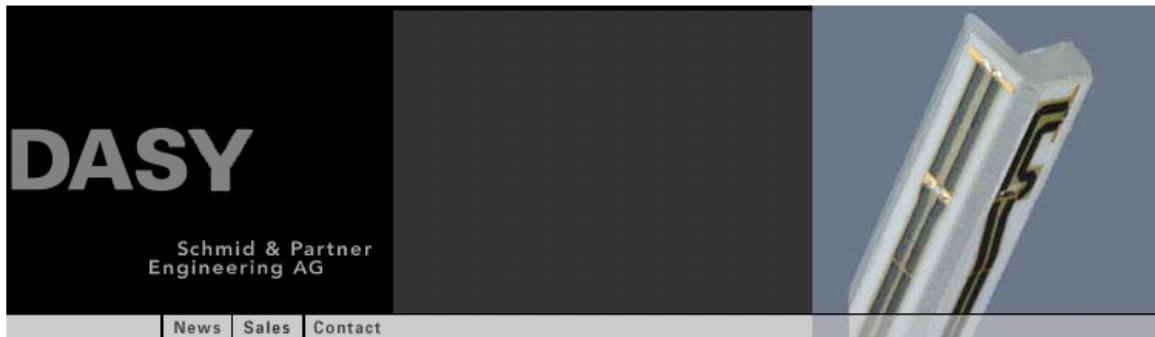


		Document Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model REU71UW	Page 1(25)
Author Data Andrew Becker	Dates of Test Jan. 31, Feb 17-22, Apr 30-May 1,2012	Report No RTS-5995-1204-31	FCC ID L6AREU70UW

Annex B: Probe and dipole description and calibration certificates


B.1 Probe, measurement chain description, specification and calibration certificate

Author Data
Andrew BeckerDates of Test
Jan. 31, Feb 17-22, Apr 30-May 1,2012

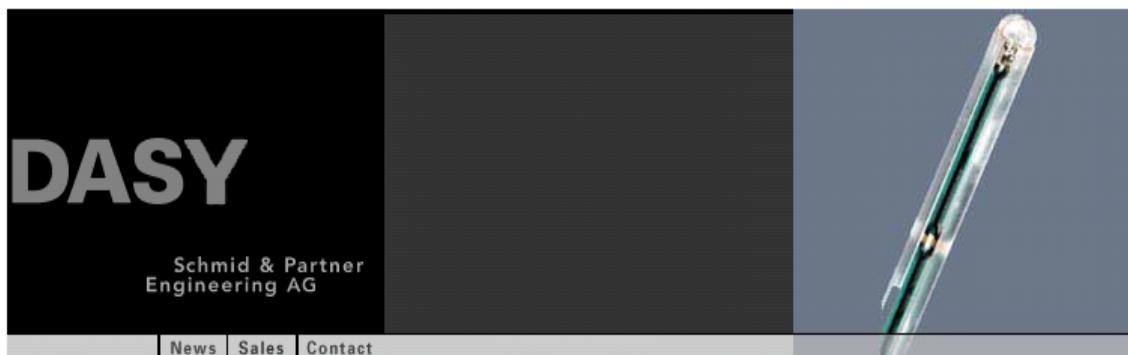
Report No

RTS-5995-1204-31FCC ID
L6AREU70UW

DASY Dosimetric Assessment System by Schmid & Partner Engineering AG

Applications
Support & Downloads
Products
<ul style="list-style-type: none"> ▪ DASY4 Packages ▪ EASY4 ▪ Probes <ul style="list-style-type: none"> ET3DV6 - Isotropic Dos-Probe ES3DV3 - Isotropic Dos-Probe EX3DV4 - Isotropic Dos-Probe ET1DV3 - D-Probe ▪ EUVE3 - Universal Vector E-Probe ▪ H3DV6 - Isotropic H-Probe ▪ HUV4 - Universal Vector H-Probe ▪ T1V3 - Temp-Probe ▪ DP1 - Dummy-Probe ▪ Data Acquisition System ▪ Software ▪ Phantoms ▪ Robots ▪ Validation Kits & Calibration Dipoles ▪ Hearing Aid Compatibility (HAC) Ext ▪ Tissue Simulating Liquids
SPEAG Home

ER3DV6 ISOTROPIC E-FIELD PROBE FOR GENERAL NEAR-FIELD MEASUREMENTS


[Download Product Flyer \(PDF, 192kB\)](#)

Construction	One dipole parallel, two dipoles normal to probe axis Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., glycoether)
Calibration	In air from 100 MHz to 3.0 GHz (absolute accuracy $\pm 6.0\%$, $k=2$)
Frequency	100 MHz to > 6 GHz; Linearity: ± 0.2 dB (100 MHz to 3 GHz)
Directivity	± 0.2 dB in air (rotation around probe axis) ± 0.4 dB in air (rotation normal to probe axis)
Dynamic Range	2 V/m to > 1000 V/m; Linearity: ± 0.2 dB
Dimensions	Overall length: 330 mm (Tip: 16 mm) Tip diameter: 8 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.5 mm
Application	General near-field measurements up to 6 GHz Field component measurements Fast automatic scanning in phantoms

<http://www.dasy4.com/er3.htm>

Author Data
Andrew BeckerDates of Test
Jan. 31, Feb 17-22, Apr 30-May 1,2012Report No
RTS-5995-1204-31FCC ID
L6AREU70UW

DASY Dosimetric Assessment System by Schmid & Partner Engineering AG

Applications
Support & Downloads
Products
<ul style="list-style-type: none"> ▪ DASY4 Packages ▪ EASY4 ▪ Probes <ul style="list-style-type: none"> ET3DV6 - Isotropic Dos-Probe ES3DV3 - Isotropic Dos-Probe EX3DV4 - Isotropic Dos-Probe ET1DV3 - D-Probe ER3DV6 - Isotropic E-Probe EUV3 - Universal Vector E-Probe ▪ HUV4 - Universal Vector H-Probe ▪ T1V3 - Temp-Probe ▪ DP1 - Dummy-Probe ▪ Data Acquisition System ▪ Software ▪ Phantoms ▪ Robots ▪ Validation Kits & Calibration Dipoles ▪ Hearing Aid Compatibility (HAC) Ext. ▪ Tissue Simulating Liquids
SPEAG Home

