RTS RIM Testing Services	Appendix for the BlackBerry SAR Report	y ® Smartphone Model	RBR41GW	Page 1(19)
Author Data	Dates of Test	Test Report No	FCC ID:	
Shahriar Ninad	July 03-27, 2007	RTS-0665-0706-25	L6ARBR40	GW

APPENDIX D: PROBE & DIPOLE CALIBRATION DATA

RTS RIM Testing Services	Appendix for the BlackBerry Smartphone ® Model RBR41GW SAR Report		Page 2(19)	
Author Data Shahriar Ninad	Dates of Test			GW

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstresse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Client RIM

Certificate No: ET3-1642_Jan07

Object	ET3DV6 - SN:1	642	
Calibration procedure(s)	QA CAL-01.v5 Calibration prod	sedure for dosimetric E-field probes	14.510.4
Calibration date:	January 15, 200	07	
Condition of the calibrated item	In Tolerance		
All calibrations have been condu	cted in the closed laborat	lory facility: environment temperature (22 ± 3)°C and	d humidity < 70%.
Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Primary Standards Power meter E4419B	ID# GB41293874	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557)	Apr-07
Primary Standards Power meter E4419B Power sensor E4412A	ID# GB41293874 MY41495277	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557)	Apr-07 Apr-07
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	ID # GB41293874 MY41495277 MY41498087	Cal Date (Calibrated by, Cartificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557)	Apr-07 Apr-07 Apr-07
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 c8 Altenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c)	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592)	Apr-07 Apr-07 Apr-07 Aug-07
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 cB Attenuator Reference 20 dB Attenuator	ID# GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-08 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558)	Apr-07 Apr-07 Apr-07 Aug-07 Apr-07
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 cB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: \$5054 (3c) SN: \$5086 (20b) SN: \$5129 (30b)	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-08 (METAS, No. 251-00557) 10-Aug-08 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00559) 10-Aug-06 (METAS, No. 217-00593)	Apr-07 Apr-07 Apr-07 Aug-07 Apr-07 Aug-07
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 cB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES30V2	ID# GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-08 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558)	Apr-07 Apr-07 Apr-07 Aug-07 Apr-07
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 cB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES30V2 DAE4	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 217-00598) 10-Aug-06 (METAS, No. 217-00593) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 21-Jun-06 (SPEAG, No. DAE4-854_Jun08)	Apr-07 Apr-07 Apr-07 Aug-07 Apr-07 Aug-07 Jan-08 Jun-07
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES30V2 DAE4 Secondary Standards	ID # GB41293874 MY41495277 MY41498087 SN: \$5054 (3c) SN: \$5086 (20b) SN: \$5129 (30b) SN: 3013 SN: 654	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-08 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 217-00593) 4-Jan-07 (SPEAG, No. ES3-3013, Jan07) 21-Jun-06 (SPEAG, No. DAE4-654_Jun08) Check Date (in house)	Apr-07 Apr-07 Apr-07 Aug-07 Aug-07 Aug-07 Jan-08 Jun-07 Scheduled Check
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 cB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES30V2 DAE4 Secondary Standards RF generator HP 8648C	ID # GB41293874 MY41495277 MY41498087 SN: \$5054 (3c) SN: \$5086 (20b) SN: \$5129 (30b) SN: 3013 SN: 654 ID # US3642U01700	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-08 (METAS, No. 251-00557) 5-Apr-08 (METAS, No. 251-00557) 10-Aug-08 (METAS, No. 251-00552) 4-Apr-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 217-00593) 4-Jan-07 (SPEAG, No. E93-3013, Jan07) 21-Jun-06 (SPEAG, No. DAE4-654_Jun08) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05)	Apr-07 Apr-07 Apr-07 Aug-07 Aug-07 Aug-07 Jan-08 Jun-07 Scheduled Check In house check: Nov-07
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES30V2 DAE4 Secondary Standards RF generator HP 8648C	ID # GB41293874 MY41495277 MY41498087 SN: \$5054 (3c) SN: \$5086 (20b) SN: \$5129 (30b) SN: 3013 SN: 654	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-08 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 217-00593) 4-Jan-07 (SPEAG, No. ES3-3013, Jan07) 21-Jun-06 (SPEAG, No. DAE4-654_Jun08) Check Date (in house)	Apr-07 Apr-07 Apr-07 Aug-07 Aug-07 Aug-07 Jan-08 Jun-07 Scheduled Check
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 cB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES30V2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3542U01700 US37390585 Name	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-08 (METAS, No. 251-00557) 5-Apr-08 (METAS, No. 251-00557) 10-Aug-08 (METAS, No. 251-00552) 4-Apr-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 217-00593) 4-Jan-07 (SPEAG, No. E93-3013, Jan07) 21-Jun-06 (SPEAG, No. DAE4-654_Jun08) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05)	Apr-07 Apr-07 Apr-07 Aug-07 Aug-07 Aug-07 Jan-08 Jun-07 Scheduled Check In house check: Nov-07
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3513 SN: 654 ID # US3642U01700 US37390585	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00559) 4-Apr-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 217-00593) 4-Jan-07 (SPEAG, No. 237-00593) 4-Jan-07 (SPEAG, No. DAE4-654_Jun/06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06)	Apr-07 Apr-07 Apr-07 Apr-07 Aug-07 Aug-07 Jan-08 Jun-07 Scheduled Check In house check: Nov-07 In house check; Oct-07

