

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
1(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

APPENDIX D: PROBE & DIPOLE CALIBRATION DATA

Revision History		
Rev. Number	Date	Changes
Initial	May 23, 2013	-----
Rev 2	Dec 17, 2014	Added equipment used for 802.11a Hotspot mode SAR testing 1. Page 35-45

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
2(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di tenuta
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**Client **RTS (RIM Testing Services)**Certificate No: **ES3-3225_Jan12****CALIBRATION CERTIFICATE**Object **ES3DV3 - SN:3225**Calibration procedure(s)
QA CAL-01.v6, QA CAL-23.v4, QA CAL-25.v4
Calibration procedure for dosimetric E-field probesCalibration date: **January 11, 2012**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility. environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: 55054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12
Reference 20 dB Attenuator	SN: 55086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Reference 30 dB Attenuator	SN: 55129 (30b)	29-Mar-11 (No. 217-01370)	Apr-12
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013, Dec11)	Dec-12
DAE4	SN: 654	3-May-11 (No. DAE4-654, May11)	May-12
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Calibrated by:	Name: Jason Kasner	Function: Laboratory Technician	Signature:
Approved by:	Name: Katja Pokorn	Function: Technical Manager	Signature:

Issued: January 12, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
3(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'kalibrage
S Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108****Glossary:**

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization β	β rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\beta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORM_{x,y,z}: Assessed for E-field polarization $\beta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). NORM_{x,y,z} are only intermediate values, i.e., the uncertainties of NORM_{x,y,z} does not affect the E²-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * \text{frequency_response}$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- A_{x,y,z}; B_{x,y,z}; C_{x,y,z}; VR_{x,y,z}: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORM_{x,y,z} * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

BlackBerry	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 4(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

ES3DV3 – SN:3225

January 11, 2012

Probe ES3DV3

SN:3225

Manufactured: September 1, 2009
 Calibrated: January 11, 2012

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
5(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

ES3DV3- SN:3225

January 11, 2012

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3225**Basic Calibration Parameters**

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μ V/(V/m)) ^a	1.26	1.20	1.30	$\pm 10.1\%$
DCP (mV) ^b	101.2	100.8	101.2	

Modulation Calibration Parameters

UID	Communication System Name	PAR	A dB	B dB	C dB	VR mV	Unc ^c (k=2)
10000	CW	0.00	X 0.00	0.00	1.00	107.7	$\pm 1.7\%$
			Y 0.00	0.00	1.00	113.4	
			Z 0.00	0.00	1.00	110.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^a The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^b Numerical linearization parameter: uncertainty not required.

^c Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
6(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

ES3DV3- SN:3225

January 11, 2012

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3225**Calibration Parameter Determined in Head Tissue Simulating Media**

f (MHz) ^c	Relative Permittivity ^d	Conductivity (S/m) ^d	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unc. (k=2)
750	41.9	0.89	6.42	6.42	6.42	0.27	2.04	± 12.0 %
900	41.5	0.97	6.06	6.06	6.06	0.35	1.74	± 12.0 %
1810	40.0	1.40	5.23	5.23	5.23	0.73	1.21	± 12.0 %
1950	40.0	1.40	4.98	4.98	4.98	0.58	1.41	± 12.0 %
2450	39.2	1.80	4.50	4.50	4.50	0.79	1.26	± 12.0 %
2600	39.0	1.96	4.32	4.32	4.32	0.77	1.32	± 12.0 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.^d At frequencies below 3 GHz, the validity of tissue parameters (c and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
7(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

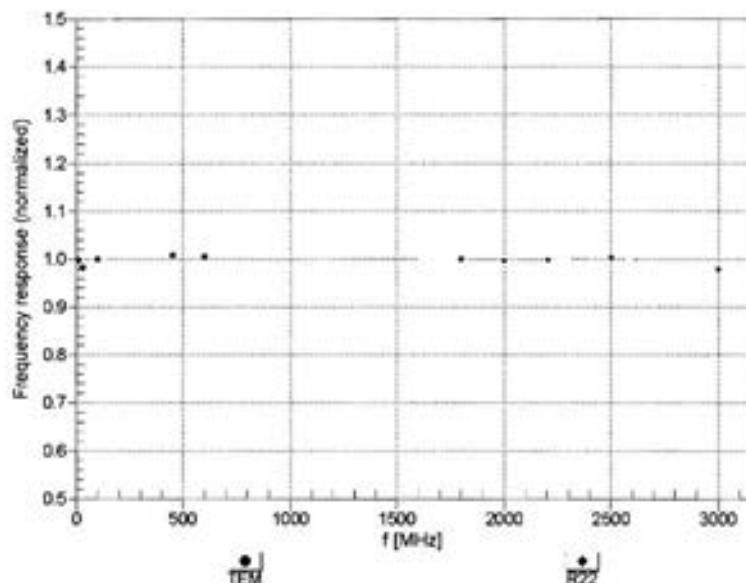
ES3DV3- SN 3225

January 11, 2012

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3225**Calibration Parameter Determined in Body Tissue Simulating Media**

f (MHz) ^c	Relative Permittivity ^d	Conductivity (S/m) ^e	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	6.27	6.27	6.27	0.36	1.74	± 12.0 %
900	55.0	1.05	6.07	6.07	6.07	0.29	2.02	± 12.0 %
1810	53.3	1.52	4.92	4.92	4.92	0.50	1.57	± 12.0 %
1950	53.3	1.52	4.87	4.87	4.87	0.59	1.49	± 12.0 %
2450	52.7	1.95	4.30	4.30	4.30	0.68	1.16	± 12.0 %
2600	52.5	2.16	4.12	4.12	4.12	0.80	0.99	± 12.0 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.^d At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 50% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
8(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

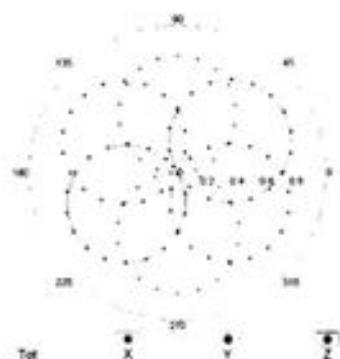
ES30V3- SN:3225

January 11, 2012

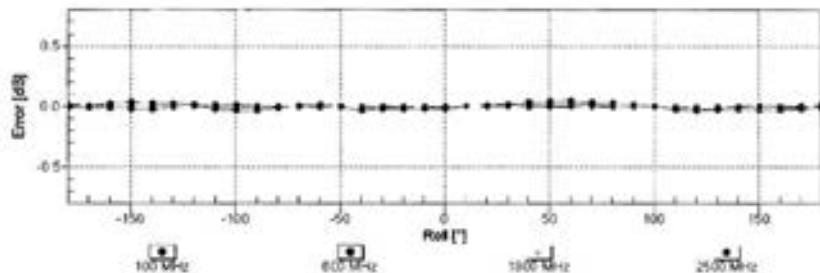
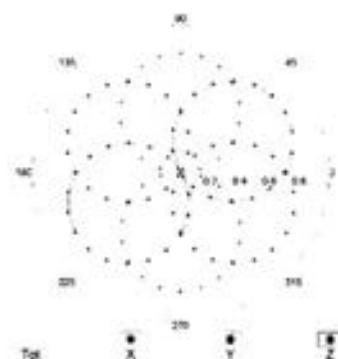
Frequency Response of E-Field
(TEM-Cell:ifi110 EXX, Waveguide: R22)Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2)

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
9(143)

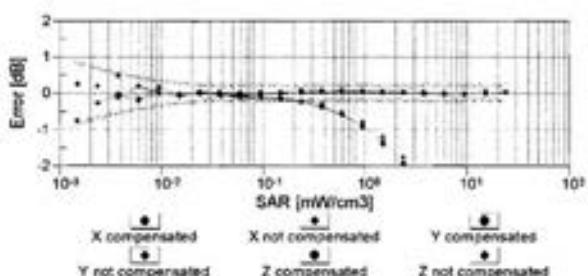
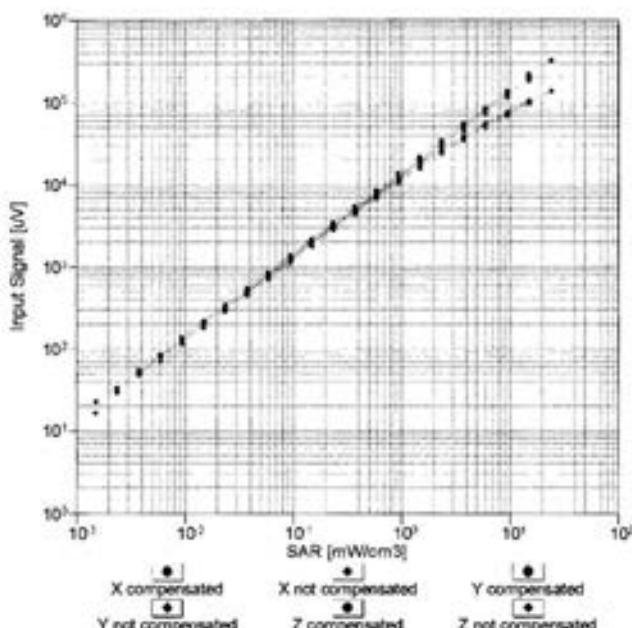

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

ES30V3-SN3225



January 11, 2012

Receiving Pattern (ϕ), $\theta = 0^\circ$

f=600 MHz, TEM



f=1800 MHz, R22

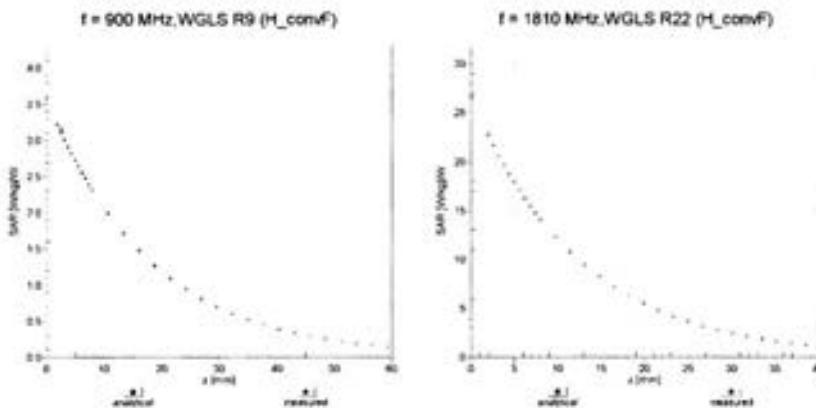
Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ (k=2)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

ES3DV3-SN-3225

January 11, 2012

Dynamic Range f(SAR_{head})
(TEM cell, f = 900 MHz)Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)


Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
11(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

ES3DV3-SN:3225

January 11, 2012

Conversion Factor Assessment**Deviation from Isotropy in Liquid**
Error (ϕ, β), $f = 900$ MHz

Certificate No: ES3-3225_Jan12

Page 10 of 11

Document

**Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR
Report Rev 2**Page
12(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

ES3DV3- SN:3225

January 11, 2012

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3225**Other Probe Parameters**

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
13(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**Client **RTS (RIM Testing Services)**Certificate No: **ES3-3225_Jan13****CALIBRATION CERTIFICATE**Object **ES3DV3 - SN:3225**Calibration procedure(s) **QA CAL-01.v8, QA CAL-23.v4, QA CAL-25.v4**
Calibration procedure for dosimetric E-field probesCalibration date **January 10, 2013**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293574	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: 55054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: 55286 (20c)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: 55129 (30c)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	26-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	20-Jun-12 (No. DAE4-660_Jun12)	Jun-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8548C	US3642U01700	4-Aug-09 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Calibrated by:	Name Jeton Kastrati	Function Laboratory Technician	Signature
Approved by:	Katja Pokovic	Technical Manager	

Issued: January 14, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: **ES3-3225_Jan13**

Page 1 of 11

	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 14(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (t/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization β	β rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\beta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORM_{x,y,z}: Assessed for E-field polarization $\beta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). NORM_{x,y,z} are only intermediate values, i.e., the uncertainties of NORM_{x,y,z} does not affect the E²-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * \text{frequency_response}$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- A_{x,y,z}; B_{x,y,z}; C_{x,y,z}; D_{x,y,z}; VR_{x,y,z}: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORMx,y,z * \text{ConvF}$ whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): In a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 15(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

ES3DV3 – SN:3225

January 10, 2013

Probe ES3DV3

SN:3225

Manufactured: September 1, 2009
 Calibrated: January 10, 2013

Calibrated for DASY/EASY Systems
 (Note: non-compatible with DASY2 system!)

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
16(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

ES3DV3- SN:3225

January 10, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3225**Basic Calibration Parameters**

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μ V/(V/m)) ^a	1.29	1.19	1.31	\pm 10.1 %
DCP (mV) ^b	100.5	101.5	99.9	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB/ μ V	C	D dB	VR mV	Unc ^c (k=2)
0	CW	X	0.0	0.0	1.0	0.00	157.5	\pm 2.7 %
		Y	0.0	0.0	1.0		158.4	
		Z	0.0	0.0	1.0		165.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^a The uncertainties of NormX,Y,Z do not affect the E¹ field uncertainty inside ESL (see Pages 5 and 6).

^b Numerical linearization parameter: uncertainty not required.

