加利电子(无锡)有限公司

地址:无锡高新技术产业开发区锡士路 1号

电话: 86-510-88665500

零件承认书

SPECIFICATION FOR APPROVAL

P/N of Galtronics P/N of SerComm

02102073-04501

TBD

APPROVED BY	SIGNATURE	<u>DATE</u>
Engineering Department Manager	Cleutes	Q3-07-1
Mechanical Engineer	Jecticijal Koschinstry	2010/06/30
RF Engineer	Morreal	2010.6.30
Customer Approval	•	

目 录

- 1. Specification
- 2. Drawing
- 3. Field Plotting

Revision: S1

Part No : 4501-RMN302

Project No : 450100

REV NO.	DATE	<u>DESCRIPTION</u>				
S1	6-30-2010	Initial Draft				
DISTRIBUT	ION LIST:		3.			
1.	LOIT LIGIT.		J.			
2.						
APPROVED BY		SIGNATURE	DATE			
Engineering I	Department Manag	ger				
Mechanical E	ngineer					
Gary Wannag	ot					
RF Engineer						
Randy Cozzol	ino	• 1/				
Approved By	Customer (as re	equired):				

Document: Approval Package 4501-RMN302_REV_S1.docx Form No.: FM016

Revision: S1

Part No : 4501-RMN302

Project No : 450100

Preliminary Design Specification

2.4 GHz Antennas For Cisco RMN302 Cable Modem with Wireless Router

Galtronics P/N:

02102073-04501

Sercomm P/N:

TBD

2010 © COPYRIGHT GALTRONICS LTD.

This document is issued by Galtronics Ltd. (hereinafter called Galtronics) in confidence, and is not to be reproduced in whole or in part without the prior written permission of Galtronics. The information contained herein is the property of Galtronics and is to be used only for the purpose for which it is submitted and is not to be released in whole or in part without the prior written permission of Galtronics.

Document: Approval Package 4501-RMN302_REV_S1.docx Form No.: FM016

Revision: S1

Part No : 4501-RMN302

Project No : 450100

CONTENTS

1.0	PU	RP(DSE	AND	SCO	PE
-----	----	-----	-----	-----	-----	----

- 2.0 RELATED DOCUMENTS
- 3.0 ABBREVIATIONS AND DEFINITIONS
- 4.0 DESCRIPTIONS AND PART NUMBER
 - 4.1 Description
 - 4.2 Part number

5.0 ELECTRICAL SPECIFICATIONS

- 5.1 Frequency Band
- 5.2 Impedance.
- 5.3 Matching Requirements
- 5.4 VSWR Requirements
 - 5.4.1 Maximum VSWR
 - 5.4.2 Test Method (Engineering)
 - 5.4.3 Test Method (Production)
- 5.5 Efficiency (Measured in Free Space)
 - 5.5.1 Minimum Values of Antenna Efficiency
 - 5.5.2 Test Method
- 5.6 Peak and Average Gain
 - 5.6.1 Minimum Peak and Average Gain Values
 - 5.6.2 Peak Gain Limitation
 - 5.6.3 Test Method

6.0 MECHANICAL SPECIFICATIONS

- 6.1 Mechanical Configuration
- 6.2 Cable Pull Test

7.0 ENVIRONMENTAL SPECIFICATIONS

- 7.1 Operating Temperature
- 7.2 Operating Humidity
- 7.3 Storage Temperature
- 7.4 Storage Humidity
- 8.0 QUALIFICATION
- 9.0 PACKAGING

Document: Approval Package 4501-RMN302_REV_S1.docx Form No.: FM016

Page 3 of 8

Rev C

Revision : S1

Part No : 4501-RMN302

Project No : 450100

1.0 PURPOSE AND SCOPE;

The purpose of this document is to establish a *design* specification for the antenna product that Galtronics is producing for Cisco. Any changes or additions to this specification can affect schedule and/or cost of the product and should be negotiated between Galtronics and Cisco before being incorporated into the specification. Upon agreement of this specification, Galtronics will make no changes without written approval from Cisco. Any changes requested by Cisco will be given to Galtronics with sufficient time frame to evaluate the cost impact and react as required.

The development of this product within Galtronics is conducted according to the Design Control Procedure SOP-006E.