Certificate No: ET3-1642_Jan07

Page 1 of 9

RTS RIM Testing Services	Appendix for the BlackBerr SAR Report	y Smartphone ® Model	RBR41GW	^{Page} 3(19)
Author Data	Dates of Test	Test Report No	FCC ID:	
Shahriar Ninad	July 03-27, 2007	RTS-0665-0706-25	L6ARBR40	GW

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Motrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

.....

Glossary:

TSL tissue simulating liquid NORMx,y.z sensitivity in free space

ConF sensitivity in TSL / NORMx,y,z
DCP diode compression point
Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required,

Certificate No: ET3-1642 Jan07	Page 2 of 9	

'n

RTS RIM Testing Services	Appendix for the BlackBerr SAR Report	y Smartphone ® Model	RBR41GW	Page 4(19)
Author Data	Dates of Test	Test Report No	FCC ID:	
Shahriar Ninad	July 03-27, 2007	RTS-0665-0706-25	L6ARBR40	GW

January 15, 2007

Probe ET3DV6

SN:1642

Manufactured: November 7, 2001 Last calibrated: January 19, 2006 Recalibrated: January 15, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1642_Jan07

Page 3 of 9

RTS RIM Testing Services	Appendix for the BlackBerry SAR Report	y Smartphone ® Model	RBR41GW	Page 5(19)
Author Data	Dates of Test	Test Report No	FCC ID:	
Shahriar Ninad	July 03-27, 2007	RTS-0665-0706-25	L6ARBR40	GW

ET3DV6 SN:1642 January 15, 2007

DASY - Parameters of Probe: ET3DV6 SN:1642

Sensitivity in Free Space ^A		Diode C	ompression ^B	
NormX	1.69 ± 10.1%	$\mu V/(V/m)^2$	DCP X	94 mV
Namel	4 00 40 40	\ ///\ //m \2	DODY	001/

NormY 1.86 \pm 10.1% μ V/(V/m)² DCP Y 96 mV NormZ 1.62 \pm 10.1% μ V/(V/m)² DCP Z 95 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 900 MHz Typical SAR gradient: 5 % per mm

Sensor Cente	r to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	5.5	2.5
SAR _{bo} [%]	With Correction Algorithm	0.3	0.2

TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Cente	er to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	12.3	8.1
SAR _{be} [%]	With Correction Algorithm	0.6	0.3

Sensor Offset

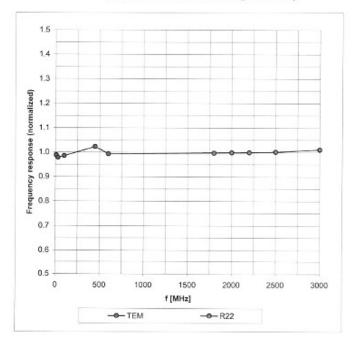
Probe Tip to Sensor Center 2.7 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ET3-1642_Jan07 Page 4 of 9

1

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).