^c Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
17(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

ES3DV3- SN:3225

January 10, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3225**Calibration Parameter Determined in Head Tissue Simulating Media**

f (MHz) ^c	Relative Permittivity ^d	Conductivity (S/m) ^e	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Uncrt. (k=2)
750	41.9	0.89	6.56	6.56	6.56	0.42	1.54	± 12.0 %
900	41.5	0.97	6.19	6.19	6.19	0.43	1.52	± 12.0 %
1810	40.0	1.40	5.35	5.35	5.35	0.63	1.39	± 12.0 %
1950	40.0	1.40	5.09	5.09	5.09	0.80	1.23	± 12.0 %
2450	39.2	1.80	4.65	4.65	4.65	0.61	1.63	± 12.0 %
2600	39.0	1.96	4.43	4.43	4.43	0.80	1.32	± 12.0 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.^d At frequencies below 3 GHz, the validity of tissue parameters (x and n) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (x and n) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
18(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

ES3DV3- SN:3225

January 10, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3225**Calibration Parameter Determined in Body Tissue Simulating Media**

F (MHz) ^c	Relative Permittivity ^F	Conductivity (Sim) ^f	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	6.27	6.27	6.27	0.48	1.51	± 12.0 %
900	55.0	1.05	6.12	6.12	6.12	0.73	1.25	± 12.0 %
1810	53.3	1.52	5.04	5.04	5.04	0.57	1.47	± 12.0 %
1950	53.3	1.52	4.94	4.94	4.94	0.58	1.50	± 12.0 %
2450	52.7	1.95	4.35	4.35	4.35	0.70	1.16	± 12.0 %
2600	52.5	2.16	4.11	4.11	4.11	0.67	0.99	± 12.0 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.^f At frequencies below 3 GHz, the validity of tissue parameters (x and ε) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (x and ε) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
19(143)Author Data
Andrew Becker

Dates of Test

Nov 22, 2012 – Feb 28, 2013
Dec. 10-12, 2014

Test Report No

RTS-6026-1303-02
Rev 3

FCC ID:

L6ARFL110LW
L6ARFP120LW

IC

2503A-RFL110LW
2503A-RFP120LW

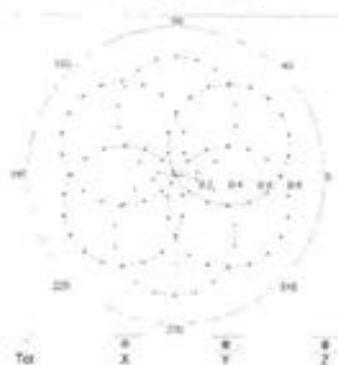
ES3DV3- SN:3225

January 10, 2013

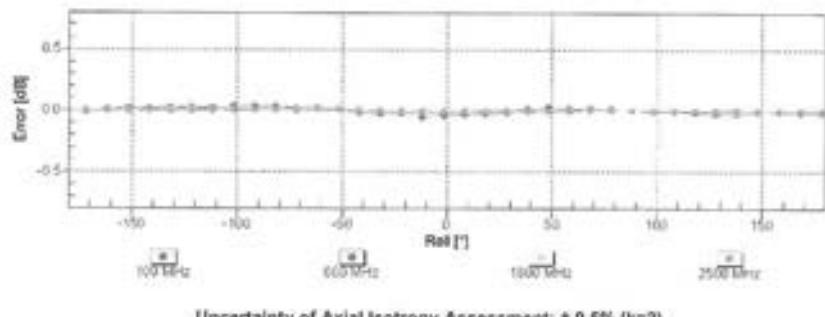
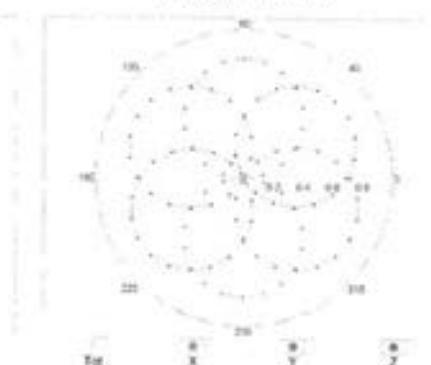
Frequency Response of E-Field
(TEM-Cell:ifi110 EXX, Waveguide: R22)Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
20(143)


Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

ES3DV3- SN:3225

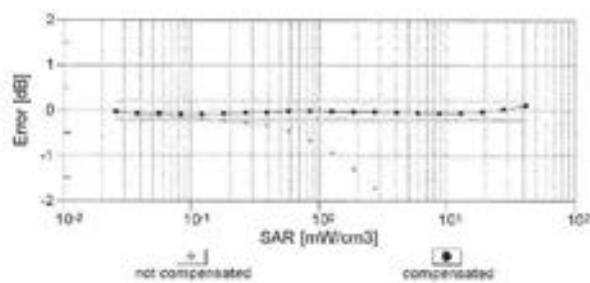
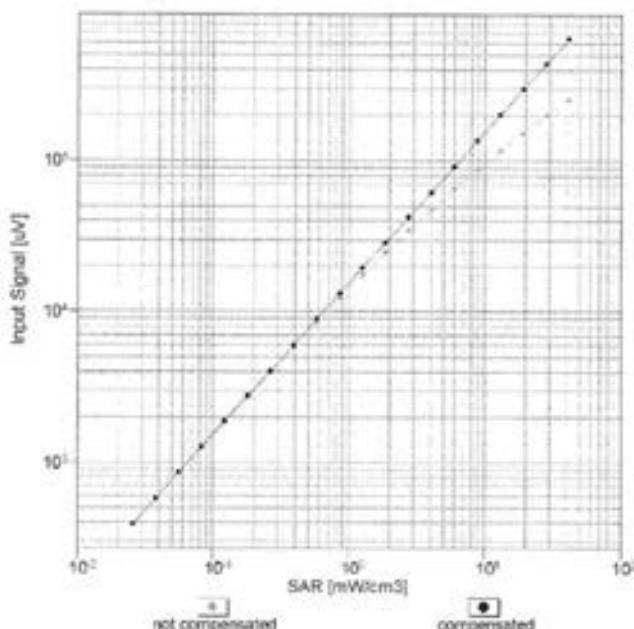


January 10, 2013

Receiving Pattern (ϕ), $\theta = 0^\circ$

f=600 MHz, TEM

f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)



Document

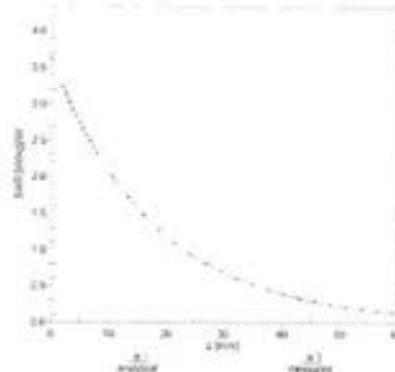
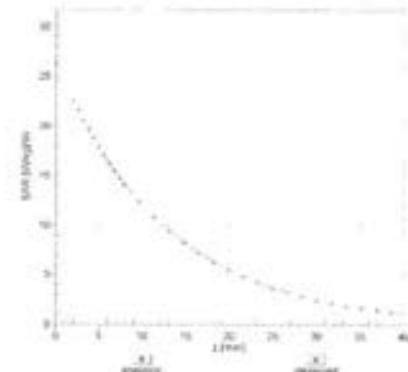
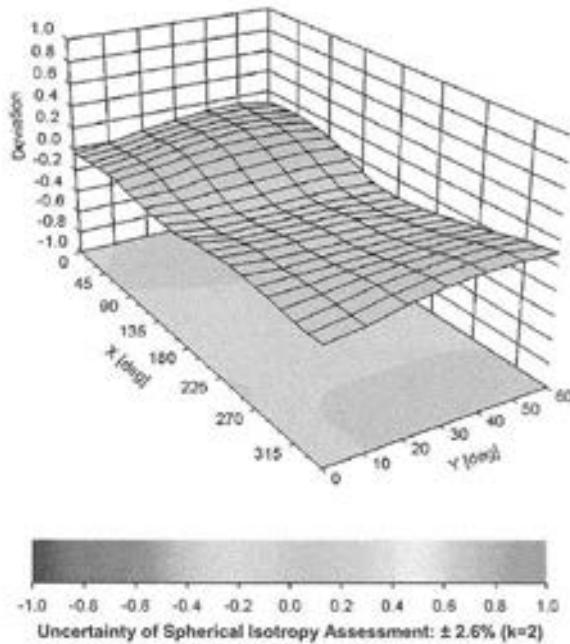
Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
21(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

ES3DV3- SN:3225

January 10, 2013

Dynamic Range f(SAR_{head})
(TEM cell, f = 900 MHz)Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)




Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
22(143)

Author Data	Dates of Test	Test Report No	FCC ID:	IC
Andrew Becker	Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	RTS-6026-1303-02 Rev 3	L6ARFL110LW L6ARFP120LW	2503A-RFL110LW 2503A-RFP120LW

ES3DV3- SN:3225

January 10, 2013

Conversion Factor Assessment $f = 900 \text{ MHz}, \text{WGLS R9 (H_convF)}$ $f = 1810 \text{ MHz}, \text{WGLS R22 (H_convF)}$ **Deviation from Isotropy in Liquid**Error (ϕ, β), $f = 900 \text{ MHz}$

Document

**Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR
Report Rev 2**Page
23(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

ES3DV3- SN3225

January 10, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3225**Other Probe Parameters**

Sensor Arrangement	Triangular
Connector Angle (°)	8.3
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
24(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**Client **RTS (RIM Testing Services)**Certificate No: **EX3-3592_Nov12****CALIBRATION CERTIFICATE**

Object	EX3DV4 - SN:3592
Calibration procedure(s)	QA CAL-01.v8, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes
Calibration date:	November 14, 2012
This calibration certificate documents the traceability to national standards, which realize the physical units of measurement (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.	
All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.	
Calibration Equipment used (M&TE critical for calibration)	

Primary Standards	ID	Cal Date (Certificate No.):	Scheduled Calibration
Power meter E44198	0841293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	My41499867	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: 55054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: 55086 (20c)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: 55129 (30c)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe E33DV2	SN: 3013	29-Dec-11 (No. E53-3013, Dec11)	Dec-12
DAE4	SN: 680	20-Jun-12 (No. DAE4-680, Jun12)	Jun-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8548C	US3642U01700	4-Aug-09 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37380685	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Calibrated by:	Name Claudio Leubler	Function Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: November 14, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 25(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization ϕ	ϕ rotation around probe axis
Polarization λ	λ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\lambda = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORM_{x,y,z}: Assessed for E-field polarization $\lambda = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). NORM_{x,y,z} are only intermediate values, i.e., the uncertainties of NORM_{x,y,z} does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f_{x,y,z}) = NORM_{x,y,z} * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCP_{x,y,z}: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- A_{x,y,z}; B_{x,y,z}; C_{x,y,z}; VR_{x,y,z}; A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-Field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORM_{x,y,z} * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical Isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

BlackBerry	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 26(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

EX3DV4 – SN:3592

November 14, 2012

Probe EX3DV4

SN:3592

Manufactured: September 18, 2006
Calibrated: November 14, 2012

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
27(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

EX3DV4- SN:3592

November 14, 2012

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3592**Basic Calibration Parameters**

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μ V/(Vm) ^a)	0.49	0.47	0.41	$\pm 10.1\%$
DCP (mV) ^b	95.2	96.1	100.6	

Modulation Calibration Parameters

UID	Communication System Name	PAR	A dB	B dB	C dB	VR mV	Unc ^c (k=2)
0	CW	0.00	X 0.0	0.0	1.0	121.4	$\pm 3.0\%$
			Y 0.0	0.0	1.0	104.3	
			Z 0.0	0.0	1.0	109.2	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^a The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^b Numerical linearization parameter; uncertainty not required.

^c Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
28(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

EX3DV4- SN:3592

November 14, 2012

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3592**Calibration Parameter Determined in Head Tissue Simulating Media**

f (MHz) ^c	Relative Permittivity ^d	Conductivity (S/m) ^d	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
2600	39.0	1.96	6.45	6.45	6.45	0.53	0.79	± 12.0 %
5200	36.0	4.66	4.73	4.73	4.73	0.40	1.80	± 13.1 %
5500	35.6	4.96	4.28	4.28	4.28	0.44	1.80	± 13.1 %
5800	35.3	5.27	4.12	4.12	4.12	0.48	1.80	± 13.1 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.^d At frequencies below 3 GHz, the validity of tissue parameters (ϵ_r and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ_r and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
29(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

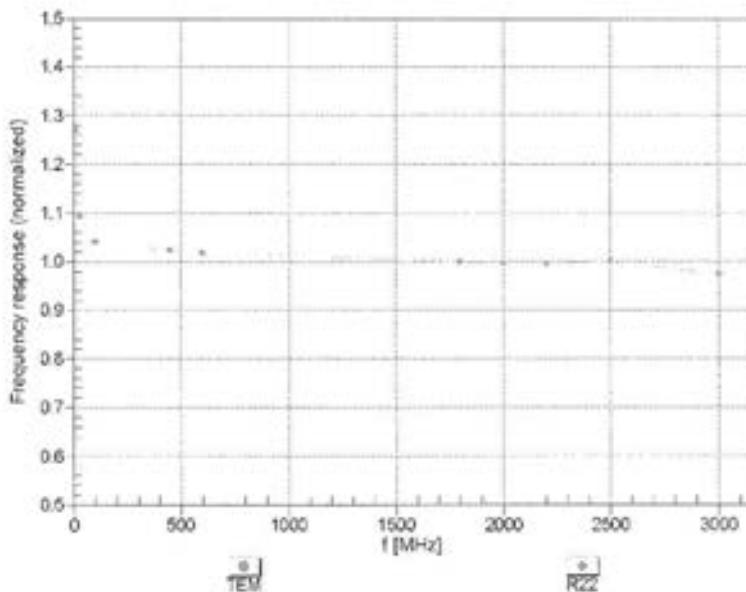
EX3DV4 - SN:3592

November 14, 2012

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3592**Calibration Parameter Determined in Body Tissue Simulating Media**

f (MHz) ^a	Relative Permittivity ^b	Conductivity (S/m) ^c	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Uncrt. (k=2)
2600	52.5	2.16	6.59	6.59	6.59	0.80	0.50	± 12.0 %
5200	49.0	5.30	4.02	4.02	4.02	0.46	1.90	± 13.1 %
5500	48.6	5.65	3.66	3.66	3.66	0.55	1.90	± 13.1 %
5800	48.2	6.00	3.57	3.57	3.57	0.57	1.90	± 13.1 %

^a Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.^b At frequencies below 3 GHz, the validity of tissue parameters (c and ε) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and ε) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
30(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

EX3DV4~ SN:3592

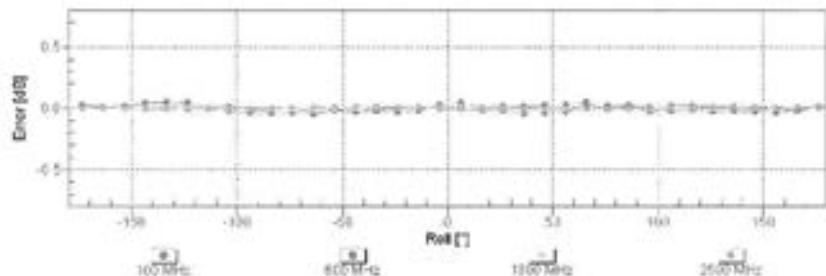
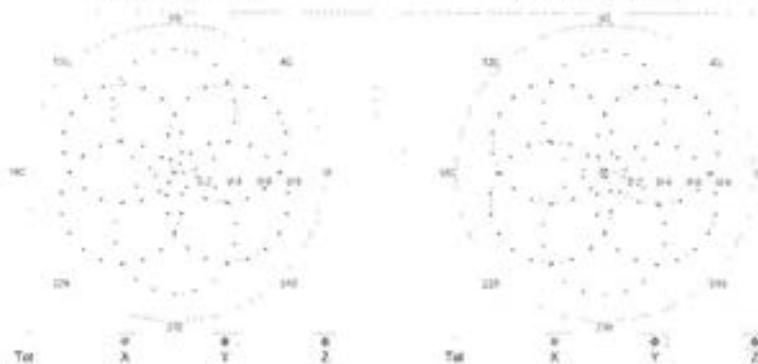
November 14, 2012

Frequency Response of E-Field
(TEM-Cell:ifi110 EXX, Waveguide: R22)Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
31(143)

Author Data	Dates of Test	Test Report No	FCC ID:	IC
Andrew Becker	Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	RTS-6026-1303-02 Rev 3	L6ARFL110LW L6ARFP120LW	2503A-RFL110LW 2503A-RFP120LW