2.0 RELATED DOCUMENTS:

SOP006E Product Launch Procedure (Design Control)

EN006E Reliability Guidelines

EIA-STD-556 Outer Shipping Container Bar Code Label Standard

ANTENNA SPECIFICATION

3.0 ABBREVIATIONS AND DEFINITIONS

 Ω Ohm

o Degree

°C Celsius (degrees Centigrade)

cm Centimetre g Grams GHz Gigahertz

Hz Hertz kg Kilograms MHz Megahertz m Metre

mm Millimetre
N Newton

PCB Printed Circuit Board RH Relative Humidity

W Watt

Design Specification: A preliminary target specification to guide the design process.

Product Specification: A final specification for the qualified product.

4.0 DESCRIPTIONS AND PART NUMBER;

4.1 DESCRIPTION

The antennas are referred to as Galtronics' Compact Balanced Antennas. The Compact Balanced Antenna design consists of a single-piece high performance balanced antenna with coaxial cable. The cable is stripped and pre-tinned for soldering to device PCB. The Compact Balance Antennas have mounting features allowing for alignment and attachment to the upper plastic enclosure and are held in place by using press-fit methods. There are two antennas installed per unit.

Document: Approval Package 4501-RMN302_REV_S1.docx Page 4 of 8 Form No.: FM016 Rev C

Revision: S1

Part No : 4501-RMN302

Project No : 450100

4.2 PART NUMBER

Galtronics P/N	Sercomm P/N	Frequency Band	Location in Wireless Router
02102073-04501	TBD	2.4 - 2.5 GHz	Right Front & Left Front

5.0 ELECTRICAL SPECIFICATIONS;

5.1 FREQUENCY BAND

Unlicensed ISM2400 Band: 2.4 – 2.5 GHz

5.2 IMPEDANCE - Nominal impedance: 50Ω

5.3 MATCHING REQUIREMENTS.

The antennas do not require additional impedance matching circuitry.

5.4 VSWR REQUIREMENTS

5.4.1 VSWR Maximum

Maximum VSWR allowed is 2.0:1

5.4.2 TEST METHOD (ENGINEERING)

The antennas are tested while mounted in the cable modem. The cable modem is positioned in free space. (Free space means the device is placed on a non-conductive surface away from any conductive objects.)

5.4.3 TEST METHOD (PRODUCTION)

In mass production it is not practical to use the device supplied by customer. Galtronics will designate reference antennas that meet VSWR requirements when installed in the wireless cable modem. The reference antennas will then be measured in free space on production test equipment. Production antennas will be measured on the same production test equipment, and are thereby correlated to the reference antennas.

5.5 EFFICIENCY

5.5.1 MINIMUM VALUES OF ANTENNA EFFICIENCY

The efficiency of the antennas shall be a minimum of 50%.

5.5.2 TEST METHOD

The antennas are tested while mounted inside the wireless cable modem. The cable modem is then tested mounted horizontally in an anechoic chamber in free space. The efficiency of each antenna is measured at a minimum of three frequency points across the band of interest. The antennas shall meet the minimum efficiency requirements.

GALTRONICS CONFIDENTIAL AND PROPRIETARY INFORMATION MAY NOT BE COPIED OR DISCLOSED.

Document: Approval Package 4501-RMN302_REV_S1.docx Page 5 of 8 Form No.: FM016 Rev C

Revision: S1

Part No : 4501-RMN302

Project No : 450100

5.6 MINIMUM PEAK AND AVERAGE GAIN

5.6.1 MINIMUM PEAK AND AVERAGE GAIN VALUES

	Azimuth Cut					
	Right Front Antenna Left Front Antenna					
Frequency (GHz)	Power Sum Power Sum Peak (dBi) Avg (dBi)		Power Sum Peak (dBi)	Power Sum Avg (dBi)		
2.40	0.00	-4.50	-0.50	-4.50		
2.45	-0.50	-4.50	0.00	-4.50		
2.50	-0.50	-4.50	-0.50	-4.50		

	Elevation Cut (Front to Back)				
	Right Front Antenna Left Front Antenna				
Frequency (GHz)	Power Sum Power Sum Peak (dBi) Avg (dBi)		Power Sum Peak (dBi)	Power Sum Avg (dBi)	
2.40	0.75	-2.50	1.50	-3.00	
2.45	0.25	-2.50	1.50	-3.00	
2.50	0.25	-3.00	1.00	-3.00	