⁸ Numerical linearization parameter; uncertainty not required.

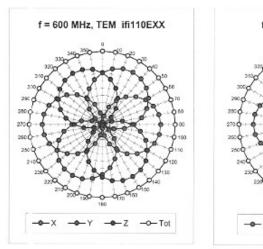
RTS RIM Testing Services	Appendix for the BlackBerry SAR Report	y Smartphone ® Model	RBR41GW	Page 6(19)
Author Data	Dates of Test	Test Report No	FCC ID:	
Shahriar Ninad	July 03-27, 2007	· · · · · · · · · · · · · · · · · · ·		GW

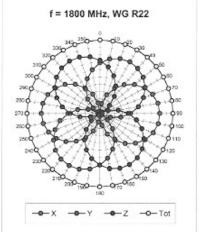
January 15, 2007

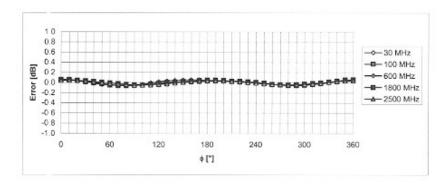
Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Certificate No: ET3-1642_Jan07


Page 5 of 9


RTS RIM Testing Services	Appendix for the BlackBerr SAR Report	ry Smartphone ® Model	RBR41GW	Page 7(19)
Author Data	Dates of Test	Test Report No	FCC ID:	
Shahriar Ninad	July 03-27, 2007	RTS-0665-0706-25	L6ARBR40	GW

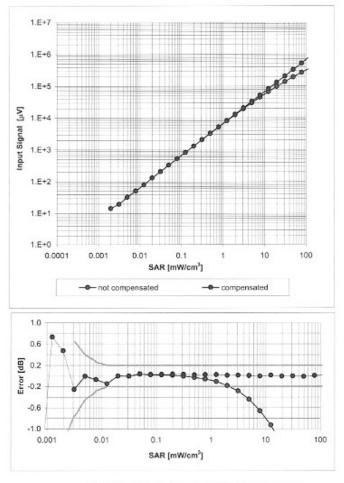
January 15, 2007

Receiving Pattern (6), 9 = 0°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ET3-1642_Jan07

Page 6 of 9


1

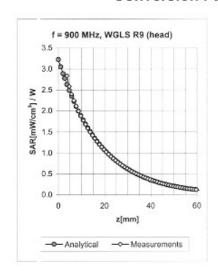
RTS RIM Testing Services	Appendix for the BlackBerry SAR Report	y Smartphone ® Model	RBR41GW	Page 8(19)
Author Data	Dates of Test	Test Report No	FCC ID:	
Shahriar Ninad	July 03-27, 2007	RTS-0665-0706-25	L6ARBR40	GW

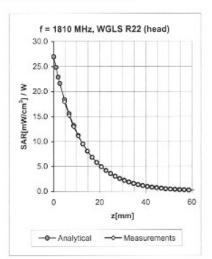
January 15, 2007

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: ET3-1642_Jan07


Page 7 of 9

RTS RIM Testing Services	Appendix for the BlackBerry SAR Report	y Smartphone ® Model	RBR41GW	Page 9(19)
Author Data	Dates of Test	Test Report No	FCC ID:	
Shahriar Ninad	July 03-27, 2007	RTS-0665-0706-25	L6ARBR40	GW