EX3DV4-SN:3592

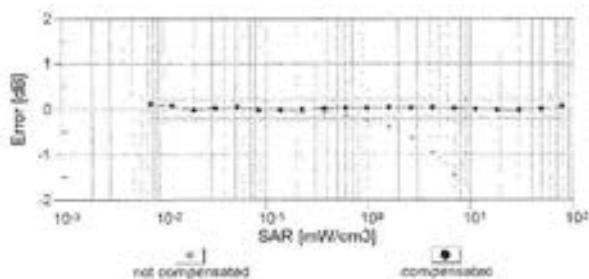
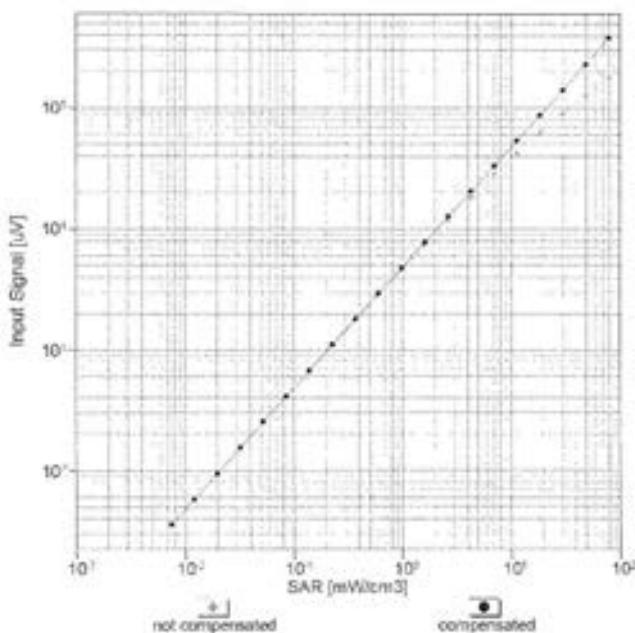
November 14, 2012

Receiving Pattern (ϕ), $\theta = 0^\circ$

f=600 MHz, TEM

f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ (k=2)



Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
32(143)

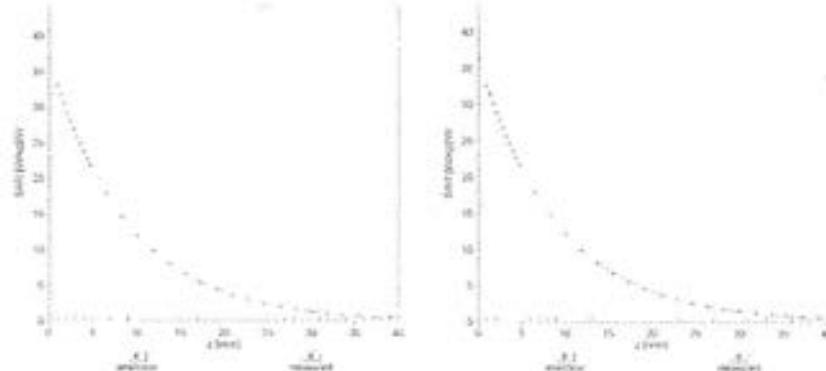
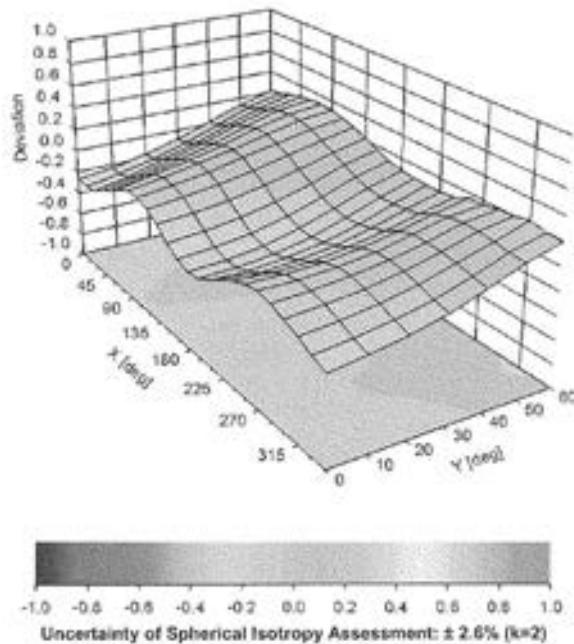
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

EX30V4-SN3592

November 14, 2012

Dynamic Range f(SAR_{head})
(TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)



Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
33(143)

Author Data	Dates of Test	Test Report No	FCC ID:	IC
Andrew Becker	Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	RTS-6026-1303-02 Rev 3	L6ARFL110LW L6ARFP120LW	2503A-RFL110LW 2503A-RFP120LW

EX3DV4-SN:3592

November 14, 2012

Conversion Factor Assessment $f = 2600 \text{ MHz}, \text{WGLS R22 (H}_\text{c}\text{convF)}$ $f = 2600 \text{ MHz}, \text{WGLS R22 (M}_\text{c}\text{convF)}$ **Deviation from Isotropy in Liquid**Error (ϕ, β), $f = 900 \text{ MHz}$

Document

**Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR
Report Rev 2**Page
34(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

EX3DV4-SN:3592

November 14, 2012

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3592**Other Probe Parameters**

Sensor Arrangement	Triangular
Connector Angle (°)	+13.6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
35(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrationsdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS).
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates.

Accreditation No.: SCS 106

Client: **Blackberry Waterloo**

Certificate No: EX3-3592_Nov14

CALIBRATION CERTIFICATE

Object: EX3DV4 - SN:3592

Calibration procedure(s): QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6
Calibration procedure for dosimetric E-field probesCalibration date: **November 10, 2014**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature ($22 \pm 3^\circ\text{C}$ and humidity $< 70\%$).

Calibration equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E44198	GB41293874	03-Apr-14 (No. 21741911)	Apr-15
Power sensor E4413A	MT41438007	03-Apr-14 (No. 21741911)	Apr-15
Reference 3 dB Attenuator	SN: 30054 (01)	03-Apr-14 (No. 21741911)	Apr-15
Reference 20 dB Attenuator	SN: 85277 (20a)	03-Apr-14 (No. 21741911)	Apr-15
Reference 30 dB Attenuator	SN: 88129 (30a)	03-Apr-14 (No. 21741920)	Apr-15
Reference P-value ESDDV2	SN: 3013	30-Dec-13 (No. 6153-3013, Dec13)	Dec-14
DME4	SN: 660	13-Dec-13 (No. DME4-660, Dec13)	Dec-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3942JU1700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753F	US37390585	18-Oct-01 (in house check Oct-14)	In house check: Oct-16

Calibrated by:	Name	Function	Signature
	Ulf Klynné	Laboratory Technician	

Approved by:	Name	Function	Signature
	Katja Pukrová	Technical Manager	

Issued: November 10, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3592_Nov14

Page 1 of 11

	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 36(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zoogaustrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
SCS Swiss Calibration Services

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	ϕ rotation around probe axis
Polarization β	β rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\beta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORM_{x,y,z}: Assessed for E-field polarization $\beta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). NORM_{x,y,z} are only intermediate values, i.e., the uncertainties of NORM_{x,y,z} does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM_(x,y,z) = NORM_{x,y,z} * frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- A_{x,y,z}; B_{x,y,z}; C_{x,y,z}; D_{x,y,z}: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f < 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORM_{x,y,z} * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORM_x (no uncertainty required).

BlackBerry	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 37(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

EX3DV4 – SN:3592

November 10, 2014

Probe EX3DV4

SN:3592

Manufactured: September 18, 2006
 Calibrated: November 10, 2014

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
38(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

EX3DV4 - SN:3592

November 10, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3592**Basic Calibration Parameters**

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μ V/(W/m)) ^a	0.48	0.47	0.40	$\pm 10.1\%$
DCP (mV) ^b	95.2	96.0	96.8	

Modulation Calibration Parameters

UID	Communication System Name	A dB	B dB/ μ V	C	D dB	VR mV	Um s^{-1} (k=2)
0	CW	X	0.0	0.0	1.0	0.00	145.9
		Y	0.0	0.0	1.0		156.9
		Z	0.0	0.0	1.0		149.1

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^a The uncertainties of Norm X,Y,Z do not affect the E-field uncertainty inside TSL (see Pages 5 and 6).

^b Numerical linearization parameter: uncertainty not required.

^c Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
39(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

EX3DV4- SN:3592

November 10, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3592**Calibration Parameter Determined in Head Tissue Simulating Media**

<i>f</i> (MHz) ^a	Relative Permittivity ^b	Conductivity (S/m) ^b	ConvF X	ConvF Y	ConvF Z	Alpha ^c	Depth ^d (mm)	Uncert. (k=2)
2000	39.0	1.98	6.80	6.80	6.80	0.35	0.93	± 12.0 %
5250	35.9	4.71	4.63	4.63	4.63	0.35	1.80	± 13.1 %
5600	35.5	5.07	4.20	4.20	4.20	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.34	4.34	4.34	0.40	1.80	± 13.1 %

^a Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSD of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz, respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^b At frequencies below 3 GHz, the validity of tissue parameters (*c* and *n*) can be relaxed to ± 10%. If liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (*c* and *n*) is restricted to ± 5%. The uncertainty is the RSD of the ConvF uncertainty for indicated target tissue parameters.

^c Alpha/Depth are determined during calibration. SPEAC warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies above 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
40(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

EX3DV4 - SN:3592

November 10, 2014

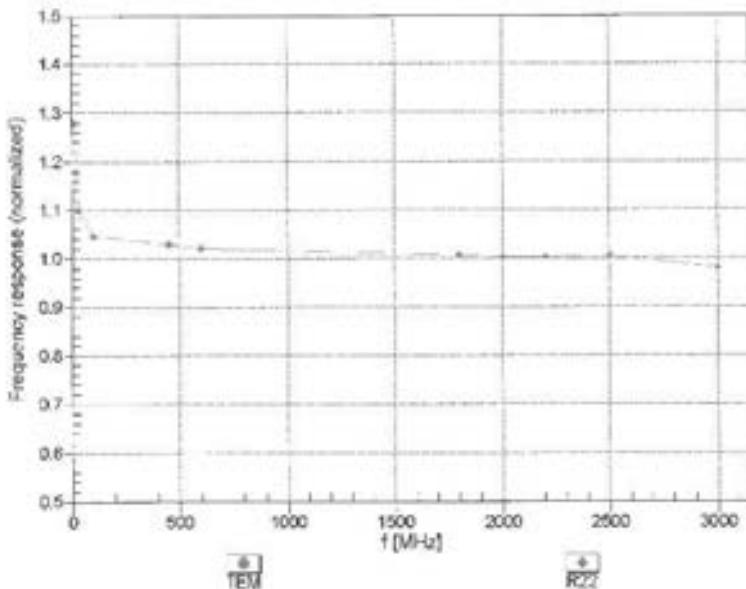
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3592**Calibration Parameter Determined in Body Tissue Simulating Media**

f (MHz) ^c	Relative Permittivity ^r	Conductivity (S/m) ^r	ConvF X	ConvF Y	ConvF Z	Alpha ^c	Depth ^d (mm)	Uncrt. (k=2)
2000	52.5	2.16	6.84	6.84	6.84	0.78	0.62	± 12.0 %
5250	48.9	5.36	4.06	4.06	4.06	0.45	1.90	± 13.1 %
5600	48.5	5.77	3.78	3.78	3.78	0.45	1.90	± 13.1 %
5750	48.3	5.94	3.81	3.81	3.81	0.50	1.90	± 13.1 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 7), since it is restricted to ± 50 MHz. The uncertainty is the RSD of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency limit. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 160 and 230 MHz, respectively. Above 5 GHz, frequency validity can be extended to a 110 MHz.

^r At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be reduced to ± 10% if liquid compensation formula is applied to measured SAD values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSD of the ConvF uncertainty for indicated target tissue parameters.

^d Alpha/Depth are determined during calibration. SPEAQ warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below a 2% for frequencies between 3.6 GHz at any distance larger than half the probe tip diameter from the boundary.


Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
41(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

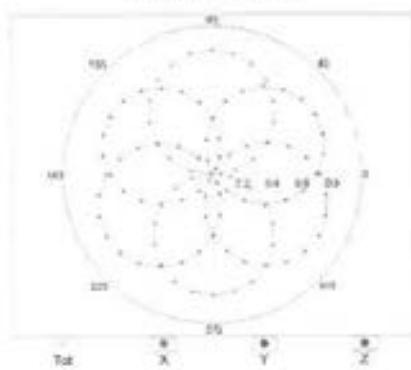
EX3DV6- BN-3592

November 10, 2014

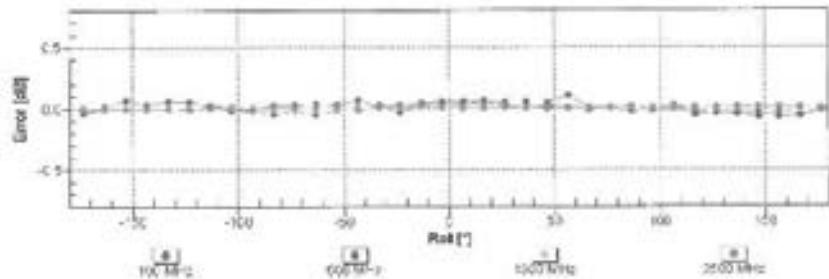
Frequency Response of E-Field
(TEM-Cell:ifi110 EXX, Waveguide: R22)Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
42(143)


Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

EXODV4-SN3592


November 10, 2014

Receiving Pattern (ϕ), $\theta = 0^\circ$

f=600 MHz, TEM

f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
43(143)Author Data
Andrew Becker

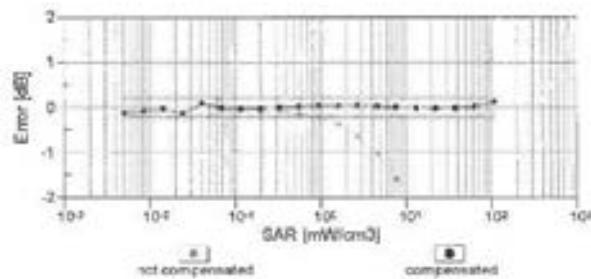
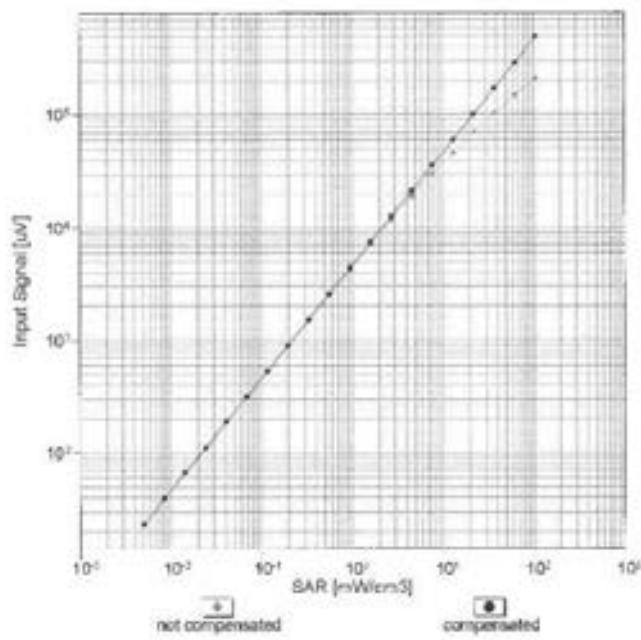
Dates of Test

Nov 22, 2012 – Feb 28, 2013
Dec. 10-12, 2014

Test Report No

RTS-6026-1303-02
Rev 3

FCC ID:



L6ARFL110LW
L6ARFP120LW

IC

2503A-RFL110LW
2503A-RFP120LW

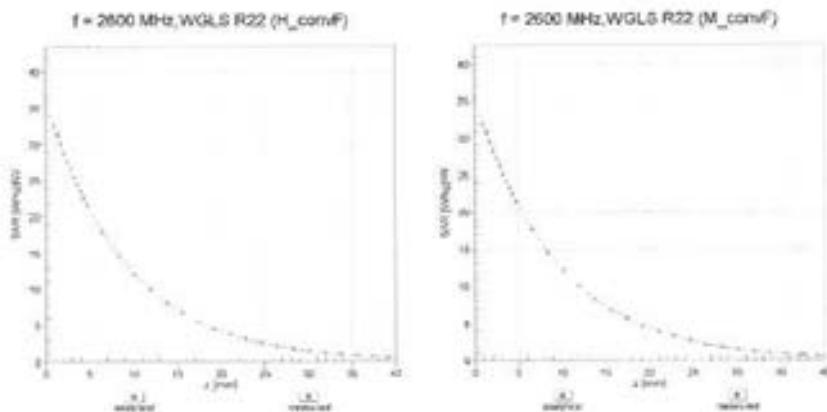
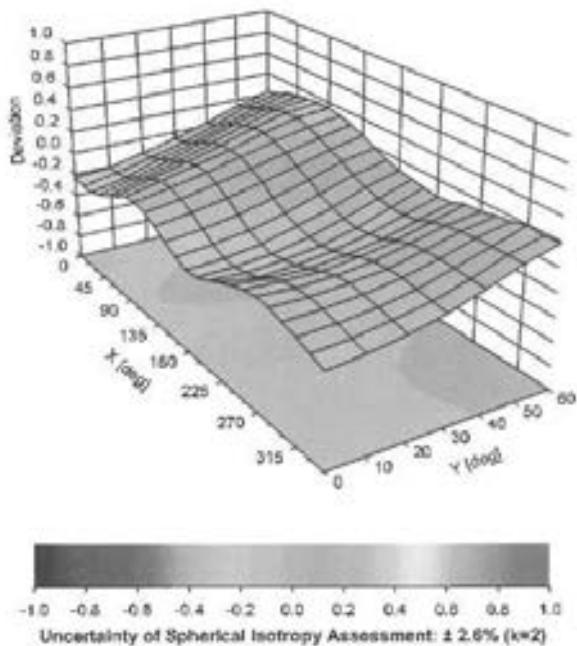
EX3DV4- SN:3592

November 10, 2014

Dynamic Range f(SAR_{head})
(TEM cell, f_{eval}= 1900 MHz)Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)

Certificate No: EX3-3592, Nov14

Page 9 of 11



Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
44(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

EX3DV4- SN:3592

November 10, 2014

Conversion Factor Assessment**Deviation from Isotropy in Liquid**
Error (ϕ, θ), $f = 900$ MHz

-1.0 -0.5 -0.0 0.5 1.0

Uncertainty of Spherical Isotropy Assessment: $\pm 2.6\%$ ($k=2$)

Certificate No: EX3-3592_Nov14

Page 10 of 11

Document

**Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR
Report Rev 2**Page
45(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

EX3DV4- SN:3592

November 10, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3592**Other Probe Parameters**

Sensor Arrangement	Triangular
Connector Angle (°)	-13.3
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
46(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'kalibrage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS):
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates.

Accreditation No.: **SCS 108**Client **RTS (RIM Testing Services)**Certificate No: **ET3-1644_Nov12****CALIBRATION CERTIFICATE**Object **ET3DV6 - SN:1644**Calibration procedure(s) **QA.CAL-01.v8, QA.CAL-23.v4, QA.CAL-25.v4**
Calibration procedure for dosimetric E-field probesCalibration date: **November 13, 2012**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (MATE critical for calibration)

Primary Standard	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: 55054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: 55056 (20c)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: 55129 (30c)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013, Dec11)	Dec-12
DAE4	SN: 080	29-Jun-12 (No. DAE4-660, Jun12)	Jun-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8048C	US3642U01700	4-Aug-09 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8710E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Calibrated by:	Name	Function	Signature
	Jeton Kastrati	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: November 13, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No. **ET3-1644_Nov12**

Page 1 of 11

	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 47(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS).
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates.

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization α	α rotation around probe axis
Polarization β	β rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\beta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2006

Methods Applied and Interpretation of Parameters:

- NORM_{x,y,z}: Assessed for E-field polarization $\beta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). NORM_{x,y,z} are only intermediate values, i.e., the uncertainties of NORM_{x,y,z} does not affect the E²-field uncertainty inside TSL (see below ConvF).
- $NORM(f,x,y,z) = NORM(x,y,z) * \text{frequency_response}$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- A_{x,y,z}; B_{x,y,z}; C_{x,y,z}; VR_{x,y,z}: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 600$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORM_{x,y,z} * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

BlackBerry	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 48(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

ET3DV6 – SN:1644

November 13, 2012

Probe ET3DV6

SN:1644

Manufactured: November 7, 2001
 Calibrated: November 13, 2012

Calibrated for DASY/EASY Systems
 (Note: non-compatible with DASY2 system!)

Certificate No: ET3-1644_Nov12

Page 3 of 11

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
49(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

ET3DV6- SN:1644

November 13, 2012

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1644**Basic Calibration Parameters**

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μ V/Vm) ^a	1.71	1.97	1.98	\pm 10.1 %
DCP (mV) ^b	99.5	98.7	97.5	

Modulation Calibration Parameters

UID	Communication System Name	PAR	A dB	B dB	C dB	VR mV	Unc ^c (k=2)
0	CW	0.00	X 0.0	0.0	1.0	193.5	\pm 3.5 %
			Y 0.0	0.0	1.0	212.0	
			Z 0.0	0.0	1.0	201.7	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^a The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 8).

^b Numerical linearization parameter: uncertainty not required.

^c Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
50(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

ET3DV6- SN:1644

November 13, 2012.

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1644**Calibration Parameter Determined in Head Tissue Simulating Media**

f (MHz) ^c	Relative Permittivity ^d	Conductivity (S/m) ^e	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	6.57	6.57	6.57	0.44	2.25	± 12.0 %
900	41.5	0.97	6.24	6.24	6.24	0.38	2.52	± 12.0 %
1810	40.0	1.40	5.21	5.21	5.21	0.80	2.10	± 12.0 %
1950	40.0	1.40	5.16	5.16	5.16	0.80	2.09	± 12.0 %
2450	39.2	1.80	4.60	4.60	4.60	0.65	2.00	± 12.0 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.^d At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
51(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

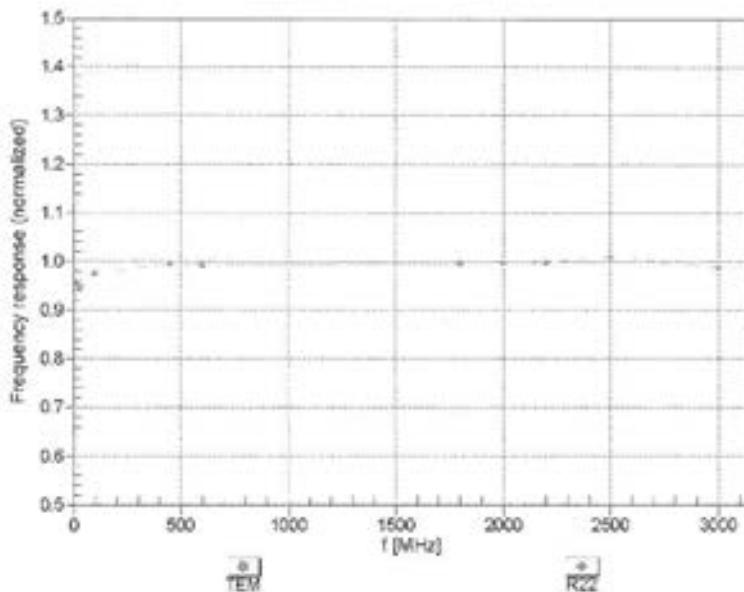
ET3DV6- SN:1644

November 13, 2012

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1644**Calibration Parameter Determined in Body Tissue Simulating Media**

f (MHz) ^c	Relative Permittivity ^f	Conductivity (S/m) ^g	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	6.30	6.30	6.30	0.33	2.61	± 12.0 %
900	55.0	1.06	6.06	6.06	6.06	0.31	2.99	± 12.0 %
1810	53.3	1.52	4.75	4.75	4.75	0.80	2.40	± 12.0 %
1950	53.3	1.52	4.75	4.75	4.75	0.80	2.28	± 12.0 %
2450	52.7	1.96	4.11	4.11	4.11	0.50	2.15	± 12.0 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.^f At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


BlackBerry	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 52(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

ET3DVS- SN:1644

November 13, 2012.

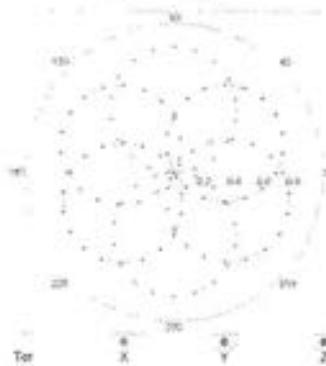
Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

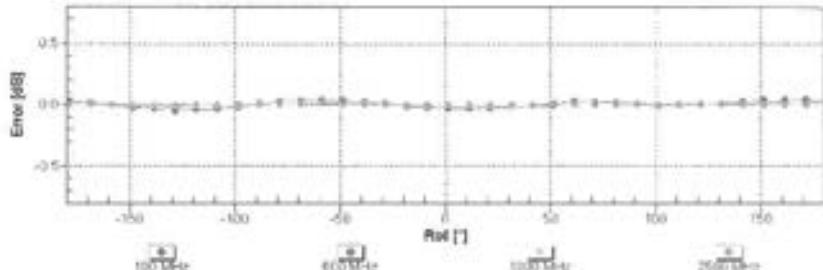
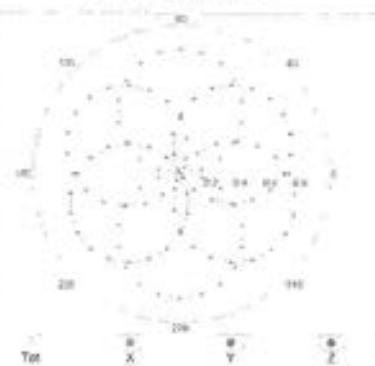
Uncertainty of Frequency Response of E-field: $\pm 6.3\% (k=2)$

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
53(143)


Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

ET3DVB-SN:1644

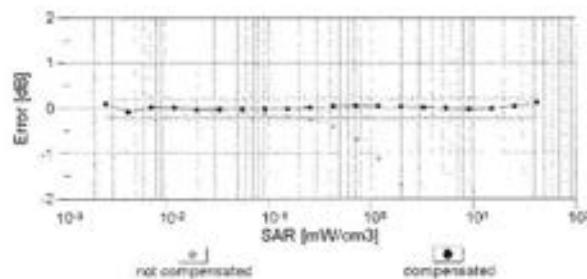
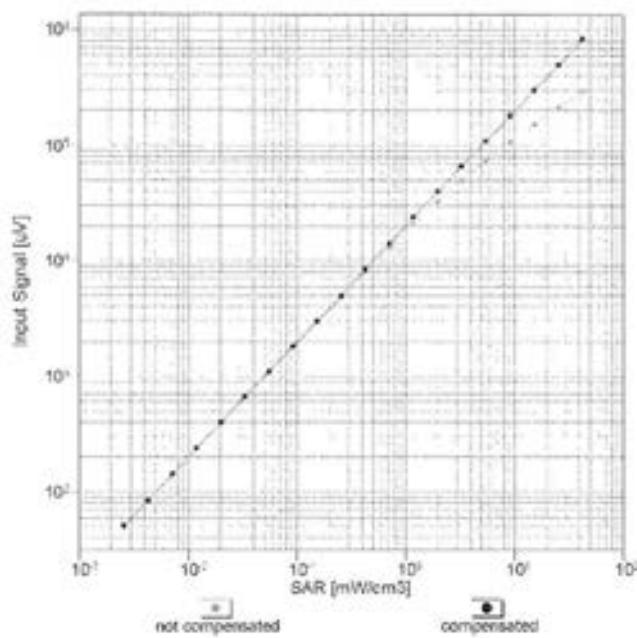


November 13, 2012

Receiving Pattern (ϕ), $\theta = 0^\circ$

f=600 MHz, TEM

f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ (k=2)



Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
54(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

ET30V6- SN:1644

November 13, 2012

**Dynamic Range f(SAR_{head})
(TEM cell, f = 900 MHz)**

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ET3-1644_Nov12

Page 9 of 11

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
55(143)Author Data
Andrew Becker

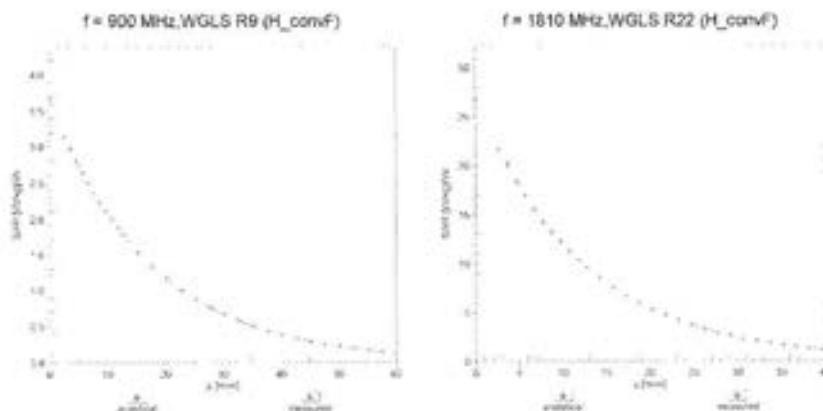
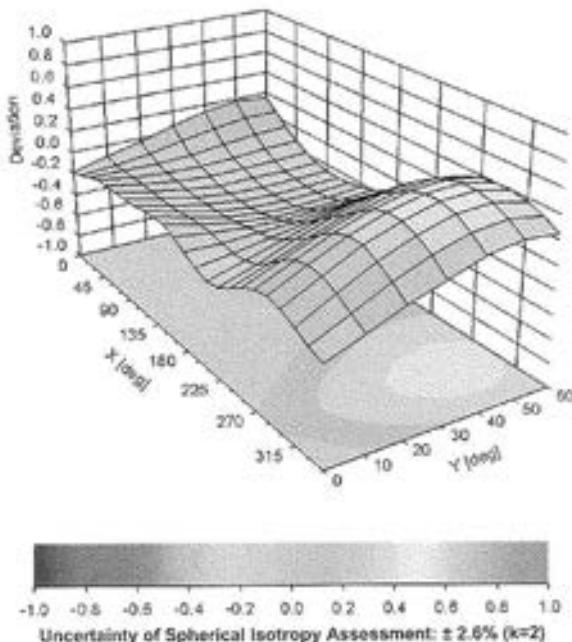
Dates of Test

Nov 22, 2012 – Feb 28, 2013
Dec. 10-12, 2014

Test Report No

RTS-6026-1303-02
Rev 3

FCC ID:



L6ARFL110LW
L6ARFP120LW

IC

2503A-RFL110LW
2503A-RFP120LW

ET3DV6- SN:1644

November 13, 2012

Conversion Factor Assessment**Deviation from Isotropy in Liquid**
Error (ϕ, θ), $f = 900$ MHz

Document

**Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR
Report Rev 2**Page
56(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

ET3DV6- SN:1644

November 13, 2012

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1644**Other Probe Parameters**

Sensor Arrangement	Triangular
Connector Angle (°)	61.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	enabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

 BlackBerry	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 57(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierservice
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Client **RIM**

Certificate No: **D750V3-1021_Jan11**

CALIBRATION CERTIFICATE

Object **D750V3 - SN: 1021**

Calibration procedure(s) **QA CAL-05.v8**
Calibration procedure for dipole validation kits

Calibration date: **January 05, 2011**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Calibrated by:	Name	Function	Signature
	Jeton Kastrioti	Laboratory Technician	
Approved by:	Kaja Pokrovic	Technical Manager	

Issued: January 6, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 59(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:** Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:** The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:** These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:** One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:** SAR measured at the stated antenna input power.
- SAR normalized:** SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:** The measured TSL parameters are used to calculate the nominal SAR result.

