

 Document Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RFX101LW		Page 1(14)	
Author Data Daoud Attayi	Dates of Test June 13-July 04, 2013	Report No RTS-6046-1307-26	FCC ID L6ARFX100LW

Annex B: Probe and dipole description and calibration certificates

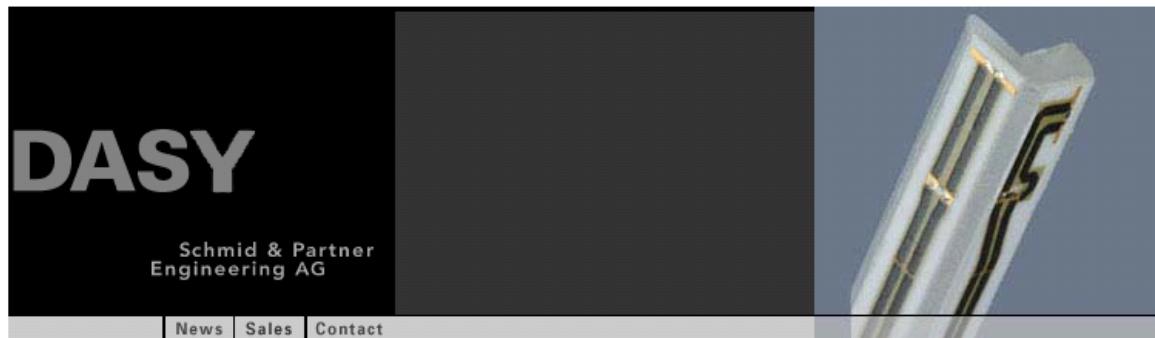
B.1 Probe, measurement chain description, specification and calibration certificate

Author Data

Daoud Attayi

Dates of Test

June 13-July 04, 2013


Report No

RTS-6046-1307-26

FCC ID

L6ARFX100LW

DASY Dosimetric Assessment System by Schmid & Partner Engineering AG

Applications
Support & Downloads
Products
▪ DASY4 Packages
▪ EASY4
▪ Probes
ET3DV6 - Isotropic Dos-Probe
ES3DV3 - Isotropic Dos-Probe
EX3DV4 - Isotropic Dos-Probe
ET1DV3 - D-Probe
EUV3 - Universal Vector E-Probe
H3DV6 - Isotropic H-Probe
HUV4 - Universal Vector H-Probe
T1V3 - Temp-Probe
DP1 - Dummy-Probe
▪ Data Acquisition System
▪ Software
▪ Phantoms
▪ Robots
▪ Validation Kits & Calibration Dipoles
▪ Hearing Aid Compatibility (HAC) Ext
▪ Tissue Simulating Liquids
SPEAG Home

ER3DV6 ISOTROPIC E-FIELD PROBE FOR GENERAL NEAR-FIELD MEASUREMENTS

 [Download Product Flyer \(PDF, 192kB\)](#)

Construction	One dipole parallel, two dipoles normal to probe axis Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., glycoether)
Calibration	In air from 100 MHz to 3.0 GHz (absolute accuracy $\pm 6.0\%$, $k=2$)
Frequency	100 MHz to > 6 GHz; Linearity: ± 0.2 dB (100 MHz to 3 GHz)
Directivity	± 0.2 dB in air (rotation around probe axis) ± 0.4 dB in air (rotation normal to probe axis)
Dynamic Range	2 V/m to > 1000 V/m; Linearity: ± 0.2 dB
Dimensions	Overall length: 330 mm (Tip: 16 mm) Tip diameter: 8 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.5 mm
Application	General near-field measurements up to 6 GHz Field component measurements Fast automatic scanning in phantoms

<http://www.dasy4.com/er3.htm>

RTS Testing Services™	Document Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RFX101LW	Page 3(14)
Author Data Daoud Attayi	Dates of Test June 13-July 04, 2013	Report No RTS-6046-1307-26

All measurements were performed to the nearest element point as per the C63.19 standard. Offset distances were entered in the DASY5 software so that the measurement was to the nearest element.

