

Exhibit B Test Report
Wireless Computing, Inc.
RF170 Wireless Laser Mouse

Project Number: 08106-10

Prepared for:

Wireless Computing, Inc.
3703 Peak Lookout
Austin, Texas 78738

By
Professional Testing (EMI), Inc.
1601 FM 1460, Suite B
Round Rock, Texas 78664

September 10, 2007

CERTIFICATION
Electromagnetic Interference Test Report
Wireless Computing, Inc.
RF170 Wireless Laser Mouse

Table of Contents

Title Page	1
Table of Contents.....	2
Certificate of Compliance	3
1.0 EUT Description	4
1.1 Applicable Documents.....	4
1.2 EUT Operation.....	4
2.0 Electromagnetic Emissions Testing.....	4
2.1 Radiated Emissions Measurements	4
2.1.1 Test Procedure	5
2.1.2 Test Criteria	5
2.1.3 Test Results.....	5
3.0 Occupied Bandwidth Measurements	5
3.1 Test Procedure	6
3.2 Test Criteria	6
3.3 Test Results.....	6
4.0 Antenna Requirement	6
4.1 Evaluation Procedure	6
4.2 Evaluation Criteria.....	6
4.3 Evaluation Results	6
5.0 Modifications to Equipment	6
6.0 List of Test Equipment.....	7

FIGURES

Figure 1 Radiated Emissions Test Setup	8
--	---

APPENDICES

Appendix A Emissions Data.....	9
--------------------------------	---

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL, WITHOUT THE WRITTEN APPROVAL OF PROFESSIONAL TESTING (EMI), INC.

Certificate Of Compliance

Applicant: Wireless Computing, Inc.

Applicant's Address: 3703 Peak Lookout
Austin, TX 78738

FCC ID: L7MR170

Project Number: 08106-10

Test Dates: August 13, 2007

I, Jason Anderson, Director of Testing Services for Professional Testing (EMI), Inc., being familiar with the FCC rules and test procedures have reviewed the test setup, measured data and this report. I believe them to be true and accurate.

The **Wireless Computing, Inc., RF170** was tested to and found to be in compliance with FCC Part 15 Subpart C for an Intentional Radiator.

The highest emissions generated by the above equipment are listed below:

	<u>Frequency (MHz)</u>	<u>Level (dBμV/m)</u>	<u>Limit (dBμV/m)</u>	<u>Margin (dB)</u>
Fundamental	916.5	83.3	84.5	-1.2
Harmonics	1830	54.1	63.5	-9.4
Spurious	992	31.9	35.5	-3.6
Occupied Bandwidth	380 (kHz)			

Jason Anderson
Director of Testing Services

This report has been reviewed and accepted by Wireless Computing, Inc.. The undersigned is responsible for ensuring that **Wireless Computing, Inc., RF170** will continue to comply with the FCC rules.

1.0 EUT Description

The Wireless Computing RF170 is a wireless laser mouse. The device transmits in the ISM band at 916.5 MHz. The device employs amplitude shift keying to transmit binary data to the host device.

The system tested consisted of the following:

Manufacturer & Model	FCC Number	Description
Wireless Computing, Inc., RF170	L7MR170	Wireless Laser Mouse

1.1 Applicable Documents

Guidelines	FCC Rule Part 15
Transmitter Characteristics	15.249
Spurious Radiated Power	15.205, 15.209, 15.249
Antenna Requirement	15.203

1.2 EUT Operation

The EUT was operated in continuous transmit mode at max power amplitude modulated with a 101010 bit pattern to measure fundamental, harmonics, and spurious radiation.

2.0 Electromagnetic Emissions Testing

Professional Testing (EMI), Inc. (PTI), follows the guidelines of NIST for all uncertainty calculations, estimates and expressions thereof for EMC testing.

2.1 Radiated Emissions Measurements

Radiated emission measurements were made of the Fundamental and Spurious Emission levels for the EUT. Measurements of the occupied bandwidth were also made for the EUT.

Tests of the fundamental for the device were performed to determine the worst case polarization of the devices. The fundamental emissions of the device were measured with the antenna of the device in three orthogonal axes.

Emission measurements below 1 GHz were made at the PTI semi-anechoic facility designated Site 45 (FCC 459644, IC 3036A-2) in Austin, Texas. This site is registered with the FCC under Section 2.948 and Industry Canada per RS-212 and is subsequently confirmed by laboratory accreditation (NVLAP).