H3DV6 3-DIMENSIONAL H-FIELD PROBE FOR SMALL BAND APPLICATIONS

[Download Product Flyer \(PDF, 192kB\)](#)

Construction

Three concentric loop sensors with 3.8 mm loop diameters
Resistively loaded detector diodes for linear response
Built-in shielding against static charges
PEEK enclosure material (resistant to organic solvents, e.g., glycoether)

Frequency

200 MHz to 3 GHz (absolute accuracy $\pm 6.0\%$, $k=2$);
Output linearized

Directivity

± 0.25 dB (spherical isotropy error)

Dynamic Range

10 mA/m to 2 A/m at 1 GHz

E-Field Interference

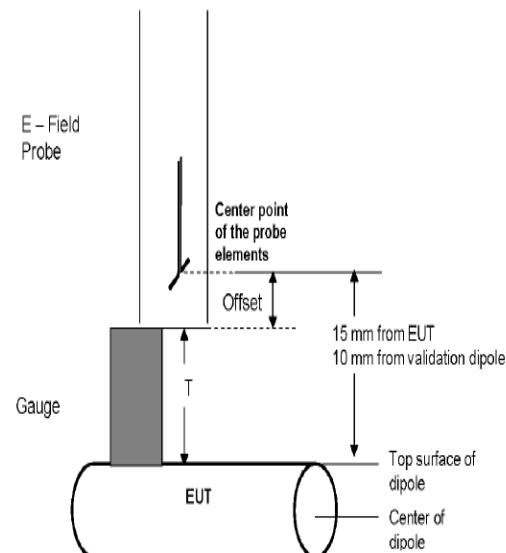
< 10% at 3 GHz (for plane wave)

Dimensions

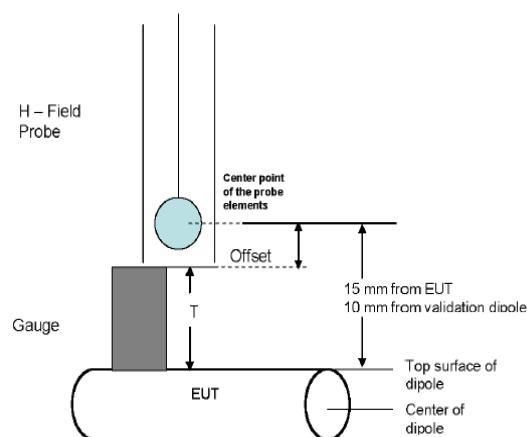
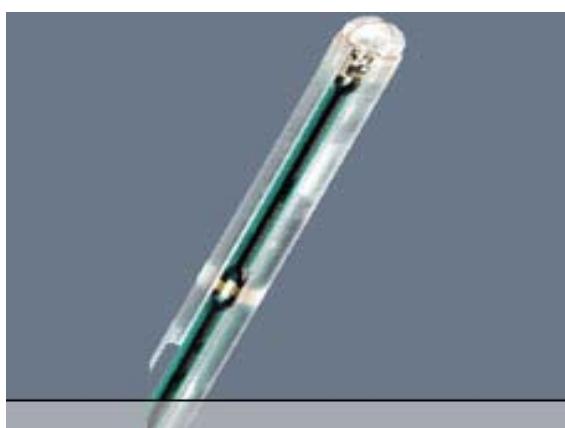
Overall length: 330 mm (Tip: 40 mm)
Tip diameter: 6 mm (Body: 12 mm)
Distance from probe tip to dipole centers: 3 mm

Application

General magnetic near-field measurements up to 3 GHz
Field component measurements
Surface current measurements
Measurements in air or liquids
Low interaction with the measured field


<http://www.dasy4.com/h3d.htm>

All measurements were performed to the nearest element point as per the C63.19 standard. Offset distances were entered in the DASY5 software so that the measurement was to the nearest element.



Figures 1 and 2, provided by the manufacturer, illustrate detail of the probe tip and its dimensions.

ER3DV6 E-Field probe: The distances from the probe tip to the closest points on the dipole sensors are 1.45mm for X and Y and 1.25mm for Z. From the probe tip to the center of the sensors is 2.5mm.

H3DV6 H-Field probe: The distance from the probe tip to the closest point of the X, Y and Z loop sensors is 1.1mm. From the probe tip to the center of the sensor is 3.00mm.

E-Field Probe (ER3DV6)

H-Field Probe (H3DV6)

 RIM Testing Services™	Document	Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model REU71UW	Page
			5(25)
Author Data Andrew Becker	Dates of Test Jan. 31, Feb 17-22, Apr 30-May 1,2012	Report No RTS-5995-1204-31	FCC ID L6AREU70UW

The following information is from the system manufacturer user manual describing the process chain:

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i} \quad (20.1)$$

with V_i = compensated signal of channel i $(i = x, y, z)$
 U_i = input signal of channel i $(i = x, y, z)$
 cf = crest factor of exciting field (DASY parameter)
 dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

$$\text{E - fieldprobes : } E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

$$\text{H - fieldprobes : } H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

with V_i = compensated signal of channel i $(i = x, y, z)$
 $Norm_i$ = sensor sensitivity of channel i $(i = x, y, z)$
 $\mu\text{V}/(\text{V}/\text{m})^2$ for E-field Probes
 $ConvF$ = sensitivity enhancement in solution
 a_{ij} = sensor sensitivity factors for H-field probes
 f = carrier frequency [GHz]
 E_i = electric field strength of channel i in V/m
 H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2} \quad (20.2)$$

The measurement / integration time per point is > 500 ms, as per the system manufacturer:

The time response of the field probes has been assessed by exposing the probe to a well-controlled field producing signals larger than HAC E- and H-fields of class M4. The signal response time is evaluated as the time required by the system to reach 90% of the expected final value after an on/off switch of the power source with an integration time of 500 ms and a probe response time of <5 ms. In the current implementation, DASY4 waits longer than 100 ms after having reached the grid point before starting a measurement, i.e., the response time uncertainty is negligible.