Figures 1, provided by the manufacturer, illustrate detail of the probe tip and its dimensions.

ER3DV6 E-Field probe: The distances from the probe tip to the closest points on the dipole sensors are 1.45mm for X and Y and 1.25mm for Z. From the probe tip to the center of the sensors is 2.5mm.

E-Field Probe (ER3DV6)

 Document Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RFX101LW		Page 4(14)	
Author Data Daoud Attayi	Dates of Test June 13-July 04, 2013	Report No RTS-6046-1307-26	FCC ID L6ARFX100LW

The following information is from the system manufacturer user manual describing the process chain:

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcpi} \quad (20.1)$$

with V_i = compensated signal of channel i $(i = x, y, z)$
 U_i = input signal of channel i $(i = x, y, z)$
 cf = crest factor of exciting field (DASY parameter)
 $dcpi$ = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

$$E - \text{fieldprobes} : \quad E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

$$H - \text{fieldprobes} : \quad H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

with V_i = compensated signal of channel i $(i = x, y, z)$
 $Norm_i$ = sensor sensitivity of channel i $(i = x, y, z)$
 $\mu\text{V}/(\text{V}/\text{m})^2$ for E-field Probes
 $ConvF$ = sensitivity enhancement in solution
 a_{ij} = sensor sensitivity factors for H-field probes
 f = carrier frequency [GHz]
 E_i = electric field strength of channel i in V/m
 H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2} \quad (20.2)$$

The measurement / integration time per point is > 500 ms, as per the system manufacturer:

The time response of the field probes has been assessed by exposing the probe to a well-controlled field producing signals larger than HAC E- and H-fields of class M4. The signal response time is evaluated as the time required by the system to reach 90% of the expected final value after an on/off switch of the power source with an integration time of 500 ms and a probe response time of <5 ms. In the current implementation, DASY4 waits longer than 100 ms after having reached the grid point before starting a measurement, i.e. the response time uncertainty is negligible.

If the device under test does not emit a CW signal, the integration time applied to measure the electric field at a specific point may introduce additional uncertainties due to the discretization. The tolerances for the different systems had the worst-case of 2.6%.

Document

Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RFX101LWPage
5(14)Author Data
Daoud AttayiDates of Test
June 13-July 04, 2013Report No
RTS-6046-1307-26FCC ID
L6ARFX100LW

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**Client **RTS (RIM Testing Services)**Certificate No: **ER3-2286_Jan13****CALIBRATION CERTIFICATE**

Object	ER3DV6 - SN:2286
Calibration procedure(s)	QA CAL-02.v6, QA CAL-25.v4 Calibration procedure for E-field probes optimized for close near field evaluations in air
Calibration date:	January 11, 2013
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.	
All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity < 70%.	
Calibration Equipment used (M&TE critical for calibration)	

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ER3DV6	SN: 2326	12-Oct-12 (No. ER3-2326_Oct12)	Oct-13
DAE4	SN: 789	18-Sep-12 (No. DAE4-789_Sep12)	Sep-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Calibrated by:	Name Jelton Kastrati	Function Laboratory Technician	Signature
Approved by:	Katja Pokovic	Technical Manager	

Issued: January 11, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ER3-2286_Jan13

Page 1 of 10

	Document Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RFX101LW	Page 6(14)
Author Data Daoud Attayi	Dates of Test June 13-July 04, 2013	Report No RTS-6046-1307-26

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

NORM_{x,y,z}	sensitivity in free space
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005
- CTIA Test Plan for Hearing Aid Compatibility, April 2010.

Methods Applied and Interpretation of Parameters:

- NORM_{x,y,z}**: Assessed for E-field polarization $\vartheta = 0$ for XY sensors and $\vartheta = 90$ for Z sensor ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide).
- NORM(f)_{x,y,z} = NORM_{x,y,z} * frequency_response** (see Frequency Response Chart).
- DCP_{x,y,z}**: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR**: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- A_{x,y,z}; B_{x,y,z}; C_{x,y,z}; D_{x,y,z}**: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- Spherical Isotropy (3D deviation from isotropy)**: in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset**: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle**: The angle is assessed using the information gained by determining the NORM_x (no uncertainty required).

