
::: BlackBerry	Annex A-D, Hearing Aid Compa (ABM) T-Coil Test Report for B RFV121LW	·		Page 1(76)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013 RTS-6046-1310-33 L6ARFV			′120LW

Annex A: Probe sensitivity and reference signal measurement plots

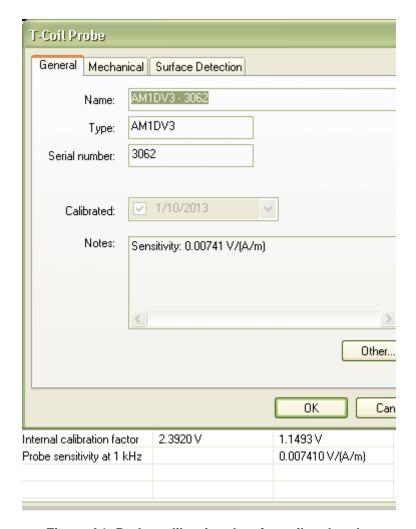


Figure A1: Probe calibration data for coil and probe

::: BlackBerry	Annex A-D, Hearing Aid Compa (ABM) T-Coil Test Report for B RFV121LW		
Author Data	Dates of Test	Report No	FCC ID
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV120LW

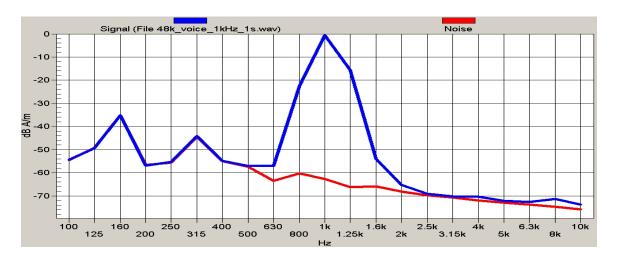


Figure A2: Reference voice 1 kHz signal and noise

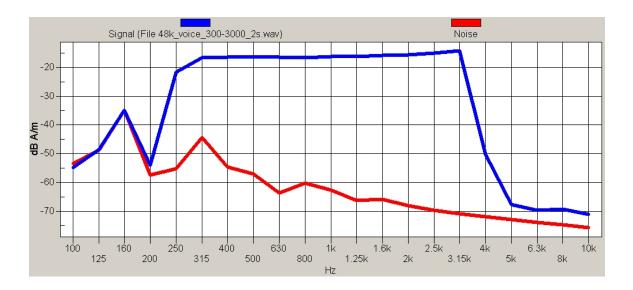


Figure A3: Reference voice simulated signal and noise

::: BlackBerry	Annex A-D, Hearing Aid Compa (ABM) T-Coil Test Report for B RFV121LW	•		Page 4(76)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013 RTS-6046-1310-33 L6ARFV			′120LW

Annex B: TMFS system validation and ambient data/plots

:: BlackBerry	Annex A-D, Hearing Aid Compa (ABM) T-Coil Test Report for B RFV121LW	Page 5 (76)		
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013 RTS-6046-1310-33 L6ARFV1			120LW

Date/Time: 5/31/2013 11:11:58 AM

Test Laboratory: RIM Testing Services

HAC T-Coil TMFS_validation_05_31_13

DUT: TMFS; Type: TMFS-1; Serial: 1003

Communication System: UID 0 - n/a, CW; Frequency: 835 MHz

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Phantom section: TCoil Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

• Probe: AM1DV3 - 3062; ; Calibrated: 1/10/2013

• Sensor-Surface: 0mm (Fix Surface), z = 3.0

• Electronics: DAE4 Sn881; Calibrated: 1/14/2013

• Phantom: HAC T-Coil Test Arch with AMCC; Type: SD HAC P01 BA

• DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117)

T-Coil scan/Background Noise/z (axial) noise/ABM Noise Spectrum(x,y,z,f) (1x1x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Off Output Gain: 0

Measure Window Start: 2000ms Measure Window Length: 5000ms Device Reference Point: 0, 0, -6.3 mm

::: BlackBerry	Annex (ABM) RFV12
----------------	-------------------

Page 6(76)

Author Data

Daoud Attayi

Dates of Test **May 31- June 06, 2013**

Report No

RTS-6046-1310-33

L6ARFV120LW

Cursor:

ABM = -56.02 dBA/mLocation: 0, 0, 13 mm

T-Coil scan/Background Noise/x (longitudinal) noise/ABM Noise

Spectrum(**x**,**y**,**z**,**f**) (**1x1x1**): Measurement grid: dx=10mm, dy=10mm

Signal Type: Off Output Gain: 0

Measure Window Start: 2000ms Measure Window Length: 5000ms Device Reference Point: 0, 0, -6.3 mm

T-Coil scan/Background Noise/y (transversal) noise/ABM Noise

Spectrum(**x**,**y**,**z**,**f**) (**1x1x1**): Measurement grid: dx=10mm, dy=10mm

Signal Type: Off Output Gain: 0

Measure Window Start: 2000ms Measure Window Length: 5000ms Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM = -55.98 dBA/mLocation: 0, 0, 13 mm

T-Coil scan/TMFS Validation/z (axial) 8 x 8 step 2/ABM Signal(x,y,z) (5x5x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: 1 kHz Sine Output Gain: 34.95

Measure Window Start: 0ms Measure Window Length: 1000ms

BWC applied: 0.003 dB

≅ BlackBerry	
--------------	--

Page 7(76)

Author Data

Daoud Attayi

Dates of Test

May 31- June 06, 2013

Report No **RTS-6046-1310-33**

L6ARFV120LW

Cursor:

ABM1 comp = -20.19 dBA/m BWC Factor = 0.003 dB Location: 0, 2, 3.7 mm

T-Coil scan/TMFS Validation/y (transversal) 16 x 52 step 4/ABM Signal(x,y,z)

(5x14x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: 1 kHz Sine Output Gain: 34.95

Measure Window Start: 0ms Measure Window Length: 1000ms

BWC applied: 0.003 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1 comp = -26.38 dBA/m BWC Factor = 0.003 dB Location: 0, -18, 3.7 mm

T-Coil scan/TMFS Validation/z (axial) wideband multisine at best S/N/ABM

Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k multisine 50 10k 10s.wav

Output Gain: 87.87

Measure Window Start: 2000ms Measure Window Length: 5000ms

BWC applied: 13.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

Diff = 1.99 dB

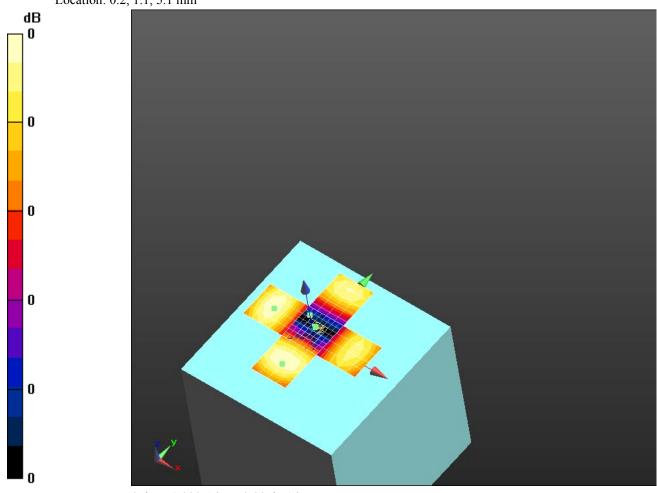
BWC Factor = 13.16 dB Location: 0.2, 1.1, 4.4 mm

T-Coil scan/TMFS Validation/z (axial) wideband multisine at best S/N 2/ABM

Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm

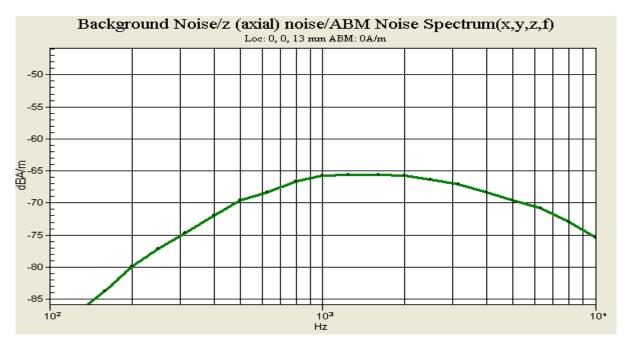
Signal Type: Audio File (.wav) 48k multisine 50 10k 10s.wav

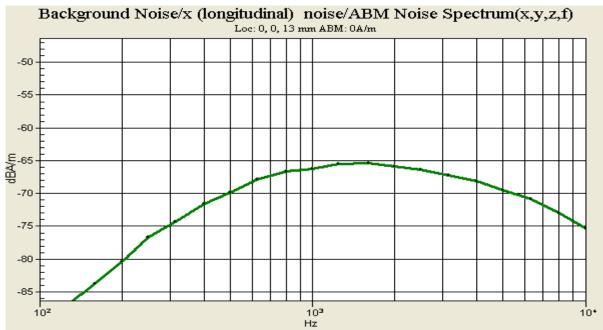
Output Gain: 86.87

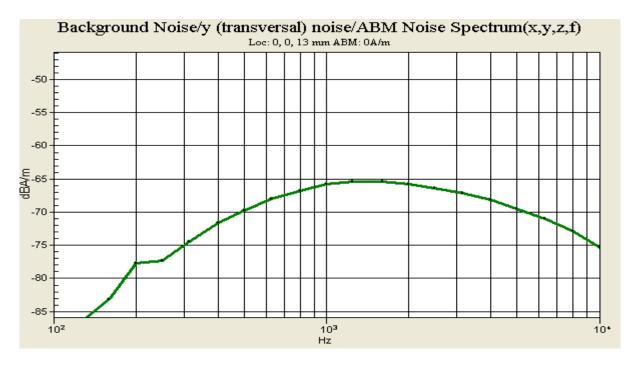

Measure Window Start: 300ms Measure Window Length: 4000ms

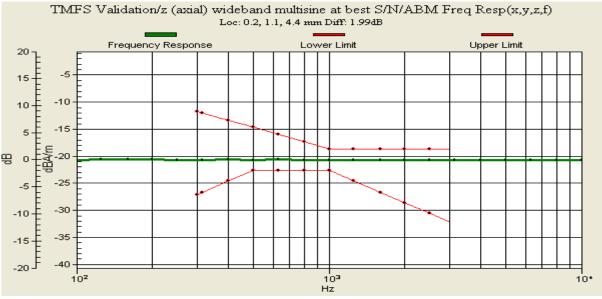
BWC applied: 13.16 dB

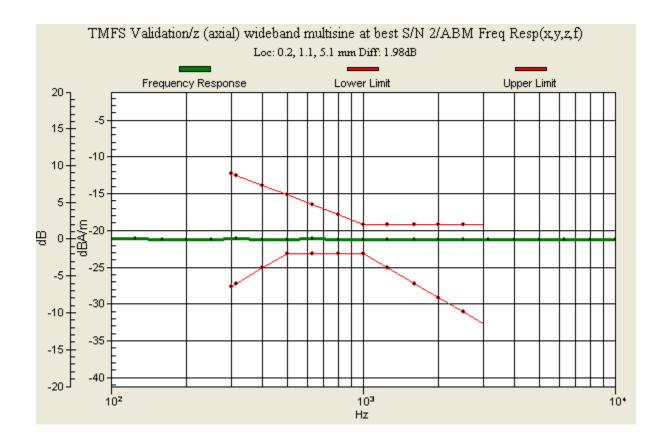
:: BlackBerry	Annex A-D, Hearing Aid Compa (ABM) T-Coil Test Report for E RFV121LW	•		Page 8 (76)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013	/120LW		


Cursor: Diff = 1.98 dB


BWC Factor = 13.16 dB Location: 0.2, 1.1, 5.1 mm


0 dB = 1.000 A/m = 0.00 dBA/m


::: BlackBerry	Annex A-D, Hearing Aid Co (ABM) T-Coil Test Report for RFV121LW	9(76)			
Author Data Daoud Attayi	Dates of Test				



::: BlackBerry	Annex A-D, Hearing Aid Compa (ABM) T-Coil Test Report for B RFV121LW	•		10(76)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013 RTS-6046-1310-33 L6ARFV			′120LW

