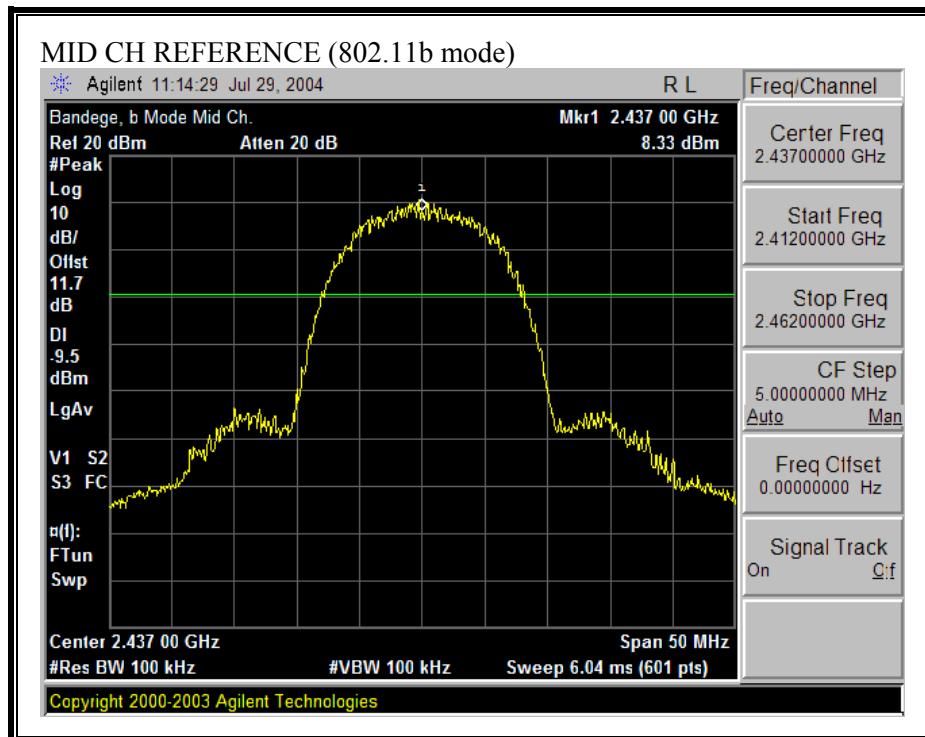
§15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

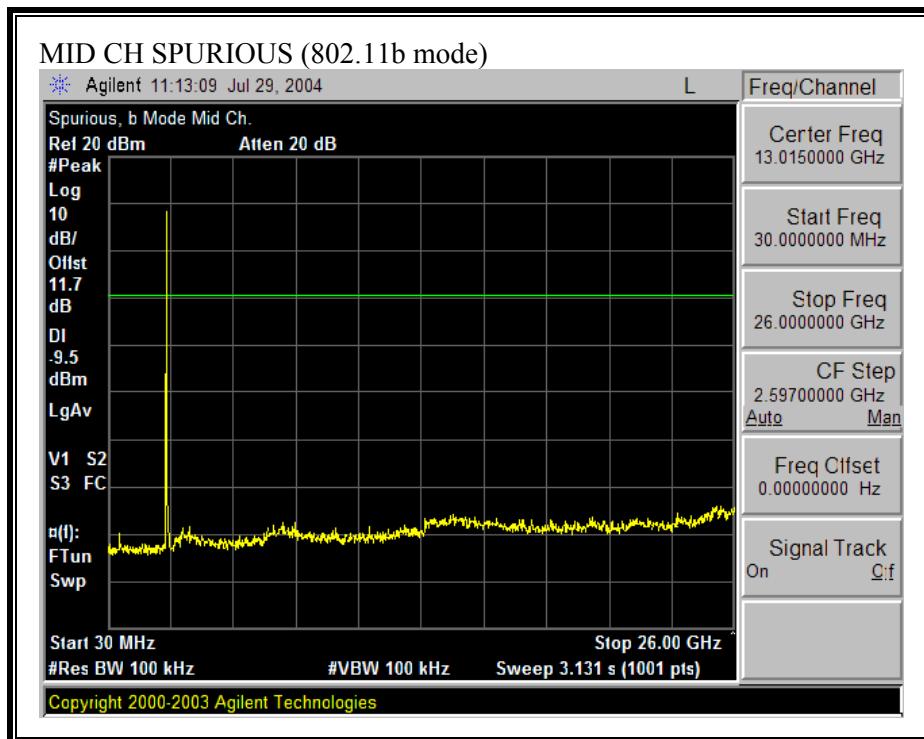
TEST PROCEDURE

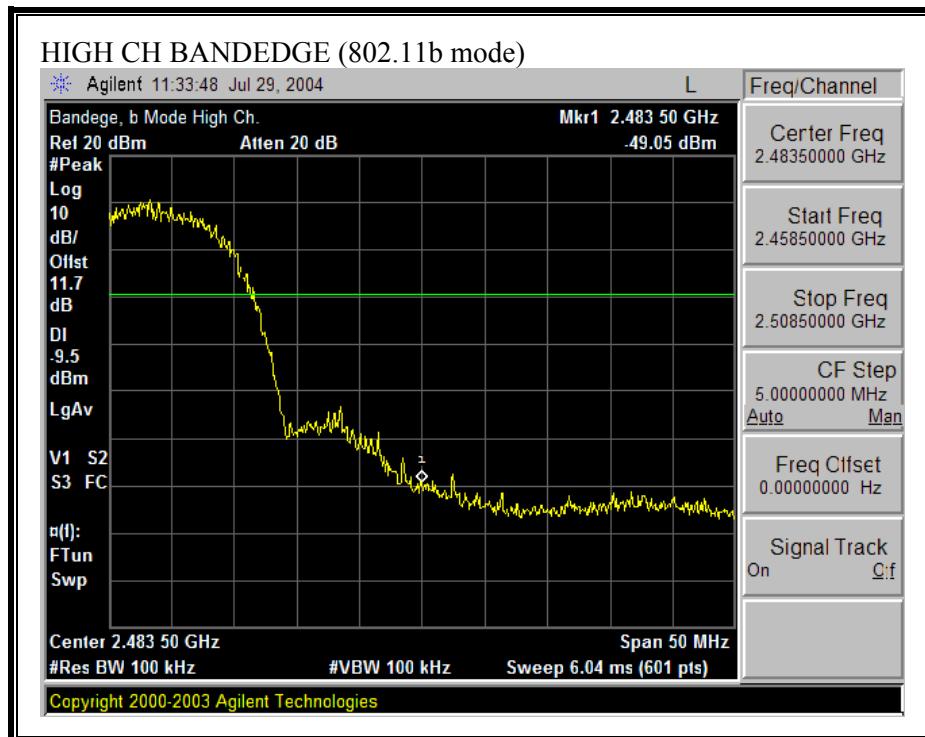

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.

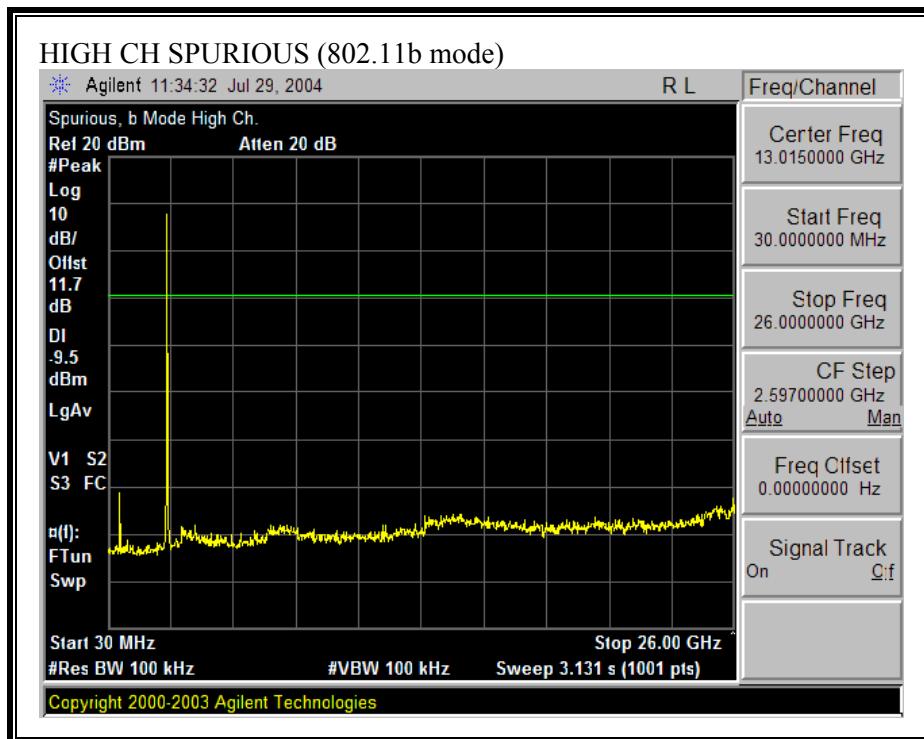

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

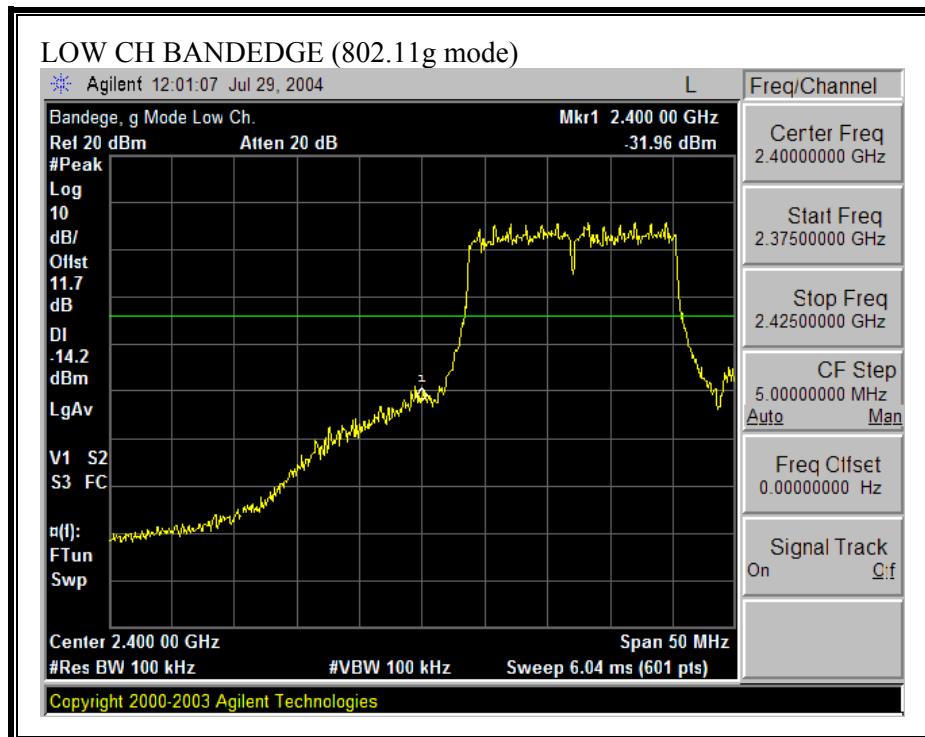
RESULTS

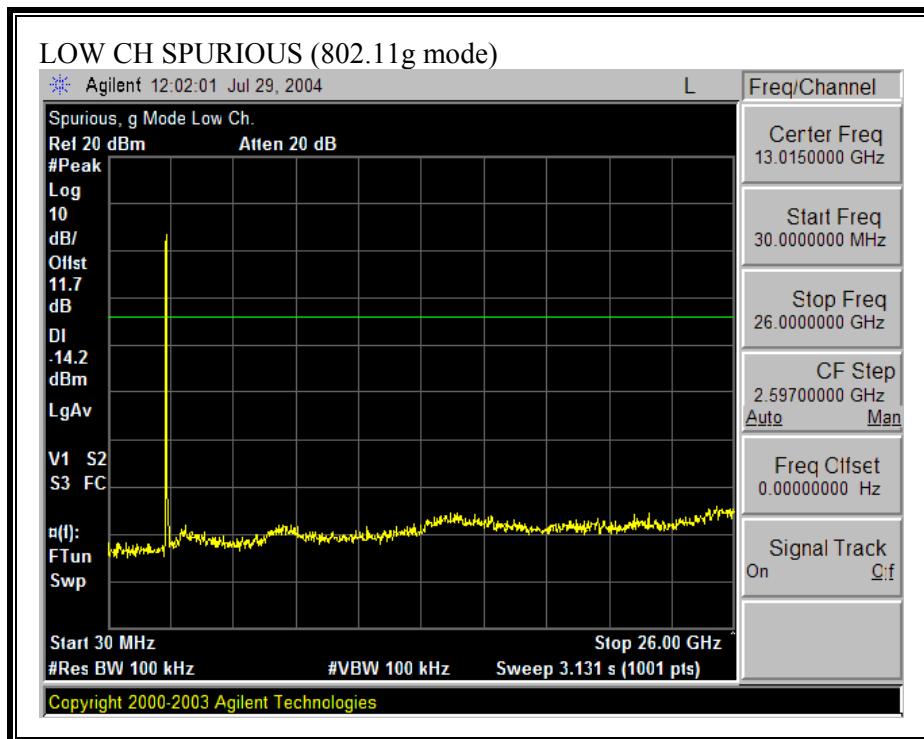

No non-compliance noted:

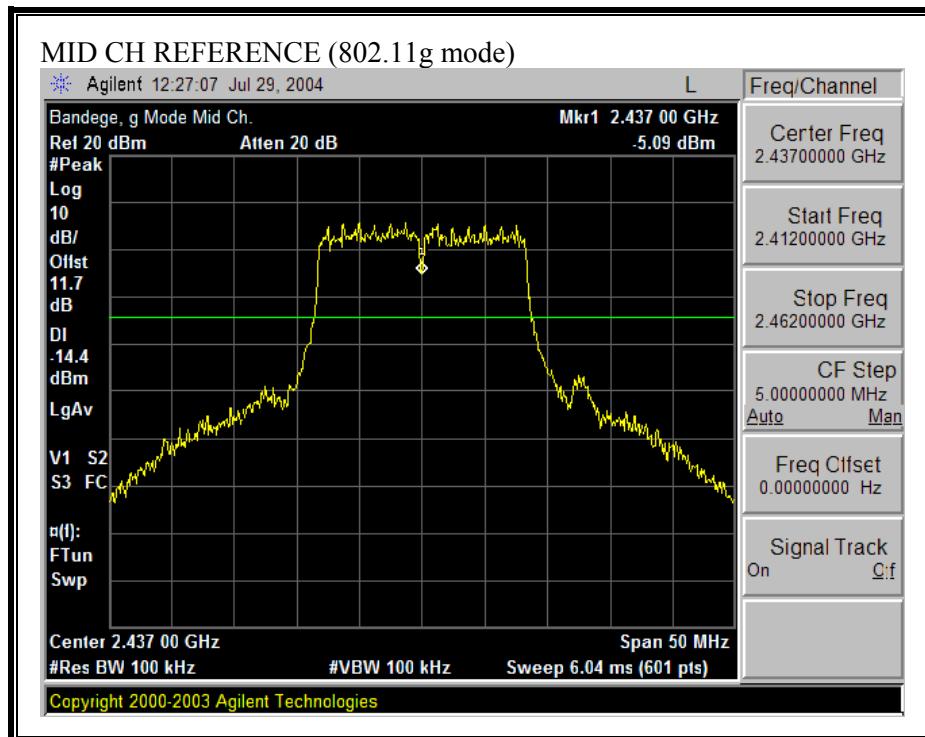

SPURIOUS EMISSIONS, LOW CHANNEL (802.11b MODE)