If the device under test does not emit a CW signal, the integration time applied to measure the electric field at a specific point may introduce additional uncertainties due to the discretization. The tolerances for the different systems had the worst-case of 2.6%.

Document

**Annex B to Hearing Aid Compatibility RF Emissions Test
Report for the BlackBerry® Smartphone model REU71UW**

Page
6(25)

Author Data
Andrew Becker

Dates of Test

Jan. 31, Feb 17-22, Apr 30-May 1,2012

Report No

RTS-5995-1204-31FCC ID
L6AREU70UW

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**Client **RTS (RIM Testing Services)**Certificate No: **ER3-2286_Jan12**

CALIBRATION CERTIFICATE

Object **ER3DV6 - SN:2286**Calibration procedure(s) **QA CAL-02.v6, QA CAL-25.v4**

Calibration procedure for E-field probes optimized for close near field evaluations in air

Calibration date: **January 9, 2012**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370)	Apr-12
Reference Probe ER3DV6	SN: 2328	11-Oct-11 (No. ER3-2328_Oct11)	Oct-12
DAE4	SN: 789	6-Apr-11 (No. DAE4-789_Apr11)	Apr-12
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Calibrated by:	Name	Function	Signature
	Jelton Kastnati	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: January 12, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: **ER3-2286_Jan12**

Page 1 of 10

	Document Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model REU71UW	Page 7(25)	
Author Data Andrew Becker	Dates of Test Jan. 31, Feb 17-22, Apr 30-May 1,2012	Report No RTS-5995-1204-31	FCC ID L6AREU70UW

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

NORM_{x,y,z}	sensitivity in free space
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005.

Methods Applied and Interpretation of Parameters:

- **NORM_{x,y,z}**: Assessed for E-field polarization $\theta = 0$ for XY sensors and $\theta = 90$ for Z sensor ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide).
- **NORM(f)_{x,y,z} = NORM_{x,y,z} * frequency_response** (see Frequency Response Chart).
- **DCPx,y,z**: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- **PAR**: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- **A_{x,y,z}; B_{x,y,z}; C_{x,y,z}; VR_{x,y,z}**: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- **Spherical isotropy (3D deviation from isotropy)**: in a locally homogeneous field realized using an open waveguide setup.
- **Sensor Offset**: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- **Connector Angle**: The angle is assessed using the information gained by determining the **NORM_x** (no uncertainty required).

<p>Document Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model REU71UW</p>		Page 8(25)
Author Data Andrew Becker	Dates of Test Jan. 31, Feb 17-22, Apr 30-May 1,2012	Report No RTS-5995-1204-31

ER3DV6 – SN:2286

January 9, 2012

Probe ER3DV6

SN:2286

Manufactured: September 18, 2002
Calibrated: January 9, 2012

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

Document

**Annex B to Hearing Aid Compatibility RF Emissions Test
Report for the BlackBerry® Smartphone model REU71UW**

Page
9(25)

Author Data Andrew Becker	Dates of Test Jan. 31, Feb 17-22, Apr 30-May 1,2012	Report No RTS-5995-1204-31	FCC ID L6AREU70UW
-------------------------------------	---	--------------------------------------	-----------------------------

ER3DV6- SN:2286

January 9, 2012

DASY/EASY - Parameters of Probe: ER3DV6 - SN:2286

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μ V/(V/m) ²)	2.19	1.48	1.51	$\pm 10.1\%$
DCP (mV) ^b	98.8	100.1	98.9	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^c (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	107.7	$\pm 3.0\%$
			Y	0.00	0.00	1.00	107.0	
			Z	0.00	0.00	1.00	93.5	
10011	UMTS-FDD (WCDMA)	3.40	X	3.54	66.3	18.9	116.1	$\pm 0.7\%$
			Y	3.38	65.4	18.2	114.7	
			Z	3.58	66.5	18.9	138.6	
10021	GSM-FDD (TDMA, GMSK)	9.20	X	16.11	100.0	28.4	105.3	$\pm 1.4\%$
			Y	4.39	79.8	20.9	135.3	
			Z	5.62	83.0	23.2	123.8	
10039	CDMA2000 (1xRTT, RC1)	5.30	X	5.37	67.3	20.2	118.3	$\pm 1.4\%$
			Y	4.87	65.7	19.1	113.6	
			Z	5.10	66.4	19.5	137.9	
10081	CDMA2000 (1xRTT, RC3)	4.60	X	4.41	66.3	19.5	115.0	$\pm 0.9\%$
			Y	4.07	64.9	18.5	112.0	
			Z	4.30	65.9	19.1	135.1	
10151	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	7.73	X	8.16	72.5	24.6	117.6	$\pm 4.1\%$
			Y	6.86	68.2	21.9	111.8	
			Z	7.47	69.9	22.7	138.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^b Numerical linearization parameter: uncertainty not required.