::: BlackBerry	Annex A-D, Hearing Aid Compa (ABM) T-Coil Test Report for B RFV121LW	·		Page 11(76)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013	′120LW		

::: BlackBerry	Annex A-D, Hearing Aid Compa (ABM) T-Coil Test Report for B RFV121LW	•		Page 12(76)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013 RTS-6046-1310-33 L6ARFV			′120LW

Annex C: Audio Band Magnetic measurement data and plots

::: BlackBerry	Annex A-D, Hearing Aid Compa (ABM) T-Coil Test Report for B RFV121LW	Page 13(76)		
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013 RTS-6046-1310-33 L6ARFV			120LW

Date/Time: 6/5/2013 10:58:45 AM

Test Laboratory: RIM Testing Services

HAC T-Coil_ABM_GSM850_Axial

DUT: BlackBerry Smartphone; Type: Sample; Serial: 2FFFE9B6

Communication System: UID 0 - n/a, GSM 850; Frequency: 824.2 MHz, Frequency: 836.8 MHz,

Frequency: 848.8 MHz

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Phantom section: TCoil Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

• Probe: AM1DV3 - 3062; ; Calibrated: 1/10/2013

• Sensor-Surface: 0mm (Fix Surface), z = 3.0

• Electronics: DAE4 Sn881; Calibrated: 1/14/2013

• Phantom: HAC RF Test Arch with AMCC; Type: SD HAC P01 BA

• DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117)

T-Coil scan_GSM850/General Scan - Low channel/z (axial) 5.0mm 50 x 50/ABM

SNR(x,y,z) (11x11x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

:: BlackBerry	Annex A-D, Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RFV121LW			14(76)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV	120LW

T-Coil scan_GSM850/General Scan - Low channel/z (axial) 2mm 8 x 8/ABM

SNR(\mathbf{x} , \mathbf{y} , \mathbf{z}) (5 \mathbf{x} 5 \mathbf{x} 1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 36.06 dB ABM1 comp = 3.86 dBA/m BWC Factor = 0.16 dB Location: 5, 18, 4.4 mm

T-Coil scan_GSM850/General Scan - Low channel/z (axial) wideband at best S/N_probe AM1DV2/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm,

dv=10mm

Signal Type: Audio File (.wav) 48k voice 300-3000 2s.wav

Output Gain: 69.12

Measure Window Start: 300ms Measure Window Length: 6000ms

BWC applied: 10.80 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

Diff = 2.00 dB

BWC Factor = 10.80 dB Location: 5, 20, 3.7 mm

T-Coil scan_GSM850/8x8 Scan - Mid channel/z (axial) 2mm 8 x 8/ABM

SNR(x,y,z) (5x5x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Page 15(76)

Author Data

Daoud Attayi

Dates of Test
May 31- June 06, 2013

Report No **RTS-6046-1310-33**

L6ARFV120LW

Cursor:

ABM1/ABM2 = 36.23 dB ABM1 comp = 3.83 dBA/m BWC Factor = 0.16 dB Location: 5, 18, 4.4 mm

T-Coil scan_GSM850/8x8 Scan - Mid channel/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 300-3000 2s.wav

Output Gain: 69.12

Measure Window Start: 300ms Measure Window Length: 6000ms

BWC applied: 10.80 dB

Device Reference Point: 0, 0, -6.3 mm

T-Coil scan_GSM850/8x8 Scan - High channel/z (axial) 2mm 8 x 8/ABM

SNR(\mathbf{x} , \mathbf{y} , \mathbf{z}) (5 \mathbf{x} 5 \mathbf{x} 1): Measurement grid: $d\mathbf{x}$ =10mm, $d\mathbf{y}$ =10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 36.54 dB ABM1 comp = 3.83 dBA/m BWC Factor = 0.16 dB Location: 5, 18, 4.4 mm

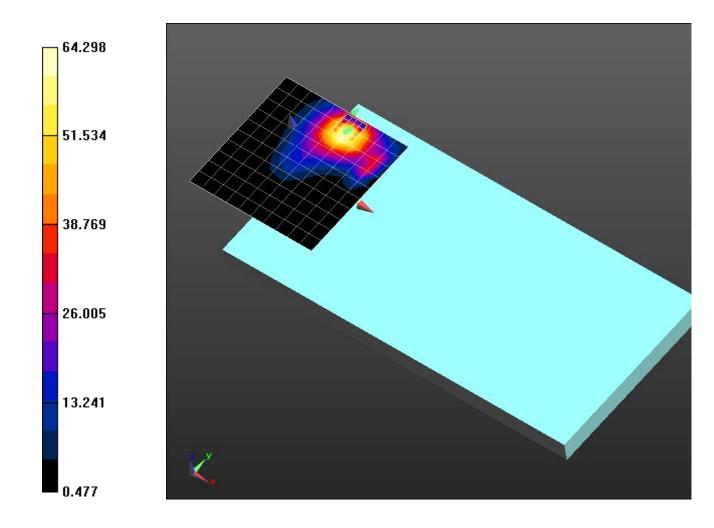
T-Coil scan_GSM850/8x8 Scan - High channel/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 300-3000 2s.wav

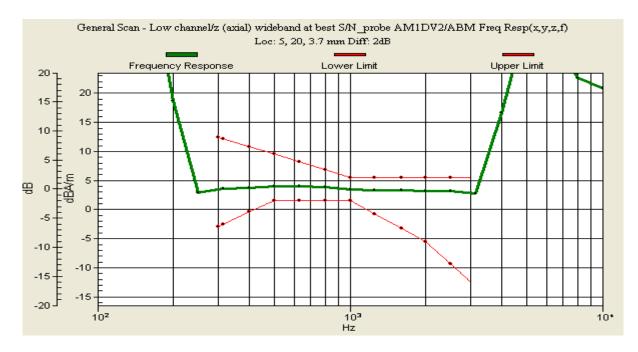
Output Gain: 69.12

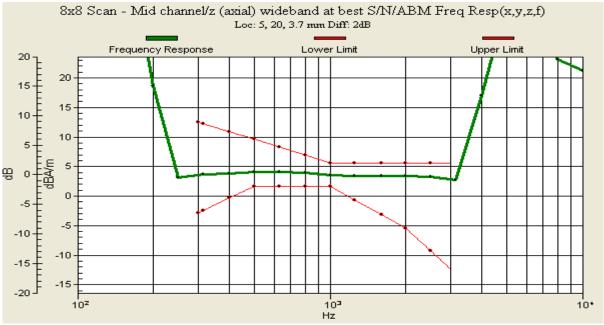
Measure Window Start: 300ms Measure Window Length: 6000ms

BWC applied: 10.81 dB

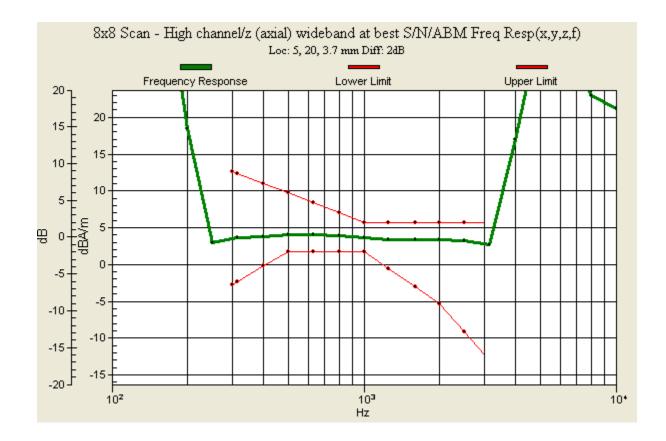

Device Reference Point: 0, 0, -6.3 mm

Cursor:


Diff = 2.00 dB


BWC Factor = 10.81 dB Location: 5, 20, 3.7 mm

::: BlackBerry	Annex A-D, Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RFV121LW			16(76)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV	/120LW



::: BlackBerry	Annex A-D, Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RFV121LW			Page 17(76)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV	′120LW

::: BlackBerry	Annex A-D, Hearing Aid Comp (ABM) T-Coil Test Report for I RFV121LW	Page 18(76)		
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV	/120LW

::: BlackBerry				19(76)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV	/120LW

Date/Time: 6/5/2013 11:14:02 AM

Test Laboratory: RIM Testing Services

HAC T-Coil_ABM_GSM850_Radial_T

DUT: BlackBerry Smartphone; Type: Sample; Serial: 2FFFE9B6

Communication System: UID 0 - n/a, GSM 850; Frequency: 824.2 MHz, Frequency: 836.8 MHz,

Frequency: 848.8 MHz

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Phantom section: TCoil Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

• Probe: AM1DV3 - 3062; ; Calibrated: 1/10/2013

• Sensor-Surface: 0mm (Fix Surface), z = 3.0

• Electronics: DAE4 Sn881; Calibrated: 1/14/2013

• Phantom: HAC RF Test Arch with AMCC; Type: SD HAC P01 BA

• DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117)

T-Coil scan_GSM850/General Scan - Low channel/y (transversal) 5.0mm 50 x 50/ABM

SNR(x,y,z) (11x11x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

T-Coil scan_GSM850/General Scan - Low channel/y (transversal) 2mm 8 x 8/ABM

SNR(\mathbf{x} , \mathbf{y} , \mathbf{z}) (5 \mathbf{x} 5 \mathbf{x} 1): Measurement grid: $d\mathbf{x}$ =10mm, $d\mathbf{y}$ =10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

This report shall <u>NOT</u> be reproduced except in full without the written consent of BlackBerry RTS Copyright 2005-2013, BlackBerry RTS, a division of BlackBerry Limited

∷ BlackBerry	Annex A-D, Hearing Aid Com (ABM) T-Coil Test Report for RFV121LW			Page 20(76)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV	/120LW

Cursor:

ABM1/ABM2 = 46.32 dB ABM1 comp = -5.60 dBA/m BWC Factor = 0.16 dB Location: 7, 7, 4.4 mm

T-Coil scan_GSM850/8x8 Scan - Mid channel/y (transversal) 2mm 8 x 8/ABM

SNR(x,y,z) (5x5x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

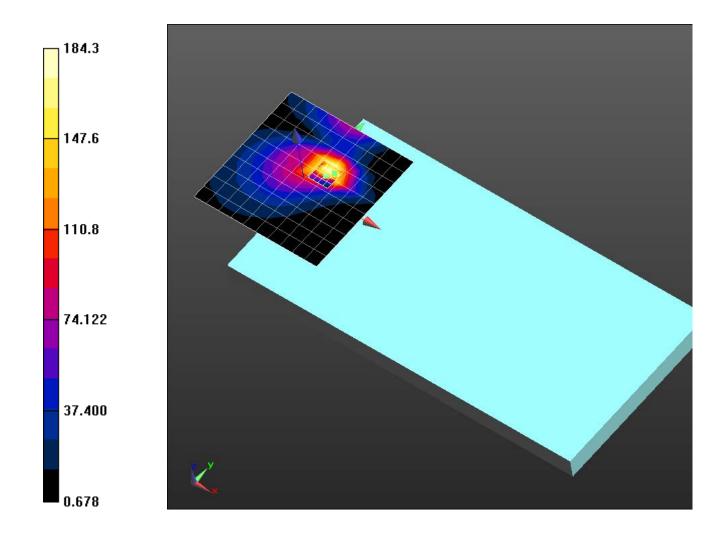
ABM1/ABM2 = 45.88 dB ABM1 comp = -5.60 dBA/m BWC Factor = 0.16 dB Location: 7, 7, 4.4 mm

T-Coil scan_GSM850/8x8 Scan - High channel/y (transversal) 2mm 8 x 8/ABM SNR(x,y,z) (5x5x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms


BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 46.57 dB ABM1 comp = -5.68 dBA/m BWC Factor = 0.16 dB Location: 7, 7, 4.4 mm

::: BlackBerry	Annex A-D, Hearing Aid Comp (ABM) T-Coil Test Report for I RFV121LW	Page 21(76)		
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV	/120LW

::: BlackBerry	Annex A-D, Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RFV121LW			Page 22(76)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV	′120LW

Date/Time: 6/5/2013 12:46:56 AM

Test Laboratory: RIM Testing Services

HAC T-Coil_ABM_GSM_1900_Axial

DUT: BlackBerry Smartphone; Type: Sample; Serial: 2FFFE9B6

Communication System: UID 0 - n/a, GSM 1900; Frequency: 1850.2 MHz, Frequency: 1880 MHz,