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
60(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.3 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.12 mW / g
SAR normalized	normalized to 1W	8.48 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	8.36 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.38 mW / g
SAR normalized	normalized to 1W	5.52 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	5.45 mW / g ± 16.5 % (k=2)

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
61(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Appendix**Antenna Parameters with Head TSL**

Impedance, transformed to feed point	$53.1 \Omega + 1.7 j\Omega$
Return Loss	-29.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.033 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 01, 2010

BlackBerry	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 62(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

DASY5 Validation Report for Head TSL

Date/Time: 05.01.2011 15:51:17

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1021

Communication System: CW; Frequency: 750 MHz; Duty Cycle: 1:1

Medium: HSL750

Medium parameters used: $f = 750 \text{ MHz}$; $\sigma = 0.91 \text{ mho/m}$; $\epsilon_r = 42.3$; $\rho = 1000 \text{ kg/m}^3$

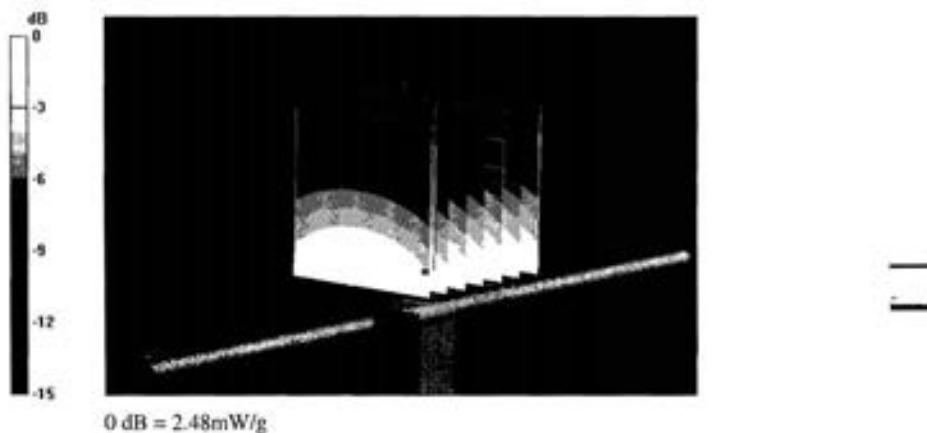
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(6.37, 6.37, 6.37); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY52, V52.6 Build (401)
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250mW; dip=15mm; dist=3.0mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

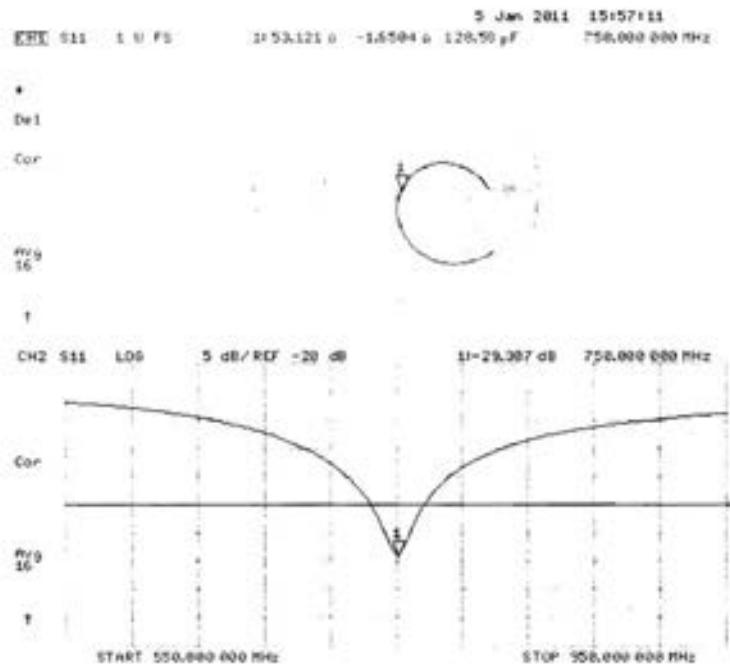

dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.5 V/m; Power Drift = -0.00432 dB

Peak SAR (extrapolated) = 3.24 W/kg

SAR(1 g) = 2.12 mW/g; SAR(10 g) = 1.38 mW/g

Maximum value of SAR (measured) = 2.48 mW/g



Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
63(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Impedance Measurement Plot for Head TSL

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
64(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**Client **RTS (RIM Testing Services)**Certificate No: **D750V3-1021_Jan13****CALIBRATION CERTIFICATE**Object **D750V3 - SN: 1021**Calibration procedure(s) **QA CAL-05.v9**
 Calibration procedure for dipole validation kits above 700 MHzCalibration date: **January 07, 2013**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurement (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20K)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.3 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ESSDv3	SN: 3205	28-Dec-12 (No. ESS-3205_Dec12)	Dec-13
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 84206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Calibrated by: **Leif Klyner** Function: **Laboratory Technician** Signature:

Approved by: **Katja Pokovic** Function: **Technical Manager** Signature:

Issued: January 8, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: **D750V3-1021_Jan13**

Page 1 of 6

	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 65(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:** Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:** The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:** These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:** One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:** SAR measured at the stated antenna input power.
- SAR normalized:** SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:** The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
66(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.4 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	---	----

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.12 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.46 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.51 W/kg ± 16.5 % (k=2)

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
67(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Appendix**Antenna Parameters with Head TSL**

Impedance, transformed to feed point	55.7 Ω + 0.2 $j\Omega$
Return Loss	-25.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.033 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 01, 2010

BlackBerry	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 68(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

DASY5 Validation Report for Head TSL

Date: 07.01.2013

Test Laboratory: SPEAG, Zurich, Switzerland

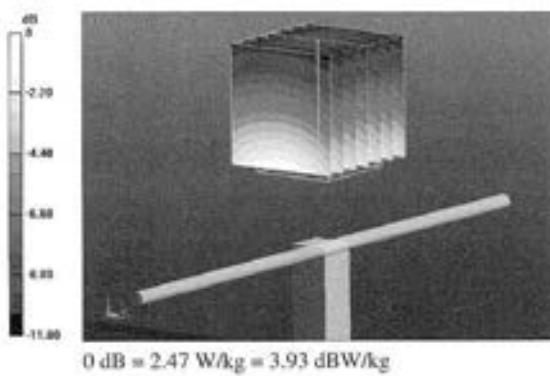
DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1021

Communication System: CW; Frequency: 750 MHz
Medium parameters used: $f = 750$ MHz; $\sigma = 0.89$ S/m; $\epsilon_r = 41.4$; $\rho = 1000$ kg/m³
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(6.28, 6.28, 6.28); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

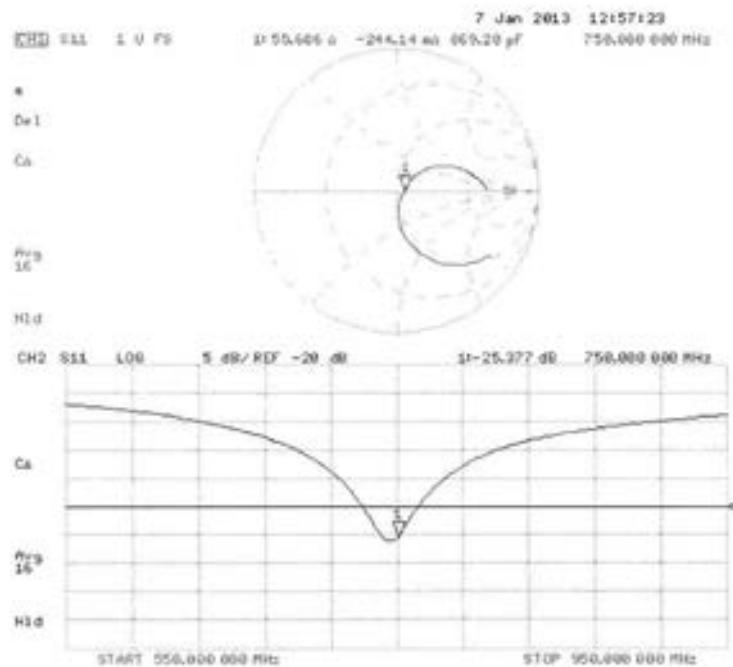

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.107 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.23 W/kg

SAR(1 g) = 2.12 W/kg; SAR(10 g) = 1.38 W/kg

Maximum value of SAR (measured) = 2.47 W/kg



Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
69(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Impedance Measurement Plot for Head TSL.

 BlackBerry	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 70(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
71(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**Client **RTS (RIM Testing Services)**Certificate No: **D835V2-446_Jan11****CALIBRATION CERTIFICATE**Object **D835V2 - SN: 446**Calibration procedure(s) **QA CAL-05.v8**
 Calibration procedure for dipole validation kitsCalibration date: **January 21, 2011**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ES30V3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 54206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Calibrated by: **Dimco Iliev** **Name** **Function** **Signature**
Laboratory Technician

Approved by: **Katja Pokovic** **Name** **Function** **Signature**
Technical Manager

Issued: January 21, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: **D835V2-446_Jan11**

Page 1 of 6

	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 72(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:** Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:** The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:** These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:** One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:** SAR measured at the stated antenna input power.
- SAR normalized:** SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:** The measured TSL parameters are used to calculate the nominal SAR result.

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
73(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASYS	V52.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.3 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature during test	(21.8 ± 0.2) °C	----	-----

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.39 mW / g
SAR normalized	normalized to 1W	9.56 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.63 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.56 mW / g
SAR normalized	normalized to 1W	6.24 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.27 mW / g ± 16.5 % (k=2)

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
74(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Appendix**Antenna Parameters with Head TSL**

Impedance, transformed to feed point	49.6 Ω - 7.7 $\mu\Omega$
Return Loss	-22.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.386 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 24, 2001

BlackBerry	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 75(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

DASY5 Validation Report for Head TSL

Date/Time: 21.01.2011 10:18:05

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:446

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL900

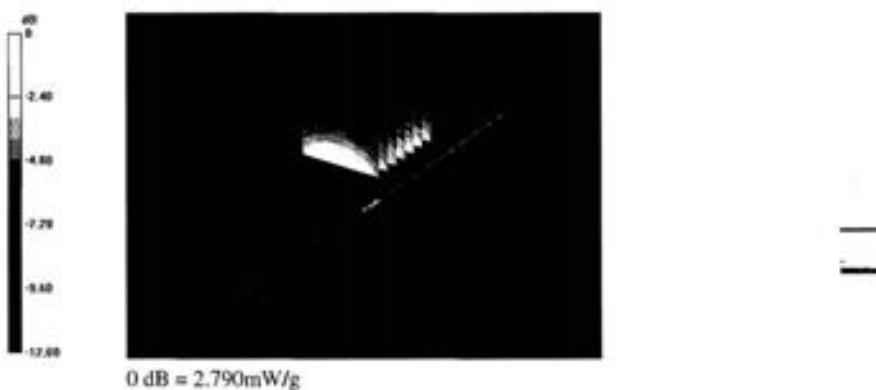
Medium parameters used: $f = 835 \text{ MHz}$; $\sigma = 0.89 \text{ mho/m}$; $\epsilon_r = 41.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(6.03, 6.03, 6.03); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY52, V52.6.1 Build (408)
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

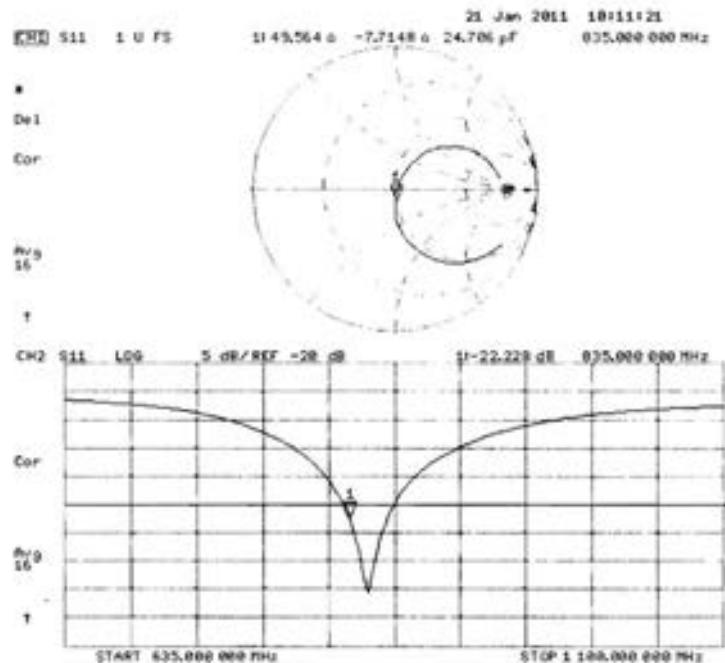

Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement
grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.426 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 3.600 W/kg

SAR(1 g) = 2.39 mW/g; SAR(10 g) = 1.56 mW/g

Maximum value of SAR (measured) = 2.790 mW/g



Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
76(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Impedance Measurement Plot for Head TSL

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
77(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**Client **RTS (RIM Testing Services)**Certificate No: **D835V2-446_Jan13****CALIBRATION CERTIFICATE**Object **D835V2 - SN: 446**Calibration procedure(s) **QA CAL-05.v9**
Calibration procedure for dipole validation kits above 700 MHzCalibration date: **January 07, 2013**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility, environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	0B37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 4481A	US37292763	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 6058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.3 / 00327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN: 3205	28-Dec-12 (No. ES3-3205_Dec12)	Dec-13
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 4481A	MY41090317	18-Oct-07 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-05	100005	04-Aug-09 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585-S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Calibrated by:	Name	Function	Signature
	Leif Klyner	Laboratory Technician	

Approved by:	Name	Function	Signature
	Katja Pokovic	Technical Manager	

Issued: January 8, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: **D835V2-446_Jan13**

Page 1 of 6

	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 78(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:** Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:** The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:** These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:** One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:** SAR measured at the stated antenna input power.
- SAR normalized:** SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:** The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
79(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.0 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.39 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.55 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.13 W/kg ± 16.5 % (k=2)

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
80(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Appendix**Antenna Parameters with Head TSL**

Impedance, transformed to feed point	50.1 Ω - 6.5 jΩ
Return Loss	- 23.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.385 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 24, 2001

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
81(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

DASY5 Validation Report for Head TSL

Date: 07.01.2013

Test Laboratory: SPEAG, Zurich, Switzerland

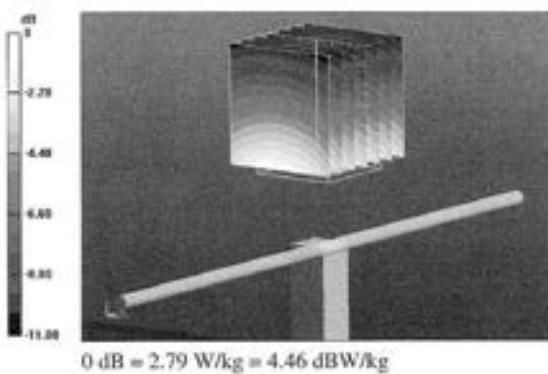
DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 446