<p>Document Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RFX101LW</p>		Page 7(14)	
Author Data Daoud Attayi	Dates of Test June 13-July 04, 2013	Report No RTS-6046-1307-26	FCC ID L6ARFX100LW

ER3DV6 – SN:2286

January 11, 2013

Probe ER3DV6

SN:2286

Manufactured: September 18, 2002
 Calibrated: January 11, 2013

Calibrated for DASY/EASY Systems
 (Note: non-compatible with DASY2 system!)

Document

Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RFX101LWPage
8(14)Author Data
Daoud AttayiDates of Test
June 13-July 04, 2013Report No
RTS-6046-1307-26FCC ID
L6ARFX100LW

ER3DV6- SN:2286

January 11, 2013

DASY/EASY - Parameters of Probe: ER3DV6 - SN:2286**Basic Calibration Parameters**

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm ($\mu\text{V}/(\text{V}/\text{m})^2$)	2.20	1.47	1.51	$\pm 10.1\%$
DCP (mV) ^B	98.4	100.5	99.6	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB/ μV	C	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	194.1	$\pm 2.5\%$
		Y	0.0	0.0	1.0		197.9	
		Z	0.0	0.0	1.0		176.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Document

Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RFX101LW

Page

9(14)

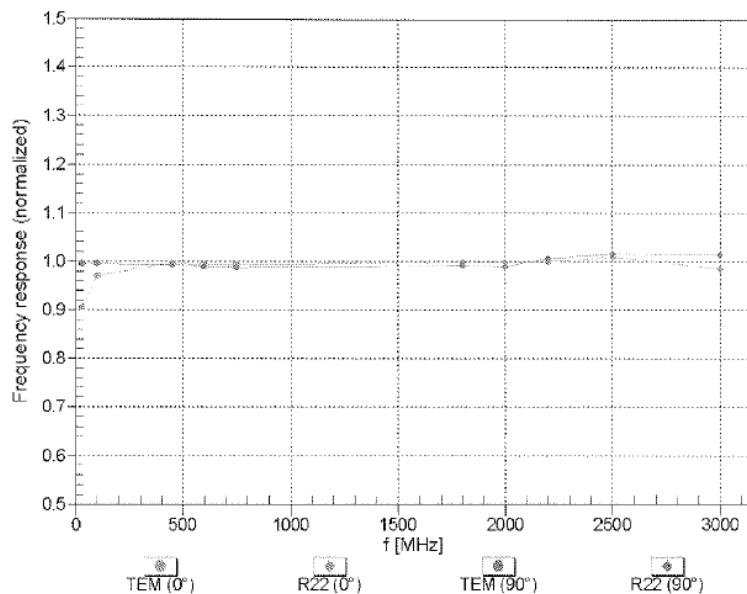
Author Data

Daoud Attayi

Dates of Test

June 13-July 04, 2013

Report No


RTS-6046-1307-26

FCC ID

L6ARFX100LW

ER3DV6- SN:2286

January 11, 2013

Frequency Response of E-Field
(TEM-Cell:ifi110 EXX, Waveguide: R22)Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2)

Document

Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RFX101LW

Page

10(14)