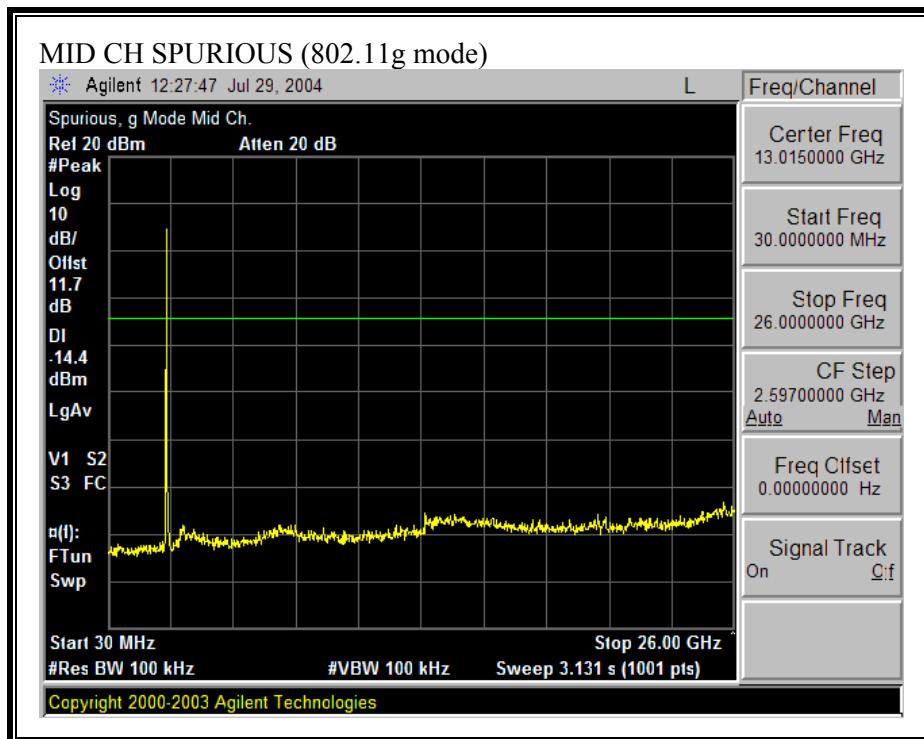


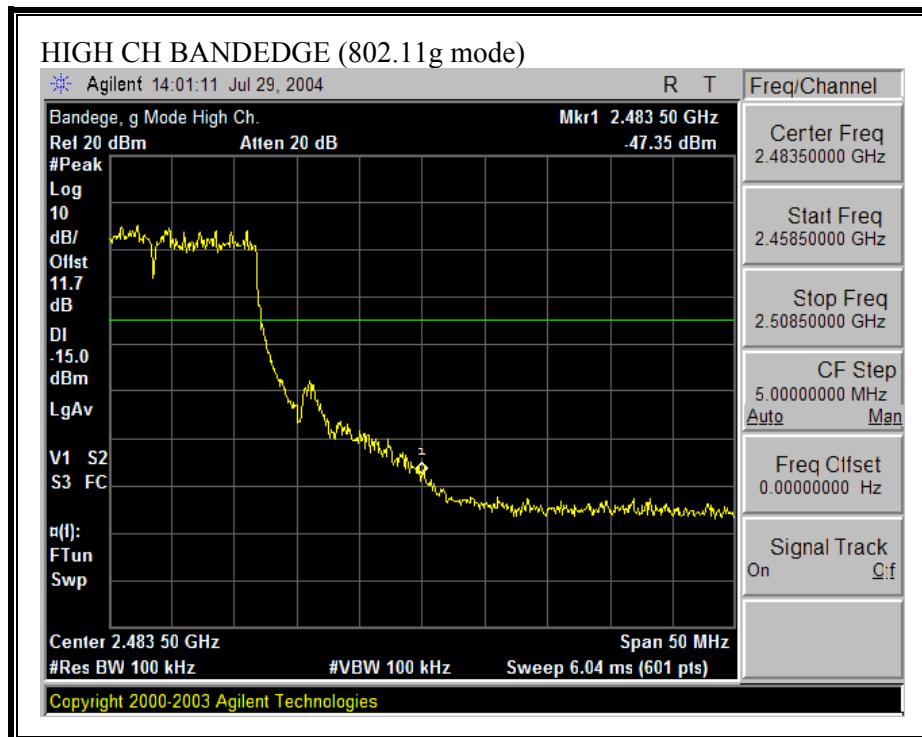

SPURIOUS EMISSIONS, MID CHANNEL (802.11b MODE)

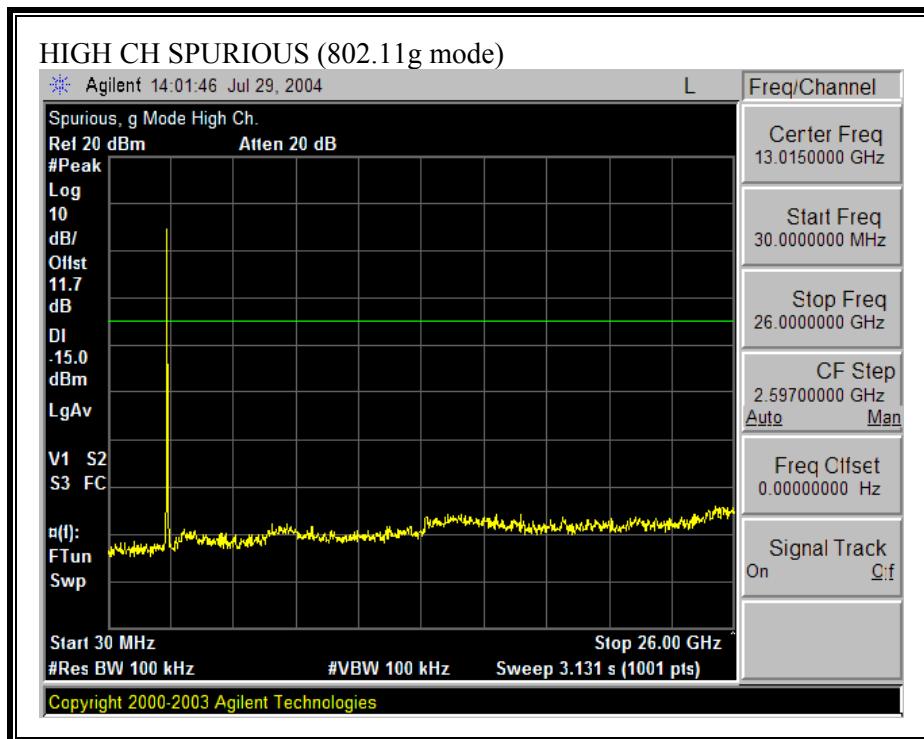



SPURIOUS EMISSIONS, HIGH CHANNEL (802.11b MODE)




SPURIOUS EMISSIONS, LOW CHANNEL (802.11g MODE)




SPURIOUS EMISSIONS, MID CHANNEL (802.11g MODE)

SPURIOUS EMISSIONS, HIGH CHANNEL (802.11g MODE)

6.8. CO-LOCATED MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
(A) Limits for Occupational/Controlled Exposures				
0.3–3.0	614	1.63	*(100)	6
3.0–30	1842/f	4.89/f	*(900/f ²)	6
30–300	61.4	0.163	1.0	6
300–1500	f/300	6
1500–100,000	5	6
(B) Limits for General Population/Uncontrolled Exposure				
0.3–1.34	614	1.63	*(100)	30
1.34–30	824/f	2.19/f	*(180/f ²)	30

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)—Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
30–300	27.5	0.073	0.2	30
300–1500	f/1500	30
1500–100,000	1.0	30

f = frequency in MHz

* = Plane-wave equivalent power density

NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

CALCULATIONS

Given

$$E = \sqrt{(30 * P * G) / d}$$

and

$$S = E^2 / 3770$$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

$$d = \sqrt{((30 * P * G) / (3770 * S))}$$

Changing to units of Power to mW and Distance to cm, using:

$$P (\text{mW}) = P (\text{W}) / 1000 \text{ and}$$

$$d (\text{cm}) = 100 * d (\text{m})$$

yields

$$d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$$

$$d = 0.282 * \sqrt{(P * G / S)}$$

where

d = distance in cm

P = Power in mW

G = Numeric antenna gain

S = Power Density in mW/cm²

For multiple colocated transmitters operating simultaneously the total power density can be calculated by summing the Power * Gain product of each transmitter.

yields

$$d = 0.282 * \sqrt{((P1 * G1) + (P2 * G2) + \dots + (Pn * Gn)) / S} \quad \text{Equation (1)}$$

where

d = distance in cm

P_x = Power of transmitter x in mW

G_x = Numeric gain of antenna x

S = Power Density in mW/cm²

In the table below, Power and Gain are entered in units of dBm and dBi respectively, then these are converted to their linear forms prior to the summation function.

The conversions from the logarithmic form of power and gain are made using:

$$P (\text{mW}) = 10 ^ {(P (\text{dBm}) / 10)} \text{ and} \quad \text{Equation (2)}$$

$$G (\text{numeric}) = 10 ^ {(G (\text{dBi}) / 10)} \quad \text{Equation (3)}$$

Equations (1), (2) and (3) and the measured peak powers are used to calculate the MPE distance.

LIMITS

From §1.1310 Table 1 (B), S = 1.0 mW/cm²

RESULTS

No non-compliance noted:

Mode	Power Density Limit (mW/cm ²)	Output Power (dBm)	Antenna Gain (dBi)	MPE Distance (cm)
802.11g		25.64	4.00	
802.11a		17.31	4.00	
Combined	1.0			9.16

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

6.9. RADIATED EMISSIONS

6.9.1. LIMITS AND PROCEDURES

LIMITS

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

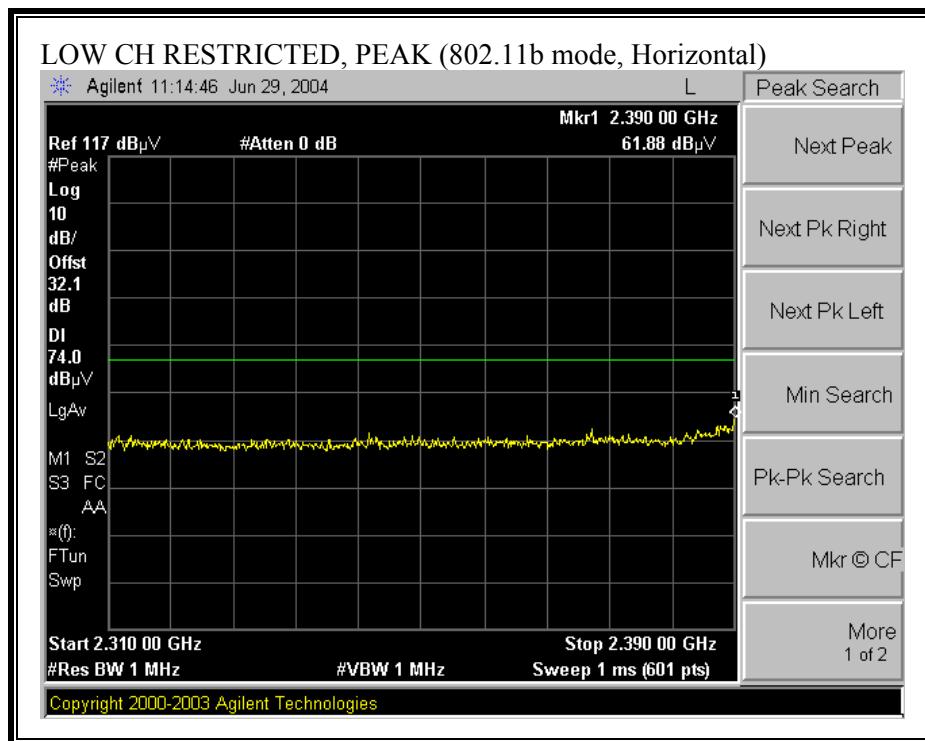
For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

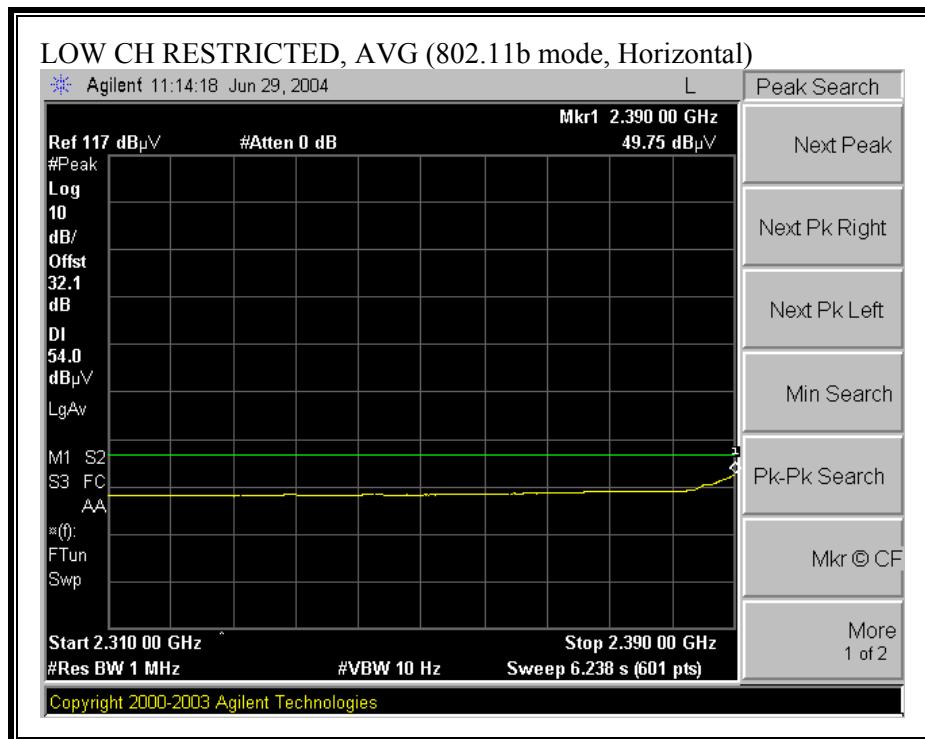
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

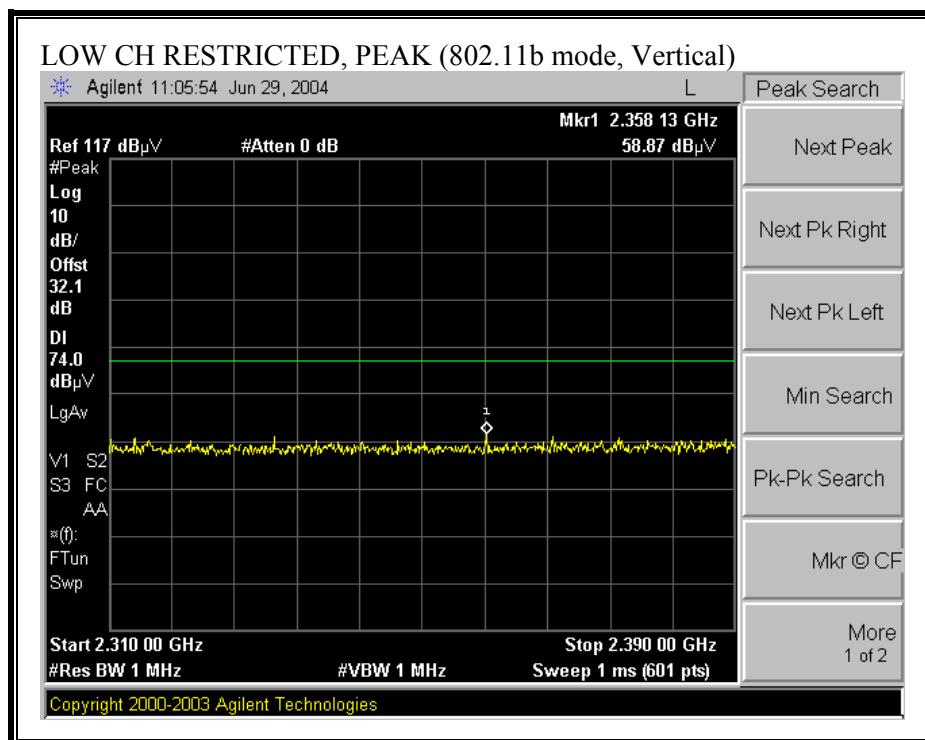
The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