^c Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Document

**Annex B to Hearing Aid Compatibility RF Emissions Test
Report for the BlackBerry® Smartphone model REU71UW**

Page

10(25)

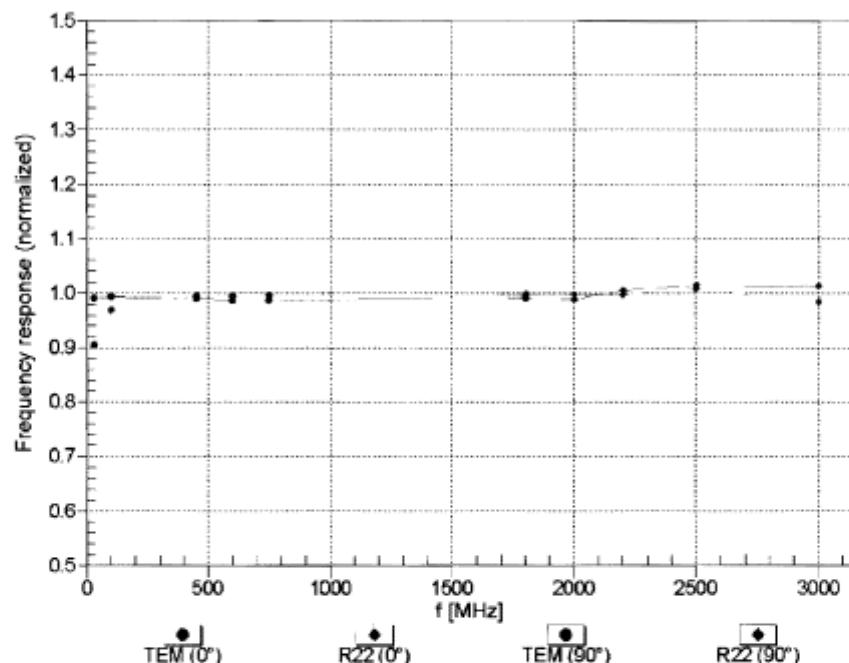
Author Data

Andrew Becker

Dates of Test

Jan. 31, Feb 17-22, Apr 30-May 1,2012

Report No


RTS-5995-1204-31

FCC ID

L6AREU70UW

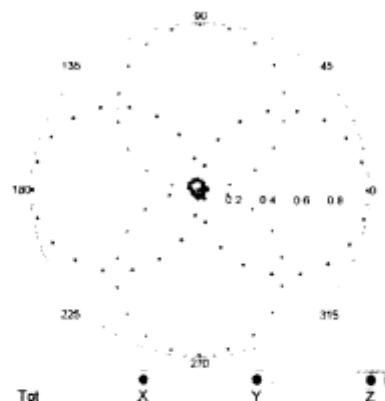
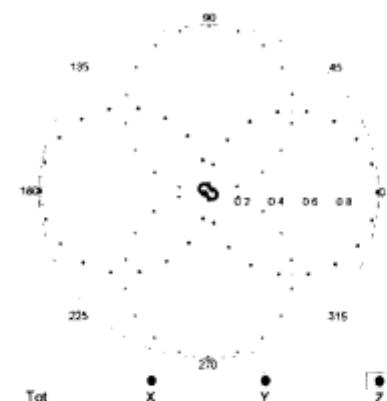
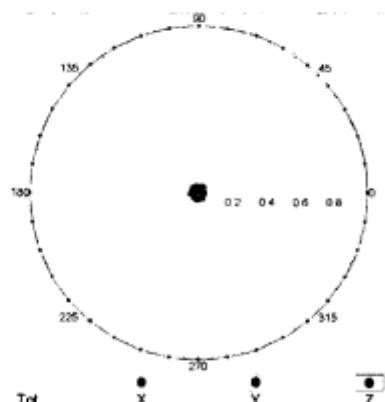
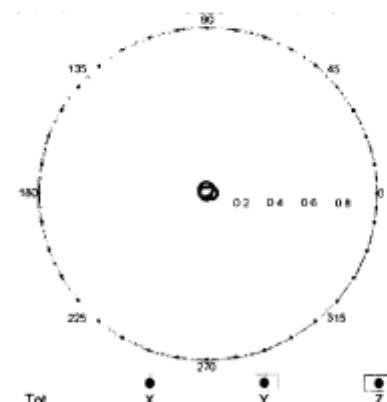
ER3DV6- SN:2286

January 9, 2012

**Frequency Response of E-Field
(TEM-Cell:ifi110 EXX, Waveguide: R22)**Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2)

Document

Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model REU71UW





Page

11(25)

Author Data
Andrew BeckerDates of Test
Jan. 31, Feb 17-22, Apr 30-May 1,2012Report No
RTS-5995-1204-31FCC ID
L6AREU70UW

ER3DV6- SN:2286

January 9, 2012

Receiving Pattern (ϕ), $\theta = 0^\circ$ $f=600 \text{ MHz, TEM, } 0^\circ$ $f=2500 \text{ MHz, R22, } 0^\circ$ **Receiving Pattern (ϕ), $\theta = 90^\circ$** $f=600 \text{ MHz, TEM, } 90^\circ$ $f=2500 \text{ MHz, R22, } 90^\circ$