Frequency: 1909.8 MHz

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Phantom section: TCoil Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: AM1DV3 3062; ; Calibrated: 1/12/2012
- Sensor-Surface: 0mm (Fix Surface), z = 3.0
- Electronics: DAE4 Sn881; Calibrated: 1/14/2013
- Phantom: HAC RF Test Arch with AMCC; Type: SD HAC P01 BA
- DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117)

T-Coil scan_GSM1900/General Scan - Low channel/z (axial) 5.0mm 50 x 50/ABM

SNR(x,y,z) (11x11x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

::: BlackBerry	Annex A-D, Hearing Aid Comp (ABM) T-Coil Test Report for I RFV121LW	Page 23(76)		
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV	′120LW

T-Coil scan_GSM1900/General Scan - Low channel/z (axial) 2mm 8 x 8/ABM

SNR(x,y,z) (5x5x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 39.87 dB ABM1 comp = 2.67 dBA/m BWC Factor = 0.16 dB Location: 5, 18, 4.4 mm

T-Coil scan_GSM1900/General Scan - Low channel/z (axial) wideband at best S/N_probe AM1DV2/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm,

dy=10mm

Signal Type: Audio File (.wav) 48k voice 300-3000 2s.wav

Output Gain: 69.12

Measure Window Start: 300ms Measure Window Length: 6000ms

BWC applied: 10.80 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

Diff = 2.00 dB

BWC Factor = 10.80 dB Location: 5, 20, 3.7 mm

T-Coil scan_GSM1900/8x8 Scan - Mid channel/z (axial) 2mm 8 x 8/ABM

SNR(x,y,z) (5x5x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

≅ BlackBerry	
--------------	--

Report No

24(76)

Author Data

Daoud Attayi

Dates of Test

May 31- June 06, 2013

RTS-6046-1310-33

L6ARFV120LW

Cursor:

ABM1/ABM2 = 39.97 dB ABM1 comp = 2.59 dBA/m BWC Factor = 0.16 dB Location: 5, 18, 4.4 mm

T-Coil scan_GSM1900/8x8 Scan - Mid channel/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 300-3000 2s.wav

Output Gain: 69.12

Measure Window Start: 300ms Measure Window Length: 6000ms

BWC applied: 10.80 dB

Device Reference Point: 0, 0, -6.3 mm

T-Coil scan_GSM1900/8x8 Scan - High channel/z (axial) 2mm 8 x 8/ABM

SNR(x,y,z) (5x5x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

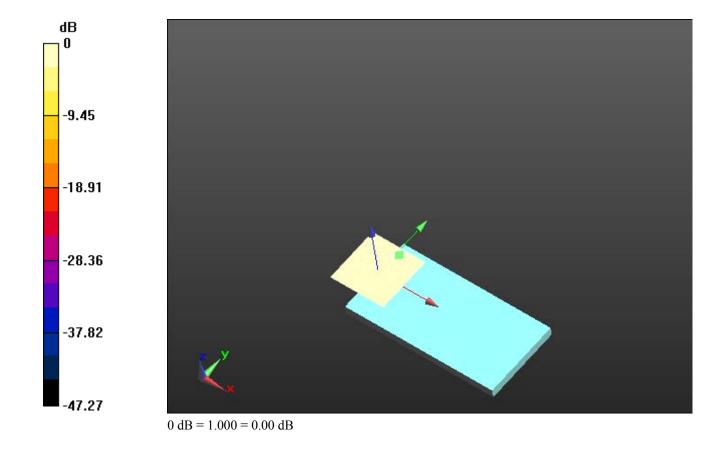
BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

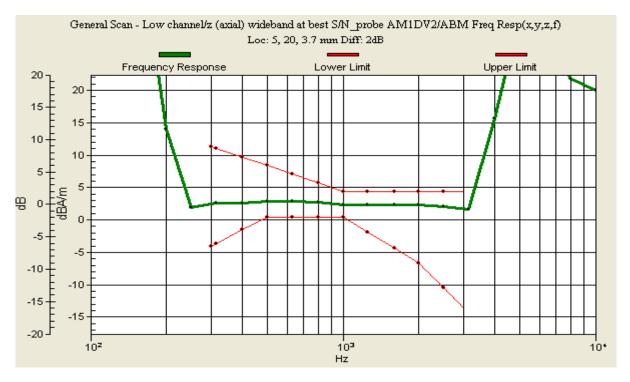
Cursor:

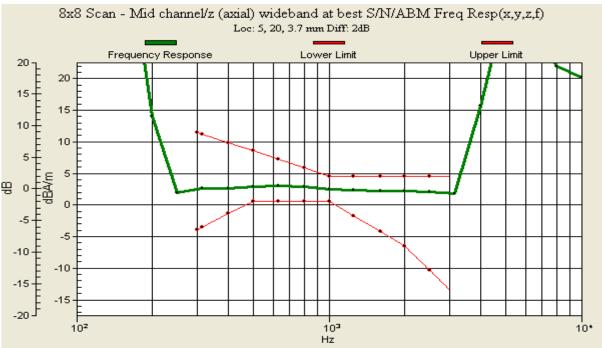
ABM1/ABM2 = 39.92 dB ABM1 comp = 2.65 dBA/m BWC Factor = 0.16 dB Location: 5, 18, 4.4 mm

T-Coil scan_GSM1900/8x8 Scan - High channel/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm

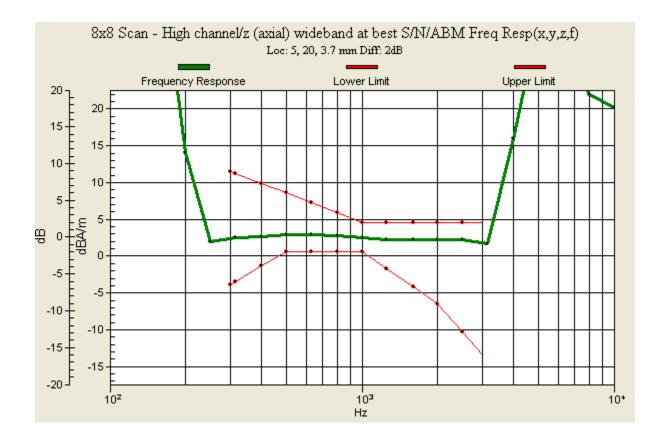

Signal Type: Audio File (.wav) 48k voice 300-3000 2s.wav

Output Gain: 69.12


Measure Window Start: 300ms Measure Window Length: 6000ms


BWC applied: 10.80 dB

::: BlackBerry	Annex A-D, Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RFV121LW		
Author Data	Dates of Test	Report No	FCC ID
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV120LW



::: BlackBerry	Annex A-D, Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RFV121LW			Page 26(76)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV	′120LW

::: BlackBerry	Annex A-D, Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RFV121LW			Page 27(76)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013	/120LW		

::: BlackBerry	Annex A-D, Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RFV121LW			Page 28(76)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013 RTS-6046-1310-33 L6ARFV12			/120LW

Date/Time: 6/5/2013 1:00:05 AM

Test Laboratory: RIM Testing Services

HAC T-Coil_ABM_GSM_1900_Radial-T

DUT: BlackBerry Smartphone; Type: Sample; Serial: 2FFFE9B6

Communication System: UID 0 - n/a, GSM 1900; Frequency: 1850.2 MHz, Frequency: 1880 MHz,

Frequency: 1909.8 MHz

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Phantom section: TCoil Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

• Probe: AM1DV3 - 3062; ; Calibrated: 1/12/2012

• Sensor-Surface: 0mm (Fix Surface), z = 3.0

• Electronics: DAE4 Sn881; Calibrated: 1/14/2013

• Phantom: HAC RF Test Arch with AMCC; Type: SD HAC P01 BA

• DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117)

T-Coil scan_GSM1900/General Scan - Low channel/y (transversal) 5.0mm 50 x 50/ABM

SNR(x,y,z) (11x11x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

T-Coil scan_GSM1900/General Scan - Low channel/y (transversal) 2mm 8 x 8/ABM

SNR(\mathbf{x} , \mathbf{y} , \mathbf{z}) (5 \mathbf{x} 5 \mathbf{x} 1): Measurement grid: $d\mathbf{x}$ =10mm, $d\mathbf{y}$ =10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

This report shall <u>NOT</u> be reproduced except in full without the written consent of BlackBerry RTS Copyright 2005-2013, BlackBerry RTS, a division of BlackBerry Limited

≅ BlackBerry	
--------------	--

Page 29(76)

Author Data

Daoud Attayi

Dates of Test

May 31- June 06, 2013

Report No **RTS-6046-1310-33**

L6ARFV120LW

Cursor:

ABM1/ABM2 = 46.37 dB ABM1 comp = -6.70 dBA/m BWC Factor = 0.16 dB Location: 7, 7, 4.4 mm

T-Coil scan_GSM1900/8x8 Scan - Mid channel/y (transversal) 2mm 8 x

8/ABM SNR(x,y,z) (5x5x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 46.44 dB ABM1 comp = -6.76 dBA/m BWC Factor = 0.16 dB Location: 7, 7, 4.4 mm

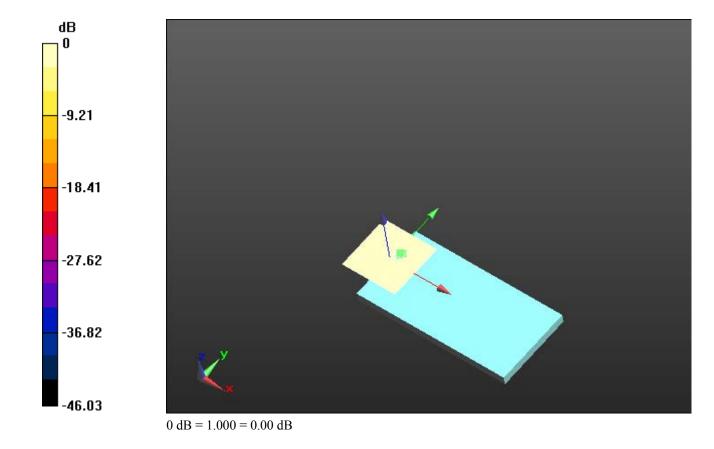
$T\text{-}Coil\ scan_GSM1900/8x8\ Scan\ -\ High\ channel/y\ (transversal)\ 2mm\ 8\ x$

8/ABM SNR(x,y,z) (5x5x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms


BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 46.36 dB ABM1 comp = -7.07 dBA/m BWC Factor = 0.16 dB Location: 5, 7, 4.4 mm

::: BlackBerry	Annex A-D, Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RFV121LW			
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV120LW	

::: BlackBerry	Annex A-D, Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RFV121LW			31(76)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV	/120LW

Date/Time: 6/5/2013 1:40:38 AM

Test Laboratory: RIM Testing Services

HAC T-Coil_ABM_UMTS_V_Axial

DUT: BlackBerry Smartphone; Type: Sample; Serial: 2FFFE9B6

Communication System: UID 0 - n/a, WCDMA FDD V; Frequency: 826.4 MHz, Frequency: 836.4 MHz,

Frequency: 846.6 MHz

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Phantom section: TCoil Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: AM1DV3 3062; ; Calibrated: 1/12/2012
- Sensor-Surface: 0mm (Fix Surface), z = 3.0
- Electronics: DAE4 Sn881; Calibrated: 1/14/2013
- Phantom: HAC RF Test Arch with AMCC; Type: SD HAC P01 BA
- DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117)

T-Coil scan_UMTS_Band_V/General Scan - Low channel/z (axial) 5.0mm 50 x 50/ABM

SNR(x,y,z) (11x11x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

::: BlackBerry	Annex A-D, Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RFV121LW Dates of Test Report No FCC ID		Page 32(76)	
Author Data				
Daoud Attayi	May 31- June 06, 2013 RTS-6046-1310-33 L6ARFV120L			

T-Coil scan_UMTS_Band_V/General Scan - Low channel/z (axial) 2mm 8 x

8/ABM SNR(x,y,z) (5x5x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 56.11 dB ABM1 comp = 3.41 dBA/m BWC Factor = 0.16 dB Location: 5, 18, 4.4 mm