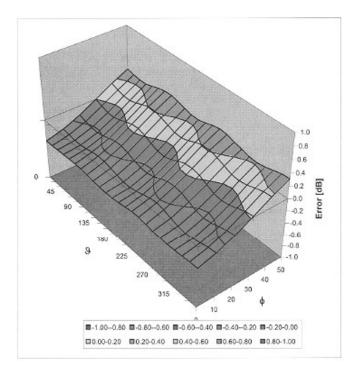
January 15, 2007

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	$0.97 \pm 5\%$	0.31	2.70	6.41 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.56	2.48	5.28 ± 11.0% (k=2)
2000							
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.33	2.72	6.16 ± 11.0% (k=2)
1810	±50/±100	Body	53.3 ± 5%	$1.52 \pm 5\%$	0.65	2.61	4.78 ± 11.0% (k=2)

Certificate No: ET3-1642_Jan07

Page 8 of 9


^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

RTS RIM Testing Services	Appendix for the BlackBerry SAR Report	y Smartphone ® Model	RBR41GW	10(19)
Author Data	Dates of Test	Test Report No	FCC ID:	
Shahriar Ninad	July 03-27, 2007	RTS-0665-0706-25	L6ARBR40	GW

January 15, 2007

Deviation from Isotropy in HSL

Error (¢, ३), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1642_Jan07

Page 9 of 9

RIM Testing Services Author Data Shahriar Ninad Appendix for the BlackBerry Smartphone ® Model RBR41GW SAR Report Test Report No RTS-0665-0706-25 RTS-0665-0706-25 RTS-0665-0706-25

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Multilateral Agreement for the recognition of calibration certificates

Client RIM

Certificate No: EX3-3548_Jan07

CALIBRATION CERTIFICATE EX3DV4 - SN:3548 Object QA CAL-01.v5 and QA CAL-14.v3 Calibration procedure(s) Calibration procedure for dosimetric E-field probes Calibration date: January 19, 2007 In Tolerance Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Star dards ID# Call Date (Calibrated by, Cortificate No.) Scheduled Calibration Apr-07 Power meter E4419B 5-Apr-06 (METAS, No. 251-00557) MY41495277 5-Apr-06 (METAS, No. 251-00557) Apr-07 Power sensor E4412A Power sensor E4412A MY41498087 5-Apr-06 (METAS, No. 251-00557) Apr-07 Reference 3 dB Attenuator SN: S5054 (3c) 10-Aug-06 (METAS, No. 217-00592) Aug-07 Reference 20 dB Attenuator SN: 55086 (20b) 4-Apr-06 (METAS, No. 251-00558) Apr-07 Reference 30 dB Attenuator SN: S5129 (30b) 10-Aug-06 (METAS, No. 217-00593) Aug-07 Reference Frobe ES3DV2 SN: 3013 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) Jan-08 21-Jun-06 (SPEAG, No. DAE4-654_Jun06) DAE4 SN: 654 Jun-07 Secondary Standards Check Date (in house) Scheduled Check RF general or HP 8648C US3642U01700 4-Aug-99 (SPEAG, in house check Nov-05) In house check: Nov-07 Network Analyzer HP 8753E US37390585 18-Oct-01 (SPEAG, in house check Oct-06) In house check: Oct-07 Technical Manager Calibrated by: Katja Pokovio Approved by: Quality Manager Issued: January 19, 2007 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: EX3-3548_Jan07

Page 1 of 9

RTS RIM Testing Services	Appendix for the BlackBerry SAR Report	y Smartphone ® Model	RBR41GW	Page 12(19)
Author Data	Dates of Test	Test Report No	FCC ID:	
Shahriar Ninad	July 03-27, 2007	RTS-0665-0706-25	L6ARBR40	GW

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConF sensitivity in TSL / NORMx,y,z
DCP diode compression point
Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3548_Jan07 Page 2 of 9