Measurements above 1 GHz were performed indoors adjacent to Site 45 at a distance of 1 meter with directional antennas. In anticipation of future site performance requirements above 1 GHz, this site was constructed with anechoic materials placed in key locations to reduce reflections from nearby walls and structures.

2.1.1 Test Procedure

The EUT was placed on a non-conductive table 0.8 meters above the ground plane. The table was centered on a motorized turntable which allows 360 degree rotation. For measurements of the fundamental signal, a measurement antenna was positioned at a distance of 10 meters as measured from the closest point of the EUT. The radiated emissions were maximized by rotating the EUT.

A Spectrum Analyzer with peak detection was used to find the maximums of the radiated emissions during the variability testing. A drawing showing the test setup is given as Figure 2.

2.1.2 Test Criteria

The table below shows FCC radiated limits for an intentional radiator operating under the provisions of part 15.249. The measurement of the harmonics was performed to 10 GHz. The reference distance for each limit is also shown in this table.

Frequency MHz	Test Distance (Meters)	Field Strength (dBuV/m)@ Test Distance
30 to 88	10	30.0
88 to 216	10	33.
216 to 960	10	35.5
960 and above	10	43.5
Fundamental	10	84.5
Harmonics	1	63.5

Note: Fundamental and Harmonic Limits are expressed in Average field strengths. The spurious limits are expressed in Quasi-Peak.

2.1.3 Test Results

The radiated test data for the fundamental is included in Appendix A. Peak detection was used during the test for the fundamental and harmonics. Quasi-Peak detection was used for spurious emissions below 1 GHz. The radiated emission test data is included in Appendix A. The radiated emissions generated by the RF170 are below the FCC Part 15.249 limits.

3.0 Occupied Bandwidth Measurements

Emission measurements below 1 GHz were made at the PTI semi-anechoic facility designated Site 45 (FCC 459644, IC 3036A-2) in Austin, Texas. This site is registered with the FCC under Section 2.948 and Industry Canada per RS-212 and is subsequently confirmed by laboratory accreditation (NVLAP).

Measurements above 1 GHz were performed indoors adjacent to Site 45 at a distance of 1 meter with directional antennas. In anticipation of future site performance requirements above 1 GHz, this site was constructed with anechoic materials placed in key locations to reduce reflections from nearby walls and structures.

3.1 Test Procedure

The EUT was placed on a non-conductive table 0.8 meters above the floor. The table was rotated to an angle which presented the highest signal level. The occupied bandwidth was based on a 20 dB criteria (20 dB down either side of the emission from the peak emission). A drawing showing the test setup is given as Figure 1.

3.2 Test Criteria

According to FCC Part 15.249, the emission must remain in the defined band.

3.3 Test Results

The occupied bandwidth test data is included in Appendix A. The maximum occupied bandwidth for the fundamental frequency 916.5 MHz is 550 kHz. This occupied bandwidth complies with the FCC requirement.

4.0 Antenna Requirement

An analysis of the RF170 was performed to determine compliance with FCC Section 15.203. This section requires specific handling and control of antennas used for devices subject to regulations.

4.1 Evaluation Procedure

The structure and application of the RF170 was analyzed with respect to the rules. The antenna is an internal antenna, and is not accessible to the user. An auxiliary antenna port is not present.

4.2 Evaluation Criteria

Section 15.203 of the rules states that the subject device must meet at least one of the following criteria:

- (a) Antenna must be permanently attached to the unit.
- (b) Antenna must use a unique type of connector to attach to the EUT.
- (c) Unit must be professionally installed. Installer shall be responsible for verifying that the correct antenna is employed with the unit.

4.3 Evaluation Results

The RF170 meets the criteria of this rule by virtue of having an internal antenna inaccessible to the user. The EUT is therefore compliant.