T-Coil scan_UMTS_Band_V/General Scan - Low channel/z (axial) wideband at best S/N probe AM1DV2/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid:

dx=10mm, dv=10mm

Signal Type: Audio File (.wav) 48k voice 300-3000 2s.wav

Output Gain: 69.12

Measure Window Start: 300ms Measure Window Length: 6000ms

BWC applied: 10.80 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

Diff = 2.00 dB

BWC Factor = 10.80 dB Location: 5, 20, 3.7 mm

T-Coil scan_UMTS_Band_V/8x8 Scan - Mid channel/z (axial) 2mm 8 x 8/ABM SNR(x,y,z) (5x5x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

This report shall <u>NOT</u> be reproduced except in full without the written consent of BlackBerry RTS Copyright 2005-2013, BlackBerry RTS, a division of BlackBerry Limited

≅ BlackBerry	
--------------	--

Page 33(76)

Author Data

Daoud Attayi

Dates of Test

May 31- June 06, 2013

Report No **RTS-6046-1310-33**

L6ARFV120LW

Cursor:

ABM1/ABM2 = 56.23 dB ABM1 comp = 3.43 dBA/m BWC Factor = 0.16 dB Location: 5, 18, 4.4 mm

T-Coil scan_UMTS_Band_V/8x8 Scan - Mid channel/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 300-3000 2s.wav

Output Gain: 69.12

Measure Window Start: 300ms Measure Window Length: 6000ms

BWC applied: 10.80 dB

Device Reference Point: 0, 0, -6.3 mm

T-Coil scan_UMTS_Band_V/8x8 Scan - High channel/z (axial) 2mm 8 x

8/ABM SNR(x,y,z) (5x5x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

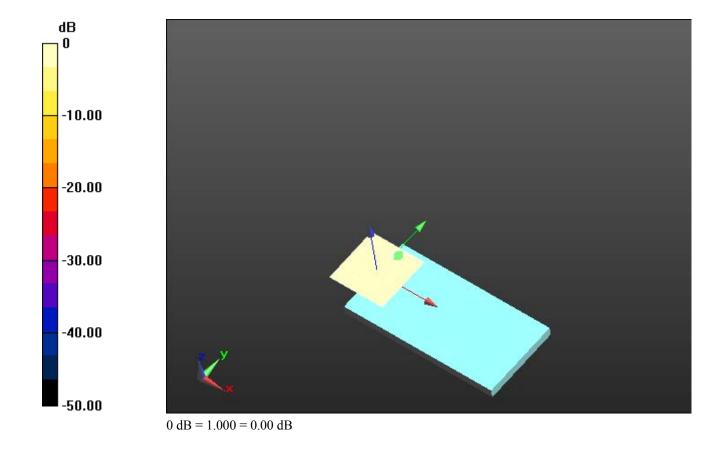
BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

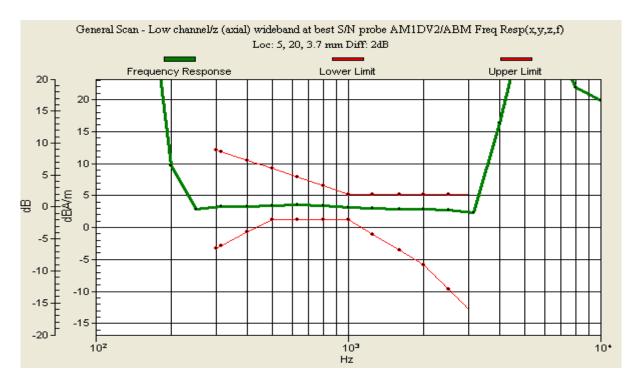
Cursor:

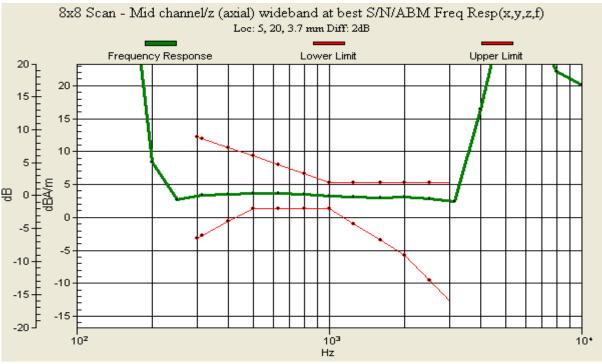
ABM1/ABM2 = 55.99 dB ABM1 comp = 3.40 dBA/m BWC Factor = 0.16 dB Location: 5, 18, 4.4 mm

T-Coil scan_UMTS_Band_V/8x8 Scan - High channel/z (axial) wideband at best S/N 2/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm

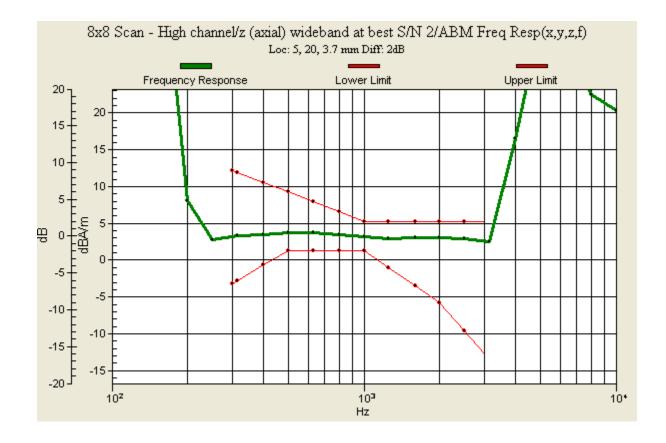

Signal Type: Audio File (.wav) 48k voice 300-3000 2s.wav

Output Gain: 69.12


Measure Window Start: 300ms Measure Window Length: 6000ms


BWC applied: 10.80 dB

::: BlackBerry	Annex A-D, Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RFV121LW			Page 34(76)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV	120LW



:: BlackBerry	Annex A-D, Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RFV121LW			^{rage} 35(76)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV12	20LW

::: BlackBerry				^{Page} 36(76)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV	/120LW

≅ BlackBerry	Annex A-D, Hearing Aid Compa (ABM) T-Coil Test Report for B RFV121LW	·		^{Page} 37(76)
Author Data	Dates of Test			
Daoud Attayi	May 31- June 06, 2013 RTS-6046-1310-33 L6ARFV1			/120LW

Date/Time: 6/5/2013 1:53:47 AM

Test Laboratory: RIM Testing Services

HAC T-Coil_ABM_UMTS_V_Radial-T

DUT: BlackBerry Smartphone; Type: Sample; Serial: 2FFFE9B6

Communication System: UID 0 - n/a, WCDMA FDD V; Frequency: 826.4 MHz, Frequency: 836.4 MHz,

Frequency: 846.6 MHz

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Phantom section: TCoil Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

• Probe: AM1DV3 - 3062; ; Calibrated: 1/12/2012

• Sensor-Surface: 0mm (Fix Surface), z = 3.0

• Electronics: DAE4 Sn881; Calibrated: 1/14/2013

• Phantom: HAC RF Test Arch with AMCC; Type: SD HAC P01 BA

• DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117)

T-Coil scan_UMTS_Band_V/General Scan - Low channel/y (transversal) 5.0mm 50 x 50/A PM SND(x x g) (11x11x1): Measurement arid, dx=10mm, dx=10mm

50/ABM SNR(x,y,z) (**11x11x1**): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

::: BlackBerry	
----------------	--

Page 38(76)

Author Data

Daoud Attayi

Dates of Test

May 31- June 06, 2013

Report No **RTS-6046-1310-33**

L6ARFV120LW

T-Coil scan_UMTS_Band_V/General Scan - Low channel/y (transversal)

2mm 8 x 8/ABM SNR(x,y,z) (5x5x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 49.84 dB ABM1 comp = -4.98 dBA/m BWC Factor = 0.16 dB Location: 3, 27, 4.4 mm

T-Coil scan_UMTS_Band_V/8x8 Scan - Mid channel/y (transversal) 2mm 8 x

8/ABM SNR(x,y,z) (5x5x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 50.24 dB ABM1 comp = -4.50 dBA/m BWC Factor = 0.16 dB Location: 5, 25, 4.4 mm

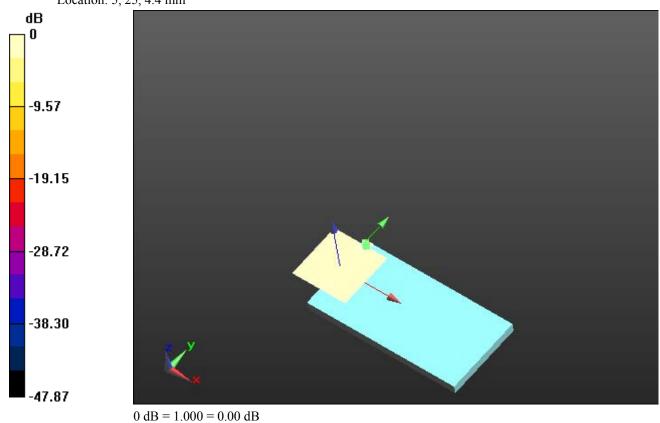
T-Coil scan_UMTS_Band_V/8x8 Scan - High channel/y (transversal) 2mm 8 x 8/ABM SNR(x,y,z) (5x5x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB


Device Reference Point: 0, 0, -6.3 mm

This report shall <u>NOT</u> be reproduced except in full without the written consent of BlackBerry RTS Copyright 2005-2013, BlackBerry RTS, a division of BlackBerry Limited

::: BlackBerry	Annex A-D, Hearing Aid Compa (ABM) T-Coil Test Report for B RFV121LW	•		39(76)
Author Data	Dates of Test			
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARF\	/120LW

Cursor:

ABM1/ABM2 = 50.10 dB ABM1 comp = -4.53 dBA/m BWC Factor = 0.16 dB Location: 5, 25, 4.4 mm

:: BlackBerry	Annex A-D, Hearing Aid Compa (ABM) T-Coil Test Report for B RFV121LW	·		Page 40(76)	
Author Data	Dates of Test Report No FCC ID				
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV	/120LW	

Date/Time: 6/6/2013 1:17:28 AM

Test Laboratory: RIM Testing Services

HAC T-Coil_ABM_UMTS_IV_Axial

DUT: BlackBerry Smartphone; Type: Sample; Serial: 2FFFE9B6

Communication System: UID 0 - n/a, WCDMA FDD IV; Frequency: 1712.4 MHz, Frequency: 1732.6

MHz, Frequency: 1752.6 MHz

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Phantom section: TCoil Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: AM1DV3 3062; ; Calibrated: 1/12/2012
- Sensor-Surface: 0mm (Fix Surface), z = 3.0
- Electronics: DAE4 Sn881; Calibrated: 1/14/2013
- Phantom: HAC RF Test Arch with AMCC; Type: SD HAC P01 BA
- DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117)

T-Coil scan_UMTS_Band_IV/General Scan - Low channel/z (axial) 5.0mm 50 x 50/ABM

SNR(x,y,z) (11x11x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

:: BlackBerry	Annex A-D, Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RFV121LW			Page 41(76)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi May 31- June 06, 2013 RTS-6046-1310-33 L6ARF			L6ARF\	/120LW

T-Coil scan_UMTS_Band_IV/General Scan - Low channel/z (axial) 2mm 8 x

8/ABM SNR(x,y,z) (5x5x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 56.81 dBABM1 comp = 4.12 dBA/mBWC Factor = 0.16 dBLocation: 5, 18, 4,4 mm

T-Coil scan UMTS Band IV/General Scan - Low channel/z (axial) wideband at best S/N probe AM1DV2/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid:

dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 300-3000 2s.wav

Output Gain: 69.12

Measure Window Start: 300ms Measure Window Length: 6000ms

BWC applied: 10.80 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

Diff = 2.00 dB

BWC Factor = 10.80 dBLocation: 5, 20, 3.7 mm

T-Coil scan UMTS Band IV/8x8 Scan - Mid channel/z (axial) 2mm 8 x **8/ABM SNR(x,y,z)** (5x5x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

This report shall NOT be reproduced except in full without the written consent of BlackBerry RTS Copyright 2005-2013, BlackBerry RTS, a division of BlackBerry Limited

≅ BlackBerry	
--------------	--

Page 42(76)

Author Data

Daoud Attayi

Dates of Test

May 31- June 06, 2013

Report No **RTS-6046-1310-33**

L6ARFV120LW

Cursor:

ABM1/ABM2 = 56.37 dB ABM1 comp = 4.09 dBA/m BWC Factor = 0.16 dB Location: 5, 18, 4.4 mm