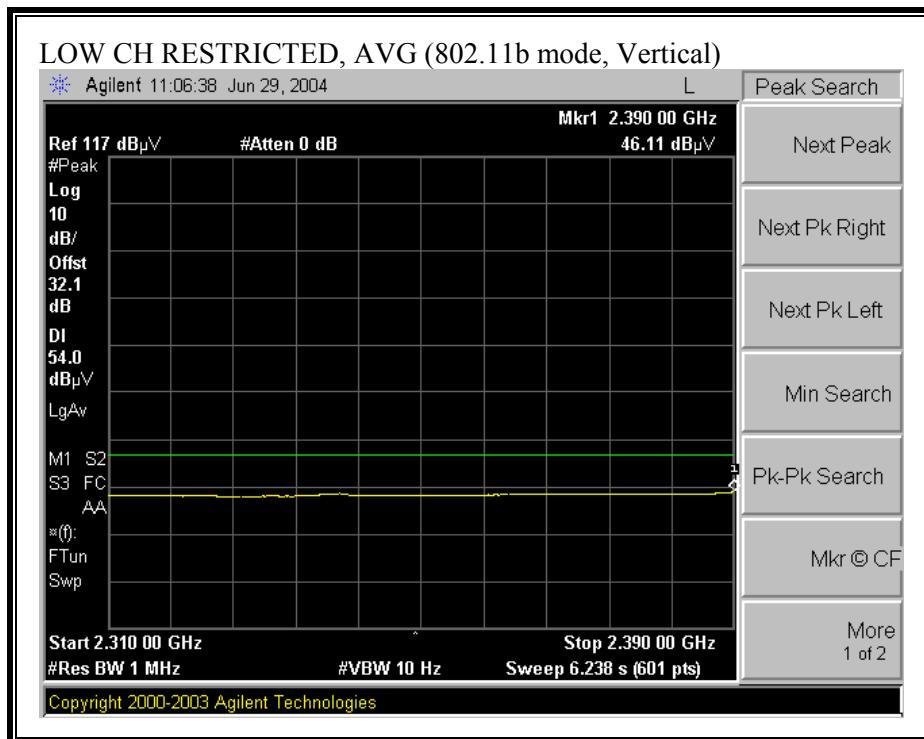
CO-LOCATED TRANSMITTERS - SUPPLEMENTAL TEST PROCEDURE

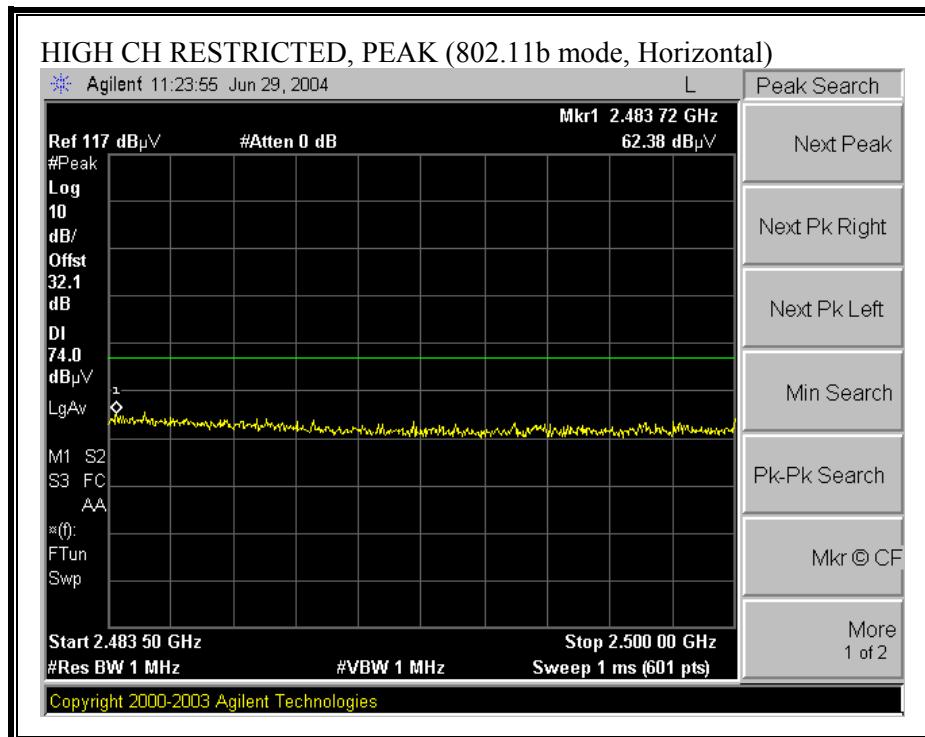

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna The dominant transmitter is set to the worst case channel. The spurious emissions performance of the dominant transmitter is investigated as the settings of the non-dominant transmitter are varied. The spectrum is searched for intermodulation products. Worst-case results are reported.

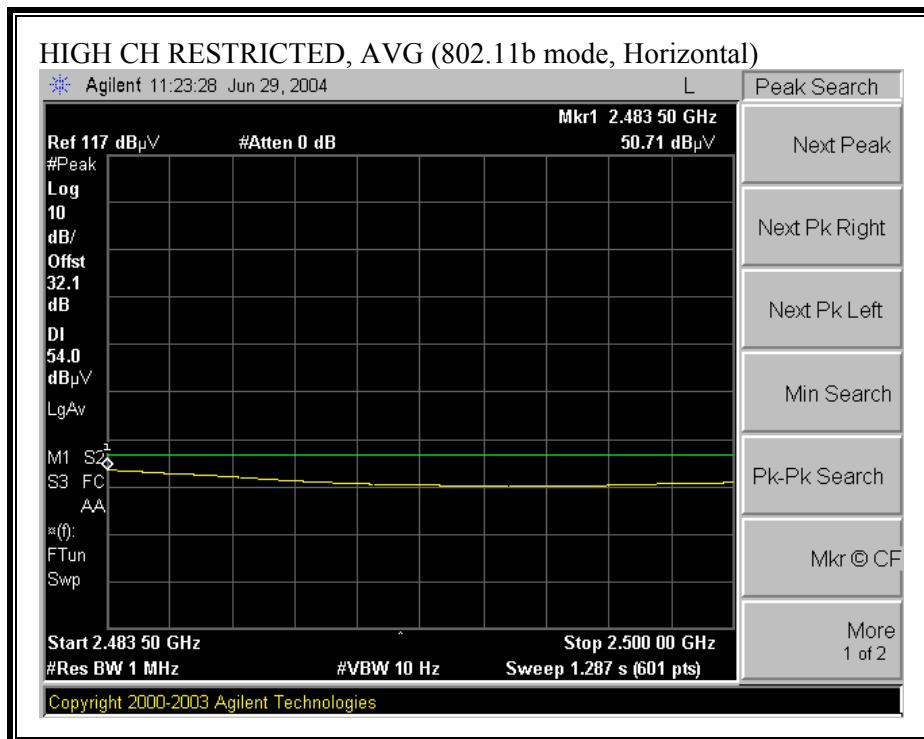

RESULTS

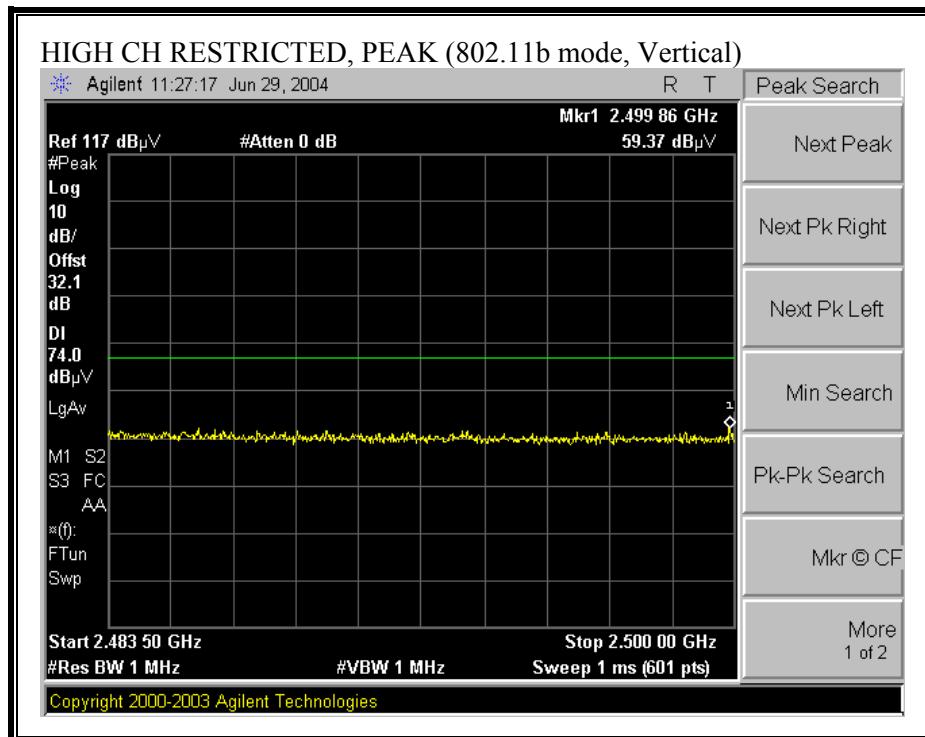
No non-compliance noted:

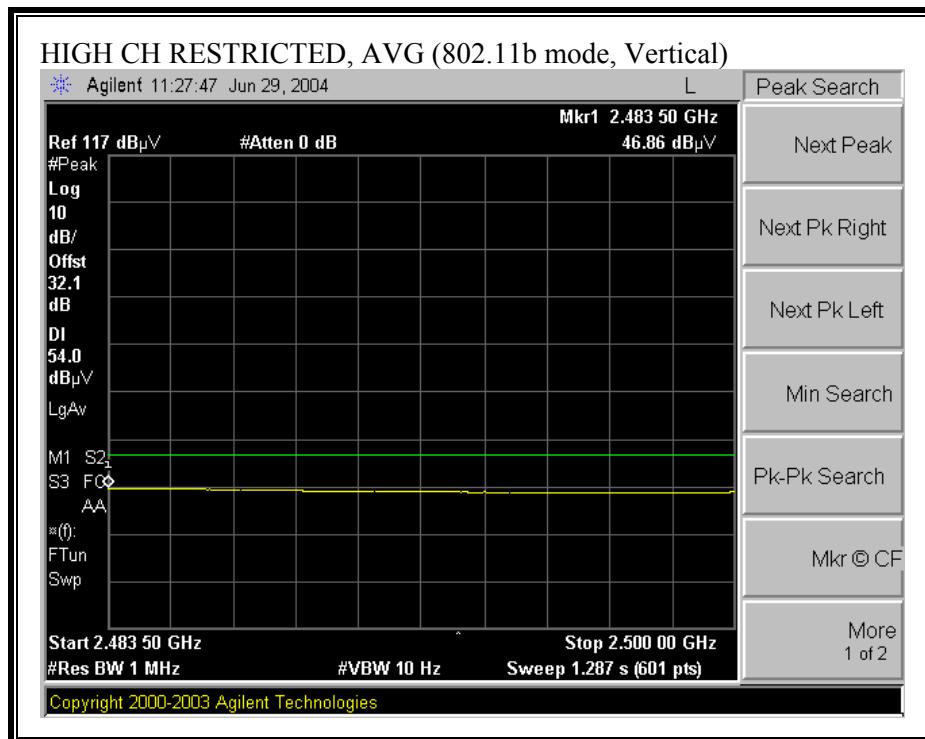

6.9.2. TRANSMITTER ABOVE 1 GHZ


RESTRICTED BANDEDGE (b MODE, LOW CHANNEL, HORIZONTAL)

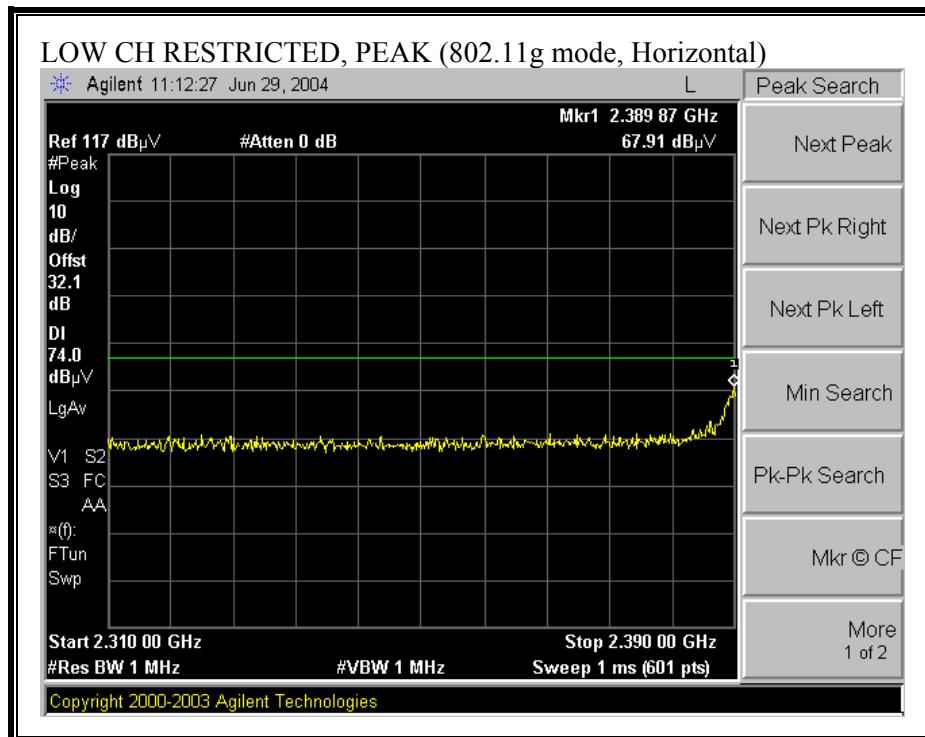


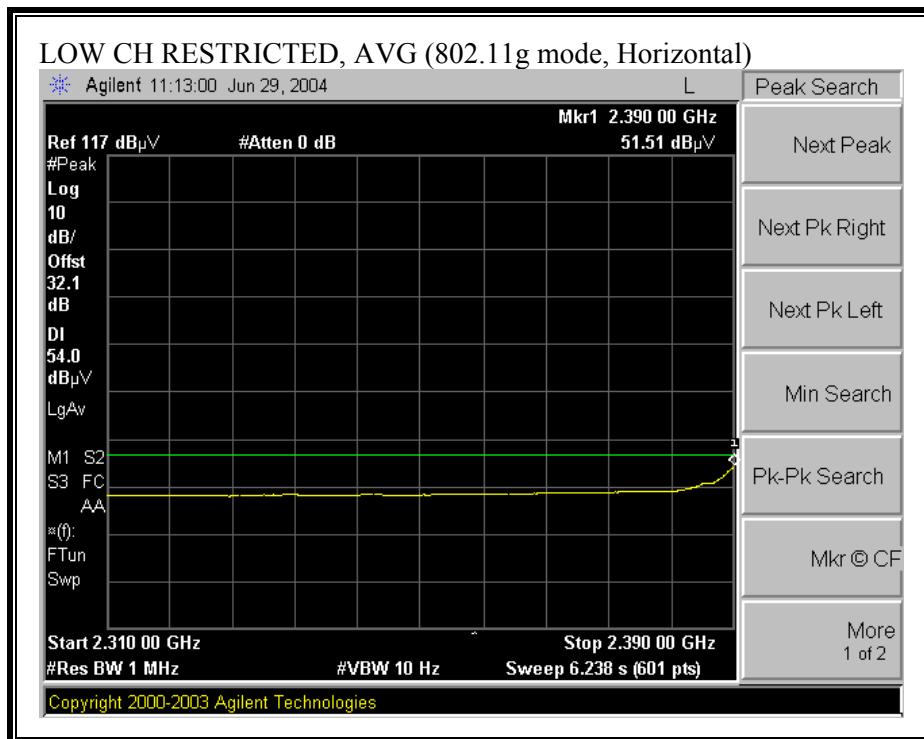

RESTRICTED BANDEDGE (b MODE, LOW CHANNEL, VERTICAL)



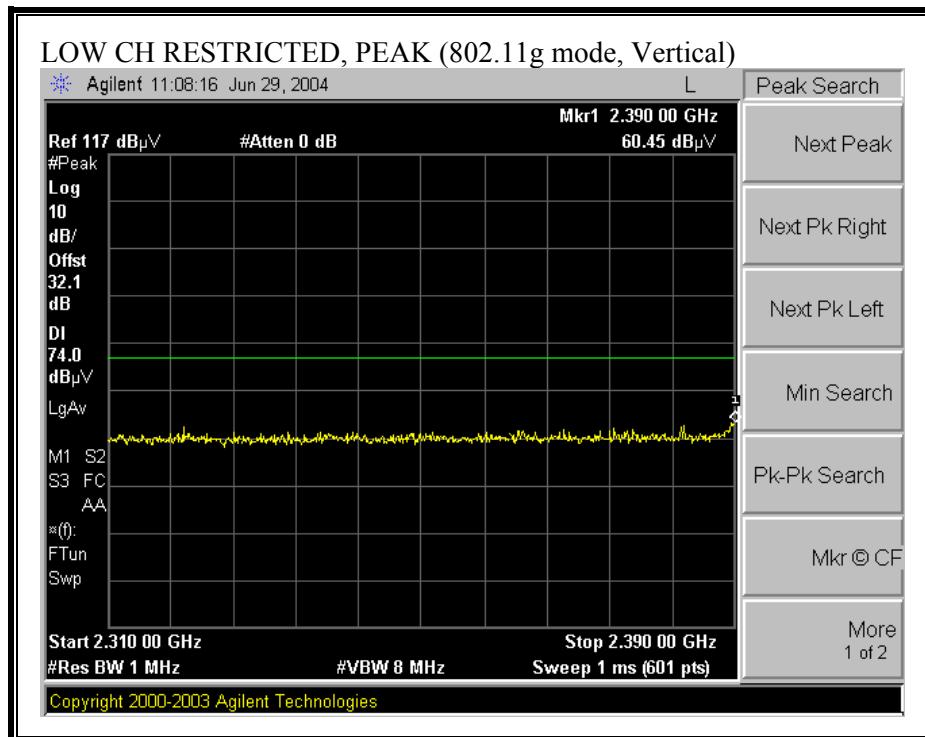

RESTRICTED BANDEDGE (b MODE, HIGH CHANNEL, HORIZONTAL)