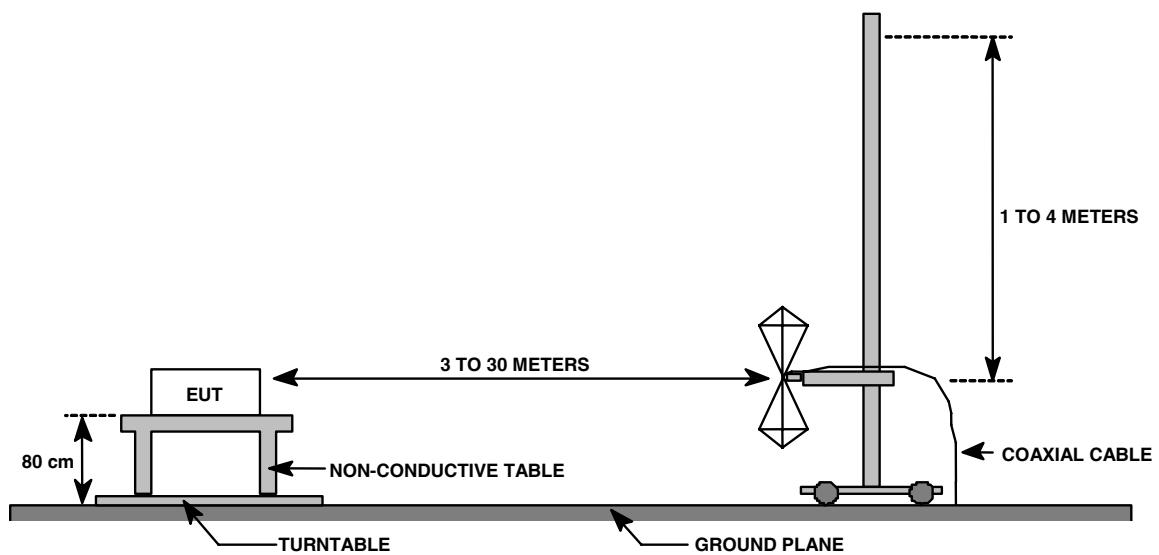
5.0 Modifications to Equipment

No modifications were made to the EUT.

6.0 List of Test Equipment

A list of the test equipment utilized to perform the testing is given below. The date of calibration is given for each.

< 1 GHz


Asset #	Manufacturer	Model #	Description	Calibration Due
0239	HP	85650A	Quasi-peak Adapter (high band)	December 26, 2007
1526	HP	85662A	Spectrum Analyzer Display (high band)	NCR
1525	HP	8566B	Spectrum Analyzer (high band)	July 10, 2008
1035	HP	85685A	RF Preselector (high band)	December 8, 2007
1280	HP	85650A	Quasi-peak Adapter (low band)	May 30, 2008
0045	HP	85662A	Spectrum Analyzer Display (low band)	NCR
0237	HP	8568B	Spectrum Analyzer (low band)	December 26, 2007
0990	HP	85685A	RF Preselector (low band)	January 11, 2008
1455	HP	8447D	RF Preamplifier	May 1, 2008
1389	EMCO	3108	Biconical Antenna	July 5, 2008
1486	EMCO	3147	Log Periodic Dipole Array Antenna	April 19, 2008
C026	none	none	Coaxial Cable (low band)	June 28, 2008
C027	none	none	Coaxial Cable (high band)	July 6, 2008

High band refers to equipment dedicated to measurements from 200 MHz to 1000 MHz. Low band refers to equipment dedicated to measurements from 30 MHz to 200 MHz.

> 1 GHz

Asset #	Manufacturer	Model #	Description	Calibration Due
1342	Rohde & Schwarz	ESMI	Spectrum Analyzer, Display Section	26 Oct 2007
1342	Rohde & Schwarz	ESMI	Spectrum Analyzer, Receiver Section, 20 Hz – 26.5 GHz	26 Oct 2007
C0965	Pasternack	LLS	Cable, microwave, 0.5 m, N-SMA	13 Jun 2008
CXXX	Pasternack	LLS	Cable, microwave, 12 ft, SMA-SMA	13 Jun 2008
1594	Miteq	AFS44-00102650	Preamplifier 200 MHz – 26.5 GHz, 42 dB	13 Jun 2008
0582	EMCO	3115	Horn Antenna, Ridge Guide 1 – 18 GHz	21 Aug 2007
1542	AH Systems	SAS-572	Horn Antenna 18 – 26.5 GHz, Std Gain 20 dBi	28 Nov 2007
F001	Mini-Circuits	SHP-1000	1.0 GHz High Pass Filter, 3 dB down @ 900MHz, to 3 GHz	CBU
0846	SMT	1CY83	1.5 GHz High Pass Filter, to 10 GHz	CBU
None	Microphase Corp.	CR220HIB	2.0 GHz High Pass Filter SN 1190	CBU
0989	MicroTronics	HPM50111	2.5 GHz High Pass Filter	CBU
1527	MicroTronics	HPM50112	6 GHz High Pass Filter SN 010	11 Aug 2008