T-Coil scan_UMTS_Band_IV/8x8 Scan - Mid channel/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 300-3000 2s.wav

Output Gain: 69.12

Measure Window Start: 300ms Measure Window Length: 6000ms

BWC applied: 10.80 dB

Device Reference Point: 0, 0, -6.3 mm

T-Coil scan_UMTS_Band_IV/8x8 Scan - High channel/z (axial) 2mm 8 x

8/ABM SNR(x,y,z) (5x5x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

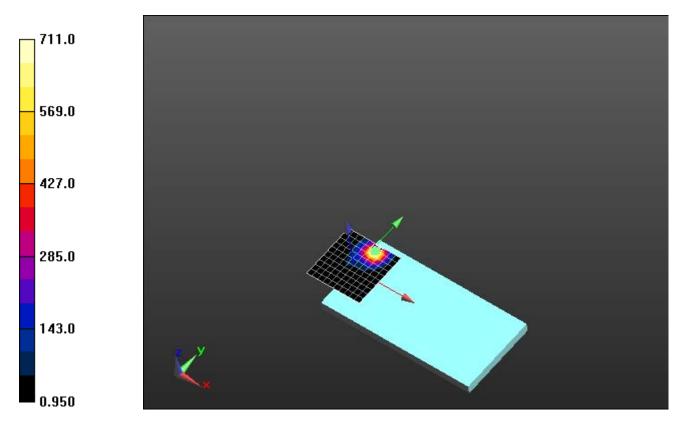
BWC applied: 0.16 dB

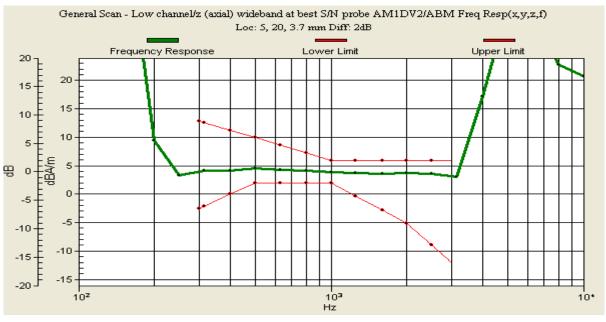
Device Reference Point: 0, 0, -6.3 mm

Cursor:

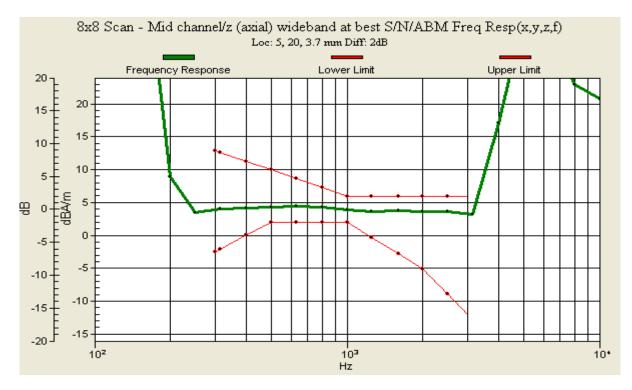
ABM1/ABM2 = 56.41 dB ABM1 comp = 4.10 dBA/m BWC Factor = 0.16 dB Location: 5, 18, 4.4 mm

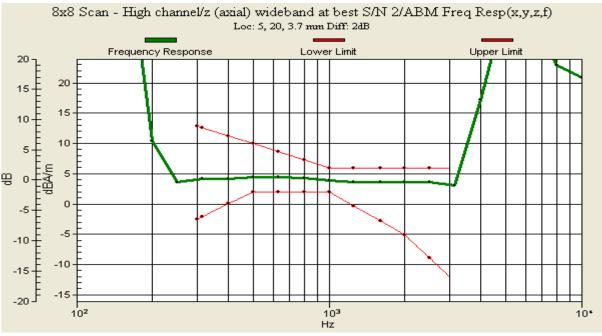
T-Coil scan_UMTS_Band_IV/8x8 Scan - High channel/z (axial) wideband at best S/N 2/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm


Signal Type: Audio File (.wav) 48k voice 300-3000 2s.wav


Output Gain: 69.12

Measure Window Start: 300ms Measure Window Length: 6000ms


BWC applied: 10.80 dB


::: BlackBerry	Annex A-D, Hearing Aid Comp (ABM) T-Coil Test Report for RFV121LW	•	()
Author Data	Dates of Test	Report No	FCC ID
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV120LW

∷ BlackBerry	Annex A-D, Hearing Aid Comp (ABM) T-Coil Test Report for l RFV121LW	·		Page 44(76)
Author Data	Dates of Test	FCC ID		
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV	120LW

::: BlackBerry	Annex A-D, Hearing Aid Compa (ABM) T-Coil Test Report for B RFV121LW	·		Page 45(76)	
Author Data	Dates of Test Report No FCC ID				
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV	/120LW	

Date/Time: 6/6/2013 1:30:35 AM

Test Laboratory: RIM Testing Services

HAC T-Coil_ABM_UMTS_IV_Radial-T

DUT: BlackBerry Smartphone; Type: Sample; Serial: 2FFFE9B6

Communication System: UID 0 - n/a, WCDMA FDD IV; Frequency: 1712.4 MHz, Frequency: 1732.6

MHz, Frequency: 1752.6 MHz

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Phantom section: TCoil Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: AM1DV3 3062; ; Calibrated: 1/12/2012
- Sensor-Surface: 0mm (Fix Surface), z = 3.0
- Electronics: DAE4 Sn881; Calibrated: 1/14/2013
- Phantom: HAC RF Test Arch with AMCC; Type: SD HAC P01 BA
- DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117)

$T\text{-}Coil\ scan_UMTS_Band_IV/General\ Scan\ -\ Low\ channel/y\ (transversal)\ 5.0mm\ 50\ x$

50/ABM SNR(x,y,z) (**11x11x1**): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

∷ BlackBerry

Page 46(76)

Author Data

Daoud Attayi

Dates of Test

May 31- June 06, 2013

Report No **RTS-6046-1310-33**

L6ARFV120LW

T-Coil scan_UMTS_Band_IV/General Scan - Low channel/y (transversal) 2mm 8 x 8/ABM SNR(x,v,z) (5x5x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 50.56 dB ABM1 comp = -4.08 dBA/m BWC Factor = 0.16 dB Location: 5, 27, 4.4 mm

T-Coil scan_UMTS_Band_IV/8x8 Scan - Mid channel/y (transversal) 2mm 8

x 8/ABM SNR(x,y,z) (5x5x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

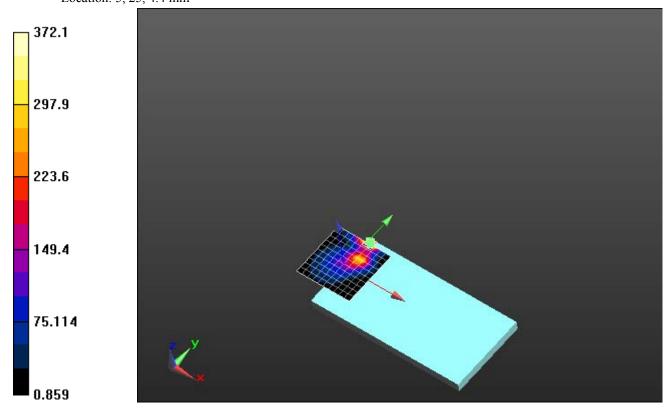
Cursor:

ABM1/ABM2 = 50.37 dB ABM1 comp = -4.61 dBA/m BWC Factor = 0.16 dB Location: 3, 27, 4.4 mm

T-Coil scan_UMTS_Band_IV/8x8 Scan - High channel/y (transversal) 2mm 8 x 8/ABM SNR(x,y,z) (5x5x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 35.28


Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

::: BlackBerry	Annex A-D, Hearing Aid Compa (ABM) T-Coil Test Report for B RFV121LW	·	1,(,0)		
Author Data	Dates of Test Report No FCC ID				
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV120LW		

Cursor:

ABM1/ABM2 = 50.48 dB ABM1 comp = -4.23 dBA/m BWC Factor = 0.16 dB Location: 5, 25, 4.4 mm

::: BlackBerry	Annex A-D, Hearing Aid Compa (ABM) T-Coil Test Report for B RFV121LW	·		Page 48(76)	
Author Data	Dates of Test Report No FCC ID				
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV	/120LW	

Date/Time: 6/5/2013 2:54:05 AM

Test Laboratory: RIM Testing Services

HAC T-Coil_ABM_UMTS_II_Axial

DUT: BlackBerry Smartphone; Type: Sample; Serial: 2FFFE9B6

Communication System: UID 0 - n/a, WCDMA FDD II; Frequency: 1852.4 MHz, Frequency: 1880 MHz,

Frequency: 1907.6 MHz

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Phantom section: TCoil Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

• Probe: AM1DV3 - 3062; ; Calibrated: 1/12/2012

• Sensor-Surface: 0mm (Fix Surface), z = 3.0

• Electronics: DAE4 Sn881; Calibrated: 1/14/2013

• Phantom: HAC RF Test Arch with AMCC; Type: SD HAC P01 BA

• DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117)

T-Coil scan_UMTS_Band_II/General Scan - Low channel/z (axial) 5.0mm 50 x 50/ABM

SNR(x,y,z) (11x11x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

::: BlackBerry	Annex A-D, Hearing Aid Comp (ABM) T-Coil Test Report for RFV121LW	•		Page 49(76)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attavi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV	/120LW

T-Coil scan_UMTS_Band_II/General Scan - Low channel/z (axial) 2mm 8 x

8/ABM SNR(x,y,z) (5x5x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 55.93 dB ABM1 comp = 3.39 dBA/m BWC Factor = 0.16 dB Location: 5, 18, 4.4 mm

T-Coil scan_UMTS_Band_II/General Scan - Low channel/z (axial) wideband at best S/N_probe AM1DV2/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid:

dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 300-3000 2s.wav

Output Gain: 69.12

Measure Window Start: 300ms Measure Window Length: 6000ms

BWC applied: 10.80 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

Diff = 2.00 dB

BWC Factor = 10.80 dB Location: 5, 20, 3.7 mm

T-Coil scan_UMTS_Band_II/8x8 Scan - Mid channel/z (axial) 2mm 8 x 8/ABM SNR(x,y,z) (5x5x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

≅ BlackBerry	
--------------	--

Page 50(76)

Author Data

Daoud Attayi

Dates of Test

May 31- June

May 31- June 06, 2013

Report No RTS-6046-1310-33

L6ARFV120LW

Cursor:

ABM1/ABM2 = 55.84 dB ABM1 comp = 3.33 dBA/m BWC Factor = 0.16 dB Location: 5, 18, 4.4 mm

T-Coil scan_UMTS_Band_II/8x8 Scan - Mid channel/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 300-3000 2s.wav

Output Gain: 69.12

Measure Window Start: 300ms Measure Window Length: 6000ms

BWC applied: 10.80 dB

Device Reference Point: 0, 0, -6.3 mm

T-Coil scan_UMTS_Band_II/8x8 Scan - High channel/z (axial) 2mm 8 x

8/ABM SNR(\mathbf{x} , \mathbf{y} , \mathbf{z}) (5 \mathbf{x} 5 \mathbf{x} 1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

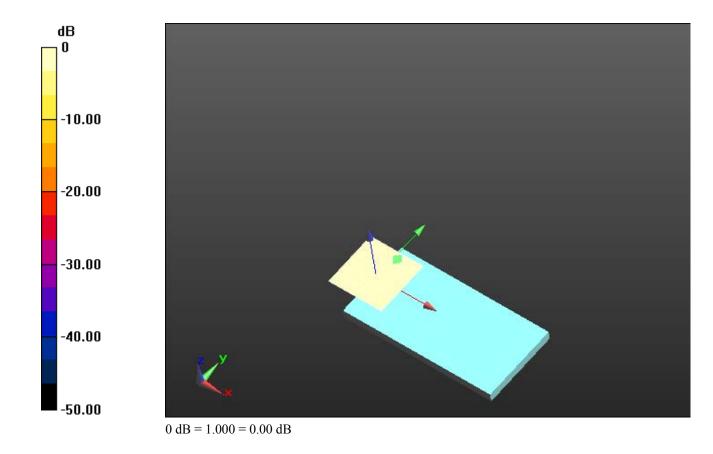
BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