Communication System: CW; Frequency: 835 MHz
Medium parameters used: $f = 835$ MHz; $\sigma = 0.92$ S/m; $\epsilon_r = 42$; $\rho = 1000$ kg/m³
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(6.05, 6.05, 6.05); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

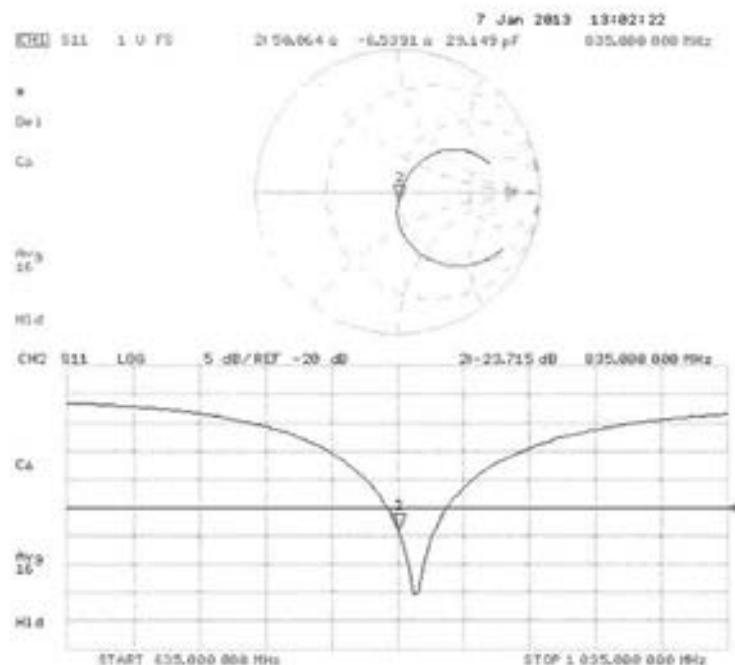

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.650 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.61 W/kg

SAR(1 g) = 2.38 W/kg; SAR(10 g) = 1.55 W/kg

Maximum value of SAR (measured) = 2.79 W/kg



Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
82(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Impedance Measurement Plot for Head TSL

 BlackBerry	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 83(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zughaussuisse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di tarettura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Client **RTS (RIM Testing Services)**

Certificate No: **D635V2-4d043_Apr11**

CALIBRATION CERTIFICATE

Object **D635V2 - SN: 4d043**

Calibration procedure(s) **QA CAL-05.v8**
Calibration procedure for dipole validation kits

Calibration date: **April 07, 2011**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility, environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (NIST critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GR37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292793	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	29-Mar-11 (No. 217-01368)	Apr-12
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12
Reference Probe E50DV3	SN: 3205	30-Apr-10 (No. E53-3205_Apr10)	Apr-11
DAE4	SN: 6C1	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585-54266	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Calibrated by:	Name Jelon Kastell	Function Laboratory Technician	Signature
Approved by:	Name Katja Polovic	Function Technical Manager	Signature

Issued: April 7, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
85(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di Isolatura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108****Glossary:**

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:** Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:** The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:** These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:** One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:** SAR measured at the stated antenna input power.
- SAR normalized:** SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:** The measured TSL parameters are used to calculate the nominal SAR result.

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
86(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	VS2.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.6 ± 6 %	0.88 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.33 mW / g
SAR normalized	normalized to 1W	9.32 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.43 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.52 mW / g
SAR normalized	normalized to 1W	6.08 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.14 mW / g ± 16.5 % (k=2)

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
87(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Appendix**Antenna Parameters with Head TSL**

Impedance, transformed to feed point	52.9 Ω - 3.4 Ω
Return Loss	-27.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.391 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Design Modification by End User

The dipole has been modified with Teflon Rings (TR) placed within identified markings close to the end of each dipole arm. Calibration has been performed with TR attached to the dipole.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	April 07, 2006

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
88(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

DASY5 Validation Report for Head TSL

Date/Time: 07.04.2011 09:28:21

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d043

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL900

Medium parameters used: $f = 835$ MHz; $\sigma = 0.88$ mho/m; $\epsilon_r = 40.6$; $\rho = 1000$ kg/m³

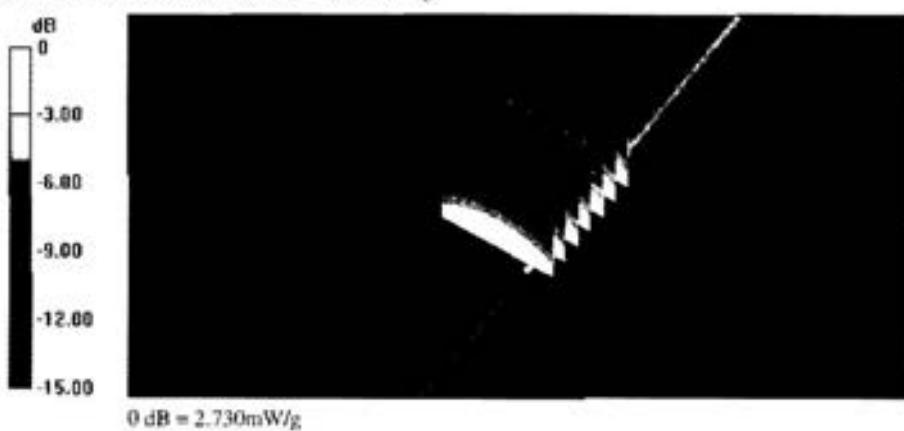
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(6.03, 6.03, 6.03); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 4.9L; Type: QD0000P49AA; Serial: 1001
- Measurement SW: DASY52, V52.6.2 Build (424)
- Postprocessing SW: SEMCAD X, V14.4.4 Build (2829)

Pin=250 mW /d=15mm/Cube 0:

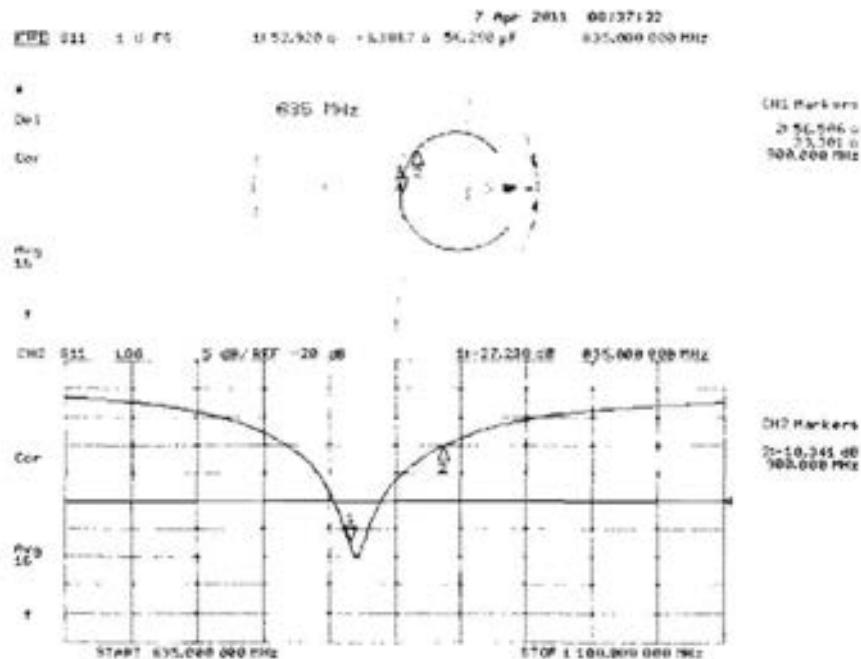

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.201 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 3.504 W/kg

SAR(1 g) = 2.33 mW/g; SAR(10 g) = 1.52 mW/g

Maximum value of SAR (measured) = 2.730 mW/g



Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
89(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Impedance Measurement Plot for Head TSL

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
90(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**Client **RTS (RIM Testing Services)**Certificate No. **D1800V2-2d020_Jan11****CALIBRATION CERTIFICATE**Object **D1800V2 - SN: 2d020**Calibration procedure(s) **QA CAL-05.v8**
 Calibration procedure for dipole validation kitsCalibration date: **January 13, 2011**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01206)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01206)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ES30V3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Calibrated by: **Dimco Iliev** **Name** **Laboratory Technician** **Function** **Signature**
D. Iliev

Approved by: **Katja Pokovid** **Name** **Technical Manager** **Function** **Signature**
K. Pokovid

Issued: **January 13, 2011**

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 91(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:** Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:** The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:** These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:** One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:** SAR measured at the stated antenna input power.
- SAR normalized:** SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:** The measured TSL parameters are used to calculate the nominal SAR result.

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
92(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1800 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.6 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature during test	(21.3 ± 0.2) °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.78 mW / g
SAR normalized	normalized to 1W	39.1 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	39.2 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.13 mW / g
SAR normalized	normalized to 1W	20.5 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.5 mW / g ± 16.5 % (k=2)

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
93(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Appendix**Antenna Parameters with Head TSL**

Impedance, transformed to feed point	46.5 Ω - 7.3 jΩ
Return Loss	- 21.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.216 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 07, 2001

BlackBerry	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 94(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

DASY5 Validation Report for Head TSL

Date/Time: 13.01.2011 12:34:12

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d020

Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: HSL U12 BB

Medium parameters used: $f = 1800$ MHz; $\sigma = 1.38$ mho/m; $\epsilon_r = 38.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(5.05, 5.05, 5.05); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY52, V52.6.1 Build (408)
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

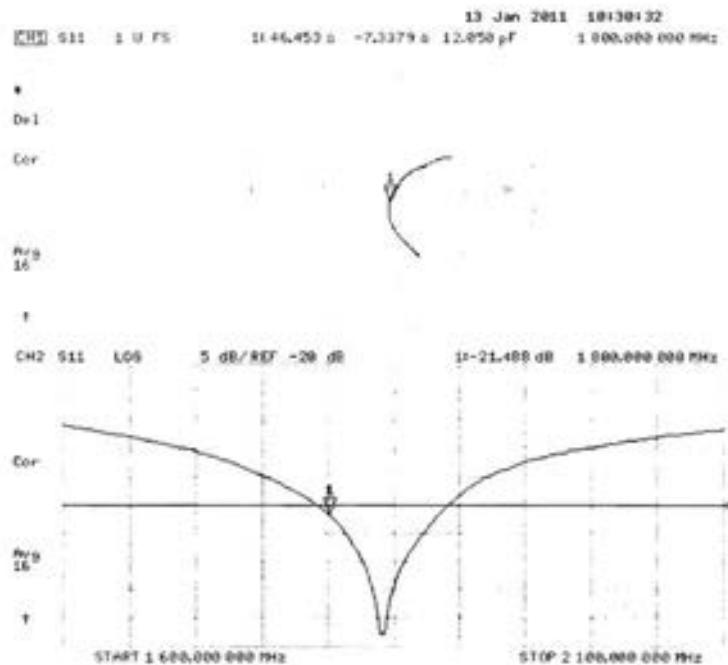
Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.654 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 17.902 W/kg

SAR(1 g) = 9.78 mW/g; SAR(10 g) = 5.13 mW/g

Maximum value of SAR (measured) = 12.051 mW/g



Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
95(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Impedance Measurement Plot for Head TSL

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
96(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**Client **RTS (RIM Testing Services)**Certificate No: **D1800V2-2d020_Jan13****CALIBRATION CERTIFICATE**Object **D1800V2 - SN: 2d020**Calibration procedure(s) **QA CAL-05.v9**
Calibration procedure for dipole validation kits above 700 MHzCalibration date: **January 09, 2013**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292703	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.3 / 06397	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN: 3205	28-Dec-12 (No. ES3-3205_Dec12)	Dec-13
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID #	Check Date (In house)	Scheduled Check
Power sensor HP 8481A	MY41092217	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 84206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Calibrated by: **Israe El-Naouq** Name **Laboratory Technician** Function **Signature**

Approved by: **Katja Pokovic** Name **Technical Manager** Function **Signature**

Issued: January 9, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: **D1800V2-2d020_Jan13**

Page 1 of 6

	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 97(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1526-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:** Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:** The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:** These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:** One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:** SAR measured at the stated antenna input power.
- SAR normalized:** SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:** The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
98(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASYS	V52,8,4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1800 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.61 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	38.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.06 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.3 W/kg ± 16.5 % (k=2)

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
99(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Appendix**Antenna Parameters with Head TSL**

Impedance, transformed to feed point	46.2 Ω ± 8.3 jΩ
Return Loss	- 20.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.216 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 07, 2001

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
100(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

DASY5 Validation Report for Head TSL

Date: 09.01.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2d020

Communication System: CW; Frequency: 1800 MHz

Medium parameters used: $f = 1800$ MHz; $\sigma = 1.38$ S/m; $\epsilon_r = 38.9$; $\rho = 1000$ kg/m³

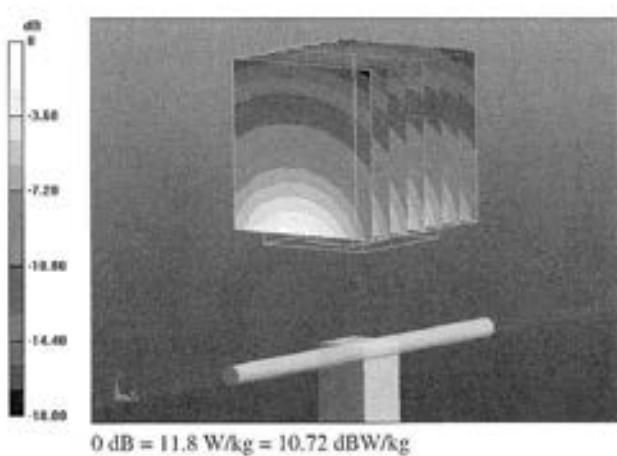
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(5.04, 5.04, 5.04); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

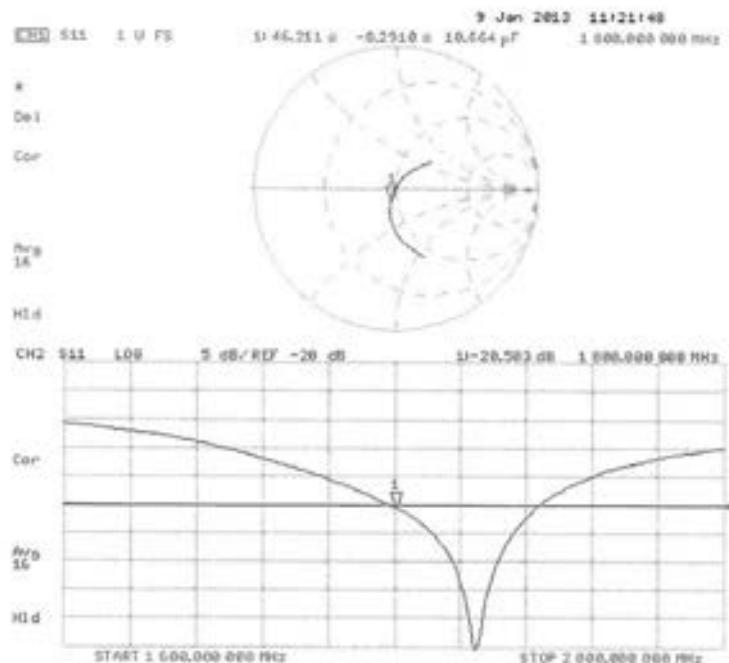

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.870 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 17.5 W/kg

SAR(1 g) = 9.61 W/kg; SAR(10 g) = 5.06 W/kg

Maximum value of SAR (measured) = 11.8 W/kg



Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
101(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Impedance Measurement Plot for Head TSL

 BlackBerry	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 102(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
103(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di Istratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**Client: **RTS (RIM Testing Services)**Certificate No: **D1900V2-545_Jan11****CALIBRATION CERTIFICATE**Object: **D1900V2 - SN: 545**Calibration procedure(s): **QA CAL-05.v8**
Calibration procedure for dipole validation kitsCalibration date: **January 13, 2011**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe E53DV3	SN: 3205	30-Apr-10 (No. E53-3205_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-09 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-09 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 54206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Calibrated by: **Dimo Iliev** Name: **Dimo Iliev** Function: **Laboratory Technician** Signature:

Approved by: **Katja Pokornic** Name: **Katja Pokornic** Function: **Technical Manager** Signature:

Issued: **January 14, 2011**

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: **D1900V2-545_Jan11**

Page 1 of 6

	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 104(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:** Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:** The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:** These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:** One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:** SAR measured at the stated antenna input power.
- SAR normalized:** SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:** The measured TSL parameters are used to calculate the nominal SAR result.