FIGURE 1: Radiated Emissions Test Setup

APPENDIX A

EMISSIONS DATA SHEET

Radiated Data Sheet
Peak Power
Wireless Computing, Inc.
RF170
Peak Detection RBW =120 kHz

Test Date: August 13, 2007

Measurement Distance (Meters): 10

Vertical

Frequency (MHz)	EUT Direction (degrees)	Antenna Elevation (Meters)	Recorded Level (dBuV)	Amplifier Gain (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Corrected Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
916.5	50	3	75.9	36.6	23.5	5.3	67.6	84.5	-16.4

Horizontal

Frequency (MHz)	EUT Direction (degrees)	Antenna Elevation (Meters)	Recorded Level (dBuV)	Amplifier Gain (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Corrected Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
916.5	350	1	91.2	36.6	23.5	5.3	83.3	84.5	-1.2

TEST ENGINEER: Erik Ray

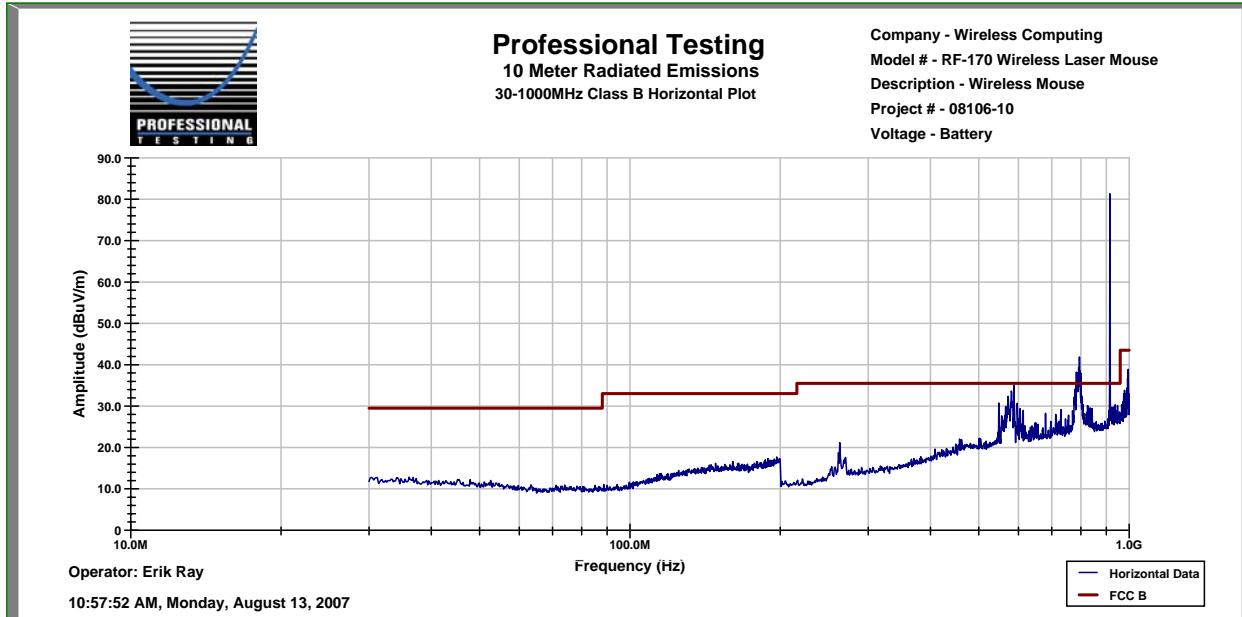
Radiated Data Sheet
Spurious
Wireless Computing, Inc.
RF170
Quasi-Peak Detection RBW=120kHz
(Tabular Data)