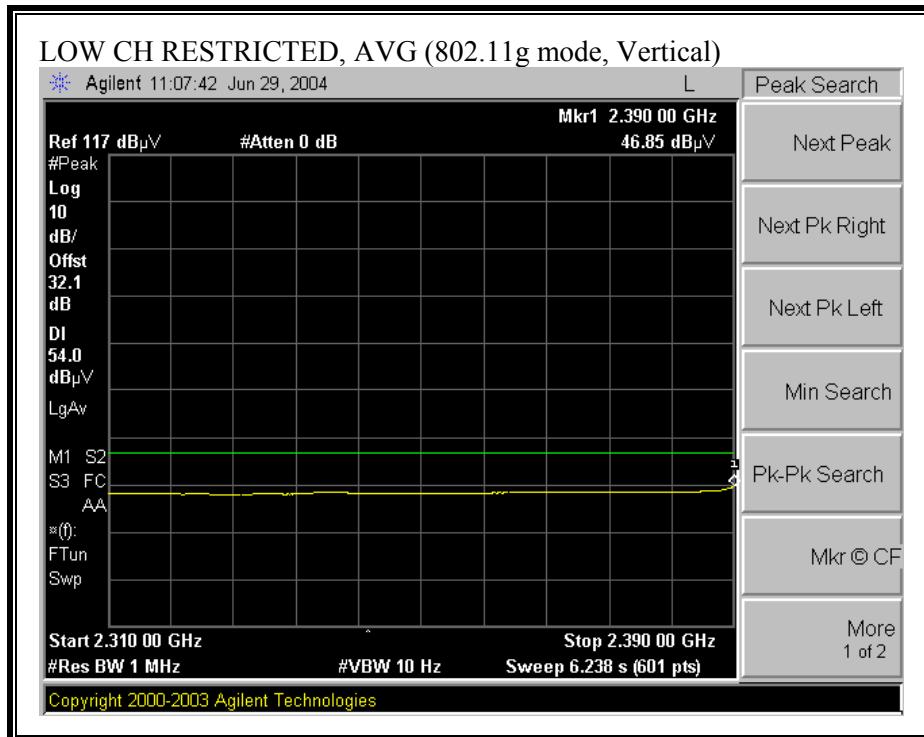
RESTRICTED BANDEDGE (b MODE, HIGH CHANNEL, VERTICAL)

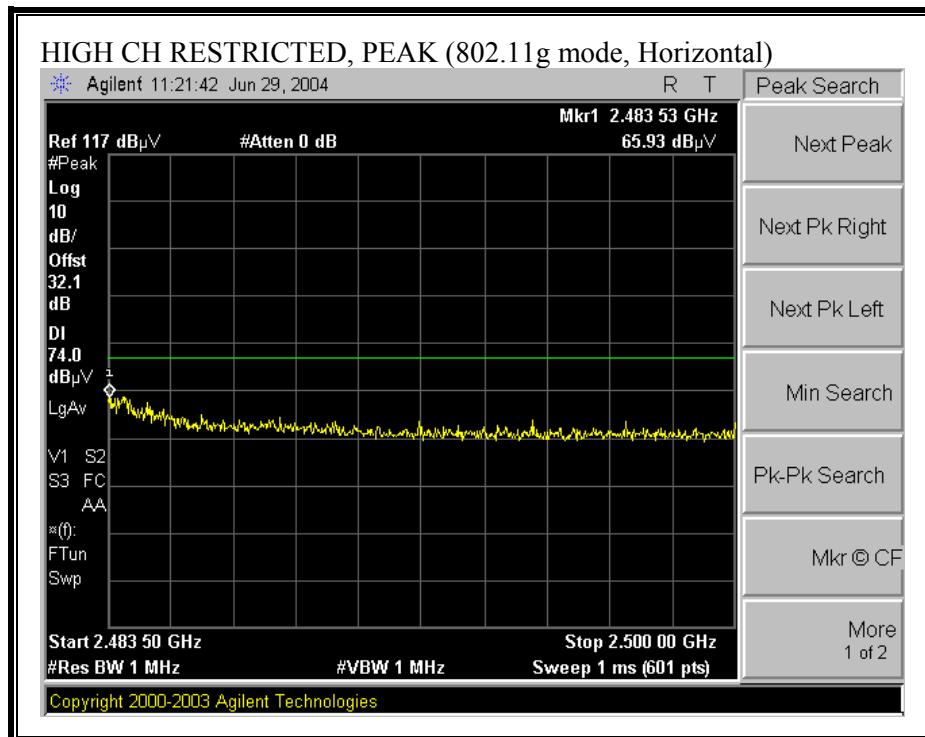


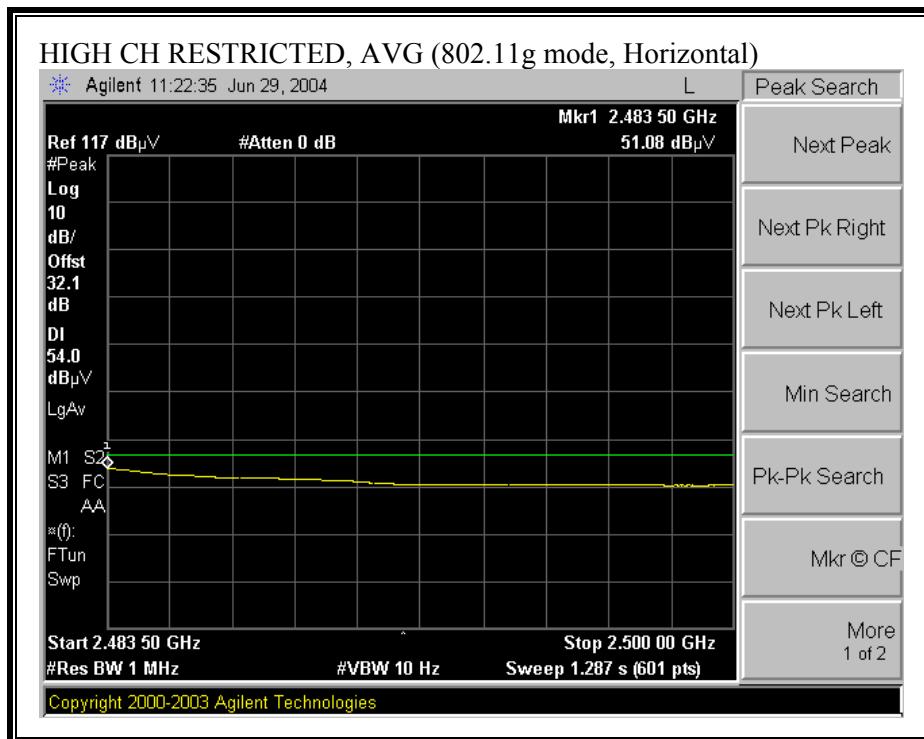


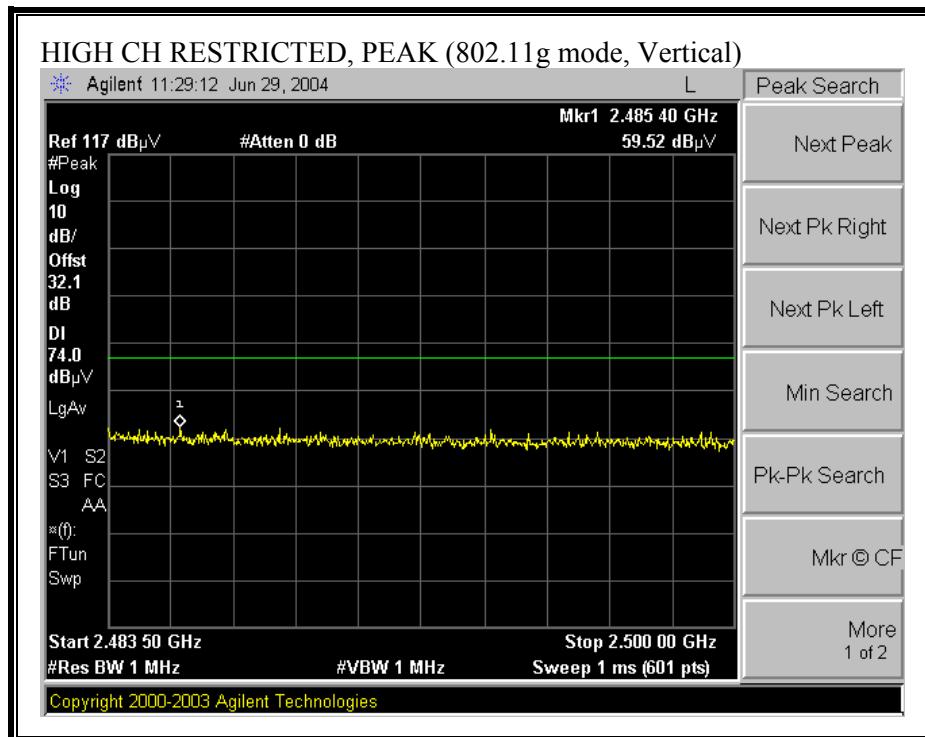
HARMONICS AND SPURIOUS EMISSIONS (b MODE)

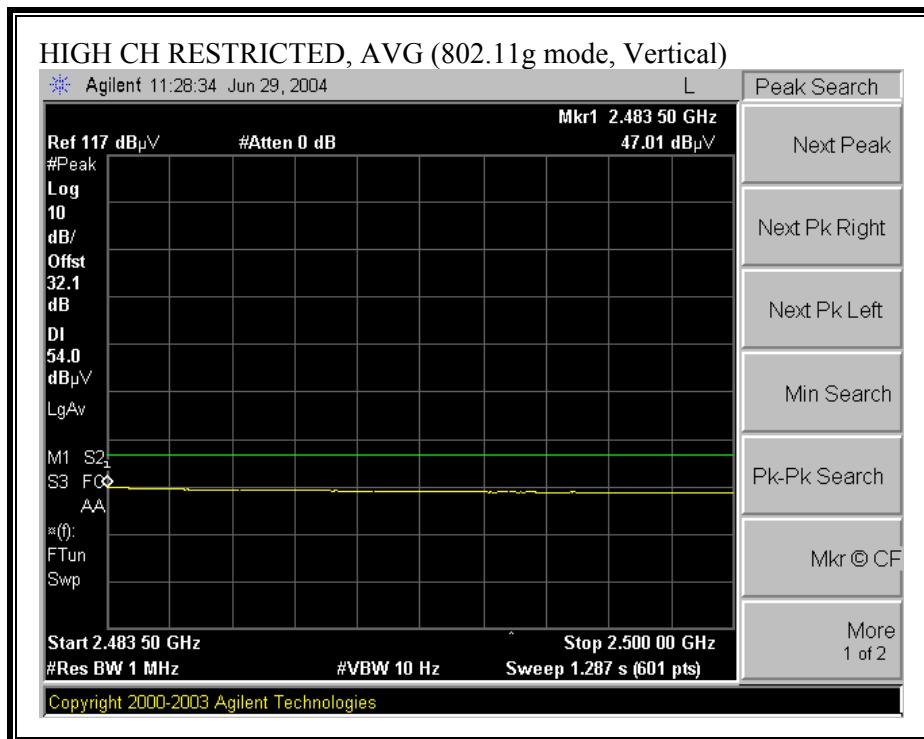

06/30/04 High Frequency Measurement Compliance Certification Services, Morgan Hill Open Field Site																																													
<p>Test Engr: Yan Zheng Project #: 04U2603-1 Company: Cisco EUT Descrip.: Dual Band 2.4 / 5 GHz Access Point EUT M/N: AIR-AP1131AG-x-K9 Test Target: FCC CLASS B Mode Oper: TX mode, 2.4GHz Band, b mode</p> <p>Test Equipment:</p> <table border="1"> <tr> <td>EMCO Horn 1-18GHz</td> <td>Spectrum Analyzer</td> <td>Pre-amplifier 1-26GHz</td> <td>Pre-amplifier 26-40GHz</td> <td>Horn > 18GHz</td> </tr> <tr> <td>T60; S/N: 2238 @3m</td> <td>Agilent E4446A Analyzer</td> <td>T87 Miteq 924342</td> <td>T88 Miteq 16-40GHz</td> <td></td> </tr> <tr> <td colspan="5"> Hi Frequency Cables <input type="checkbox"/> (2 ft) <input type="checkbox"/> (2 ~ 3 ft) <input checked="" type="checkbox"/> (4 ~ 6 ft) <input checked="" type="checkbox"/> (12 ft) </td> </tr> </table> <p>Peak Measurements: 1 MHz Resolution Bandwidth 1MHz Video Bandwidth</p> <p>Average Measurements: 1 MHz Resolution Bandwidth 10Hz Video Bandwidth</p>																EMCO Horn 1-18GHz	Spectrum Analyzer	Pre-amplifier 1-26GHz	Pre-amplifier 26-40GHz	Horn > 18GHz	T60; S/N: 2238 @3m	Agilent E4446A Analyzer	T87 Miteq 924342	T88 Miteq 16-40GHz		Hi Frequency Cables <input type="checkbox"/> (2 ft) <input type="checkbox"/> (2 ~ 3 ft) <input checked="" type="checkbox"/> (4 ~ 6 ft) <input checked="" type="checkbox"/> (12 ft)																			
EMCO Horn 1-18GHz	Spectrum Analyzer	Pre-amplifier 1-26GHz	Pre-amplifier 26-40GHz	Horn > 18GHz																																									
T60; S/N: 2238 @3m	Agilent E4446A Analyzer	T87 Miteq 924342	T88 Miteq 16-40GHz																																										
Hi Frequency Cables <input type="checkbox"/> (2 ft) <input type="checkbox"/> (2 ~ 3 ft) <input checked="" type="checkbox"/> (4 ~ 6 ft) <input checked="" type="checkbox"/> (12 ft)																																													
f GHz	Dist feet	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes																														
Channel 2412 MHz																																													
4.243	9.8	51.3	46.5	32.8	4.1	-44.2	0.0	1.0	44.9	40.1	74.0	54.0	-29.1	-13.9	V																														
4.243	9.8	55.3	53.3	32.8	4.1	-44.2	0.0	1.0	48.9	46.9	74.0	54.0	-25.1	-7.1	H																														
4.824	9.8	48.2	37.1	33.1	4.4	-44.7	0.0	1.0	42.0	30.9	74.0	54.0	-32.0	-23.1	V																														
4.824	9.8	55.5	42.5	33.1	4.4	-44.7	0.0	1.0	49.3	36.3	74.0	54.0	-24.7	-17.7	H																														
7.236	9.8	46.3	34.9	36.1	5.6	-44.6	0.0	1.0	44.5	33.1	74.0	54.0	-29.5	-20.9	V																														
7.236	9.8	47.3	35.7	36.1	5.6	-44.6	0.0	1.0	45.5	33.9	74.0	54.0	-28.5	-20.1	H																														
Channel 2437 MHz																																													
4.276	9.8	49.8	44.9	32.8	4.1	-44.2	0.0	1.0	43.4	38.5	74.0	54.0	-30.6	-15.5	V																														
4.276	9.8	55.5	53.3	32.8	4.1	-44.2	0.0	1.0	49.1	46.9	74.0	54.0	-24.9	-7.1	H																														
4.874	9.8	46.8	36.2	33.1	4.5	-44.7	0.0	1.0	40.6	30.0	74.0	54.0	-33.4	-24.0	V																														
4.874	9.8	51.5	39.2	33.1	4.5	-44.7	0.0	1.0	45.4	33.0	74.0	54.0	-28.6	-21.0	H																														
7.311	9.8	45.2	34.5	36.2	5.7	-44.5	0.0	1.0	43.5	32.8	74.0	54.0	-30.5	-21.2	V																														
7.311	9.8	46.8	35.6	36.2	5.7	-44.5	0.0	1.0	45.1	33.9	74.0	54.0	-28.9	-20.1	H																														
Channel 2462 MHz																																													
4.309	9.8	49.8	44.9	32.8	4.1	-44.2	0.0	1.0	43.4	38.5	74.0	54.0	-30.6	-15.5	V																														
4.309	9.8	53.7	51.0	32.8	4.1	-44.2	0.0	1.0	47.3	44.6	74.0	54.0	-26.7	-9.4	H																														
4.924	9.8	47.0	36.6	33.2	4.5	-44.8	0.0	1.0	40.9	30.5	74.0	54.0	-33.1	-23.5	V																														
4.924	9.8	52.3	40.8	33.2	4.5	-44.8	0.0	1.0	46.2	34.7	74.0	54.0	-27.8	-19.3	H																														
7.386	9.8	47.5	35.4	36.3	5.7	-44.5	0.0	1.0	46.0	33.9	74.0	54.0	-28.0	-20.1	V																														
7.386	9.8	48.5	36.8	36.3	5.7	-44.5	0.0	1.0	47.0	35.3	74.0	54.0	-27.0	-18.7	H																														
<table border="0"> <tr> <td>f</td> <td>Measurement Frequency</td> <td>Amp</td> <td>Preamp Gain</td> <td>Avg Lim</td> <td>Average Field Strength Limit</td> </tr> <tr> <td>Dist</td> <td>Distance to Antenna</td> <td>D Corr</td> <td>Distance Correct to 3 meters</td> <td>Pk Lim</td> <td>Peak Field Strength Limit</td> </tr> <tr> <td>Read</td> <td>Analyzer Reading</td> <td>Avg</td> <td>Average Field Strength @ 3 m</td> <td>Avg Mar</td> <td>Margin vs. Average Limit</td> </tr> <tr> <td>AF</td> <td>Antenna Factor</td> <td>Peak</td> <td>Calculated Peak Field Strength</td> <td>Pk Mar</td> <td>Margin vs. Peak Limit</td> </tr> <tr> <td>CL</td> <td>Cable Loss</td> <td>HPF</td> <td>High Pass Filter</td> <td></td> <td></td> </tr> </table>																f	Measurement Frequency	Amp	Preamp Gain	Avg Lim	Average Field Strength Limit	Dist	Distance to Antenna	D Corr	Distance Correct to 3 meters	Pk Lim	Peak Field Strength Limit	Read	Analyzer Reading	Avg	Average Field Strength @ 3 m	Avg Mar	Margin vs. Average Limit	AF	Antenna Factor	Peak	Calculated Peak Field Strength	Pk Mar	Margin vs. Peak Limit	CL	Cable Loss	HPF	High Pass Filter		
f	Measurement Frequency	Amp	Preamp Gain	Avg Lim	Average Field Strength Limit																																								
Dist	Distance to Antenna	D Corr	Distance Correct to 3 meters	Pk Lim	Peak Field Strength Limit																																								
Read	Analyzer Reading	Avg	Average Field Strength @ 3 m	Avg Mar	Margin vs. Average Limit																																								
AF	Antenna Factor	Peak	Calculated Peak Field Strength	Pk Mar	Margin vs. Peak Limit																																								
CL	Cable Loss	HPF	High Pass Filter																																										