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
105(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.5 ± 6 %	1.43 mho/m ± 6 %
Head TSL temperature during test	(21.2 ± 0.2) °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.2 mW / g
SAR normalized	normalized to 1W	40.8 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	40.0 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.26 mW / g
SAR normalized	normalized to 1W	21.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.8 mW /g ± 16.5 % (k=2)

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
106(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Appendix**Antenna Parameters with Head TSL**

Impedance, transformed to feed point	50.8 Ω + 1.8 jΩ
Return Loss	+ 34.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.199 ns
----------------------------------	-----------------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 15, 2001

BlackBerry	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 107(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

DASY5 Validation Report for Head TSL

Date/Time: 13.01.2011 14:52:49

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:545

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U12 BB

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 38.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY52, V52.6.1 Build (408)
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

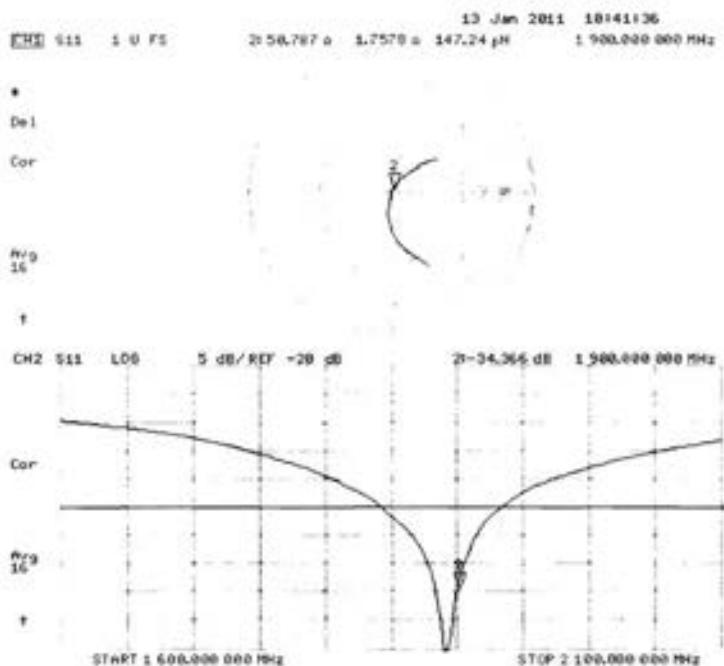
Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.053 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 18.648 W/kg

SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.26 mW/g

Maximum value of SAR (measured) = 12.743 mW/g



Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
108(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Impedance Measurement Plot for Head TSL

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
109(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**Client: **RTS (RIM Testing Services)**Certificate No: **D1900V2-545_Jan13****CALIBRATION CERTIFICATE**Object: **D1900V2 - SN: 545**Calibration procedure(s): **QA CAL-05.v9**
 Calibration procedure for dipole validation kits above 700 MHzCalibration date: **January 09, 2013**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3°C and humidity < 70%).

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.3 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe E33DV3	SN: 3205	28-Dec-12 (No. ES3-3205, Dec12)	Dec-13
DAE4	SN: 601	27-Jun-12 (No. DAE4-601, Jun12)	Jun-13

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Calibrated by: **Israe El-Naouq** Function: **Laboratory Technician** Signature:

Approved by: **Katja Pokovic** Function: **Technical Manager** Signature:

Issued: January 9, 2013.

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: **D1900V2-545_Jan13**

Page 1 of 6

	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 110(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:** Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:** The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:** These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:** One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:** SAR measured at the stated antenna input power.
- SAR normalized:** SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:** The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
111(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Measurement Conditions

(DASY system configuration, as far as not given on page 1.)

DASY Version	DASY5	V52.8.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.4 ± 6 %	1.38 mho/m ± 8 %
Head TSL temperature change during test	< 0.5 °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ² (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.1 W/kg ± 16.5 % (k=2)

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
112(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Appendix**Antenna Parameters with Head TSL**

Impedance, transformed to feed point	$51.0 \Omega + 1.7 j\Omega$
Return Loss	-34.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.198 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 15, 2001

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
113(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

DASY5 Validation Report for Head TSL

Date: 09.01.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 545

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.38$ S/m; $\epsilon_r = 39.4$; $\rho = 1000$ kg/m³

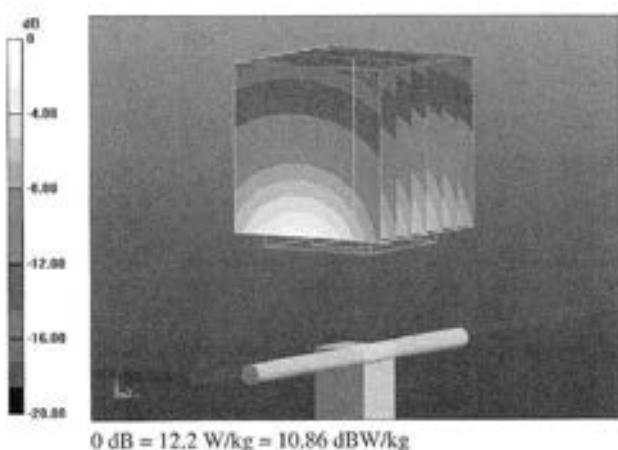
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.98, 4.98, 4.98); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.493 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 18.1 W/kg

SAR(1 g) = 10 W/kg; SAR(10 g) = 5.26 W/kg

Maximum value of SAR (measured) = 12.2 W/kg

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
114(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Impedance Measurement Plot for Head TSL

 BlackBerry	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 115(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Client: **RTS (RIM Testing Services)**

Certificate No: **D1900V2-5d075_Apr11**

CALIBRATION CERTIFICATE

Object: **D1900V2 - SN: 5d075**

Calibration procedure(s): **QA CAL-05.v6**
Calibration procedure for dipole validation kits

Calibration date: **April 5, 2011**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (S).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration):

Primary Standards	ID #	Cal Date (Cert/Scale No.)	Scheduled Calibration
Power meter EPM-442A	GD07480704	06-Oct-10 (No. 217-01286)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01286)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20dB)	29-Mar-11 (No. 217-01368)	Apr-12
Type-N mismatch combination	SN: 5047.2 / 08227	29-Mar-11 (No. 217-01371)	Apr-12
Reference Probe ES30V3	SN: 3226	30-Apr-10 (No. ES3-3226_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY410602317	18-Oct-07 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-05	100095	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390545 54206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Calibrated by: **Name: Mike Mall** **Function: Laboratory Technician**

Approved by: **Name: Katja Pokorni** **Function: Technical Manager**

Issued: April 8, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: **D1900V2-5d075_Apr11**

Page 1 of 6

	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 117(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'établissement
S Servizio svizzero di tassazione
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates.

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:** Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:** The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:** These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:** One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:** SAR measured at the stated antenna input power.
- SAR normalized:** SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:** The measured TSL parameters are used to calculate the nominal SAR result.

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
118(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.41 mho/m ± 6 %
Head TSL temperature during test	(21.3 ± 0.2) °C

SAR result with Head TSL

SAR averaged over 1 cm² (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.2 mW / g
SAR normalized	normalized to 1W	40.8 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	49.4 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm² (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.29 mW / g
SAR normalized	normalized to 1W	21.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.0 mW / g ± 16.5 % (k=2)

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
119(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Appendix**Antenna Parameters with Head TSL**

Impedance, transformed to feed point	53.5 Ω + 6.1 jΩ
Return Loss	-23.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.197 ns
----------------------------------	-----------------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 24, 2006

BlackBerry	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 120(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

Page 1 of 143

DASY5 Validation Report for Head TSL

Date/Time: 05.04.2011 12:41:39

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d075

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U12 BB

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.41$ mho/m; $\epsilon_r = 39$; $\rho = 1000$ kg/m³

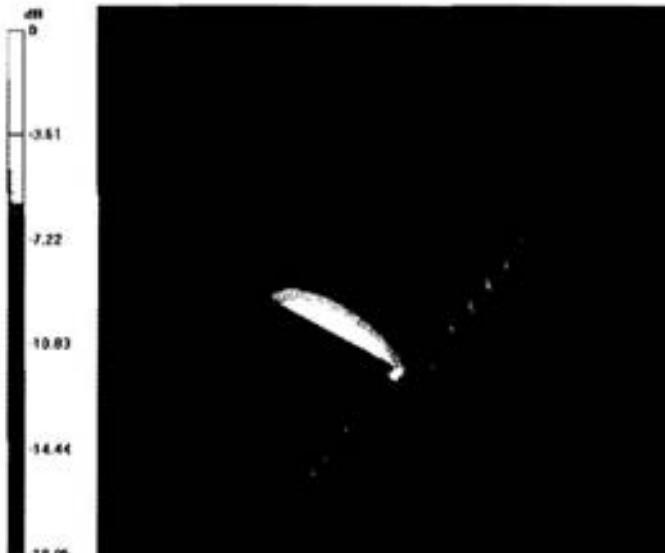
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 - SN1206; ConvH5.09, 5.09, 5.09; Calibrated: 30.04.2010
- Sensor-Surface: Jaws (Mechanical Surface Detection)
- Electronics: DAB4 Snt01; Calibrated: 11.06.2010
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY52, V52.6.2 Build (424)
- Postprocessing SW: SEMCAD X, V14.4.4 Build (2829)

Head / d=10mm, Pin=250 mW / Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.376 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 18.796 W/kg

SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.29 mW/g

Maximum value of SAR (measured) = 12.476 mW/g

0 dB = 12.480 mW/g

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
121(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Impedance Measurement Plot for Head TSL

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
122(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**Client: **RTS (RIM Testing Services)**Certificate No: **D2450V2-747_Nov11****CALIBRATION CERTIFICATE**Object: **D2450V2 - SN: 747**Calibration procedure(s): **QA CAL-05.v8**
 Calibration procedure for dipole validation kits above 700 MHzCalibration date: **November 09, 2011**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	0837480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	U537292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5086 (20)	29-Mar-11 (No. 217-01368)	Apr-12
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12
Reference Probe ES30V3	SN: 3205	29-Apr-11 (No. ES3-3205_Apr11)	Apr-12
DAE4	SN: 691	04-Jul-11 (No. DAE4-691_Jul11)	Jul-12
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator RAS SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 54206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Calibrated by:

Name: **Jelon Kastner**Function: **Laboratory Technician**

Signature:

Approved by:

Name: **Katja Pokovic**Function: **Technical Manager**

Signature:

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Issued: November 9, 2011

Certificate No: **D2450V2-747_Nov11**

Page 1 of 6

	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 123(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)". February 2005
- Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:* SAR measured at the stated antenna input power.
- SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
124(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASYS	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.7 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.8 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	54.1 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.39 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	25.3 mW / g ± 16.5 % (k=2)

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
125(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Appendix**Antenna Parameters with Head TSL**

Impedance, transformed to feed point	52.5 Ω + 1.3 $j\Omega$
Return Loss	-31.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.161 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 01, 2003

BlackBerry	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 126(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

DASY5 Validation Report for Head TSL

Date: 09.11.2011

Test Laboratory: SPEAG, Zurich, Switzerland

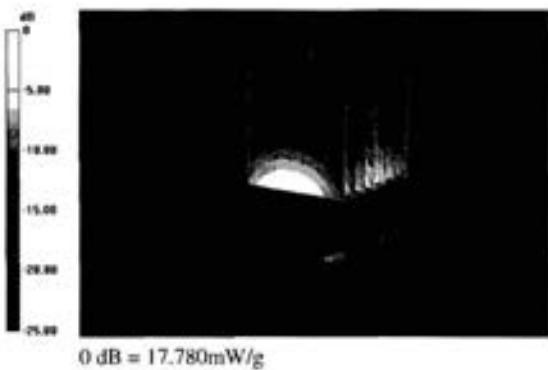
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 747

Communication System: CW; Frequency: 2450 MHz
 Medium parameters used: $f = 2450$ MHz; $\sigma = 1.84$ mho/m; $\epsilon_r = 37.7$; $\rho = 1000$ kg/m³
 Phantom section: Flat Section
 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

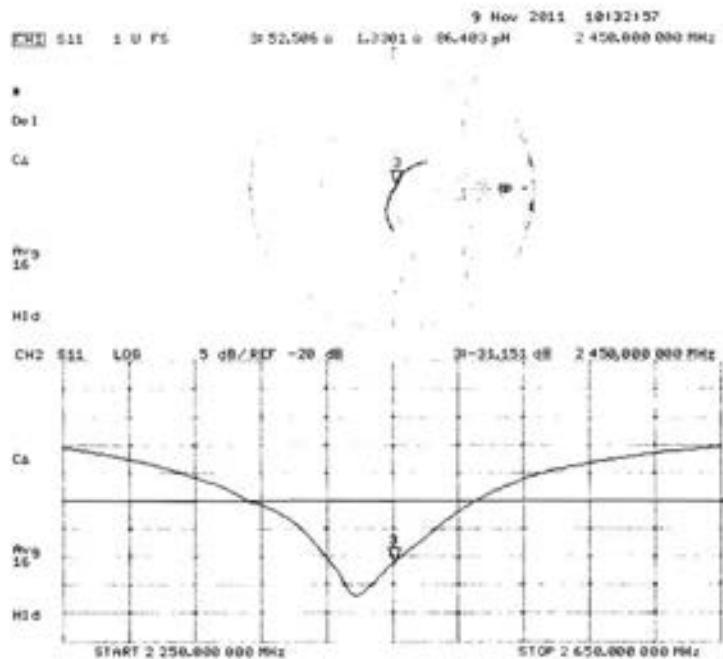

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 102.1 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 28.853 W/kg

SAR(1 g) = 13.8 mW/g; SAR(10 g) = 6.39 mW/g

Maximum value of SAR (measured) = 17.782 mW/g



Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
127(143)

Author Data	Dates of Test	Test Report No	FCC ID:	IC
Andrew Becker	Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	RTS-6026-1303-02 Rev 3	L6ARFL110LW L6ARFP120LW	2503A-RFL110LW 2503A-RFP120LW

Impedance Measurement Plot for Head TSL

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
128(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**Client **RTS (RIM Testing Services)**Certificate No: **D5GHzV2-1033_Nov11****CALIBRATION CERTIFICATE**Object: **D5GHzV2 - SN: 1033**Calibration procedure(s): **QA CAL-22.v1**
Calibration procedure for dipole validation kits between 3-6 GHzCalibration date: **November 15, 2011**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5086 (20g)	29-Mar-11 (No. 217-01368)	Apr-12
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12
Reference Probe EX3DV4	SN: 3503	04-Mar-11 (No. EX3-3503_Mar11)	Mar-12
DAE4	SN: 601	04-Jul-11 (No. DAE4-601_Jul11)	Jul-12

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41090317	16-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390685 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Calibrated by: Name: **Dmitriy Bely** Function: **Laboratory Technician** Signature: **D. Bely**

Approved by: Name: **Katja Pokovic** Function: **Technical Manager** Signature: **K. Pokovic**

Issued: November 16, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: **D5GHzV2-1033_Nov11**

Page 1 of 8

	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 129(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:** Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:** The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:** These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:** One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:** SAR measured at the stated antenna input power.
- SAR normalized:** SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:** The measured TSL parameters are used to calculate the nominal SAR result.