ı

RTS RIM Testing Services	Appendix for the BlackBerry SAR Report	y Smartphone ® Model	RBR41GW	Page 13(19)
Author Data	Dates of Test	Test Report No	FCC ID:	
Shahriar Ninad	July 03-27, 2007	RTS-0665-0706-25	L6ARBR40	GW

January 19, 2007

Probe EX3DV4

SN:3548

Manufactured:

November 16, 2004

Last calibrated:

December 12, 2005

Recalibrated:

January 19, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3548 Jan07

ı

Page 3 of 9

RTS RIM Testing Services	Appendix for the BlackBerry SAR Report	y Smartphone ® Model	RBR41GW	Page 14(19)
Author Data	Dates of Test	Test Report No	FCC ID:	
Shahriar Ninad	July 03-27, 2007	RTS-0665-0706-25	L6ARBR40	GW

January 19, 2007

DASY - Parameters of Probe: EX3DV4 SN:3548

Sensitivity in Free Space ^A	Diode Compression
Sensitivity in Free Space	Diode compressio

NormX	0.340 ± 10.1%	μV/(V/m) ^e	DCP X	92 mV
NormY	0.430 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	93 mV
NormZ	0.460 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	90 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 2450 MHz Typical SAR gradient: 12 % per mm

Sensor Cente	r to Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	4.5	2.1
SAR _{be} [%]	With Correction Algorithm	0.3	0.6

TSL 5200 MHz Typical SAR gradient: 26 % per mm

Sensor Cente	r to Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	2.7	0.5
SAR _{be} [%]	With Correction Algorithm	0.0	0.0

Sensor Offset

Probe Tip to Sensor Center

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

1.0 mm

Certificate No: EX3-3548_Jan07

Page 4 of 9

⁵ The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

⁸ Numerical linearization parameter: uncertainty not required.

RTS RIM Testing Services	Appendix for the BlackBerry SAR Report	y Smartphone ® Model	RBR41GW	Page 15(19)
Author Data	Dates of Test	Test Report No	FCC ID:	
Shahriar Ninad	July 03-27, 2007	RTS-0665-0706-25	L6ARBR40	GW

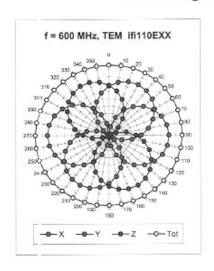
January 19, 2007

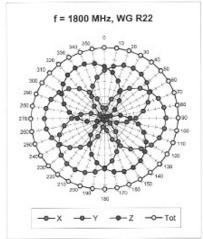
Frequency Response of E-Field

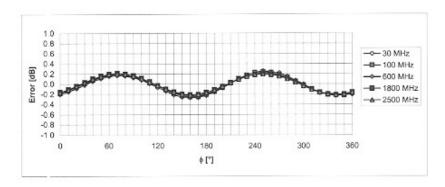
(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3548_Jan07


Page 5 of 9


1

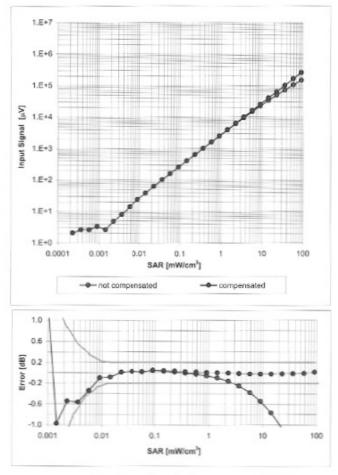

RTS RIM Testing Services	Appendix for the Black SAR Report	Berry Smartphone ® Mode	el RBR41GW	Page 16(19)
Author Data	Dates of Test	Test Report No	FCC ID:	
Shahriar Ninad	July 03-27, 2007	RTS-0665-0706-25	L6ARBR40GW	

January 19, 2007

Receiving Pattern (6), 9 = 0°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3548_Jan07