RESTRICTED BANDEDGE (g MODE, LOW CHANNEL, HORIZONTAL)




RESTRICTED BANDEDGE (g MODE, LOW CHANNEL, VERTICAL)

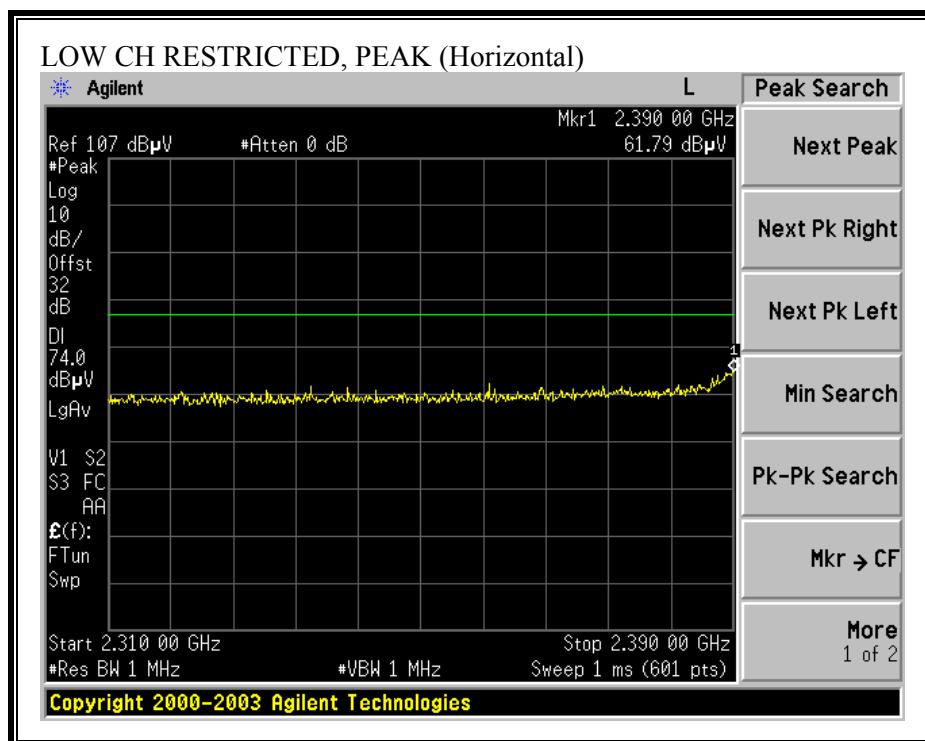


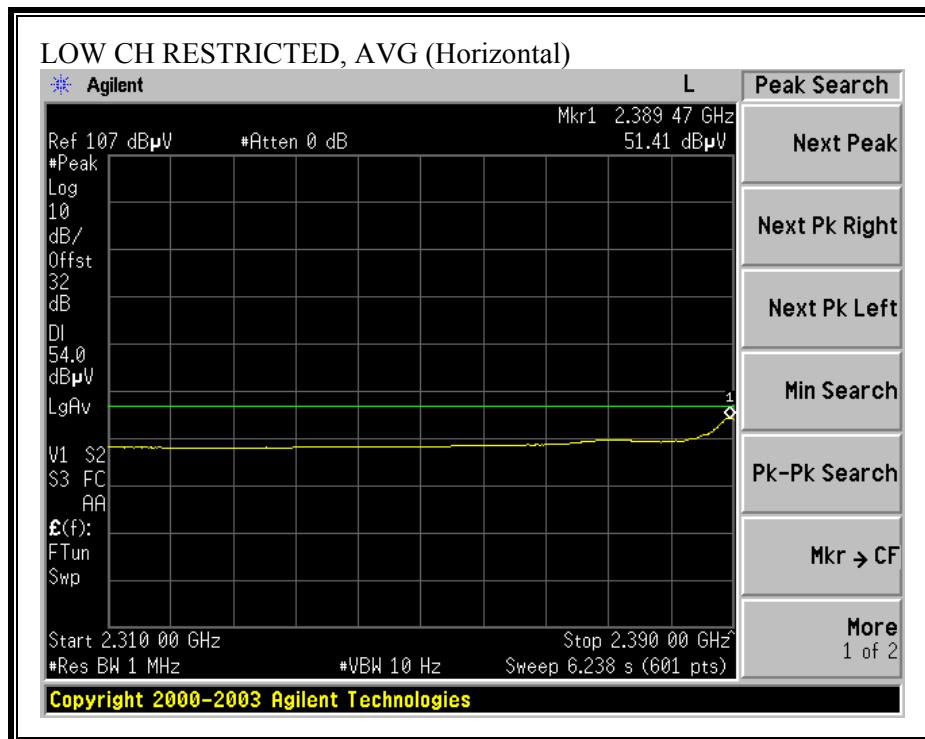

RESTRICTED BANDEDGE (g MODE, HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (g MODE, HIGH CHANNEL, VERTICAL)

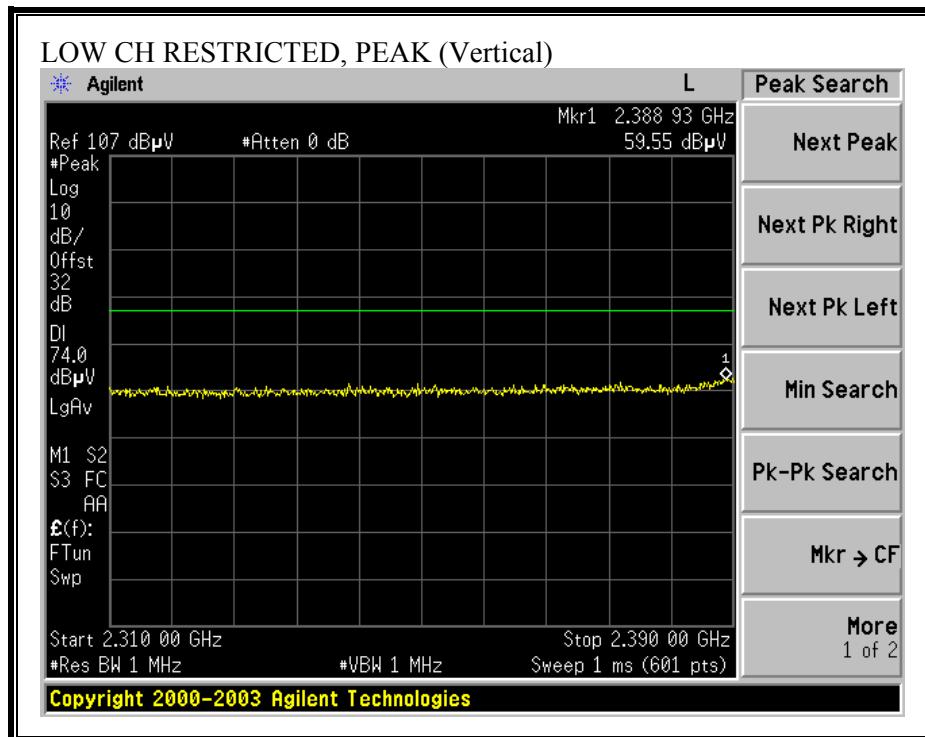
HARMONICS AND SPURIOUS EMISSIONS (g MODE)

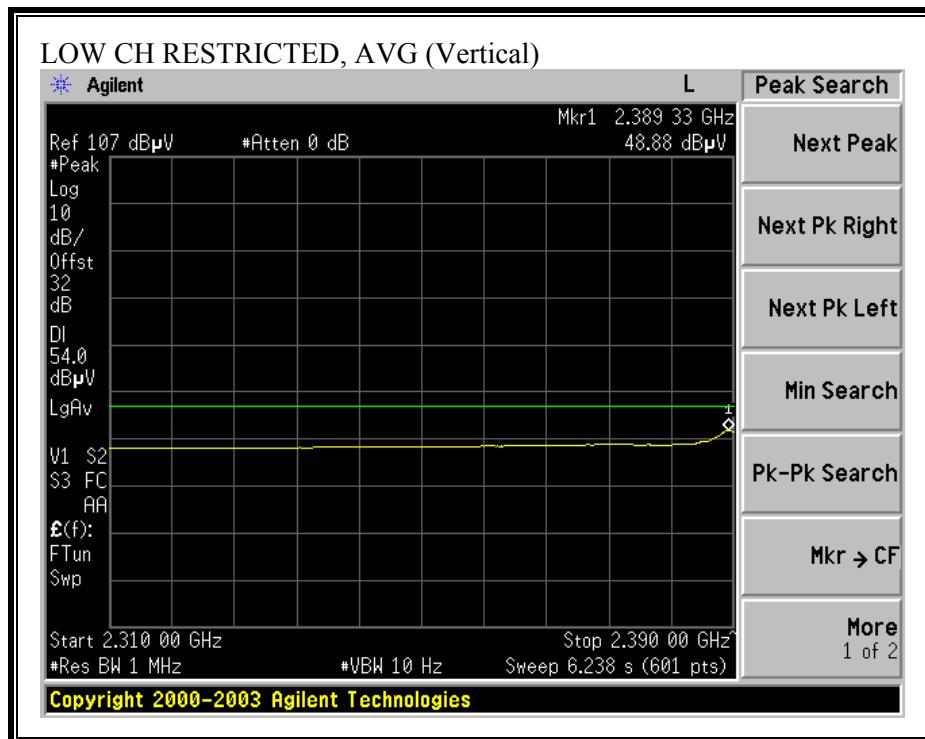
06/30/04 High Frequency Measurement Compliance Certification Services, Morgan Hill Open Field Site																																												
<p>Test Engr: Yan Zheng Project #: 04U2603-1 Company: Cisco EUT Descrip.: Dual Band 2.4 / 5 GHz Access Point EUT M/N: AIR-AP1131AG-x9 Test Target: FCC CLASS B Mode Oper: TX mode, 2.4GHz Band, g mode</p> <p>Test Equipment:</p> <table border="1"> <tr> <td>EMCO Horn 1-18GHz</td> <td>Spectrum Analyzer</td> <td>Pre-amplifier 1-26GHz</td> <td>Pre-amplifier 26-40GHz</td> <td>Horn > 18GHz</td> </tr> <tr> <td>T60; S/N: 2238 @3m</td> <td>Agilent E4446A Analyzer</td> <td>T87 Miteq 924342</td> <td>T88 Miteq 16-40GHz</td> <td></td> </tr> <tr> <td colspan="5">Hi Frequency Cables</td> </tr> <tr> <td colspan="5"> <input type="checkbox"/> (2 ft) <input type="checkbox"/> (2 ~ 3 ft) <input checked="" type="checkbox"/> (4 ~ 6 ft) <input checked="" type="checkbox"/> (12 ft) </td> </tr> </table> <p>Peak Measurements: 1 MHz Resolution Bandwidth 1MHz Video Bandwidth</p> <p>Average Measurements: 1 MHz Resolution Bandwidth 10Hz Video Bandwidth</p>															EMCO Horn 1-18GHz	Spectrum Analyzer	Pre-amplifier 1-26GHz	Pre-amplifier 26-40GHz	Horn > 18GHz	T60; S/N: 2238 @3m	Agilent E4446A Analyzer	T87 Miteq 924342	T88 Miteq 16-40GHz		Hi Frequency Cables					<input type="checkbox"/> (2 ft) <input type="checkbox"/> (2 ~ 3 ft) <input checked="" type="checkbox"/> (4 ~ 6 ft) <input checked="" type="checkbox"/> (12 ft)														
EMCO Horn 1-18GHz	Spectrum Analyzer	Pre-amplifier 1-26GHz	Pre-amplifier 26-40GHz	Horn > 18GHz																																								
T60; S/N: 2238 @3m	Agilent E4446A Analyzer	T87 Miteq 924342	T88 Miteq 16-40GHz																																									
Hi Frequency Cables																																												
<input type="checkbox"/> (2 ft) <input type="checkbox"/> (2 ~ 3 ft) <input checked="" type="checkbox"/> (4 ~ 6 ft) <input checked="" type="checkbox"/> (12 ft)																																												
f GHz	Dist feet	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes																													
g mode																																												
Channel 2412 MHz																																												
4.243	9.8	51.7	46.4	32.8	4.1	-44.2	0.0	1.0	45.3	40.0	74.0	54.0	-28.7	-14.0	V																													
4.243	9.8	55.5	53.2	32.8	4.1	-44.2	0.0	1.0	49.1	46.8	74.0	54.0	-24.9	-7.2	H																													
4.824	9.8	45.2	35.1	33.1	4.4	-44.7	0.0	1.0	39.0	28.9	74.0	54.0	-35.0	-25.1	V																													
4.824	9.8	51.1	38.9	33.1	4.4	-44.7	0.0	1.0	44.9	32.7	74.0	54.0	-29.1	-21.3	H																													
7.236	9.8	45.4	34.2	36.1	5.6	-44.6	0.0	1.0	43.6	32.4	74.0	54.0	-30.4	-21.6	V																													
7.236	9.8	46.6	35.2	36.1	5.6	-44.6	0.0	1.0	44.8	33.4	74.0	54.0	-29.2	-20.6	H																													
Channel 2437 MHz																																												
4.276	9.8	50.9	45.1	32.8	4.1	-44.2	0.0	1.0	44.5	38.7	74.0	54.0	-29.5	-15.3	V																													
4.276	9.8	56.7	53.4	32.8	4.1	-44.2	0.0	1.0	50.3	47.0	74.0	54.0	-23.7	-7.0	H																													
4.874	9.8	46.0	35.3	33.1	4.5	-44.7	0.0	1.0	39.8	29.1	74.0	54.0	-34.2	-24.9	V																													
4.874	9.8	49.1	37.2	33.1	4.5	-44.7	0.0	1.0	42.9	31.0	74.0	54.0	-31.1	-23.0	H																													
7.311	9.8	45.1	34.0	36.2	5.7	-44.5	0.0	1.0	43.4	32.3	74.0	54.0	-30.6	-21.7	V																													
7.311	9.8	46.1	35.5	36.2	5.7	-44.5	0.0	1.0	44.4	33.8	74.0	54.0	-29.6	-20.2	H																													
Channel 2462 MHz																																												
4.309	9.8	49.8	44.9	32.8	4.1	-44.2	0.0	1.0	43.4	38.5	74.0	54.0	-30.6	-15.5	V																													
4.309	9.8	53.4	50.8	32.8	4.1	-44.2	0.0	1.0	47.0	44.4	74.0	54.0	-27.0	-9.6	H																													
4.924	9.8	45.8	35.9	33.2	4.5	-44.8	0.0	1.0	39.7	29.8	74.0	54.0	-34.3	-24.2	V																													
4.924	9.8	51.9	40.1	33.2	4.5	-44.8	0.0	1.0	45.8	34.0	74.0	54.0	-28.2	-20.0	H																													
7.386	9.8	47.3	34.9	36.3	5.7	-44.5	0.0	1.0	45.8	33.4	74.0	54.0	-28.2	-20.6	V																													
7.386	9.8	48.1	36.5	36.3	5.7	-44.5	0.0	1.0	46.6	35.0	74.0	54.0	-27.4	-19.0	H																													
<table border="0"> <tr> <td>f</td> <td>Measurement Frequency</td> <td>Amp</td> <td>Preamp Gain</td> <td>Avg Lim</td> <td>Average Field Strength Limit</td> </tr> <tr> <td>Dist</td> <td>Distance to Antenna</td> <td>D Corr</td> <td>Distance Correct to 3 meters</td> <td>Pk Lim</td> <td>Peak Field Strength Limit</td> </tr> <tr> <td>Read</td> <td>Analyzer Reading</td> <td>Avg</td> <td>Average Field Strength @ 3 m</td> <td>Avg Mar</td> <td>Margin vs. Average Limit</td> </tr> <tr> <td>AF</td> <td>Antenna Factor</td> <td>Peak</td> <td>Calculated Peak Field Strength</td> <td>Pk Mar</td> <td>Margin vs. Peak Limit</td> </tr> <tr> <td>CL</td> <td>Cable Loss</td> <td>HPF</td> <td>High Pass Filter</td> <td></td> <td></td> </tr> </table>															f	Measurement Frequency	Amp	Preamp Gain	Avg Lim	Average Field Strength Limit	Dist	Distance to Antenna	D Corr	Distance Correct to 3 meters	Pk Lim	Peak Field Strength Limit	Read	Analyzer Reading	Avg	Average Field Strength @ 3 m	Avg Mar	Margin vs. Average Limit	AF	Antenna Factor	Peak	Calculated Peak Field Strength	Pk Mar	Margin vs. Peak Limit	CL	Cable Loss	HPF	High Pass Filter		
f	Measurement Frequency	Amp	Preamp Gain	Avg Lim	Average Field Strength Limit																																							
Dist	Distance to Antenna	D Corr	Distance Correct to 3 meters	Pk Lim	Peak Field Strength Limit																																							
Read	Analyzer Reading	Avg	Average Field Strength @ 3 m	Avg Mar	Margin vs. Average Limit																																							
AF	Antenna Factor	Peak	Calculated Peak Field Strength	Pk Mar	Margin vs. Peak Limit																																							
CL	Cable Loss	HPF	High Pass Filter																																									