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
130(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$dx, dy = 4.0 \text{ mm}, dz = 1.4 \text{ mm}$	Graded Ratio = 1.4 (Z direction)
Frequency	$5200 \text{ MHz} \pm 1 \text{ MHz}$ $5500 \text{ MHz} \pm 1 \text{ MHz}$ $5800 \text{ MHz} \pm 1 \text{ MHz}$	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.6 ± 6 %	4.46 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	---	---

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.16 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	80.8 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.33 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	23.0 mW / g ± 16.5 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.2 ± 6 %	4.75 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	---	---

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.82 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	87.3 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.50 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.7 mW / g ± 16.5 % (k=2)

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
131(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.7 ± 6 %	5.03 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.03 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	79.4 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.28 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.5 mW / g ± 16.5 % (k=2)

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
132(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Appendix**Antenna Parameters with Head TSL at 5200 MHz**

Impedance, transformed to feed point	51.1 Ω - 8.7 $\text{j}\Omega$
Return Loss	-21.2 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	52.3 Ω - 2.7 $\text{j}\Omega$
Return Loss	-29.2 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	56.7 Ω - 4.3 $\text{j}\Omega$
Return Loss	-22.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.202 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 09, 2004

BlackBerry	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 133(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

DASY5 Validation Report for Head TSL

Date: 15.11.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1033

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz
 Medium parameters used: $f = 5200$ MHz; $\sigma = 4.46$ mho/m; $\epsilon_r = 34.6$; $\rho = 1000$ kg/m³, Medium parameters used: $f = 5500$ MHz; $\sigma = 4.75$ mho/m; $\epsilon_r = 34.2$; $\rho = 1000$ kg/m³, Medium parameters used: $f = 5800$ MHz; $\sigma = 5.03$ mho/m; $\epsilon_r = 33.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 - SN3503; ConvF(5.41, 5.41, 5.41), ConvF(4.91, 4.91, 4.91), ConvF(4.81, 4.81, 4.81); Calibrated: 04.03.2011
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.595 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 30.134 W/kg

SAR(1 g) = 8.16 mW/g; SAR(10 g) = 2.33 mW/g

Maximum value of SAR (measured) = 18.725 mW/g

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.819 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 35.056 W/kg

SAR(1 g) = 8.82 mW/g; SAR(10 g) = 2.5 mW/g

Maximum value of SAR (measured) = 21.019 mW/g

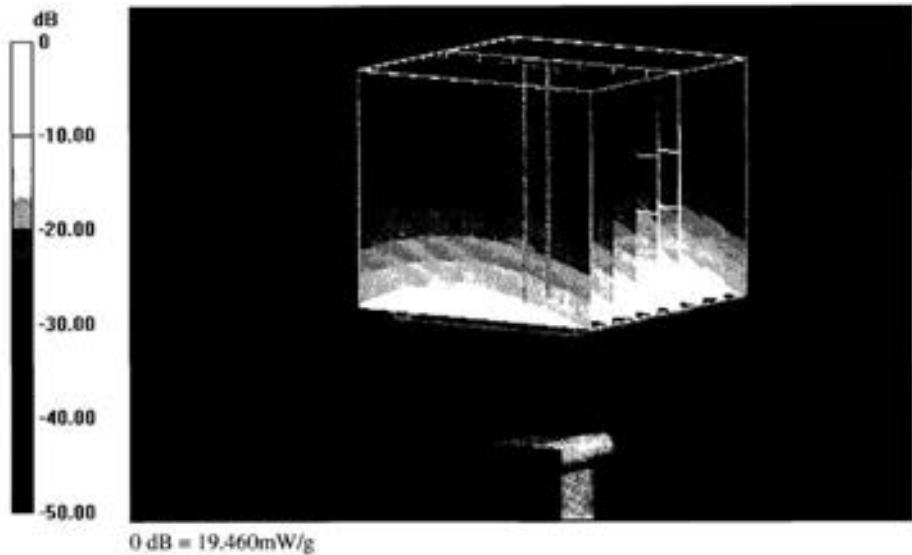
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 62.220 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 33.743 W/kg

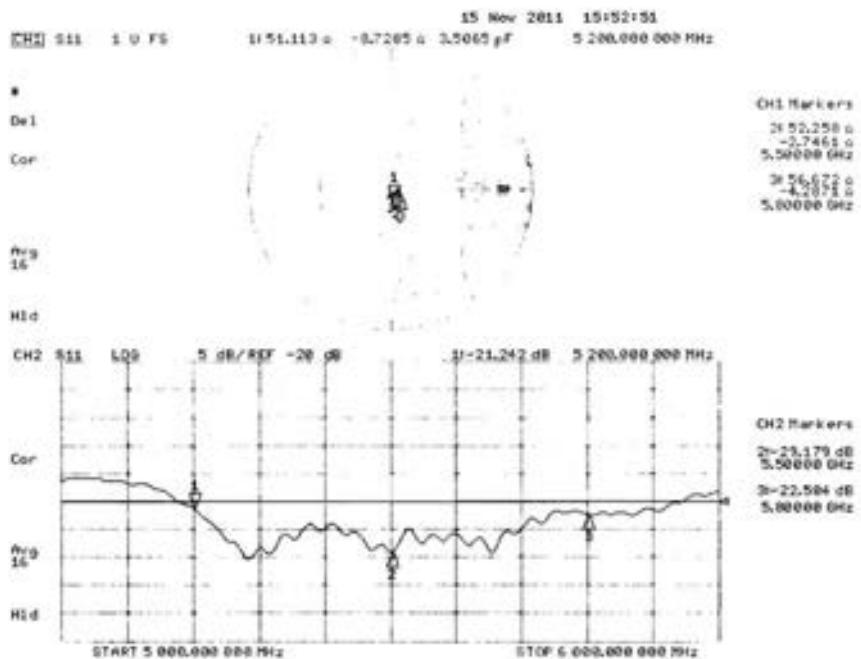
SAR(1 g) = 8.03 mW/g; SAR(10 g) = 2.28 mW/g


Maximum value of SAR (measured) = 19.463 mW/g

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
134(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--



Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
135(143)

Author Data	Dates of Test	Test Report No	FCC ID	IC
Andrew Becker	Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	RTS-6026-1303-02 Rev 3	L6ARFL110LW L6ARFP120LW	2503A-RFL110LW 2503A-RFP120LW

Impedance Measurement Plot for Head TSL

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
136(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**Client **Blackberry Waterloo**Certificate No: **D5GHzV2-1033_Nov13****CALIBRATION CERTIFICATE**Object **D5GHzV2 - SN: 1033**Calibration procedure(s) **QA CAL-22.v2**
Calibration procedure for dipole validation kits between 3-6 GHzCalibration date **November 08, 2013**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurement (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	0837480704	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 3461A	US37299783	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	MY41082317	09-Oct-13 (No. 217-01828)	Oct-14
Reference 20 dB Attenuator	SN: 5050 (20dB)	04-Apr-13 (No. 217-01738)	Apr-14
Type-N mismatch combination	SN: 5047.3 / 08327	04-Apr-13 (No. 217-01739)	Apr-14
Reference Probe ESDDV3	SN: 3205	26-Dec-12 (No. ESD-3205_Dec12)	Dec-13
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-15
Network Analyzer HP 8753E	US37380265 54206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Calibrated by: **Claudio Leutler** Name **Function** **Laboratory Technician**

Approved by: **Katja Potovic** Name **Function** **Technical Manager**

Issued: November 8, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: **D5GHzV2-1033_Nov13**

Page 1 of 8

	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 137(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'établissement
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:** Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:** The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:** These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:** One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:** SAR measured at the stated antenna input power.
- SAR normalized:** SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:** The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
138(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$dx, dy = 4.0 \text{ mm}, dz = 1.4 \text{ mm}$	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz $\pm 1 \text{ MHz}$ 5500 MHz $\pm 1 \text{ MHz}$ 5800 MHz $\pm 1 \text{ MHz}$	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.0 $\pm 6\%$	4.46 mho/m $\pm 6\%$
Head TSL temperature change during test	< 0.5 °C	—	—

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.99 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.4 W/kg $\pm 19.9\%$ (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.6 W/kg $\pm 19.5\%$ (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.6 $\pm 6\%$	4.75 mho/m $\pm 6\%$
Head TSL temperature change during test	< 0.5 °C	—	—

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.51 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	84.4 W/kg $\pm 19.9\%$ (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.9 W/kg $\pm 19.5\%$ (k=2)

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
139(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied:

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.2 ± 6 %	5.06 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	—	—

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.01 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.4 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.6 W/kg ± 19.5 % (k=2)

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
140(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--

Appendix**Antenna Parameters with Head TSL at 5200 MHz**

Impedance, transformed to feed point	48.1 Ω - 9.6 jΩ
Return Loss	-29.3 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	50.3 Ω - 4.1 jΩ
Return Loss	-27.7 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	57.8 Ω - 4.0 jΩ
Return Loss	-21.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.213 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 09, 2004

BlackBerry	Document Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2	Page 141(143)		
Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW

DASY5 Validation Report for Head TSL

Date: 08.11.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1033

Communication System: UID 0 - CW ; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz

Medium parameters used: $f = 5200$ MHz; $\sigma = 4.46$ S/m; $\epsilon_r = 35$; $\rho = 1000$ kg/m³,

Medium parameters used: $f = 5500$ MHz; $\sigma = 4.75$ S/m; $\epsilon_r = 34.6$; $\rho = 1000$ kg/m³,

Medium parameters used: $f = 5800$ MHz; $\sigma = 5.06$ S/m; $\epsilon_r = 34.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 - SN3503; ConvF(5.41, 5.41, 5.41); Calibrated: 28.12.2012, ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.81, 4.81, 4.81); Calibrated: 28.12.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Se601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.635 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 29.5 W/kg

SAR(1 g) = 7.99 W/kg; SAR(10 g) = 2.28 W/kg

Maximum value of SAR (measured) = 18.4 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.397 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 33.8 W/kg

SAR(1 g) = 8.51 W/kg; SAR(10 g) = 2.41 W/kg

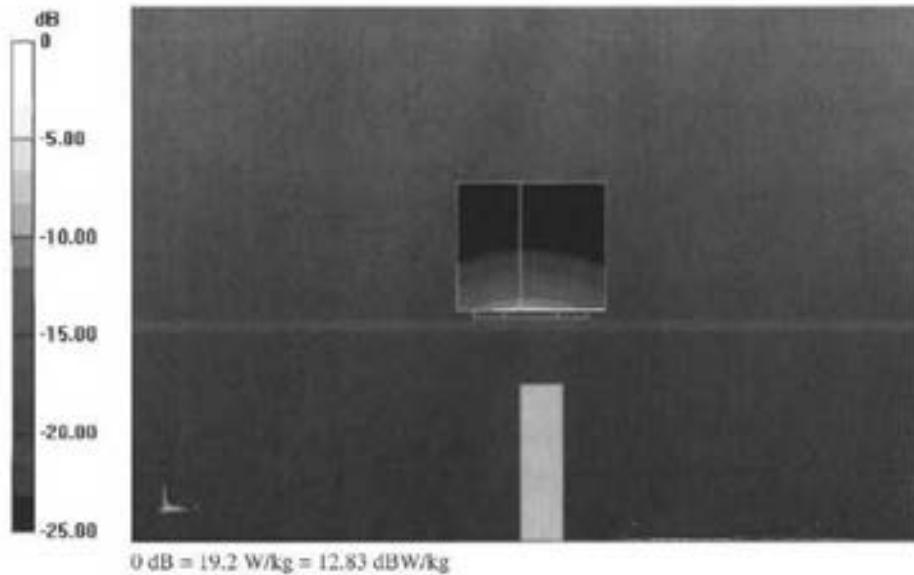
Maximum value of SAR (measured) = 20.3 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 61.128 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 33.0 W/kg

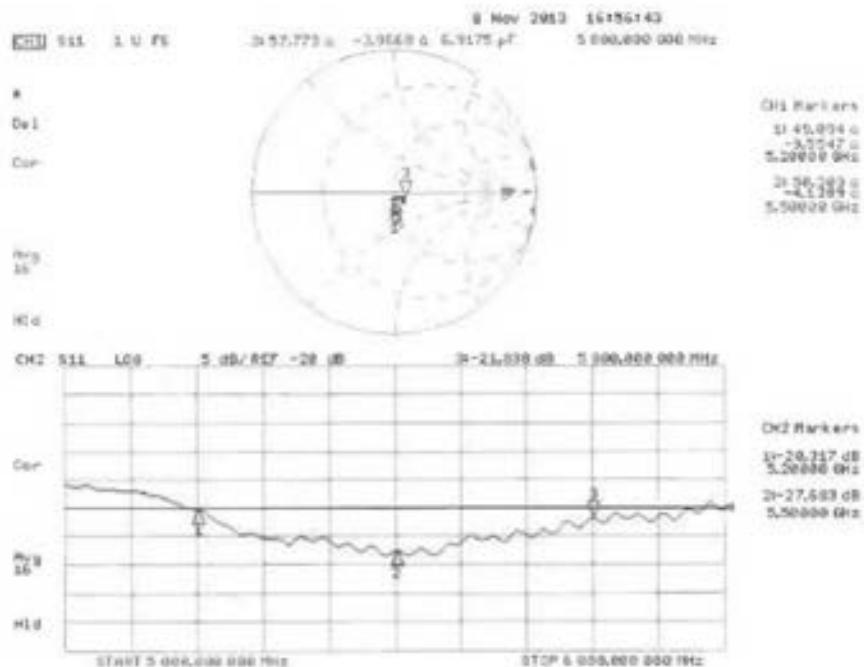
SAR(1 g) = 8.01 W/kg; SAR(10 g) = 2.28 W/kg


Maximum value of SAR (measured) = 19.2 W/kg

Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
142(143)

Author Data Andrew Becker	Dates of Test Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	Test Report No RTS-6026-1303-02 Rev 3	FCC ID: L6ARFL110LW L6ARFP120LW	IC 2503A-RFL110LW 2503A-RFP120LW
-------------------------------------	--	---	---	--



Document

Appendix D for the BlackBerry® Smartphone Model RFP121LW SAR Report Rev 2Page
143(143)

Author Data	Dates of Test	Test Report No	FCC ID:	IC
Andrew Becker	Nov 22, 2012 – Feb 28, 2013 Dec. 10-12, 2014	RTS-6026-1303-02 Rev 3	L6ARFL110LW L6ARFP120LW	2503A-RFL110LW 2503A-RFP120LW

Impedance Measurement Plot for Head TSL