Author Data

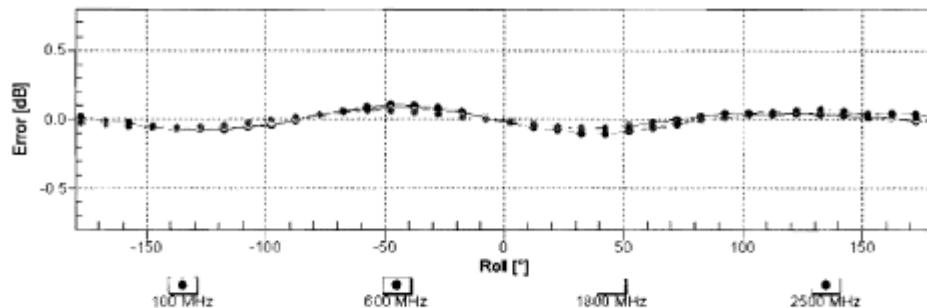
Andrew Becker

Dates of Test

Jan. 31, Feb 17-22, Apr 30-May 1,2012

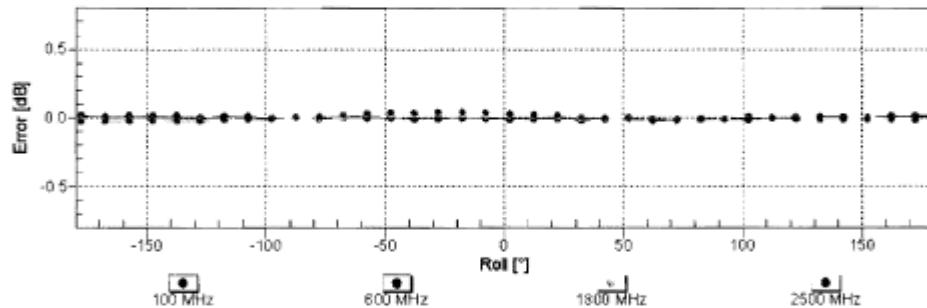
Report No

RTS-5995-1204-31


FCC ID

L6AREU70UW

ER3DV6- SN:2286


January 9, 2012

Receiving Pattern (ϕ), $\theta = 0^\circ$

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

Receiving Pattern (ϕ), $\theta = 90^\circ$

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

Author Data

Andrew Becker

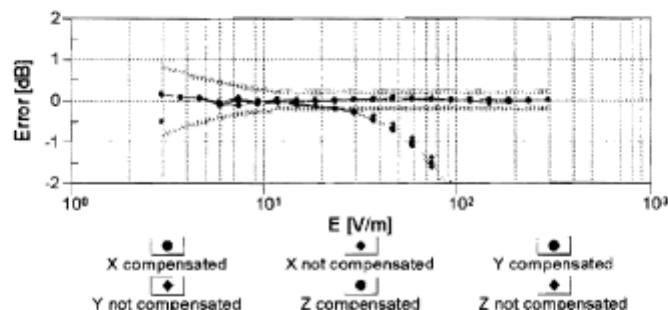
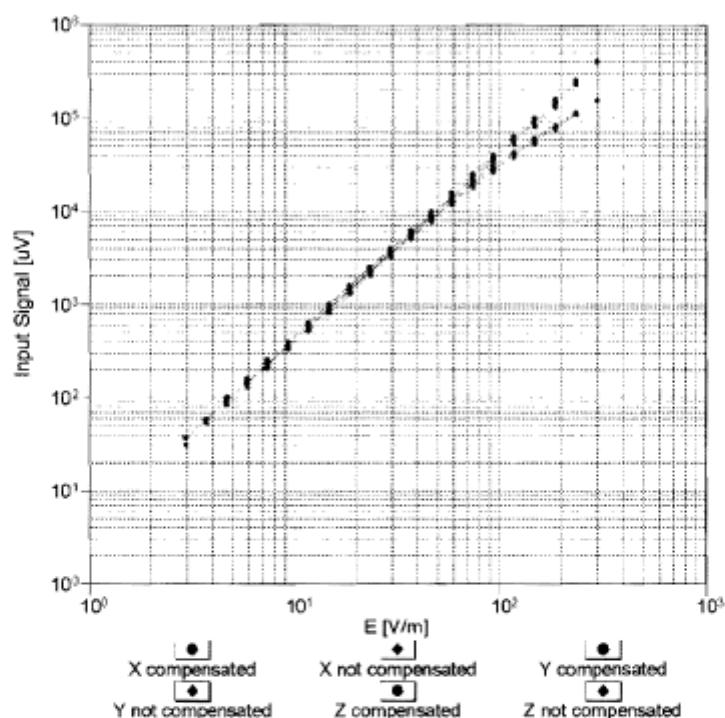
Dates of Test

Jan. 31, Feb 17-22, Apr 30-May 1,2012

Report No

RTS-5995-1204-31

FCC ID



L6AREU70UW

ER3DV6- SN:2286

January 9, 2012

Dynamic Range f(E-field)

(TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Author Data

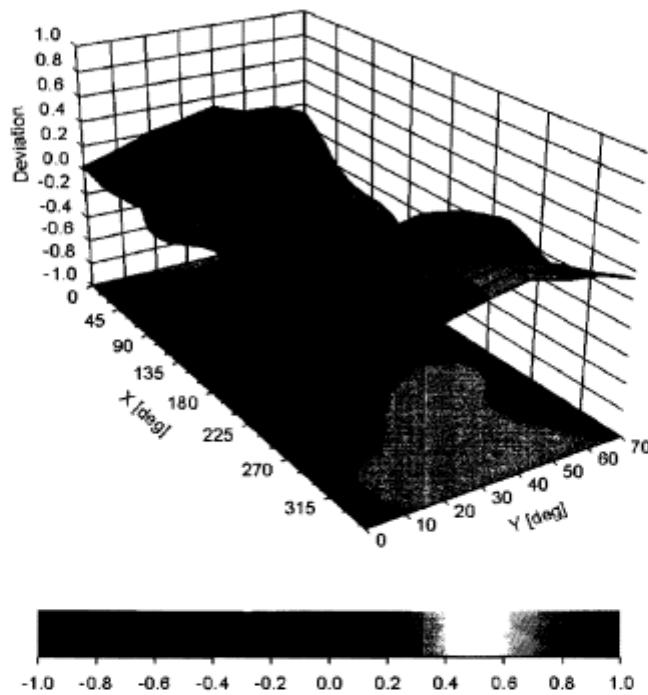
Andrew Becker

Dates of Test

Jan. 31, Feb 17-22, Apr 30-May 1,2012

Report No

RTS-5995-1204-31


FCC ID

L6AREU70UW

ER3DV6- SN:2286

January 9, 2012

Deviation from Isotropy in Air

Error (ϕ, θ), $f = 900$ MHz

Document

**Annex B to Hearing Aid Compatibility RF Emissions Test
Report for the BlackBerry® Smartphone model REU71UW**

Page

15(25)

Author Data Andrew Becker	Dates of Test Jan. 31, Feb 17-22, Apr 30-May 1,2012	Report No RTS-5995-1204-31	FCC ID L6AREU70UW
-------------------------------------	---	--------------------------------------	-----------------------------