	Elevation Cut (Side to Side)				
	Right Front Antenna Left Front Antenna				
Frequency (GHz)	Power Sum Power Sum Peak (dBi) Avg (dBi)		Power Sum Peak (dBi)	Power Sum Avg (dBi)	
2.40	1.00	-3.50	0.75	-4.00	
2.45	1.00	-3.50	0.50	-4.00	
2.50	0.50	-4.00	0.00	-4.00	

5.6.2 PEAK GAIN LIMITATION

The peak gain of the antennas shall be limited to the following values:

	Max Peak Gain
Right Front Antenna	3.0 dBi
Left Front Antenna	3.0 dBi

5.6.3 TEST METHOD

The cable modem with antennas installed is mounted horizontally in an anechoic chamber in free space. The peak and average gain values are recorded for each antenna at the frequencies indicated. The antennas shall meet the minimum peak gain, maximum peak gain, and average gain values.

Document: Approval Package 4501-RMN302_REV_S1.docx Page 6 of 8 Form No.: FM016 Rev C

Revision: S1

Part No : 4501-RMN302

Project No : 450100

6.0 MECHANICAL SPECIFICATIONS

6.1 MECHANICAL CONFIGURATION

The appearance of the antennas is in accordance with drawing 02102073-04501

6.2 CABLE PULL TEST

The antenna cable and solder joint shall withstand a 3 N axial pull force. The antenna element is fixed in an appropriate fixture and a 3 N axial force is slowly applied. The force is maintained for 10 seconds. There shall be no permanent damage to the antenna after the test.

7.0 ENVIRONMENTAL SPECIFICATIONS

7.1 OPERATING TEMPERATURE

Operating temperature range shall be 0° C to +60° C.

7.2 OPERATING HUMIDITY

Operating humidity range shall be 10% to 85%, non-condensing.

7.3 STORAGE TEMPERATURE

Storage temperature range shall be -20° C to +60° C.

7.2 STORAGE HUMIDITY

Storage humidity range shall be 5% to 90%, non-condensing.

Document: Approval Package 4501-RMN302_REV_S1.docx Form No.: FM016

Page 7 of 8 Rev C

Revision: S1

Part No : 4501-RMN302

Project No : 450100

8.0 QUALIFICATION

The mechanical and environmental tests mentioned above are performed according to the flow chart shown in Figure 1 below. The entire testing procedure will be conducted according to EN006E.