Page 6 of 9

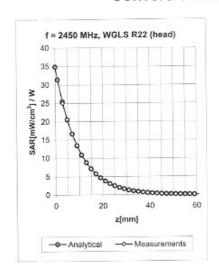
RTS RIM Testing Services	Appendix for the BlackBerry SAR Report	y Smartphone ® Model	RBR41GW	Page 17(19)
Author Data	Dates of Test	Test Report No	FCC ID:	
Shahriar Ninad	July 03-27, 2007	RTS-0665-0706-25	L6ARBR40GW	

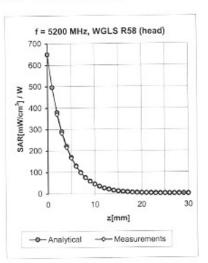
January 19, 2007

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: EX3-3548_Jan07


Page 7 of 9

RTS RIM Testing Services	Appendix for the BlackBerry SAR Report	y Smartphone ® Model	RBR41GW	Page 18(19)
Author Data	Dates of Test	Test Report No	FCC ID:	
Shahriar Ninad	July 03-27, 2007	RTS-0665-0706-25	L6ARBR40GW	

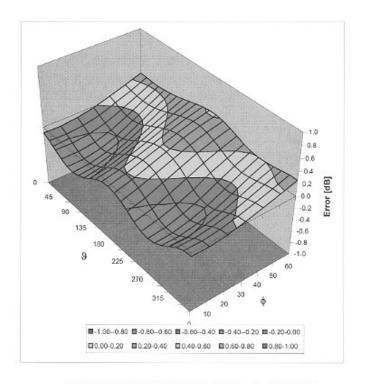
January 19, 2007

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	alidity [MHz] ^C TSL	Permittivity Conductivity	Conductivity	Alpha	Depth	ConvF Uncertainty	
900	±50/±100	Head	41.5 ± 5%	0.97 ± 5%	0.60	0.90	9.00 ± 11.0% (k=2)	
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.25	1.00	7.69 ± 11.0% (k=2)	
2450	±50/±100	Head	39.2 ± 5%	$1.80 \pm 5\%$	0.46	1.00	7.07 ± 11.8% (k=2)	
4950	±50/±100	Head	36.3 ± 5%	$4.40\pm5\%$	0.32	1.60	5.69 ± 13.1% (k=2)	
5200	±50/±100	Head	36.0 ± 5%	4.66 ± 5%	0.35	1.60	5.28 ± 13.1% (k=2)	
5500	±50/±100	Head	35.6 ± 5%	$4.96 \pm 5\%$	0.35	1.60	5.15 ± 13.1% (k=2)	
5800	± 50 / ± 100	Head	35.3 ± 5%	5.27 ± 5%	0.33	1.60	4.92 ± 13.1% (k=2)	
2450	±50/±100	Body	52.7 ± 5%	1.95 ± 5%	0.48	1.00	7.13 ± 11.8% (k=2)	
4950	± 50 / ± 100	Body	49.4 ± 5%	5.01 ± 5%	0.42	1.65	4.93 ± 13.1% (k=2)	
5200	± 50 / ± 100	Body	49.0 ± 5%	$5.30\pm5\%$	0.38	1.65	4.72 ± 13.1% (k=2)	
5500	±50/±100	Body	48.6 ± 5%	$5.65 \pm 5\%$	0.35	1.68	4.51 ± 13.1% (k=2)	
5800	± 50 / ± 100	Body	$48.2\pm5\%$	6.00 ± 5%	0.32	1.70	4.79 ± 13.1% (k=2)	

^o The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: EX3-3548_Jan07


Page 8 of 9

RTS RIM Testing Services	Appendix for the BlackBerr SAR Report	ry Smartphone ® Model	RBR41GW	19(19)
Author Data	Dates of Test	Test Report No	FCC ID:	
Shahriar Ninad	July 03-27, 2007	RTS-0665-0706-25	L6ARBR40GW	

January 19, 2007

Deviation from Isotropy in HSL

Error (¢, 3), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-3548_Jan07

Page 9 of 9