ER3DV6- SN:2286

January 9, 2012

DASY/EASY - Parameters of Probe: ER3DV6 - SN:2286**Other Probe Parameters**

Sensor Arrangement	Rectangular
Connector Angle (°)	-7.6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	8 mm
Probe Tip to Sensor X Calibration Point	2.5 mm
Probe Tip to Sensor Y Calibration Point	2.5 mm
Probe Tip to Sensor Z Calibration Point	2.5 mm

Document

**Annex B to Hearing Aid Compatibility RF Emissions Test
Report for the BlackBerry® Smartphone model REU71UW**

Page

16(25)

Author Data

Andrew Becker

Dates of Test

Jan. 31, Feb 17-22, Apr 30-May 1,2012

Report No

RTS-5995-1204-31

FCC ID

L6AREU70UW

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client **RTS (RIM Testing Services)**Certificate No: **H3-6105_Nov11**

CALIBRATION CERTIFICATE

Object

H3DV6 - SN:6105

Calibration procedure(s)

QA CAL-03.v6, QA CAL-25.v4**Calibration procedure for H-field probes optimized for close near field evaluations in air**

Calibration date:

November 8, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370)	Apr-12
Reference Probe H3DV6	SN: 6182	11-Oct-11 (No. H3-6182_Oct11)	Oct-12
DAE4	SN: 789	6-Apr-11 (No. DAE4-789_Apr11)	Apr-12
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Calibrated by:

Jelton Kastrioti

Function

Signature

Laboratory Technician

Approved by:

Katja Pokovic

Function

Technical Manager

Issued: November 11, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: H3-6105_Nov11

Page 1 of 10

Document

**Annex B to Hearing Aid Compatibility RF Emissions Test
Report for the BlackBerry® Smartphone model REU71UW**

Page

17(25)

Author Data Andrew Becker	Dates of Test Jan. 31, Feb 17-22, Apr 30-May 1,2012	Report No RTS-5995-1204-31	FCC ID L6AREU70UW
-------------------------------------	---	--------------------------------------	-----------------------------

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108****Glossary:**

NORM _{x,y,z}	sensitivity in free space
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1309-2005, " IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005.

Methods Applied and Interpretation of Parameters:

- *NORM_{x,y,z}*: Assessed for E-field polarization $\vartheta = 0$ for XY sensors and $\vartheta = 90$ for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- *X,Y,Z(f)_a0a1a2* = *X,Y,Z_a0a1a2**frequency_response (see Frequency Response Chart).
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- *PAR*: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z*: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- *Spherical isotropy (3D deviation from isotropy)*: in a locally homogeneous field realized using an open waveguide setup.
- *Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- *Connector Angle*: The angle is assessed using the information gained by determining the *X_a0a1a2* (no uncertainty required).

 Document Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model REU71UW		Page 18(25)
Author Data Andrew Becker	Dates of Test Jan. 31, Feb 17-22, Apr 30-May 1,2012	Report No RTS-5995-1204-31

H3DV6 – SN:6105

November 8, 2011

Probe H3DV6

SN:6105

Manufactured: January 5, 2002
 Calibrated: November 8, 2011

Calibrated for DASY/EASY Systems
 (Note: non-compatible with DASY2 system!)

Document

Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model REU71UW

Page

19(25)

Author Data
Andrew Becker

Dates of Test

Jan. 31, Feb 17-22, Apr 30-May 1,2012

Report No

RTS-5995-1204-31

FCC ID

L6AREU70UW

H3DV6- SN:6105

November 8, 2011

DASY/EASY - Parameters of Probe: H3DV6 - SN:6105**Basic Calibration Parameters**

		Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (A/m / $\sqrt{\text{mV}}$)	a0	2.92E-003	2.70E-003	2.98E-003	$\pm 5.1\%$
Norm (A/m / $\sqrt{\text{mV}}$)	a1	3.94E-005	2.79E-005	-6.42E-005	$\pm 5.1\%$
Norm (A/m / $\sqrt{\text{mV}}$)	a2	-8.65E-006	5.42E-006	4.39E-006	$\pm 5.1\%$
DCP (mV) ^b		93.1	94.1	91.5	

Modulation Calibration Parameters

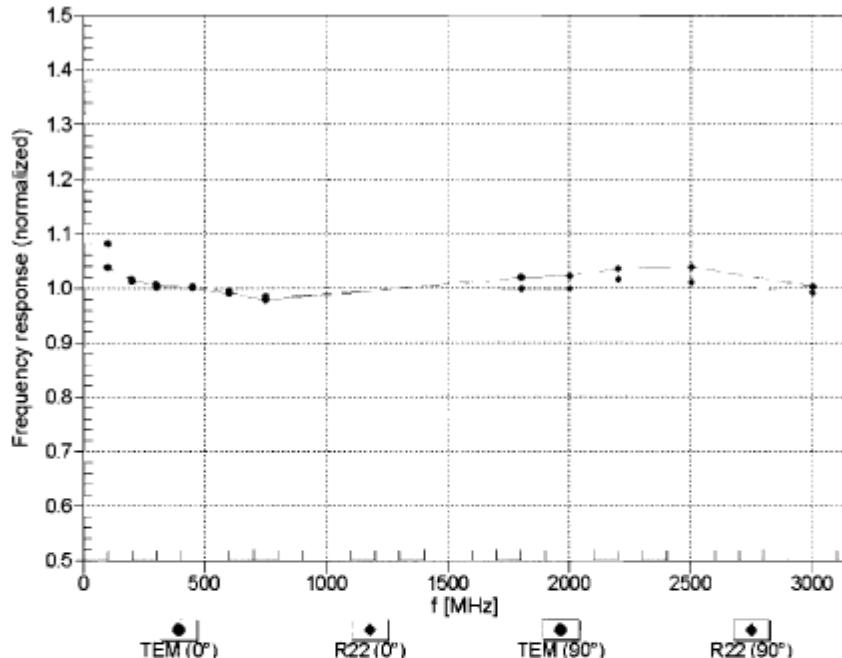
UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^c (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	117.6	$\pm 2.7\%$
			Y	0.00	0.00	1.00	94.8	
			Z	0.00	0.00	1.00	99.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^b Numerical linearization parameter: uncertainty not required.^c Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Document

Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model REU71UW


Page

20(25)

Author Data
Andrew BeckerDates of Test
Jan. 31, Feb 17-22, Apr 30-May 1,2012Report No
RTS-5995-1204-31FCC ID
L6AREU70UW

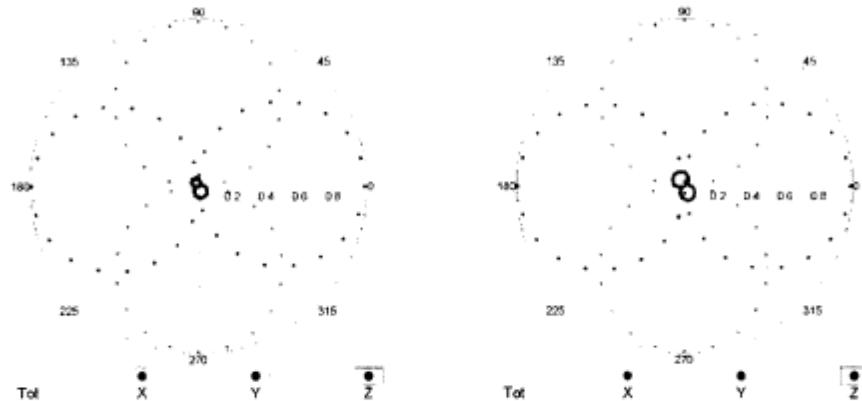
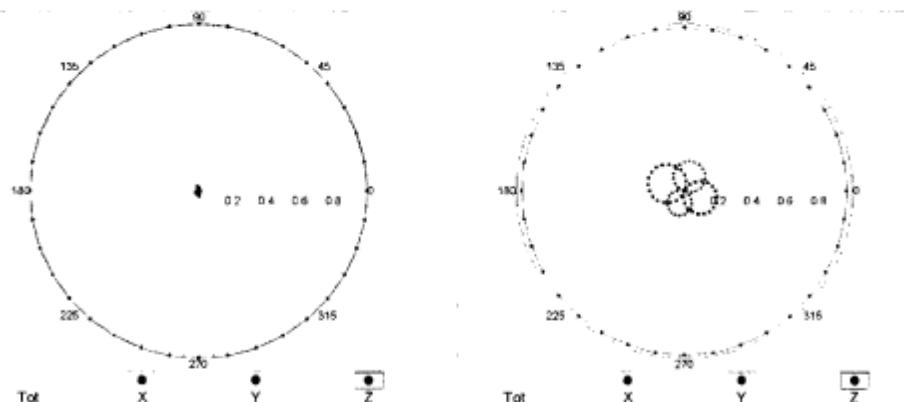
H3DV6- SN:6105

November 8, 2011

Frequency Response of H-Field
(TEM-Cell:ifi110 EXX, Waveguide: R22)Uncertainty of Frequency Response of H-field: $\pm 6.3\%$ (k=2)

Document

Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model REU71UW



Page

21(25)

Author Data
Andrew BeckerDates of Test
Jan. 31, Feb 17-22, Apr 30-May 1,2012Report No
RTS-5995-1204-31FCC ID
L6AREU70UW

H3DV6- SN:6105

November 8, 2011

Receiving Pattern (ϕ), $\theta = 0^\circ$ $f=600 \text{ MHz, TEM, } 0^\circ$ $f=2500 \text{ MHz, R22, } 0^\circ$ **Receiving Pattern (ϕ), $\theta = 90^\circ$** $f=600 \text{ MHz, TEM, } 90^\circ$ $f=2500 \text{ MHz, R22, } 90^\circ$

Document

Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model REU71UW

Page

22(25)

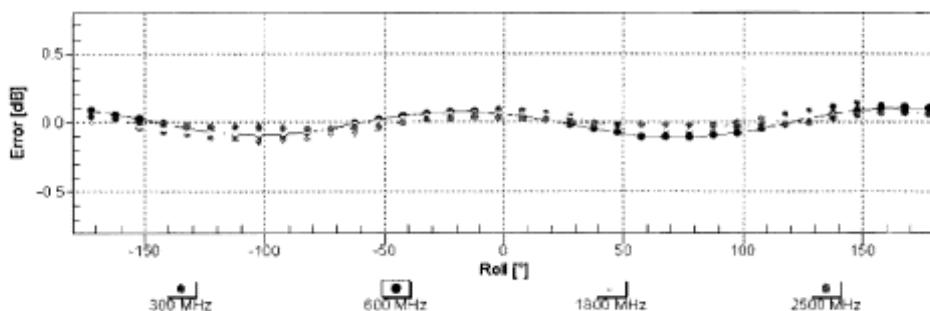
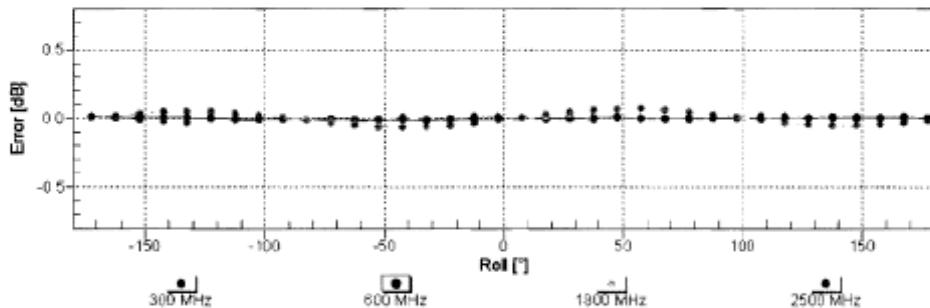
Author Data