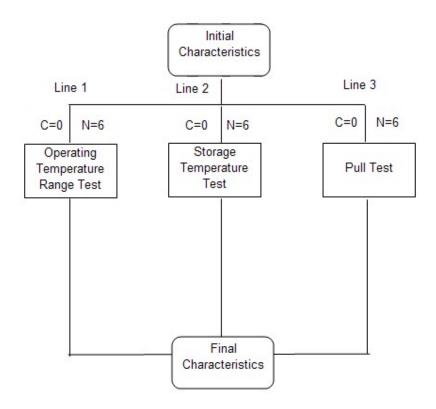


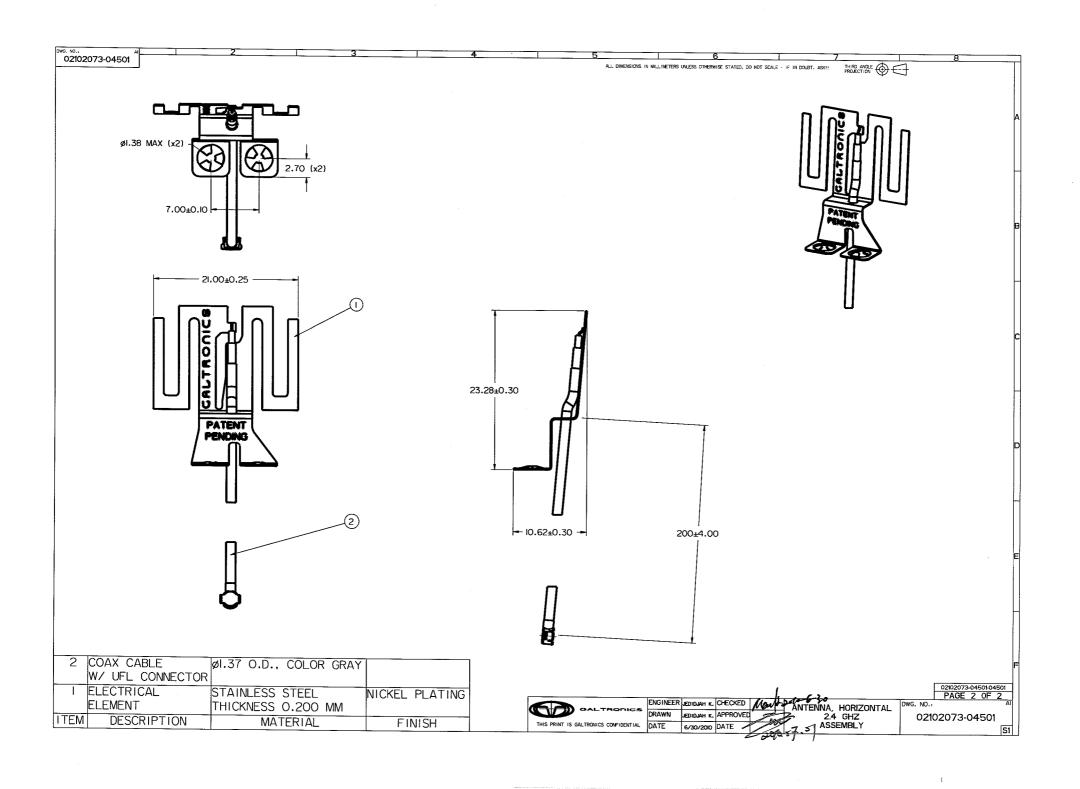
Figure 1. Property Verification Test Flow Chart

Note: n - sample size; c - allowable amount of critical failures

9.0 PACKAGING

02102073-04501 will be packed in trays. 55 antennas are packed in one tray, and 1,100 antennas are packed in one shipping box.