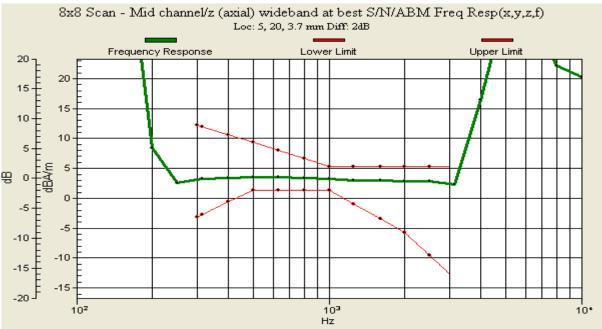
ABM1/ABM2 = 55.85 dB ABM1 comp = 3.36 dBA/m BWC Factor = 0.16 dB Location: 5, 18, 4.4 mm

T-Coil scan_UMTS_Band_II/8x8 Scan - High channel/z (axial) wideband at best S/N 2/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm


Signal Type: Audio File (.wav) 48k voice 300-3000 2s.wav

Output Gain: 69.12

Measure Window Start: 300ms Measure Window Length: 6000ms


BWC applied: 10.80 dB

::: BlackBerry	Annex A-D, Hearing Aid Comp (ABM) T-Coil Test Report for I RFV121LW	·	
Author Data	Dates of Test	Report No	FCC ID
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV120LW



::: BlackBerry	Annex A-D, Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RFV121LW Dates of Test Report No FCC ID		Page 52(76)	
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV	′120LW

::: BlackBerry	Annex A-D, Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RFV121LW Dates of Test Report No FCC ID			Page 53(76)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV	′120LW

::: BlackBerry	Annex A-D, Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RFV121LW Dates of Test Report No FCC ID			Page 54(76)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013 RTS-6046-1310-33 L6ARFV120			

Date/Time: 6/5/2013 3:07:12 AM

Test Laboratory: RIM Testing Services

HAC T-Coil_ABM_UMTS_II_Radial-T

DUT: BlackBerry Smartphone; Type: Sample; Serial: 2FFFE9B6

Communication System: UID 0 - n/a, WCDMA FDD II; Frequency: 1852.4 MHz, Frequency: 1880 MHz,

Frequency: 1907.6 MHz

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Phantom section: TCoil Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

• Probe: AM1DV3 - 3062; ; Calibrated: 1/12/2012

• Sensor-Surface: 0mm (Fix Surface), z = 3.0

• Electronics: DAE4 Sn881; Calibrated: 1/14/2013

• Phantom: HAC RF Test Arch with AMCC; Type: SD HAC P01 BA

• DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117)

$\textbf{T-Coil scan_UMTS_Band_II/General Scan - Low channel/y (transversal) 5.0mm \ 50 \ x }$

50/ABM SNR(x,y,z) (**11x11x1**): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Au	:- BlackBerry	Annex A-D, Hearing Aid Comp (ABM) T-Coil Test Report for RFV121LW	·	•	Page 55(76)
1 -	Author Data	Dates of Test	Report No	FCC ID	/400L\M
	Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARF\	/12ULVV

T-Coil scan_UMTS_Band_II/General Scan - Low channel/y (transversal)

2mm 8 x 8/ABM SNR(x,y,z) (5x5x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 49.91 dBABM1 comp = -4.53 dBA/m BWC Factor = 0.16 dBLocation: 5, 27, 4.4 mm

T-Coil scan UMTS Band II/8x8 Scan - Mid channel/y (transversal) 2mm 8 x

8/ABM SNR(x,y,z) (5x5x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 49.93 dBABM1 comp = -4.53 dBA/mBWC Factor = 0.16 dBLocation: 5, 27, 4.4 mm

T-Coil scan_UMTS_Band_II/8x8 Scan - High channel/y (transversal) 2mm 8

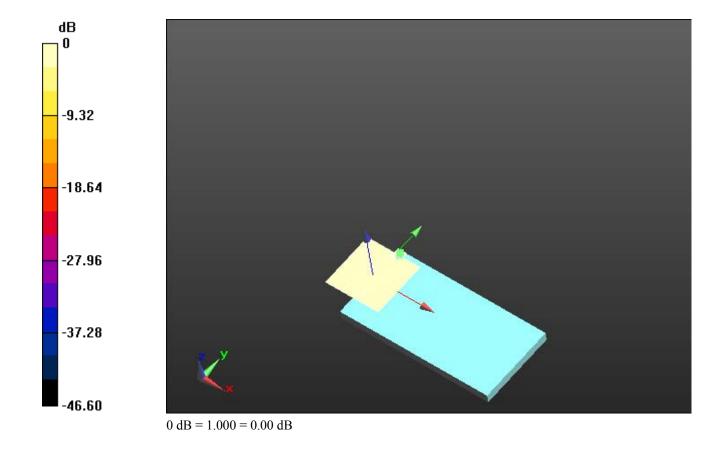
x 8/ABM SNR(x,y,z) (5x5x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB


Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 49.93 dBABM1 comp = -4.58 dBA/mBWC Factor = 0.16 dBLocation: 5, 27, 4.4 mm

This report shall NOT be reproduced except in full without the written consent of BlackBerry RTS Copyright 2005-2013, BlackBerry RTS, a division of BlackBerry Limited

::: BlackBerry	Annex A-D, Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RFV121LW			Page 56(76)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV	120LW

		Page 57(76)		
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV	/120LW

Date/Time: 6/5/2013 4:20:00 PM

Test Laboratory: RIM Testing Services

HAC T-Coil_ABM_UMTS_Band_V_&_802.11b_Axial

DUT: BlackBerry Smartphone; Type: Sample; Serial: 2FFFE9B6

Communication System: UID 0 - n/a, WCDMA FDD V; Frequency: 826.4 MHz

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Phantom section: TCoil Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

• Probe: AM1DV3 - 3062; ; Calibrated: 1/12/2012

• Sensor-Surface: 0mm (Fix Surface), z = 3.0

• Electronics: DAE4 Sn881; Calibrated: 1/14/2013

• Phantom: HAC RF Test Arch with AMCC; Type: SD HAC P01 BA

• DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117)

T-Coil scan_UMTS_Band_V/802.11b Enabled: General Scan - Low channel/z (axial)

5.0mm 50 x 50/ABM SNR(**x**,**y**,**z**) (**11x11x1**): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

T-Coil scan_UMTS_Band_V/802.11b Enabled: General Scan - Low channel/z (axial) 2mm

8 x 8/ABM SNR(x,y,z) (5x5x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

This report shall <u>NOT</u> be reproduced except in full without the written consent of BlackBerry RTS Copyright 2005-2013, BlackBerry RTS, a division of BlackBerry Limited

::: BlackBerry	Annex A-D, Hearing Aid Compa (ABM) T-Coil Test Report for B RFV121LW	·		Page 58(76)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV	′120LW

Cursor:

ABM1/ABM2 = 57.01 dB ABM1 comp = 4.42 dBA/m BWC Factor = 0.16 dB Location: 5, 18, 4.4 mm

T-Coil scan_UMTS_Band_V/802.11b Enabled: General Scan - Low channel/z (axial) wideband at best S/N probe AM1DV2/ABM Freq Resp(x,y,z,f) (1x1x1):

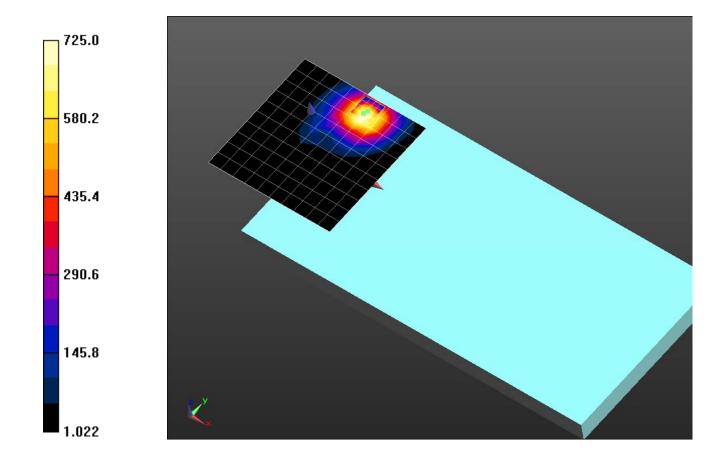
Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav

Output Gain: 69.12

Measure Window Start: 300ms Measure Window Length: 6000ms

BWC applied: 10.80 dB


Device Reference Point: 0, 0, -6.3 mm

Cursor:


Diff = 2.00 dB

BWC Factor = 10.80 dB Location: 5, 20, 3.7 mm

::: BlackBerry	Annex A-D, Hearing Aid Compa (ABM) T-Coil Test Report for E RFV121LW	•	- (, 0)
Author Data	Dates of Test	Report No	FCC ID
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV120LW

Author Data Daguid Attavi		(ABM) T-Coil Test Report for BlackBerry® Smartphone model RFV121LW		Page 60(76)	
	Author Data	Dates of Test	Report No	FCC ID	
	Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV	′120LW

::: BlackBerry	Annex A-D, Hearing Aid Compa (ABM) T-Coil Test Report for B RFV121LW	·		Page 61(76)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV	′120LW

Date/Time: 6/5/2013 4:33:05 PM

Test Laboratory: RIM Testing Services

HAC T-Coil_ABM_UMTS_Band_V_&_802.11b_Radial_L

DUT: BlackBerry Smartphone; Type: Sample; Serial: 2FFFE9B6

Communication System: UID 0 - n/a, WCDMA FDD V; Frequency: 826.4 MHz

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Phantom section: TCoil Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: AM1DV3 3062; ; Calibrated: 1/12/2012
- Sensor-Surface: 0mm (Fix Surface), z = 3.0
- Electronics: DAE4 Sn881; Calibrated: 1/14/2013
- Phantom: HAC RF Test Arch with AMCC; Type: SD HAC P01 BA
- DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117)

T-Coil scan_UMTS_Band_V/802.11b Enabled: General Scan - Low channel/y (transversal) 5.0mm 50 x 50/ABM SNR(x,y,z) (11x11x1): Measurement grid: dx=10mm,

dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

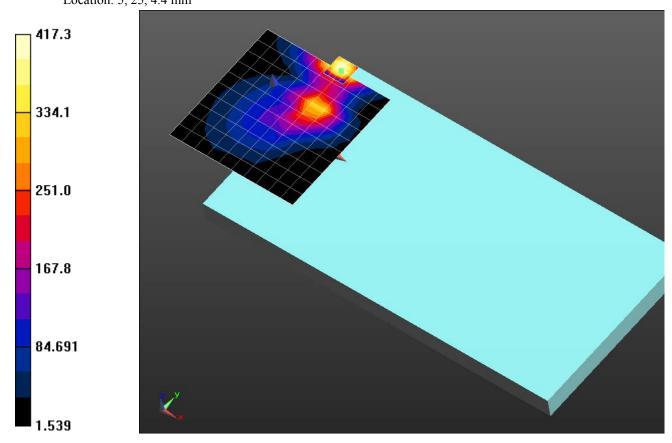
::: BlackBerry	Annex A-D, Hearing Aid Co (ABM) T-Coil Test Report for RFV121LW	2 0	
Author Data	Dates of Test	Report No	FCC ID
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV120LW

T-Coil scan_UMTS_Band_V/802.11b Enabled: General Scan - Low channel/y (transversal) 2mm 8 x 8/ABM SNR(x,y,z) (5x5x1): Measurement grid: dx=10mm,

dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 35.28


Measure Window Start: 300ms Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 51.24 dB ABM1 comp = -3.40 dBA/m BWC Factor = 0.16 dB Location: 5, 25, 4.4 mm

::: BlackBerry	Annex A-D, Hearing Aid Cor (ABM) T-Coil Test Report fo RFV121LW		00(10)
Author Data	Dates of Test	Report No	FCC ID
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV120LW

Date/Time: 6/6/2013 2:51:48 AM

Test Laboratory: RIM Testing Services

HAC T-Coil_ABM_UMTS_V+Wifi_802.11a_Axial

DUT: BlackBerry Smartphone; Type: Sample; Serial: 2FFFE9B6

Communication System: UID 0 - n/a, WCDMA FDD V; Frequency: 836.4 MHz

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Phantom section: TCoil Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