Test Date: August 13, 2007

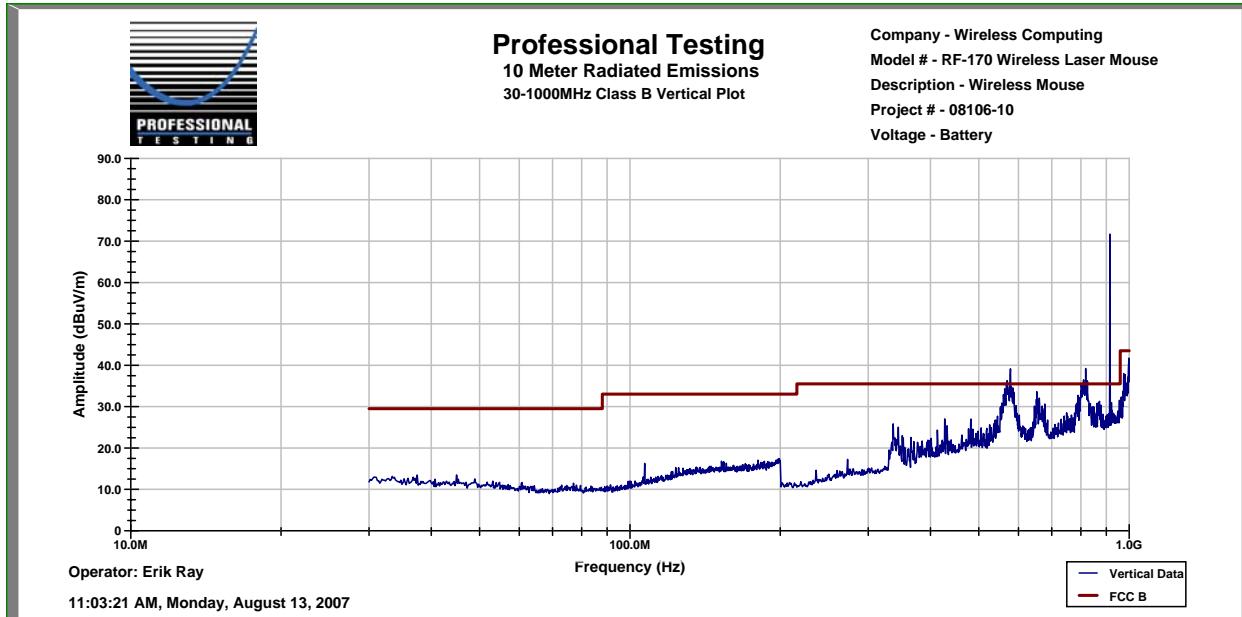
Measurement Distance (Meters): 10

Vertical

Frequency (MHz)	EUT Direction (degrees)	Antenna Elevation (Meters)	Recorded Level (dBuV)	Amplifier Gain (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Corrected Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
107	noise	floor	20.4	26.3	9.6	1.2	4.9	33	-28.1
236	noise	floor	20.25	36.0	11.8	2.1	-1.9	35.5	-37.4
336	0	4	35.46	36.9	14.5	2.8	15.8	35.5	-19.7
427.5	0	4	29.87	37.2	17.5	3.1	13.3	35.5	-22.2
571.4	300	1	41.54	37.1	19.4	3.8	27.7	35.5	-7.8
653	noise	floor	29.35	36.9	20.2	4.0	16.6	35.5	-18.9
818.4	0	2	37.75	36.8	23.1	4.7	28.7	35.5	-6.8


Horizontal

Frequency (MHz)	EUT Direction (degrees)	Antenna Elevation (Meters)	Recorded Level (dBuV)	Amplifier Gain (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Corrected Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
160	0	1.5	20.57	26.0	12.7	1.6	8.8	33	-24.2
263.2	200	1	31.35	36.3	13.0	2.4	10.4	35.5	-25.1
588.1	80	1	38.02	37.1	19.6	3.7	24.3	35.5	-11.2
818	0	2	34.4	36.8	23.1	4.7	25.3	35.5	-10.2
992	30	1.5	37.99	36.5	24.8	5.6	31.9	35.5	-3.6


TEST ENGINEER: Erik Ray

Radiated Data Sheet
Spurious
Wireless Computing, Inc.
RF170
Quasi-Peak Detection RBW=120kHz
(Graphical representation only)

Horizontal

Vertical

Radiated Data Sheet
Harmonics
Wireless Computing, Inc.
RF170
Peak Detection RBW=1 MHz