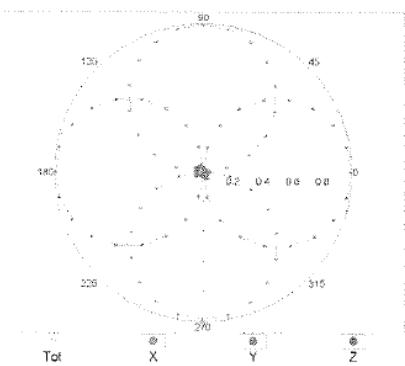
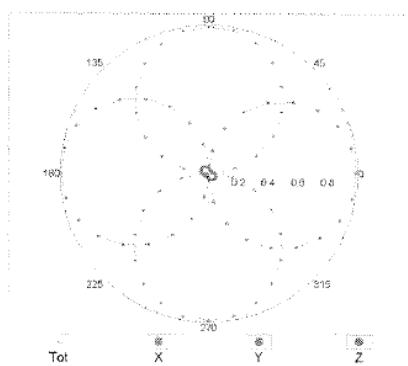
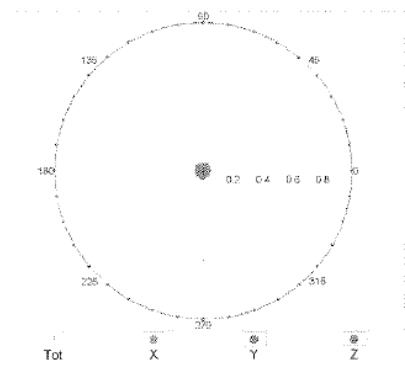
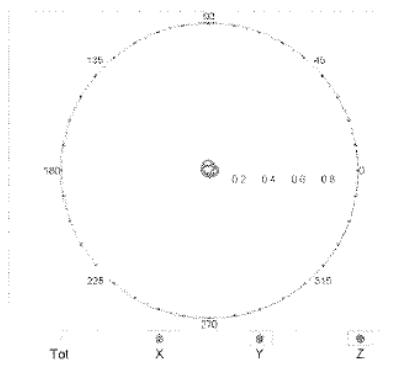
Author Data

Daoud Attayi

Dates of Test

June 13-July 04, 2013

Report No





RTS-6046-1307-26

FCC ID

L6ARFX100LW

ER3DV6- SN:2286

January 11, 2013

Receiving Pattern (ϕ), $\theta = 0^\circ$ **f=600 MHz, TEM, 0°****f=2500 MHz, R22, 0°****Receiving Pattern (ϕ), $\theta = 90^\circ$** **f=600 MHz, TEM, 90°****f=2500 MHz, R22, 90°**

Certificate No: ER3-2286_Jan13

Page 6 of 10

Document

Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RFX101LW

Page

11(14)

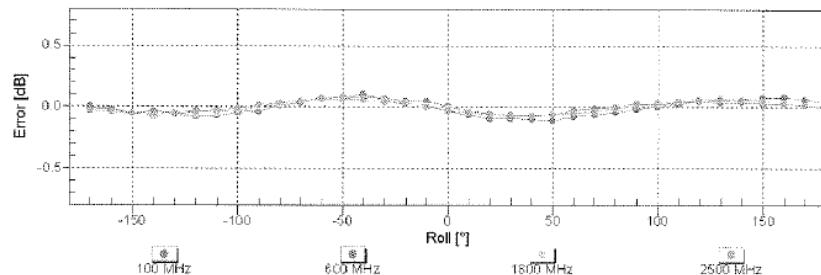
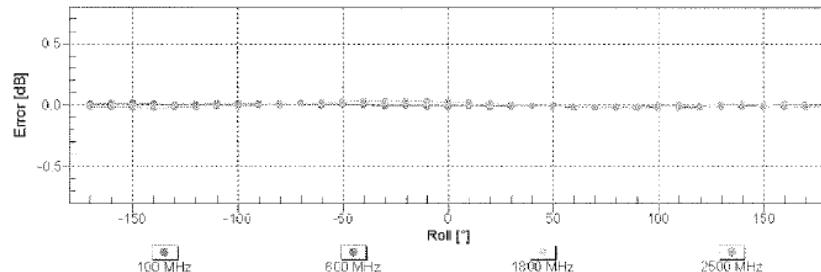
Author Data

Daoud Attayi

Dates of Test

June 13-July 04, 2013

Report No



RTS-6046-1307-26

FCC ID

L6ARFX100LW

ER3DV6- SN:2286

January 11, 2013

Receiving Pattern (ϕ), $\theta = 0^\circ$ Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ (k=2)**Receiving Pattern (ϕ), $\theta = 90^\circ$** Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ (k=2)