• Probe: AM1DV3 - 3062; ; Calibrated: 1/12/2012

• Sensor-Surface: 0mm (Fix Surface), z = 3.0

• Electronics: DAE4 Sn881; Calibrated: 1/14/2013

• Phantom: HAC RF Test Arch with AMCC; Type: SD HAC P01 BA

• DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117)

T-Coil scan_UMTS_Band_V with Wifi/8x8 Scan - Mid channel/z (axial) 2mm

8 x 8/ABM SNR(x,y,z) (5x5x1): Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms

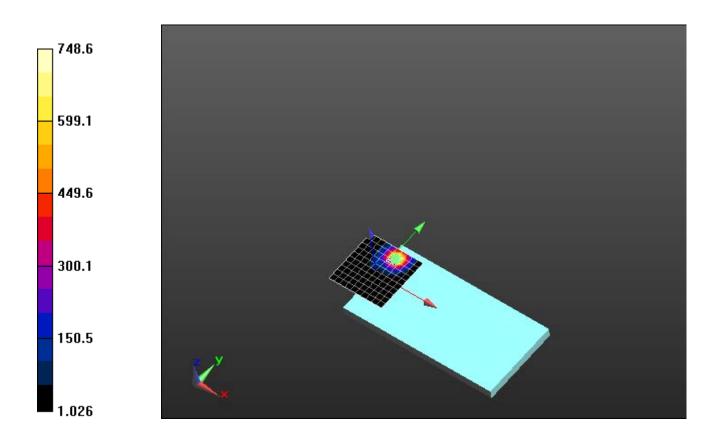
BWC applied: 0.16 dB

	:: BlackBerry	Annex A-D, Hearing Aid Compa (ABM) T-Coil Test Report for B RFV121LW	·		Page 64(76)
ſ	Author Data	Dates of Test	Report No	FCC ID	
	Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV	120LW

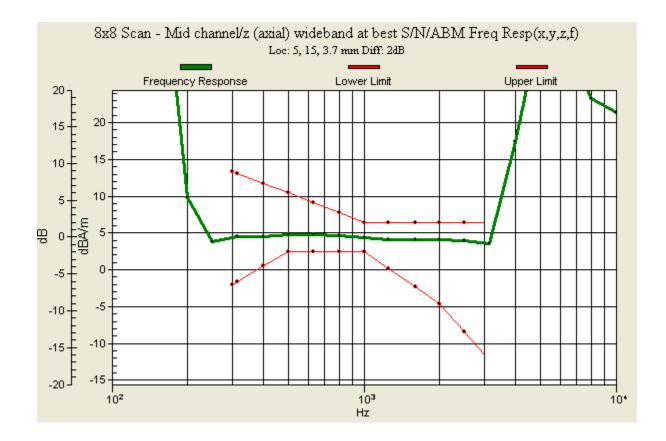
Cursor:

ABM1/ABM2 = 57.20 dB ABM1 comp = 4.52 dBA/m BWC Factor = 0.16 dB Location: 7, 17, 4.4 mm

T-Coil scan_UMTS_Band_V with Wifi/8x8 Scan - Mid channel/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm,


dy=10mm

Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav


Output Gain: 69.12

Measure Window Start: 300ms Measure Window Length: 6000ms

BWC applied: 10.80 dB

::: BlackBerry	Annex A-D, Hearing Aid Compa (ABM) T-Coil Test Report for B RFV121LW	·		Page 65(76)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV	/120LW

::: BlackBerry	Annex A-D, Hearing Aid Compa (ABM) T-Coil Test Report for B RFV121LW	·	00(.0)
Author Data	Dates of Test	Report No	FCC ID
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV120LW

Date/Time: 6/6/2013 3:03:54 AM

Test Laboratory: RIM Testing Services

HAC T-Coil_ABM_UMTS_V+Wifi_802.11a_Radial-T

DUT: BlackBerry Smartphone; Type: Sample; Serial: 2FFFE9B6

Communication System: UID 0 - n/a, WCDMA FDD V, Frequency: 836.4 MHz

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Phantom section: TCoil Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: AM1DV3 3062; ; Calibrated: 1/12/2012
- Sensor-Surface: 0mm (Fix Surface), z = 3.0
- Electronics: DAE4 Sn881; Calibrated: 1/14/2013
- Phantom: HAC RF Test Arch with AMCC; Type: SD HAC P01 BA
- DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117)

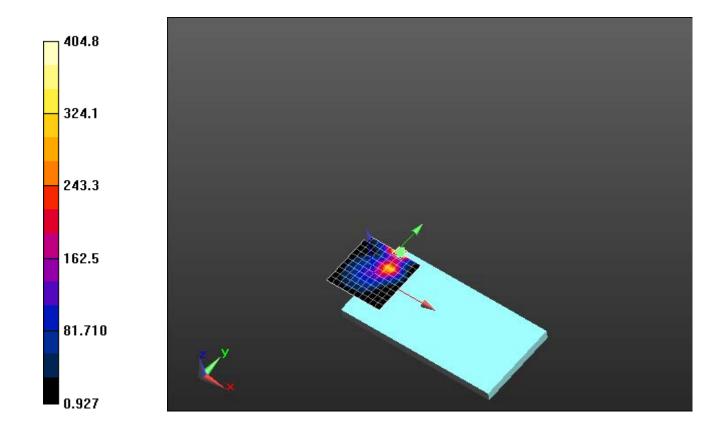
T-Coil scan_UMTS_Band_V with Wifi/8x8 Scan - Mid channel/y (transversal) 2mm 8 x 8/ABM SNR(x,y,z) (5x5x1): Measurement grid: dx=10mm,

dv=10mm

Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav

Output Gain: 35.28

Measure Window Start: 300ms Measure Window Length: 1000ms


BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

Cursor:

ABM1/ABM2 = 51.05 dB ABM1 comp = -3.59 dBA/m BWC Factor = 0.16 dB Location: 5, 27, 4.4 mm

::: BlackBerry	Annex A-D, Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RFV121LW Page 67(7)		
Author Data	Dates of Test	Report No	FCC ID
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV120LW

::: BlackBerry	Annex A-D, Hearing Aid Compa (ABM) T-Coil Test Report for B RFV121LW	•		Page 68(76)
Author Data	Dates of Test	Report No	FCC ID	
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV	′120LW

Annex D: Probe/TMFS calibration certificate

Document

Annex A-D, Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RFV121LW

69(76)

Author Data **Daoud Attayi** Dates of Test

May 31- June 06, 2013

Report No RTS-6046-1310-33

L6ARFV120LW

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura s

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Calibration procedure(s) OA CAL-24.v3 Calibration procedure for AM1D magnetic field probes and TMFS in the audio range Calibration date: January 10, 2013 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All celibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for celibration) Primary Standards 1D ± Cal Date (Certificate No.) Scheduled Calibration Keithley Multimeter Type 2001 SN: 0810278 00-00-12 (No.12726) Oct-13 SN: 1008 10-Jan-13 (No. AM10-1008, Jan13) Jan-14 DAE4 SN: 761 20-May-12 (No. DAE4-761_May12) May-13 Secondary Standards 1D ± Check Date (in house) Scheduled Check AM/OC 1050 12-Oct-11 (in house check Oct-11) Oct-13 Secondary Standards Dimoe lifev Laboratory Technician Name Function Signature Calibrated by: Fin Bomholt Deputy Technical Mansger Function Laboratory Technician Approved by: Fin Bomholt Deputy Technical Mansger	CALIBRATION CE	RTIFICA	TE BOOK STORY	
Calibration procedure for AM1D magnetic field probes and TMFS in the audio range Caibration date: January 10, 2013 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Calibratic No.) Scheduled Calibration Keithley Multimeter Type 2001 SN: 0610278 02-0ct-12 (No:12728) Oct-13 Reference Probe AM1DV2 SN: 1008 10-Jan-13 (No. AM1D-1006_Jan13) Jan-14 DAE4 SN: 781 29-May-12 (No. DAE4-781_May12) May-13 Secondary Standards ID # Check Date (in house) Scheduled Check AMCC 1050 12-0ct-11 (in house check Oct-11) Oct-13 Sep-14 Calibrated by: Direct lifey Laboratory Technician Signature Calibrated by: Direct lifey Laboratory Technician	Object	AM1DV3 - SN	: 3062	egateossaves.
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Keithley Multimeter Type 2001 SN: 0810278 02-0ct-12 (No.12728) Oct-13 Reference Probe AM1DV2 SN: 1008 10-Jan-13 (No. AM10-1008_Jan13) Jan-14 DAE4 SN: 781 29-May-12 (No. DAE4-781_May12) May-13 Secondary Standards ID # Check Date (in house) Scheduled Check AM0C 1050 12-0ct-11 (in house check Oct-11) Oct-13 AMMII Audio Measuring Instrument 1082 26-Sep-12 (in house check Sep-12) Sep-14 Calibrated by: Direct liev Laboratory Technician Signature Calibrated by: Direct liev	, ,,,	Calibration pro	ocedure for AM1D magnetic field pro	
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Keithley Multimeter Type 2001 SN: 0810278 02-Oct-12 (No:12728) Oct-13 Reference Probe AM1DV2 SN: 1008 10-Jan-13 (No. AM1D-1008_Jan13) Jan-14 DAE4 SN: 781 29-May-12 (No. DAE4-781_May12) May-13 Secondary Standards ID # Check Date (in house) Scheduled Check AMCC 1050 12-Oct-11 (in house check Oct-11) Oct-13 AMMII Audio Measuring Instrument 1062 26-Sep-12 (in house check Sep-12) Sep-14 Name Function Signature Calibrated by: Dimce liliev Laboratory Technician White Instrument White Instrumen	Calibration date:	January 10, 20	013	
Secondary Standards	The measurements and the uncerta All calibrations have been conducte	inties with confidence	be probability are given on the following pages and return facility: environment temperature (22 \pm 3) $^{\circ}$ C	d are part of the certificate.
Secondary Standards	Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Secondary Standards ID # Check Date (in house) Scheduled Check AMCC 1050 12-Oct-11 (in house check Oct-11) Oct-13 AMMI Audio Messuring Instrument 1062 26-Sep-12 (in house check Sep-12) Sep-14 Name Function Signature Calibrated by: Dimce lifev Laboratory Technician		SN: 0810278		Oct-13
Secondary Standards ID # Check Date (in house) Scheduled Check AMCC 1050 12-Oct-11 (in house check Oct-11) Oct-13 AMMI Audio Measuring Instrument 1062 26-Sep-12 (in house check Sep-12) Sep-14 Name Function Signature Calibrated by: Dimce liley Laboratory Technician	Reference Probe AM1DV2	SN: 1008	10-Jan-13 (No. AM1D-1006_Jan13)	Jan-14
AM/CC 1050 12-Oct-11 (in house check Oct-11) Oct-13 AM/MI Audio Measuring Instrument 1062 26-Sep-12 (in house check Sep-12) Sep-14 Name Function Signature Calibrated by: Dimce Iliev Laboratory Technician	DAE4	SN: 781	29-May-12 (No. DAE4-781_May12)	May-13
AMMI Audio Measuring Instrument 1062 26-Sep-12 (in house check Sep-12) Sep-14 Name Function Signature Calibrated by: Direct liev Laboratory Technician White Sep-14	Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Name Function Signature Calibrated by: Dimce fliev Laboratory Technician				
Calibrated by: Dimce fliev Laboratory Technician & Will	AMMI Audio Measuring Instrument	1062	26-Sep-12 (in house check Sep-12)	Sep-14
W Huy			and the state of t	Signature
Approved by: Fin Bomholt Deputy Technical Manager Flandfall	Calibrated by:	Dimce fliev	Laboratory Technician	D. Hur
	Approved by:	Fin Bomholt	Deputy Technical Manager	F. Kandoll
Issued: January 10, 2013				Issued: January 10, 2013

Certificate No: AM1D-3062_Jan13

Page 1 of 3

≅BlackBerry

70(76)

Author Data

Daoud Attavi

Dates of Test

May 31- June 06, 2013

Report No **RTS-6046-1310-33**

L6ARFV120LW

References

[1] ANSI C63.19-2007

American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

[2] DASY5 manual, Chapter: Hearing Aid Compatibility (HAC) T-Coil Extension

Description of the AM1D probe

The AM1D Audio Magnetic Field Probe is a fully shielded magnetic field probe for the frequency range from 100 Hz to 20 kHz. The pickup coil is compliant with the dimensional requirements of [1]. The probe includes a symmetric low noise amplifier for the signal available at the shielded 3 pin connector at the side. Power is supplied via the same connector (phantom power supply) and monitored via the LED near the connector. The 7 pin connector at the end of the probe does not carry any signals, but determines the angle of the sensor when mounted on the DAE. The probe supports mechanical detection of the surface.