Document: Approval Package 4501-RMN302_REV_S1.docx Form No.: FM016

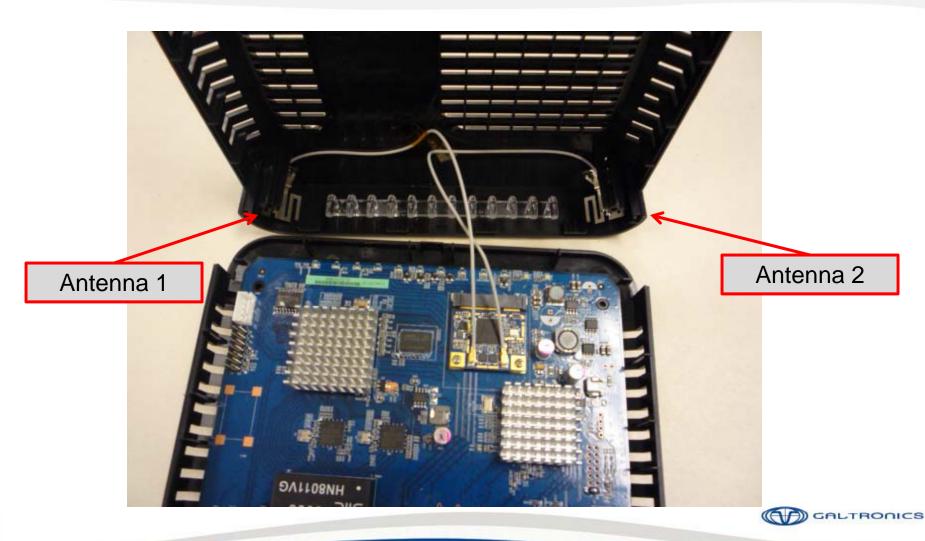

Page 8 of 8

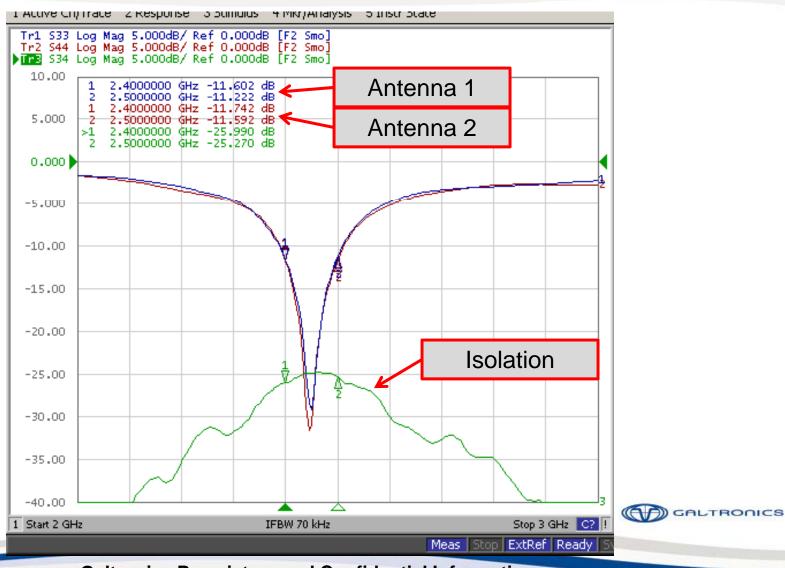
Rev C

DRAWING COVER SHEET

REV	ISSUE DATE	ECO#	DESCRIPTIO	3. 1			
		ECO#					
S-1	6/30/2010		Initial Releas	e			
	, i	l	ŀ				
ADDI	ICADLE CDEC'C.						
APPL	<u>ICABLE SPEC'S:</u>					INITEDA	IAI DICTORUTION
						INTERI	NAL DISTRIBUTION
							OCESS
						PU	RCHASING
							ODUCTION
							ASTICS
CLIDEAG	E EMICH MICROMETE		/	-0.			
SURF AC	<u>E FINISH, MICROMETE</u>	RS. CLA	CUNLESS STADE	<u>-D) 0.8</u>		1 -	ALITY
TC	DLERANCES UNLESS OT	HERWISE	SPECIFIED:				OMING INSPECTION
) PLACE (X) ±I	TW	O PLACE (X.XX)±O.I		🕎 FIN	AL INSPECTION
ON	JE PLACE (X.X)±0.2	THR	EE PLACE (X.	$XXX)\pm0.05$		I □ MA	RKETING
METRIC S	CREW THREAD TO ISO S	TANDARDS I	/24, 286I, 965-I	AND 965-2	INCHES SCREV	⊼l	
THREAD T	O ANSI/ASME BI.I. ALL /	ANGLES TO	BE 90. UNLESS	OTHERWISE	STATED.		
TOLERANC	E ON ANGLES ±1/4. ALL	TOLERANC	ES APPLY AFTER	FINISHING.	MACHINE		
CORNER R	ADS, 0.25 MAX., TO BE	FREE FROM	BURRS, SHARP	EDGES AND	ALL FOREIGN	MATERIALS.	FLASH ALLOWANCE FOR
LASTIC I	MOLDED PARTS TO BE O. ENTAL REQUIREMENTS: C	IMM UNLES	S OTHERWISE ST	ATED. DIA	METER MUST	BE CONCENT	TRIC WITHIN 0.08 T.I.R
PROCEDUR	E" (SOPGOOZE).	OWITETANCE	WITH GALIRON	CS STANDAR	D SUPPLIER	ENVIRONMENT	AL DECLARATION
QUAL		= NOTE	c.	W VD D	DOCECC C	ONTROL	OLIADE DEGLEDES
WOOL	-III ADDONANCI	<u> NOIL</u>	<u>.J.</u>				CHART REQUIRED
NO CH	ANGE SHALL BE AI	LLOWED ON	PRODUCTION.	WITH	EACH SHIP	PMENT)	
_	AL WITHOUT PRIOR EXP						
BY G	ALTRONICS ENGINEER	RING AND	PURCHASING	CRITI	CAL DIMEN	ISION AFF	ECTS FORM FIT
DEPART	MENTS FOR SPECIAL F	REQUIREMEN	NTS SEE FMI49		JNCTION	101011 711 1	LOTO FORM TH
				5			
SUFF	IX # DESCRIPTION						
045	01 Linksys BHR3 (with UFL C	onnector)				
						····	
	ı						
i I					···		
			O 4 1 =		~~ · -	-	
	See Note(s)	ľ	GAL	KOMI	CS LT	D.2010	1
 			THE DRAV	ING AND	INFORMA'	tion on	THIS PRINT ARE
1			GALTRONIC	cs- co	NFIDENCIAL	_ AND	PROPRIETARY
ļ	See Note(s)	ļ	INFORMATI				OR DISCLOSED
							OIL DISCEOSED
					T		
TITLE:			CHKD:	,	DWG. No.		
		[Men &	- 26/-100		1210207	2 04501
ANITE	NNA, HORIZO	NITAI	APRVD:		1 (ノムルムしん	3-04501
714 I E		IA I WE		DAR		no.	
	2.4 GHZ			<i>X</i> /	J		
	ASSEMBLY	ſ	DATE:	No. Ara 1	REV.	S1	PAGE 1 OF 2
	MYYLITIUL I		0	42.	' \ v .	JI	I AGE I OF Z
				*	ł		