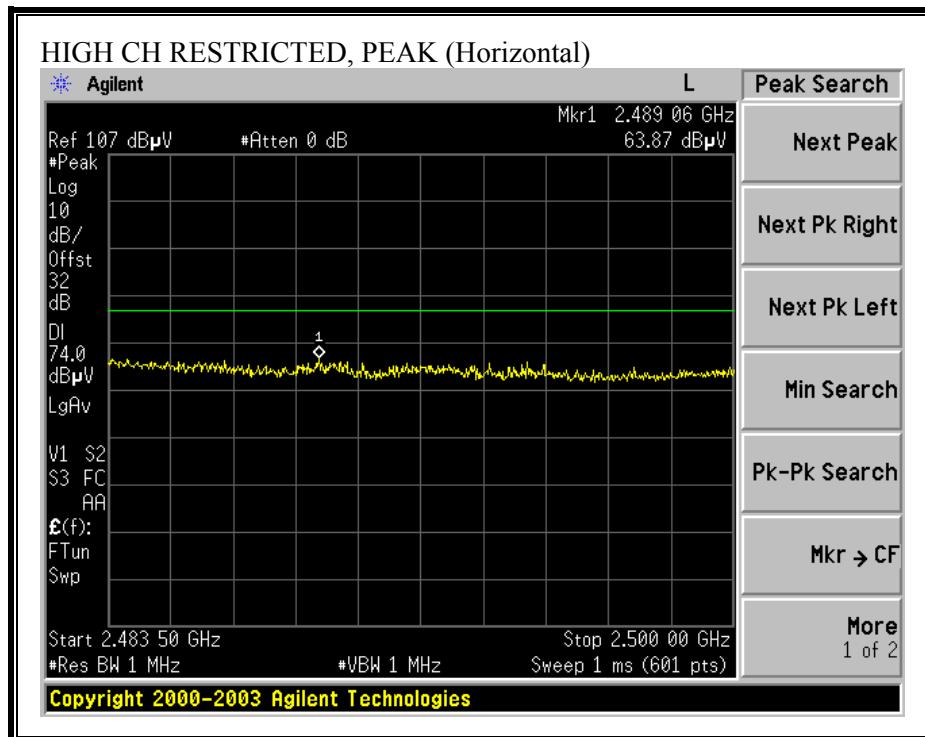

6.9.3. CO-LOCATED TRANSMITTERS ABOVE 1 GHz

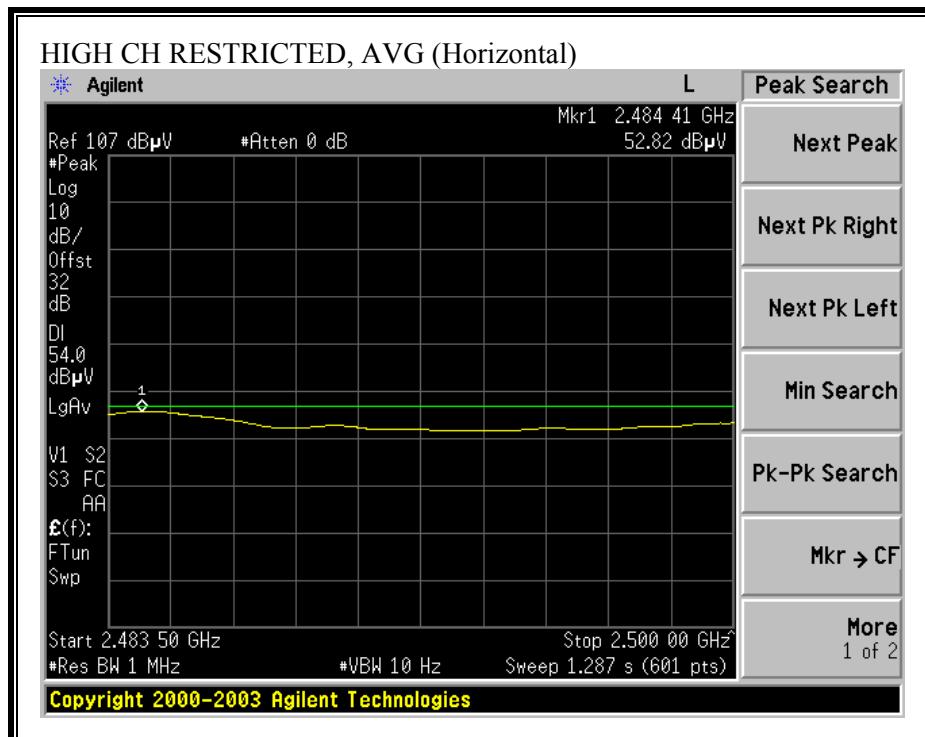

RESULTS

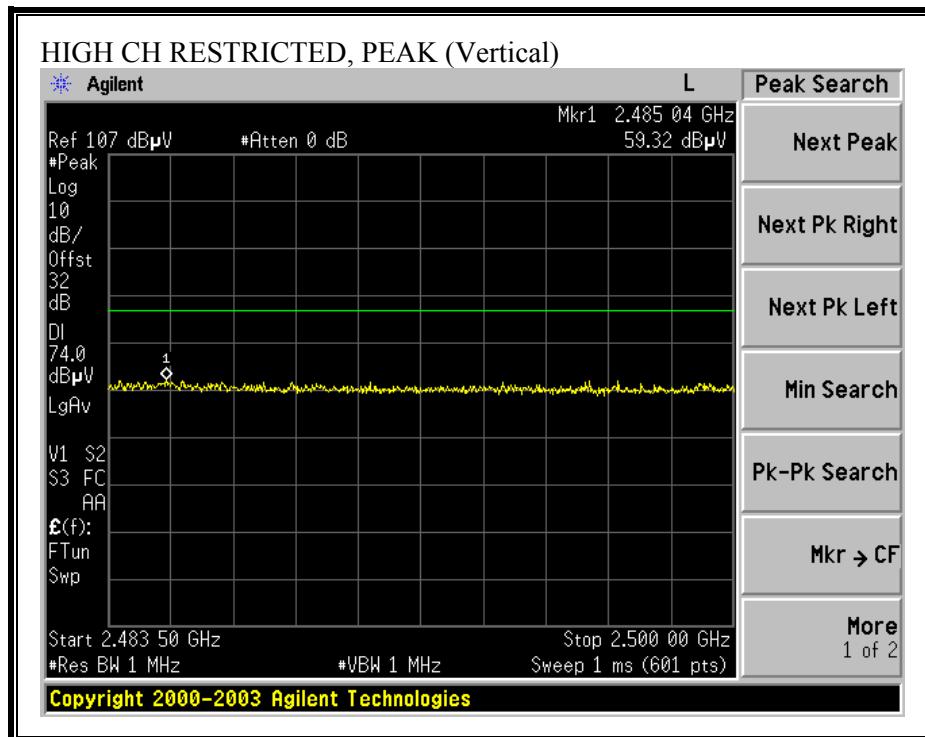
No non-compliance noted:

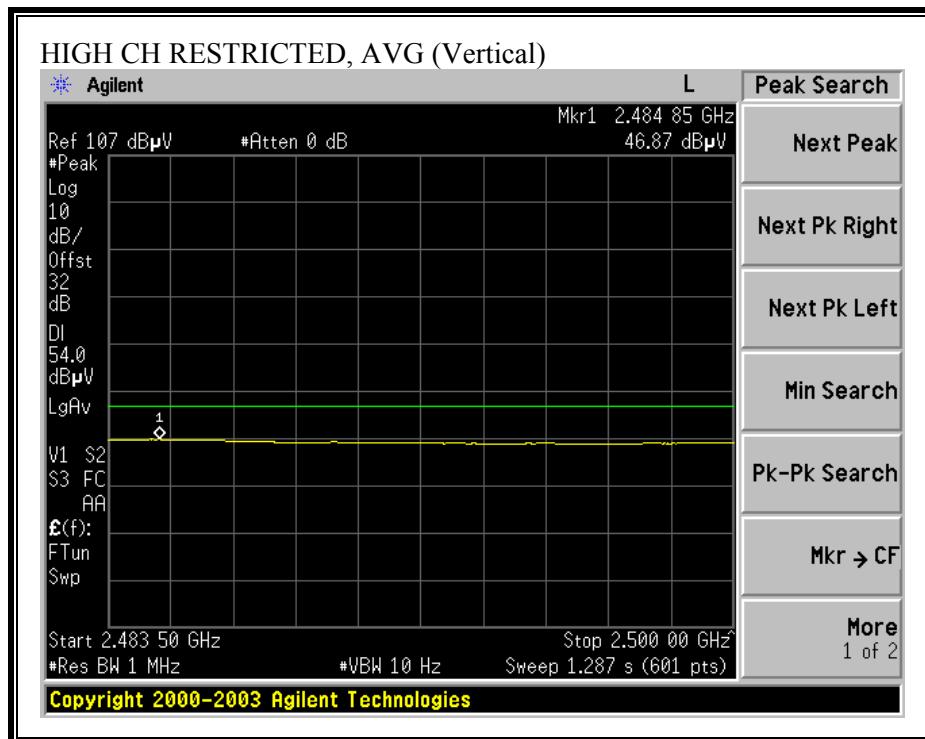

The 802.11 b/g radio is the dominant transmitter, and the 802.11 b mode is the dominant mode.


WORST-CASE RESTRICTED BANDEdge (LOW CHANNEL, HORIZONTAL)