Andrew Becker

Dates of Test

Jan. 31, Feb 17-22, Apr 30-May 1,2012

Report No



RTS-5995-1204-31

FCC ID

L6AREU70UW

H3DV6- SN:6105

November 8, 2011

Receiving Pattern (ϕ), $\theta = 0^\circ$ Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)**Receiving Pattern (ϕ), $\theta = 90^\circ$** Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

Author Data

Andrew Becker

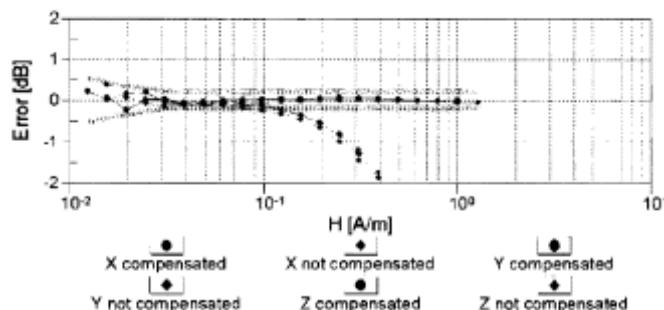
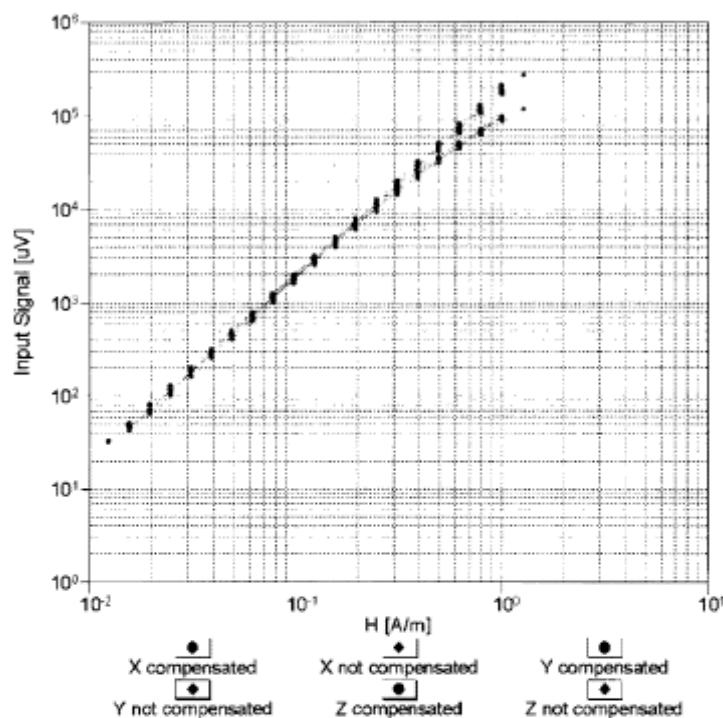
Dates of Test

Jan. 31, Feb 17-22, Apr 30-May 1, 2012

Report No

RTS-5995-1204-31

FCC ID



L6AREU70UW

H3DV6- SN:6105

November 8, 2011

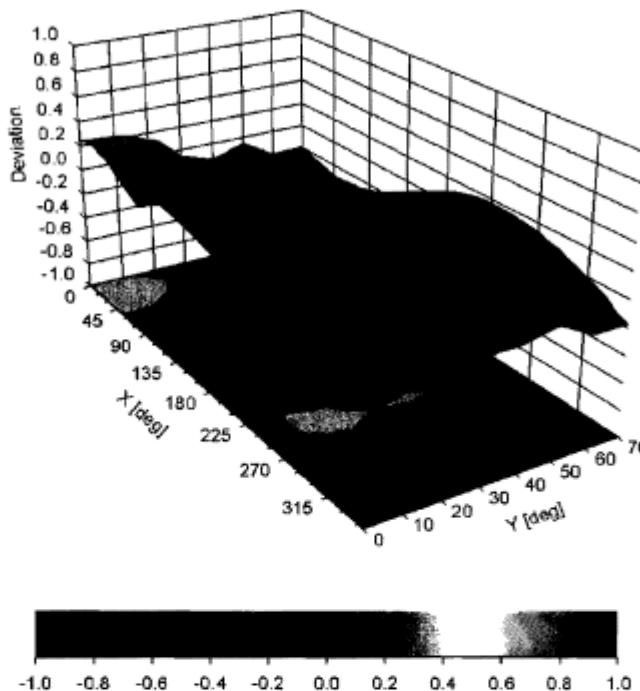
Dynamic Range f(H-field)

(TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Document

Annex B to Hearing Aid Compatibility RF Emissions Test Report for the BlackBerry® Smartphone model REU71UW


Page

24(25)

Author Data
Andrew BeckerDates of Test
Jan. 31, Feb 17-22, Apr 30-May 1,2012Report No
RTS-5995-1204-31FCC ID
L6AREU70UW

H3DV6- SN:6105

November 8, 2011

Deviation from Isotropy in AirError (ϕ, θ), $f = 900$ MHzUncertainty of Spherical Isotropy Assessment: $\pm 2.6\%$ ($k=2$)

Document

**Annex B to Hearing Aid Compatibility RF Emissions Test
Report for the BlackBerry® Smartphone model REU71UW**

Page

25(25)

Author Data
Andrew BeckerDates of Test
Jan. 31, Feb 17-22, Apr 30-May 1,2012Report No
RTS-5995-1204-31FCC ID
L6AREU70UW

H3DV6- SN:6105

November 8, 2011

DASY/EASY - Parameters of Probe: H3DV6 - SN:6105**Other Probe Parameters**

Sensor Arrangement	Rectangular
Connector Angle (°)	-62.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	20 mm
Tip Diameter	6 mm
Probe Tip to Sensor X Calibration Point	3 mm
Probe Tip to Sensor Y Calibration Point	3 mm
Probe Tip to Sensor Z Calibration Point	3 mm