Cisco RMN302 Wireless Cable Modem Antenna Performance Report

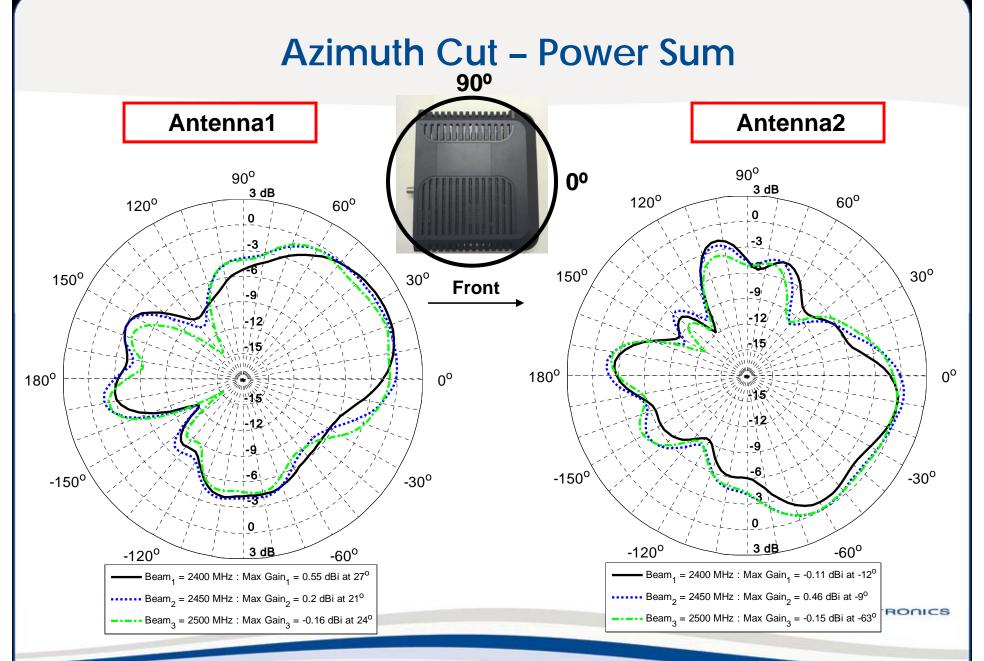

- Antennas are press-fit onto upper enclosure using antenna mounting posts.
- Antenna1 is in front right corner of device. Antenna2 is in left front corner of device.


Cisco RMN302 Wireless Cable Modem

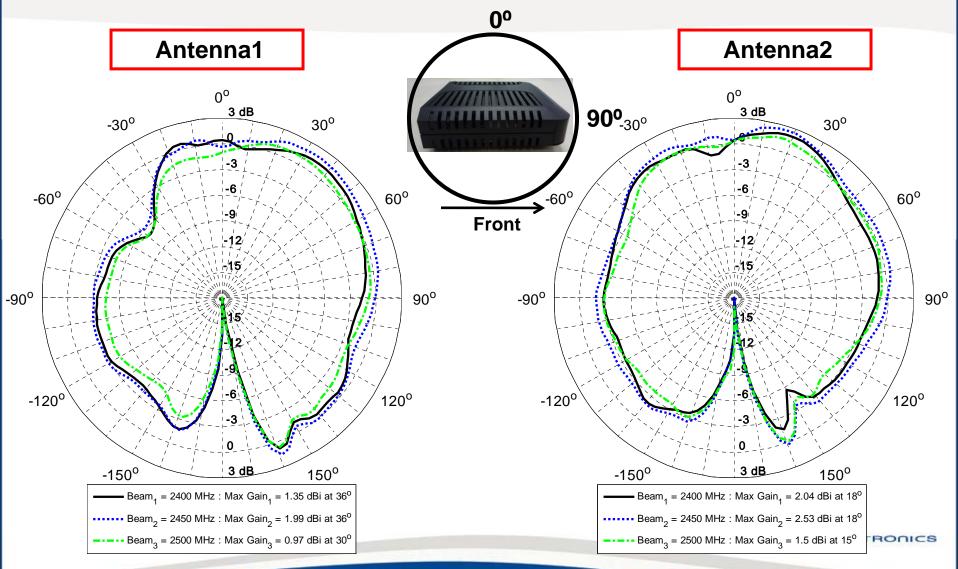
Cisco BHR3 Wireless Cable Modem Antenna Test Configuration