WORST-CASE RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

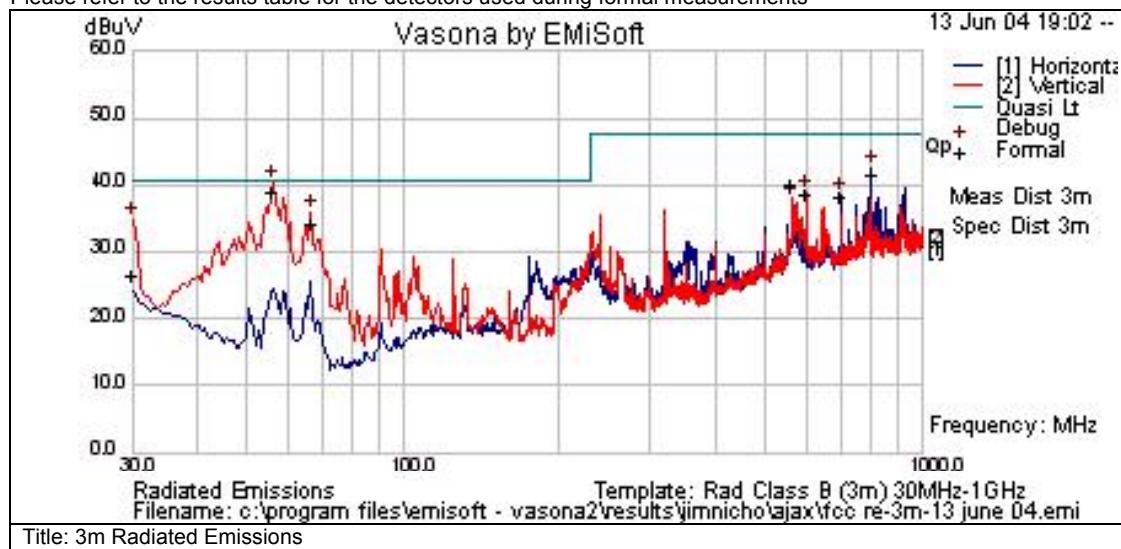



WORST-CASE RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

WORST-CASE RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

WORST-CASE HARMONICS AND SPURIOUS EMISSIONS

08/20/04 High Frequency Measurement Compliance Certification Services, Morgan Hill Open Field Site																																																																																																																																																																																																																																												
Test Engr: Chin Pang Project #: 04U2603-1 Company: Cisco EUT Descrip.: Dual Band 2.4 / 5 GHz Access Point EUT M/N: AIR-AP1131AG-A-K9 Test Target: FCC CLASS B Mode Oper: TX mode, b Mode and a WLAN 5260MHz Co-Location																																																																																																																																																																																																																																												
Test Equipment: <table border="1"> <tr> <td>EMCO Horn 1-18GHz</td> <td>Spectrum Analyzer</td> <td>Pre-amplifier 1-26GHz</td> <td>Pre-amplifier 26-40GHz</td> <td>Horn > 18GHz</td> </tr> <tr> <td>T60; S/N: 2238 @3m</td> <td>Agilent E4446A Analyzer</td> <td>T86 Miteq 924341</td> <td></td> <td></td> </tr> <tr> <td colspan="2">Hi Frequency Cables</td> <td>Limit</td> <td colspan="2">Peak Measurements:</td> </tr> <tr> <td colspan="2"> <input type="checkbox"/> (2 ft) <input checked="" type="checkbox"/> (2 ~ 3 ft) <input type="checkbox"/> (4 ~ 6 ft) <input checked="" type="checkbox"/> (12 ft) </td> <td>FCC 15.205</td> <td colspan="2"> 1 MHz Resolution Bandwidth 1MHz Video Bandwidth </td> </tr> <tr> <td colspan="15"> Ajax <table border="1"> <thead> <tr> <th>f GHz</th> <th>Dist feet</th> <th>Read Pk dBuV</th> <th>Read Avg. dBuV</th> <th>AF dB/m</th> <th>CL dB</th> <th>Amp dB</th> <th>D Corr dB</th> <th>HPF</th> <th>Peak dBuV/m</th> <th>Avg dBuV/m</th> <th>Pk Lim dBuV/m</th> <th>Avg Lim dBuV/m</th> <th>Pk Mar dB</th> <th>Avg Mar dB</th> <th>Notes</th> </tr> </thead> <tbody> <tr> <td colspan="15">High Channel 2462MHz</td> </tr> <tr> <td>4.309</td> <td>9.8</td> <td>54.0</td> <td>49.0</td> <td>32.8</td> <td>2.7</td> <td>-44.5</td> <td>0.0</td> <td>1.5</td> <td>46.5</td> <td>41.5</td> <td>74.0</td> <td>54.0</td> <td>-27.5</td> <td>-12.5</td> <td>V</td> </tr> <tr> <td>4.924</td> <td>9.8</td> <td>57.8</td> <td>47.0</td> <td>33.2</td> <td>3.0</td> <td>-45.1</td> <td>0.0</td> <td>1.5</td> <td>50.3</td> <td>39.5</td> <td>74.0</td> <td>54.0</td> <td>-23.7</td> <td>-14.5</td> <td>V</td> </tr> <tr> <td>7.382</td> <td>9.8</td> <td>53.6</td> <td>42.5</td> <td>36.3</td> <td>3.7</td> <td>-45.3</td> <td>0.0</td> <td>1.5</td> <td>49.8</td> <td>38.7</td> <td>74.0</td> <td>54.0</td> <td>-24.2</td> <td>-15.3</td> <td>V</td> </tr> <tr> <td>4.309</td> <td>9.8</td> <td>57.3</td> <td>54.0</td> <td>32.8</td> <td>2.7</td> <td>-44.5</td> <td>0.0</td> <td>1.5</td> <td>49.8</td> <td>46.5</td> <td>74.0</td> <td>54.0</td> <td>-24.2</td> <td>-7.5</td> <td>H</td> </tr> <tr> <td>4.924</td> <td>9.8</td> <td>55.0</td> <td>45.7</td> <td>33.2</td> <td>3.0</td> <td>-45.1</td> <td>0.0</td> <td>1.5</td> <td>47.5</td> <td>38.2</td> <td>74.0</td> <td>54.0</td> <td>-26.5</td> <td>-15.8</td> <td>H</td> </tr> <tr> <td>7.382</td> <td>9.8</td> <td>52.0</td> <td>41.0</td> <td>36.3</td> <td>3.7</td> <td>-45.3</td> <td>0.0</td> <td>1.5</td> <td>48.2</td> <td>37.2</td> <td>74.0</td> <td>54.0</td> <td>-25.8</td> <td>-16.8</td> <td>H</td> </tr> <tr> <td colspan="15">Note: No other emissions were detected above the system noise floor.</td> </tr> </tbody> </table> </td> </tr> <tr> <td colspan="15"> f Measurement Frequency Dist Distance to Antenna Read Analyzer Reading AF Antenna Factor CL Cable Loss </td> </tr> <tr> <td colspan="15"> Amp Preamp Gain D Corr Distance Correct to 3 meters Avg Average Field Strength @ 3 m Peak Calculated Peak Field Strength HPF High Pass Filter </td> </tr> <tr> <td colspan="15"> Avg Lim Average Field Strength Limit Pk Lim Peak Field Strength Limit Avg Mar Margin vs. Average Limit Pk Mar Margin vs. Peak Limit </td> </tr> </table>															EMCO Horn 1-18GHz	Spectrum Analyzer	Pre-amplifier 1-26GHz	Pre-amplifier 26-40GHz	Horn > 18GHz	T60; S/N: 2238 @3m	Agilent E4446A Analyzer	T86 Miteq 924341			Hi Frequency Cables		Limit	Peak Measurements:		<input type="checkbox"/> (2 ft) <input checked="" type="checkbox"/> (2 ~ 3 ft) <input type="checkbox"/> (4 ~ 6 ft) <input checked="" type="checkbox"/> (12 ft)		FCC 15.205	1 MHz Resolution Bandwidth 1MHz Video Bandwidth		Ajax <table border="1"> <thead> <tr> <th>f GHz</th> <th>Dist feet</th> <th>Read Pk dBuV</th> <th>Read Avg. dBuV</th> <th>AF dB/m</th> <th>CL dB</th> <th>Amp dB</th> <th>D Corr dB</th> <th>HPF</th> <th>Peak dBuV/m</th> <th>Avg dBuV/m</th> <th>Pk Lim dBuV/m</th> <th>Avg Lim dBuV/m</th> <th>Pk Mar dB</th> <th>Avg Mar dB</th> <th>Notes</th> </tr> </thead> <tbody> <tr> <td colspan="15">High Channel 2462MHz</td> </tr> <tr> <td>4.309</td> <td>9.8</td> <td>54.0</td> <td>49.0</td> <td>32.8</td> <td>2.7</td> <td>-44.5</td> <td>0.0</td> <td>1.5</td> <td>46.5</td> <td>41.5</td> <td>74.0</td> <td>54.0</td> <td>-27.5</td> <td>-12.5</td> <td>V</td> </tr> <tr> <td>4.924</td> <td>9.8</td> <td>57.8</td> <td>47.0</td> <td>33.2</td> <td>3.0</td> <td>-45.1</td> <td>0.0</td> <td>1.5</td> <td>50.3</td> <td>39.5</td> <td>74.0</td> <td>54.0</td> <td>-23.7</td> <td>-14.5</td> <td>V</td> </tr> <tr> <td>7.382</td> <td>9.8</td> <td>53.6</td> <td>42.5</td> <td>36.3</td> <td>3.7</td> <td>-45.3</td> <td>0.0</td> <td>1.5</td> <td>49.8</td> <td>38.7</td> <td>74.0</td> <td>54.0</td> <td>-24.2</td> <td>-15.3</td> <td>V</td> </tr> <tr> <td>4.309</td> <td>9.8</td> <td>57.3</td> <td>54.0</td> <td>32.8</td> <td>2.7</td> <td>-44.5</td> <td>0.0</td> <td>1.5</td> <td>49.8</td> <td>46.5</td> <td>74.0</td> <td>54.0</td> <td>-24.2</td> <td>-7.5</td> <td>H</td> </tr> <tr> <td>4.924</td> <td>9.8</td> <td>55.0</td> <td>45.7</td> <td>33.2</td> <td>3.0</td> <td>-45.1</td> <td>0.0</td> <td>1.5</td> <td>47.5</td> <td>38.2</td> <td>74.0</td> <td>54.0</td> <td>-26.5</td> <td>-15.8</td> <td>H</td> </tr> <tr> <td>7.382</td> <td>9.8</td> <td>52.0</td> <td>41.0</td> <td>36.3</td> <td>3.7</td> <td>-45.3</td> <td>0.0</td> <td>1.5</td> <td>48.2</td> <td>37.2</td> <td>74.0</td> <td>54.0</td> <td>-25.8</td> <td>-16.8</td> <td>H</td> </tr> <tr> <td colspan="15">Note: No other emissions were detected above the system noise floor.</td> </tr> </tbody> </table>															f GHz	Dist feet	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes	High Channel 2462MHz															4.309	9.8	54.0	49.0	32.8	2.7	-44.5	0.0	1.5	46.5	41.5	74.0	54.0	-27.5	-12.5	V	4.924	9.8	57.8	47.0	33.2	3.0	-45.1	0.0	1.5	50.3	39.5	74.0	54.0	-23.7	-14.5	V	7.382	9.8	53.6	42.5	36.3	3.7	-45.3	0.0	1.5	49.8	38.7	74.0	54.0	-24.2	-15.3	V	4.309	9.8	57.3	54.0	32.8	2.7	-44.5	0.0	1.5	49.8	46.5	74.0	54.0	-24.2	-7.5	H	4.924	9.8	55.0	45.7	33.2	3.0	-45.1	0.0	1.5	47.5	38.2	74.0	54.0	-26.5	-15.8	H	7.382	9.8	52.0	41.0	36.3	3.7	-45.3	0.0	1.5	48.2	37.2	74.0	54.0	-25.8	-16.8	H	Note: No other emissions were detected above the system noise floor.															f Measurement Frequency Dist Distance to Antenna Read Analyzer Reading AF Antenna Factor CL Cable Loss															Amp Preamp Gain D Corr Distance Correct to 3 meters Avg Average Field Strength @ 3 m Peak Calculated Peak Field Strength HPF High Pass Filter															Avg Lim Average Field Strength Limit Pk Lim Peak Field Strength Limit Avg Mar Margin vs. Average Limit Pk Mar Margin vs. Peak Limit														
EMCO Horn 1-18GHz	Spectrum Analyzer	Pre-amplifier 1-26GHz	Pre-amplifier 26-40GHz	Horn > 18GHz																																																																																																																																																																																																																																								
T60; S/N: 2238 @3m	Agilent E4446A Analyzer	T86 Miteq 924341																																																																																																																																																																																																																																										
Hi Frequency Cables		Limit	Peak Measurements:																																																																																																																																																																																																																																									
<input type="checkbox"/> (2 ft) <input checked="" type="checkbox"/> (2 ~ 3 ft) <input type="checkbox"/> (4 ~ 6 ft) <input checked="" type="checkbox"/> (12 ft)		FCC 15.205	1 MHz Resolution Bandwidth 1MHz Video Bandwidth																																																																																																																																																																																																																																									
Ajax <table border="1"> <thead> <tr> <th>f GHz</th> <th>Dist feet</th> <th>Read Pk dBuV</th> <th>Read Avg. dBuV</th> <th>AF dB/m</th> <th>CL dB</th> <th>Amp dB</th> <th>D Corr dB</th> <th>HPF</th> <th>Peak dBuV/m</th> <th>Avg dBuV/m</th> <th>Pk Lim dBuV/m</th> <th>Avg Lim dBuV/m</th> <th>Pk Mar dB</th> <th>Avg Mar dB</th> <th>Notes</th> </tr> </thead> <tbody> <tr> <td colspan="15">High Channel 2462MHz</td> </tr> <tr> <td>4.309</td> <td>9.8</td> <td>54.0</td> <td>49.0</td> <td>32.8</td> <td>2.7</td> <td>-44.5</td> <td>0.0</td> <td>1.5</td> <td>46.5</td> <td>41.5</td> <td>74.0</td> <td>54.0</td> <td>-27.5</td> <td>-12.5</td> <td>V</td> </tr> <tr> <td>4.924</td> <td>9.8</td> <td>57.8</td> <td>47.0</td> <td>33.2</td> <td>3.0</td> <td>-45.1</td> <td>0.0</td> <td>1.5</td> <td>50.3</td> <td>39.5</td> <td>74.0</td> <td>54.0</td> <td>-23.7</td> <td>-14.5</td> <td>V</td> </tr> <tr> <td>7.382</td> <td>9.8</td> <td>53.6</td> <td>42.5</td> <td>36.3</td> <td>3.7</td> <td>-45.3</td> <td>0.0</td> <td>1.5</td> <td>49.8</td> <td>38.7</td> <td>74.0</td> <td>54.0</td> <td>-24.2</td> <td>-15.3</td> <td>V</td> </tr> <tr> <td>4.309</td> <td>9.8</td> <td>57.3</td> <td>54.0</td> <td>32.8</td> <td>2.7</td> <td>-44.5</td> <td>0.0</td> <td>1.5</td> <td>49.8</td> <td>46.5</td> <td>74.0</td> <td>54.0</td> <td>-24.2</td> <td>-7.5</td> <td>H</td> </tr> <tr> <td>4.924</td> <td>9.8</td> <td>55.0</td> <td>45.7</td> <td>33.2</td> <td>3.0</td> <td>-45.1</td> <td>0.0</td> <td>1.5</td> <td>47.5</td> <td>38.2</td> <td>74.0</td> <td>54.0</td> <td>-26.5</td> <td>-15.8</td> <td>H</td> </tr> <tr> <td>7.382</td> <td>9.8</td> <td>52.0</td> <td>41.0</td> <td>36.3</td> <td>3.7</td> <td>-45.3</td> <td>0.0</td> <td>1.5</td> <td>48.2</td> <td>37.2</td> <td>74.0</td> <td>54.0</td> <td>-25.8</td> <td>-16.8</td> <td>H</td> </tr> <tr> <td colspan="15">Note: No other emissions were detected above the system noise floor.</td> </tr> </tbody> </table>															f GHz	Dist feet	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes	High Channel 2462MHz															4.309	9.8	54.0	49.0	32.8	2.7	-44.5	0.0	1.5	46.5	41.5	74.0	54.0	-27.5	-12.5	V	4.924	9.8	57.8	47.0	33.2	3.0	-45.1	0.0	1.5	50.3	39.5	74.0	54.0	-23.7	-14.5	V	7.382	9.8	53.6	42.5	36.3	3.7	-45.3	0.0	1.5	49.8	38.7	74.0	54.0	-24.2	-15.3	V	4.309	9.8	57.3	54.0	32.8	2.7	-44.5	0.0	1.5	49.8	46.5	74.0	54.0	-24.2	-7.5	H	4.924	9.8	55.0	45.7	33.2	3.0	-45.1	0.0	1.5	47.5	38.2	74.0	54.0	-26.5	-15.8	H	7.382	9.8	52.0	41.0	36.3	3.7	-45.3	0.0	1.5	48.2	37.2	74.0	54.0	-25.8	-16.8	H	Note: No other emissions were detected above the system noise floor.																																																																																														
f GHz	Dist feet	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes																																																																																																																																																																																																																													
High Channel 2462MHz																																																																																																																																																																																																																																												
4.309	9.8	54.0	49.0	32.8	2.7	-44.5	0.0	1.5	46.5	41.5	74.0	54.0	-27.5	-12.5	V																																																																																																																																																																																																																													
4.924	9.8	57.8	47.0	33.2	3.0	-45.1	0.0	1.5	50.3	39.5	74.0	54.0	-23.7	-14.5	V																																																																																																																																																																																																																													
7.382	9.8	53.6	42.5	36.3	3.7	-45.3	0.0	1.5	49.8	38.7	74.0	54.0	-24.2	-15.3	V																																																																																																																																																																																																																													
4.309	9.8	57.3	54.0	32.8	2.7	-44.5	0.0	1.5	49.8	46.5	74.0	54.0	-24.2	-7.5	H																																																																																																																																																																																																																													
4.924	9.8	55.0	45.7	33.2	3.0	-45.1	0.0	1.5	47.5	38.2	74.0	54.0	-26.5	-15.8	H																																																																																																																																																																																																																													
7.382	9.8	52.0	41.0	36.3	3.7	-45.3	0.0	1.5	48.2	37.2	74.0	54.0	-25.8	-16.8	H																																																																																																																																																																																																																													
Note: No other emissions were detected above the system noise floor.																																																																																																																																																																																																																																												
f Measurement Frequency Dist Distance to Antenna Read Analyzer Reading AF Antenna Factor CL Cable Loss																																																																																																																																																																																																																																												
Amp Preamp Gain D Corr Distance Correct to 3 meters Avg Average Field Strength @ 3 m Peak Calculated Peak Field Strength HPF High Pass Filter																																																																																																																																																																																																																																												
Avg Lim Average Field Strength Limit Pk Lim Peak Field Strength Limit Avg Mar Margin vs. Average Limit Pk Mar Margin vs. Peak Limit																																																																																																																																																																																																																																												


6.9.4. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

VERTICAL AND HORIZONTAL PLOT

Graphical Test Results

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

VERTICAL AND HORIZONTAL DATA

Test Results Table

Frequency MHz	Raw dBuV	Cable Loss dB	AF dB	Level dBuV	Type	Pol	Hgt cm	Azt Deg	Limit dBuV	Margin dB	Pass /Fail	Comments
30	5.3	0.6	18.6	24.6	Qp	V	98	359	40.5	-15.9	Pass	
56	29.5	0.8	7	37.4	Qp	V	123	204	40.5	-3.2	Pass	
66.272	24.8	0.9	6.6	32.4	Qp	V	163	86	40.5	-8.1	Pass	
560	16.5	2.5	19.2	38.2	Qp	V	98	66	47.5	-9.2	Pass	
600	15.2	2.6	19	36.8	Qp	V	104	96	47.5	-10.7	Pass	
700	14.4	2.8	19.3	36.4	Qp	H	307	62	47.5	-11	Pass	
800	16.5	3	20.1	39.6	Qp	H	198	220	47.5	-7.9	Pass	

6.10. POWERLINE CONDUCTED EMISSIONS

LIMIT

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted Limit (dBuV)	
	Quasi-peak	Average
0.15-0.5	66 to 56 [*]	56 to 46 [*]
0.5-5	56	46
5-30	60	50

^{*} Decreases with the logarithm of the frequency.