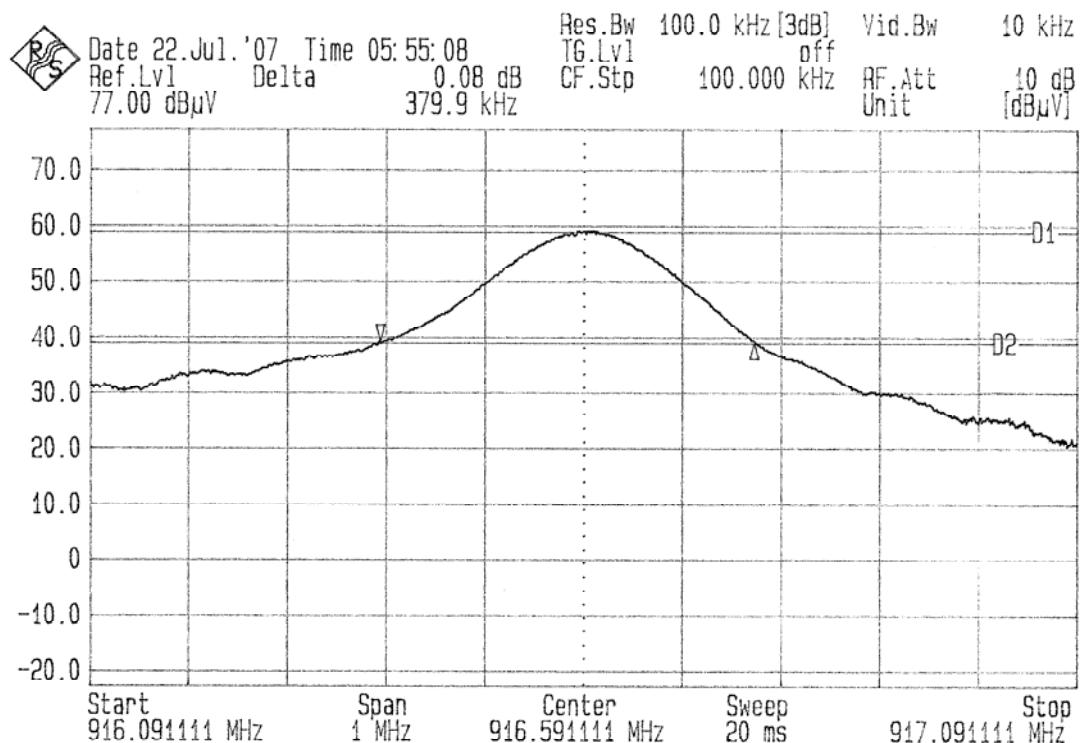
Test Date: August 13, 2007

Measurement Distance (Meters): 1

Vertical

Frequency (GHz)	EUT Direction (degrees)	Antenna Elevation (Meters)	Recorded Level (dBuV)	Amplifier Gain (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Corrected Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
1.83014	90	1	63.8	40.2	27.6	2.9	54.1	63.5	-9.4
2.74521	noise	floor	61.8	40.6	29.6	3.0	53.8	63.5	-9.7
3.66028	noise	floor	55	40.7	32.3	3.3	49.8	63.5	-13.7
4.57535	noise	floor	55.9	41.5	33.9	3.9	52.2	63.5	-11.3
5.49042	noise	floor	53.6	42.3	34.8	4.7	50.8	63.5	-12.7
6.40549	noise	floor	52.2	42.9	35.9	4.5	49.6	63.5	-13.9
7.32056	noise	floor	51.2	42.5	37.3	5.1	51.1	63.5	-12.4
8.23563	noise	floor	51.6	41.4	38.4	5.0	53.6	63.5	-9.9
9.1507	noise	floor	51	40.5	38.0	4.9	53.4	63.5	-10.1

Horizontal


Frequency (GHz)	EUT Direction (degrees)	Antenna Elevation (Meters)	Recorded Level (dBuV)	Amplifier Gain (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Corrected Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
1.833	90	1	55.44	40.2	27.6	2.9	45.7	63.5	-17.8
2.7495	Noise	Floor	51.8	40.6	29.6	3.0	43.8	63.5	-19.7
3.666	Noise	Floor	51.8	40.7	32.3	3.3	46.6	63.5	-16.9
4.5825	Noise	Floor	51.3	41.6	34.1	4.2	48.0	63.5	-15.5
5.499	Noise	Floor	50.7	42.3	34.8	4.7	47.9	63.5	-15.6
6.4155	Noise	Floor	54.4	42.9	35.9	4.5	51.8	63.5	-11.7
7.332	Noise	Floor	50.18	42.5	37.3	5.1	50.1	63.5	-13.4
8.2485	Noise	Floor	51.9	41.4	38.4	5.0	53.9	63.5	-9.6
9.165	Noise	Floor	51.2	40.4	38.1	5.2	54.1	63.5	-9.4

TEST ENGINEER: Erik Ray

Occupied Bandwidth Datasheet
Wireless Computing, Inc.
RF170

Test Date: August 13, 2007

Measurement Distance (Meters): 1

End of Report