Author Data

Daoud Attayi

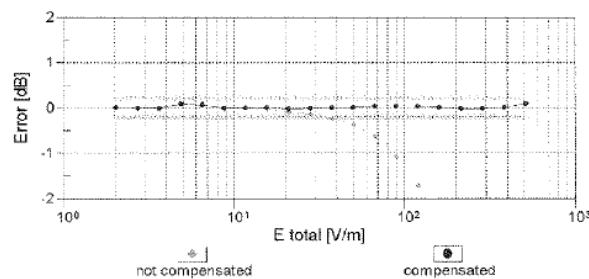
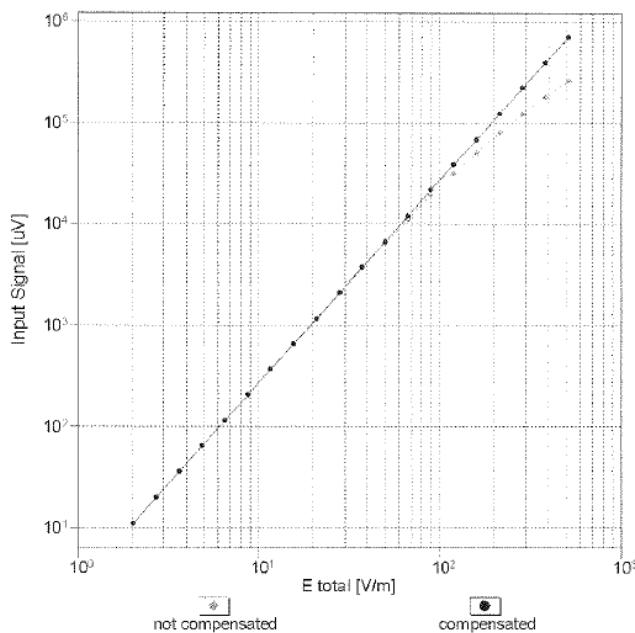
Dates of Test

June 13-July 04, 2013

Report No

RTS-6046-1307-26

FCC ID



L6ARFX100LW

ER3DV6- SN:2286

January 11, 2013

Dynamic Range f(E-field)

(TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)

Author Data

Daoud Attayi

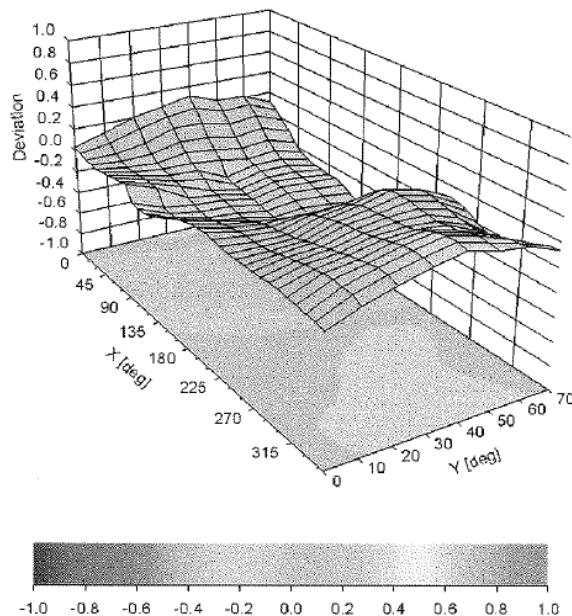
Dates of Test

June 13-July 04, 2013

Report No

RTS-6046-1307-26

FCC ID


L6ARFX100LW

ER3DV6- SN:2286

January 11, 2013

Deviation from Isotropy in Air

Error (ϕ , 9), f = 900 MHz

Document

Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model RFX101LW

Page

14(14)Author Data
Daoud AttayiDates of Test
June 13-July 04, 2013Report No
RTS-6046-1307-26FCC ID
L6ARFX100LW

ER3DV6- SN:2286

January 11, 2013

DASY/EASY - Parameters of Probe: ER3DV6 - SN:2286**Other Probe Parameters**

Sensor Arrangement	Rectangular
Connector Angle (°)	-10.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	8 mm
Probe Tip to Sensor X Calibration Point	2.5 mm
Probe Tip to Sensor Y Calibration Point	2.5 mm
Probe Tip to Sensor Z Calibration Point	2.5 mm