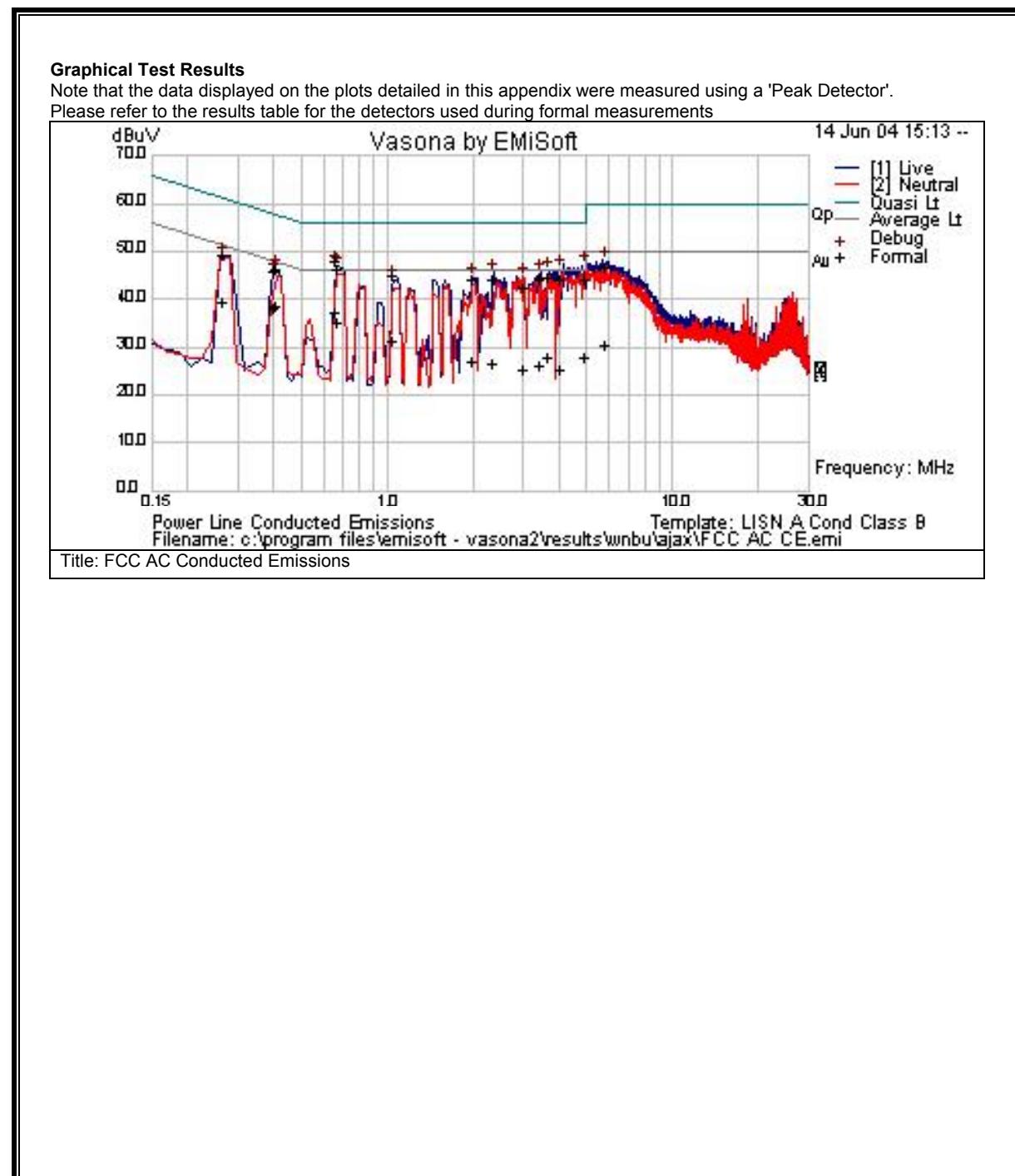
TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

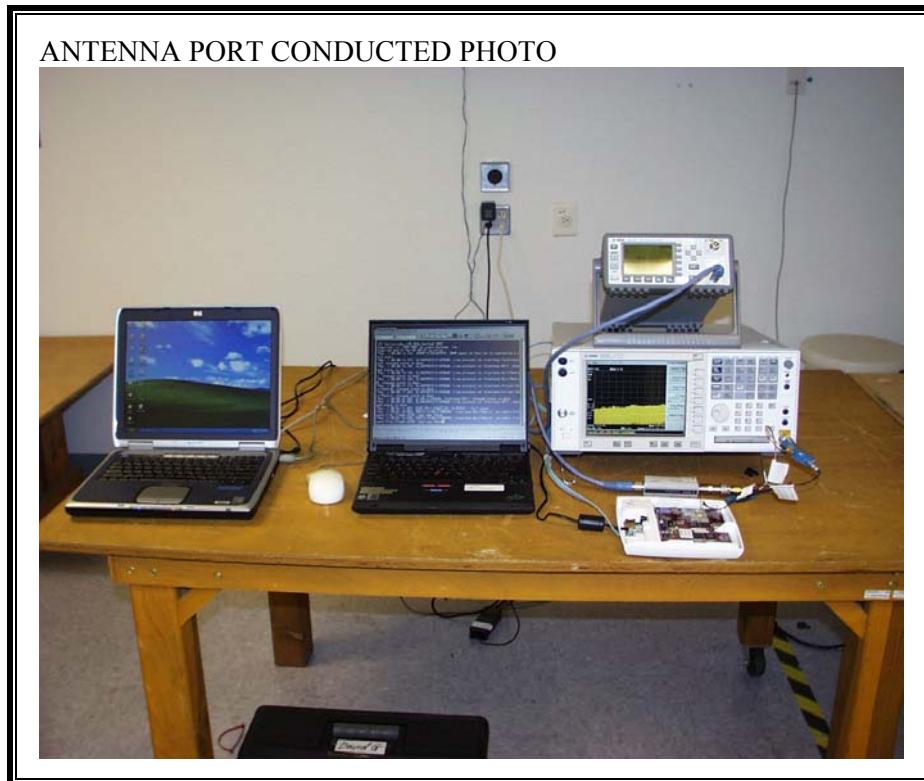
Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS


No non-compliance noted:

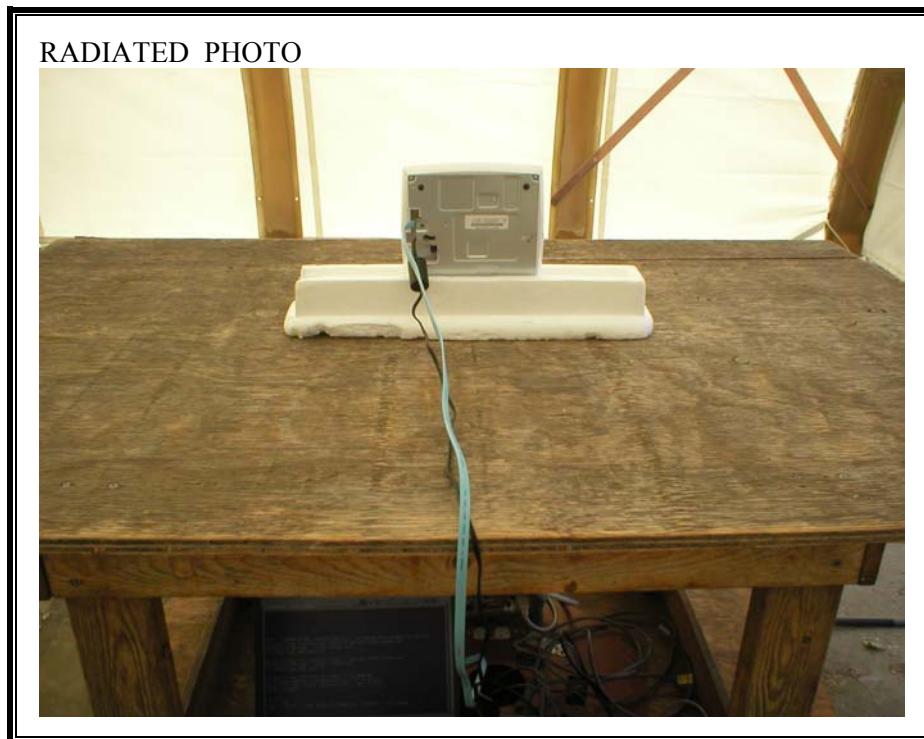
WORST EMISSIONS

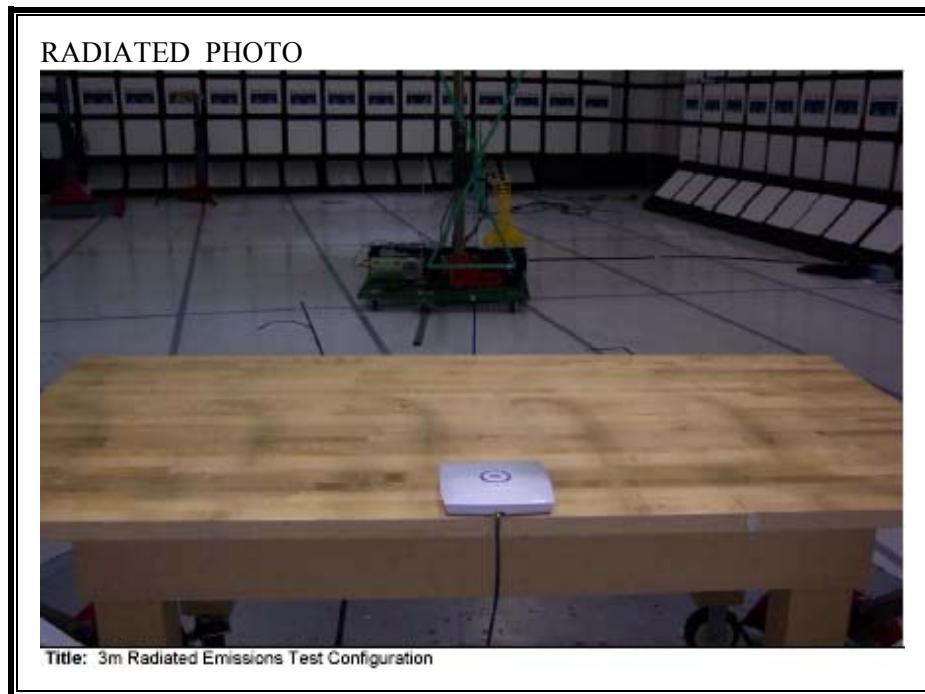
Test Results Table

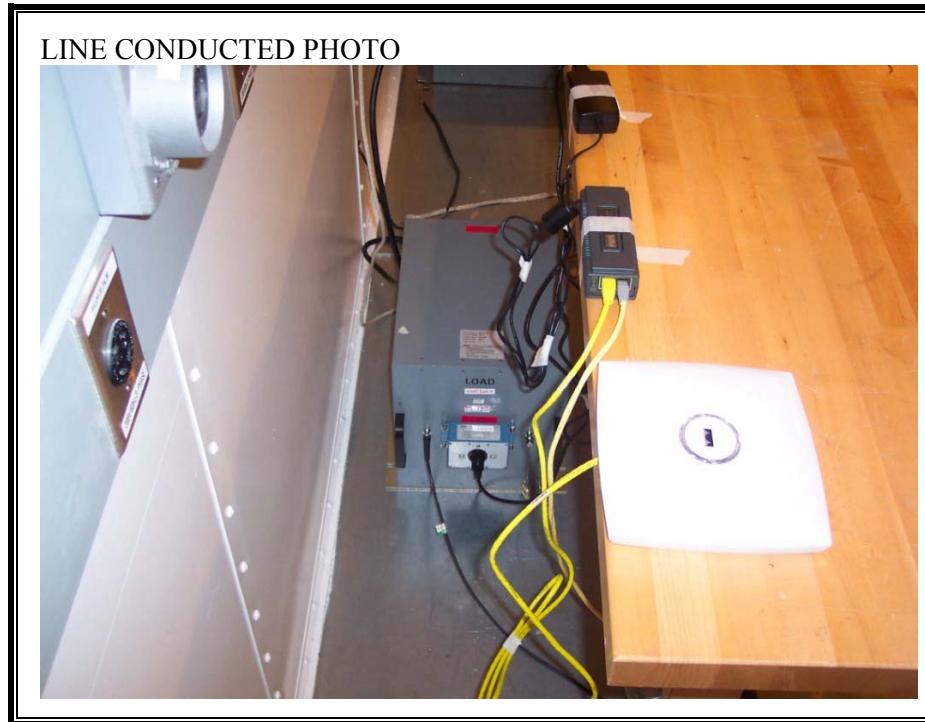

Frequency MHz	Raw dBuV	Cable Loss dB	Factors dB	Level dBuV	Type	Line	Limit dBuV	Margin dB	Pass /Fail	Comments
0.266	17.2	20.2	0	37.5	Av	L	51.2	-13.8	Pass	
0.266	27.1	20.2	0	47.4	Qp	L	61.2	-13.8	Pass	
0.268	17.3	20.2	0	37.5	Av	N	51.2	-13.7	Pass	
0.268	26.9	20.2	0	47.2	Qp	N	61.2	-14	Pass	
0.406	23.5	20.1	0	43.6	Qp	N	57.7	-14.1	Pass	
0.406	15.8	20.1	0	35.9	Av	N	47.7	-11.8	Pass	
0.41	24	20.1	0	44.1	Qp	L	57.6	-13.5	Pass	
0.41	16.6	20.1	0	36.7	Av	L	47.6	-11	Pass	
0.662	15.3	20	0	35.4	Av	L	46	-10.6	Pass	
0.662	25.7	20	0	45.8	Qp	L	56	-10.2	Pass	
0.677	13.1	20	0	33.2	Av	N	46	-12.8	Pass	
0.677	24.3	20	0	44.4	Qp	N	56	-11.6	Pass	
1.06	22.8	20	0	42.9	Qp	L	56	-13.1	Pass	
1.06	9.1	20	0	29.1	Av	L	46	-16.9	Pass	
2.002	22	20	0	42.1	Qp	L	56	-13.9	Pass	
2.002	4.7	20	0	24.8	Av	L	46	-21.2	Pass	
2.362	22.1	20	0	42.2	Qp	L	56	-13.8	Pass	
2.362	4.4	20	0	24.5	Av	L	46	-21.5	Pass	
3.021	2.9	20.1	0	23	Av	N	46	-23	Pass	
3.021	20.1	20.1	0	40.2	Qp	N	56	-15.8	Pass	
3.436	3.8	20.1	0	24	Av	L	46	-22	Pass	
3.436	21.8	20.1	0	41.9	Qp	L	56	-14.1	Pass	
3.689	22.2	20.1	0	42.4	Qp	L	56	-13.6	Pass	
3.689	5.6	20.1	0	25.8	Av	L	46	-20.2	Pass	
4.059	21.9	20.1	0	42	Qp	N	56	-14	Pass	
4.059	3.3	20.1	0	23.4	Av	N	46	-22.6	Pass	
4.97	22	20.1	0.1	42.2	Qp	N	56	-13.8	Pass	
4.97	5.6	20.1	0.1	25.8	Av	N	46	-20.2	Pass	
5.89	24.3	20.2	0.1	44.5	Qp	L	60	-15.5	Pass	
5.89	8.3	20.2	0.1	28.5	Av	L	50	-21.5	Pass	

LINE 1 AND LINE 2 RESULTS

7. SETUP PHOTOS


ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP


RADIATED RF MEASUREMENT SETUP, FRONT


RADIATED RF MEASUREMENT SETUP, BACK

RADIATED RF MEASUREMENT SETUP, BELOW 1GHz

POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP

END OF REPORT