Antenna Return Loss and Isolation

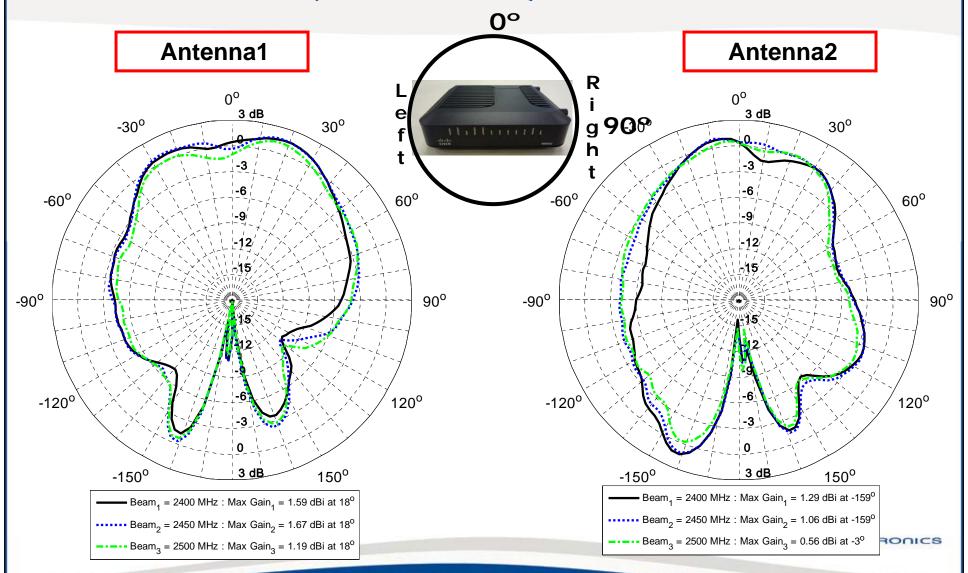
Antenna Efficiency

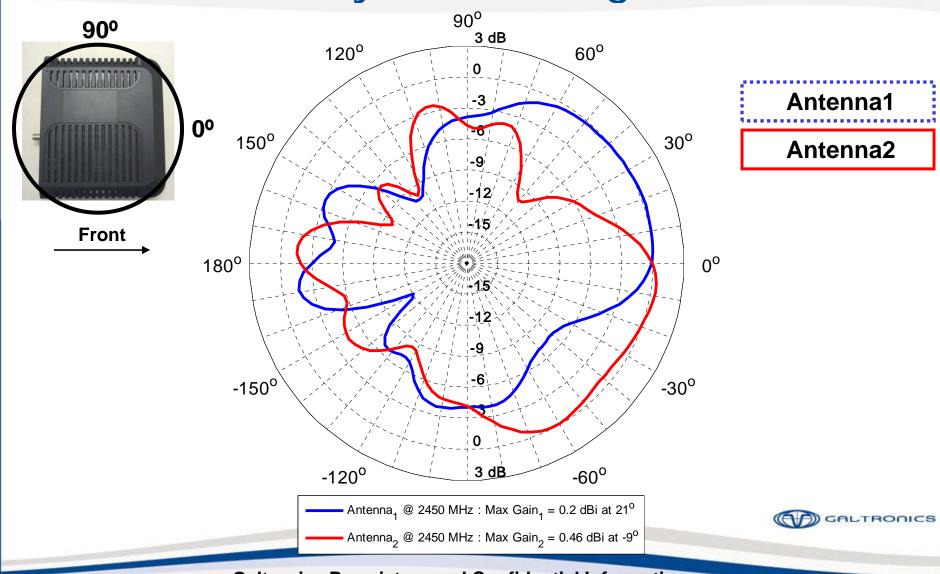

Antenna 1

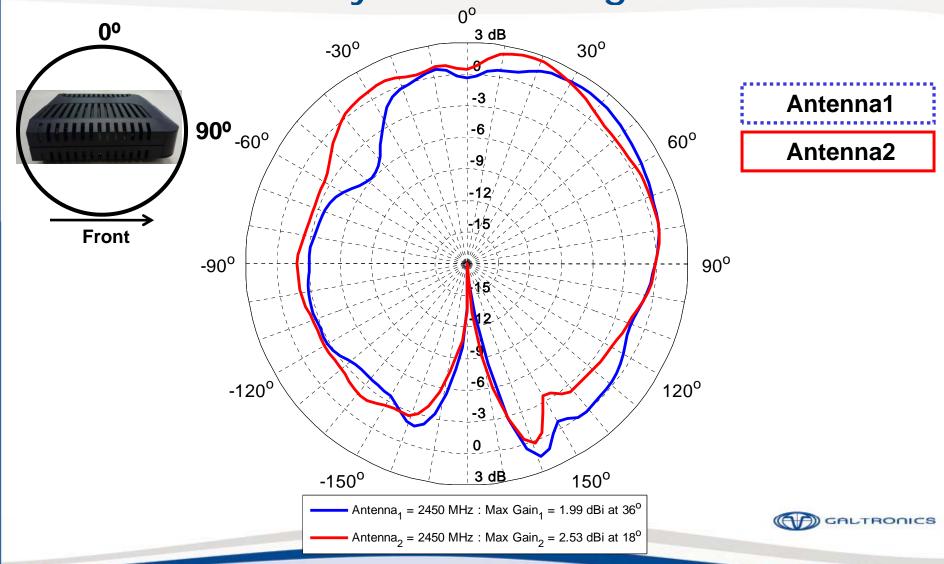
Frequency (GHz)	Directivity	Peak Gain	S11	Terminal Efficiency
2.400	4.83	2.47	-13.94	58.07%
2.450	4.73	2.64	-22.15	61.85%
2.500	4.77	2.04	-9.69	53.37%
AVERAGE				57.77%

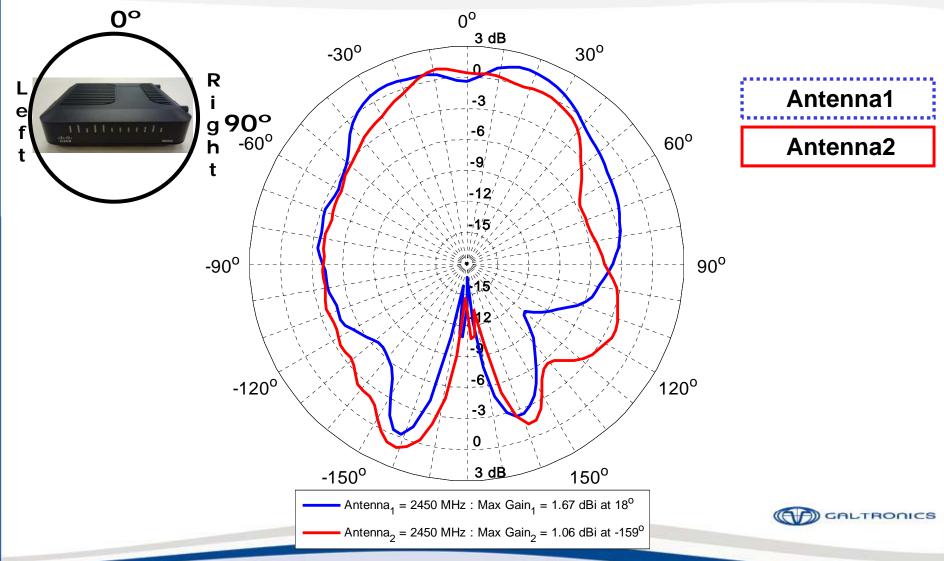

Antenna 2

AVERAGE				57.36%
2.500	4.69	2.15	-11.33	55.63%
2.450	4.73	2.64	-27.62	61.82%
2.400	5.00	2.38	-12.15	54.64%






Elevation (Side to Side) Cut - Power Sum


Azimuth Cut – Power Sum System Coverage

Elevation (Front to Back) Cut - Power Sum System Coverage

Elevation (Side to Side) Cut – Power Sum System Coverage

Updated Antenna Performance Report Summary of Results

- Antennas exhibit good return loss, excellent isolation, and good efficiency.
- Antenna configuration offers good 3D spatial coverage compatible with either vertical or horizontal mounting.