The single sensor in the probe is arranged in a tilt angle allowing measurement of 3 orthogonal field components when rotating the probe by 120° around its axis. It is aligned with the perpendicular component of the field, if the probe axis is tilted nominally 35.3° above the measurement plane, using the connector rotation and sensor angle stated below.

The probe is fully RF shielded when operated with the matching signal cable (shielded) and allows measurement of audio magnetic fields in the close vicinity of RF emitting wireless devices according to [1] without additional shielding.

Handling of the item

The probe is manufactured from stainless steel. In order to maintain the performance and calibration of the probe, it must not be opened. The probe is designed for operation in air and shall not be exposed to humidity or liquids. For proper operation of the surface detection and emergency stop functions in a DASY system, the probe must be operated with the special probe cup provided (larger diameter).

Methods Applied and Interpretation of Parameters

- Coordinate System: The AM1D probe is mounted in the DASY system for operation with a HAC Test
 Arch phantom with AMCC Helmholtz calibration coil according to [2], with the tip pointing to "southwest"
 orientation.
- Functional Test: The functional test preceding calibration includes test of Noise level
 - RF immunity (1kHz AM modulated signal). The shield of the probe cable must be well connected. Frequency response verification from 100 Hz to 10 kHz.
- Connector Rotation: The connector at the end of the probe does not carry any signals and is used for
 fixation to the DAE only. The probe is operated in the center of the AMCC Helmholtz coil using a 1 kHz
 magnetic field signal. Its angle is determined from the two minima at nominally +120° and -120°
 rotation, so the sensor in the tip of the probe is aligned to the vertical plane in z-direction, corresponding
 to the field maximum in the AMCC Helmholtz calibration coil.
- Sensor Angle: The sensor tilting in the vertical plane from the ideal vertical direction is determined from
 the two minima at nominally +120° and -120°. DASY system uses this angle to align the sensor for
 radial measurements to the x and y axis in the horizontal plane.
- Sensitivity: With the probe sensor aligned to the z-field in the AMCC, the output of the probe is
 compared to the magnetic field in the AMCC at 1 kHz. The field in the AMCC Helmholtz coil is given by
 the geometry and the current through the coil, which is monitored on the precision shunt resistor of the
 coil.

Certificate No: AM1D-3062_Jan13	Page 2 of 3	

Document

Annex A-D, Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RFV121LW

Page **71(76)**

Author Data

Daoud Attayi

Dates of Test

May 31- June 06, 2013

Report No **RTS-6046-1310-33**

L6ARFV120LW

AM1D probe identification and configuration data

Item	AM1DV3 Audio Magnetic 1D Field Probe
Type No	SP AM1 001 BA
Serial No	3062

Overall length	296 mm
Tip diameter	6.0 mm (at the tip)
Sensor offset	3.0 mm (centre of sensor from tip)
Internal Amplifier	20 dB

Manufacturer / Origin	Schmid & Partner Engineering AG, Zürich, Switzerland
Manufacturing date	October 30, 2008
Last calibration date	January 12, 2012

Calibration data

Connector rotation angle

(in DASY system)

61.0°

+/- 3.6 ° (k=2)

Sensor angle

(in DASY system)

0.25°

+/- 0.5 ° (k=2)

Sensitivity at 1 kHz

(in DASY system)

0.00741 V / (A/m)

+/- 2.2 % (k=2)

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: AM1D-3062_Jan13

Page 3 of 3

Document

Annex A-D, Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RFV121LW

72(76)

Author Data **Daoud Attayi** Dates of Test

May 31- June 06, 2013

Report No RTS-6046-1310-33

L6ARFV120LW

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst s Service suisse d'étalonnage С Servizio svizzero di taratura s Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

RTS (RIM Testing Services)

Certificate No: TMFS_1003_Nov11

Accreditation No.: SCS 108

CALIBRATION CERTIFICAT TMFS - SN: 1003 Object / Identification QA CAL-24.v2 Calibration procedure(s) Calibration procedure for AM1D magnetic field probes and TMFS in the audio range November 30, 2011 Calibration date This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The calibrations have been conducted in the R&D laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Primary Standards ID# Cal Date (Calibrated by, Certificate No.) Keithley Multimeter Type 2001 SN: 0810278 28-Sep-11 (No:11450) Sep-12 Secondary Standards ID# Cal / Check Date Scheduled Calibration Check AMCC 1050 12-Oct-11 (in house check Oct-11) Oct-13 Reference Probe AM1DV2 SN: 1008 18-Jan-11 (No. AM1D-1006_Jan11) Jan-12 AMMI Audio Measuring Instrument 1062 20-Sep-10 (in house check Sep-10) Sep-12 MY40005266 Oct-13 Agilent WF Generator 33120A 12-Oct-11 (in house check Oct-11) Function Calibrated by: Approved by: Issued: December 5, 2011 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: TMFS_1003_Nov11

Page 1 of 5

::: BlackBerry

73(76)

Author Data

Daoud Attayi

Dates of Test

May 31- June 06, 2013

Report No RTS-6046-1310-33

L6ARFV120LW

References

- ANSI-C63.19-2007
 American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.
- [2] DASY manual, Chapter "Hearing Aid Compatibility (HAC) T-Coil Extension"

Methods Applied and Interpretation of Parameters

- Coordinate System: The TMFS is mounted underneath the HAC Test Arch touching equivalently to a wireless device according to [2] 29.2.2.: In "North" orientation, the TMFS signal connector is directed to the north, with x and y axes of TMFS and Test arch coinciding (see fig. 1). The rotational symmetry axis of the TMFS is aligned to the center of the HAC test Arch. For East, South and West configuration, the TMFS has been rotated clockwise in steps of 90°, so the connector looks into the specified direction. The evaluation of the radial direction is referenced the device orientation (x equivalent to South direction).
- Plane: Measurement coincidence with standard [1], the measurement plane (probe sensor center) is selected to be at a distance of 10 mm above the the surface of the TMFS touching the frame. The 50 x 50 mm scan area is aligned to the center of the unit. The scanning plane is verified to be parallel to the phantom frame before the measurements using the predefined "Geometry and signal check" procedure according to the predefined procedures described in [2].

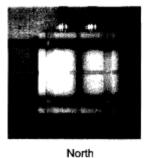


Fig. 1 TMFS scanning measurement configurations

- Measurement Conditions: Calibration of AM1D probe and AMMI are according to [2]. The 1 kHz sine signal
 for the level measurement is supplied from an external, independent generator via a BNC cable to TMFS IN
 and monitored at TMFS OUT with an independent RMS voltmeter or Audio Analyzer. The level is set to 0.5
 Vrms and monitored during the scans.
- For the frequency response, a higher suppression of the background ambient magnetic field over the full frequency range was achieved by placing the TMFS in a magnetically shielded box. The AM1D probe was fixed without robot positioner near the axial maximum for this measurement. The background noise suppression was typ. 30 dB at 100 Hz (minimum) and 42 dB at 1 kHz. The predefined multisine signal (48k_multisine_50-10000_10s.wav) was used and evaluated in the third-octave bands from 100 Hz to 10000 Hz.

Certificate No: TMFS_1003_Nov11

Page 2 of 5

∷ BlackBerry

Page **74(76)**

Author Data

Daoud Attayi

Dates of Test **May 31- June 06, 2013**

Report No **RTS-6046-1310-33**

L6ARFV120LW

1 Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2 (482)		
DASY PP Version	SEMCAD	V14.4.5 (3634)		
Phantom	HAC Test Arch	SD HAC P01 BA, #1002		
Distance TMFS Top - Probe Centre	10 mm			
Scan resolution	dx, dy = 5 mm	area = 50 x 50 mm		
Frequency	for field scans	1 kHz		
Signal level to TMFS	for field scans	500 mV RMS		
Signal	for frequency response	multisine signal 50-10000 Hz each third-octave band		

Table 1: System configuration

2 Axial Maximum Field

Configuration	East	South	West	North	Subset Average	Average
Axial Max	-20.36	-20.35	-20.38	-20.35		-20.36
TMFS Y Axis 1st Max	-26.11	-26.06	-26.11	-26.07	_	
TMFS Y Axis 2nd Max	-26.15	-26.15	-26.29	-26.16		
Longitudinal Max Avg	-26.13	-26.11	-26.20	-26.12	-26.14	
TMFS X Axis 1st Max	-25.95	-25.99	-26.02	-25.94		
TMFS X Axis 2nd Max	-25.91	-25.89	-25.95	-25.95		
Transversal Max Avg	-25.93	-25.94	-25.99	-25.95	-25.95	
Radial Max			-26.09			-26.04

Table 2: Axial and radial field maxima measured with probe center at 10mm distance in dB A/m

The maximum was calculated as the average from the values measured in the 4 orientations listed in table 2.

Axial Maximum -20.36 dB A/m (+/- 0.33dB, k=2)

3 Radial Maximum Field

In addition, the average from the 16 maxima of the radial field listed in table 2 (measured at 10mm) was calculated:

Radial Maximum -26.04 dB A/m

Certificate No: TMFS_1003_Nov11

::: BlackBerry	Annex A-D, Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RFV121LW				
Author Data	Dates of Test	Report No	FCC ID		
Daoud Attavi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARF\	/120LW	

4 Appendix

4.1 Frequency response

Max. deviation measured, relative to 1 kHz: min. -0.03, max. 0.01 dB

Frequency [Hz]	Response [dB]
100	0.01
125	0.00
160	-0.03
200	0.00
250	-0.01
315	0.00
400	0.00
500	0.00
630	0.00
800	0.00
1000	0.00
1250	-0.01
1600	-0.01
2000	-0.01
2500	-0.01
3150	-0.01
4000	-0.02
5000	-0.02
6300	-0.03
8000	-0.03
10000	-0.03

Table 3: Frequency response

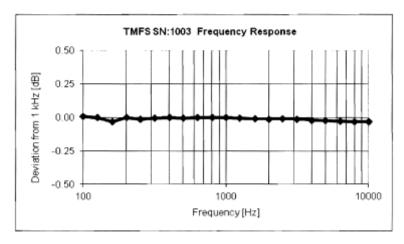


Fig. 2 Frequency response 100 to 10'000 Hz

::: BlackBerry	Annex A-D, Hearing Aid Co (ABM) T-Coil Test Report fo	Annex A-D, Hearing Aid Compatibility Audio Band Magnetic (ABM) T-Coil Test Report for BlackBerry® Smartphone model RFV121LW				
Author Data	Dates of Test	Report No	FCC ID	ID		
Daoud Attayi	May 31- June 06, 2013	RTS-6046-1310-33	L6ARFV12	20LW		

4.2 Field plots

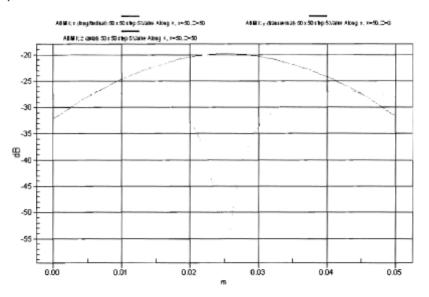


Fig. 3: Typical 2D field plots for x (red), y (green) and z (blue) components

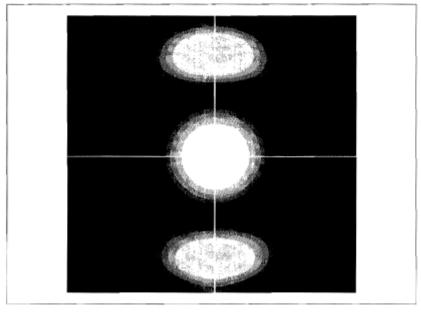


Fig. 4: Superponed field plots of z (axial), x and y radial magnetic field, 50 x 50 mm, individual scaling: white = max. field level, black = -4dB below max. The lines show the position of the 2D field plot of figure 3.

Certificate No: TMFS_1003_Nov11