

Certification Report on

Specific Absorption Rate (SAR)
Experimental Analysis

Research In Motion Limited

BlackBerry Wireless Handheld
R1900G-1-4

Test Date: July 2001

RIMB-BlackBerry R1900 G-1-4-3761

51 Spectrum Way Nepean ON K2R 1E6
Tel: (613) 820-2730 Fax: (613) 820-4161
email: info@aprel.com

EXPERIMENTAL ANALYSIS SAR REPORT

Subject: **Specific Absorption Rate (SAR) Hand and Body Report**

Product: **BlackBerry Wireless Handheld**

Model: **R1900G-1-4**

Client: **Research In Motion Limited**

Address: **295 Phillip St.
Waterloo, Ontario
Canada N2L 3W8**

Project #: **RIMB-BlackBerry R1900 G-1-4-3761**

Prepared by **APREL Laboratories
51 Spectrum Way
Nepean, Ontario
K2R 1E6**

Approved by **Stuart Nicol
Director Product Development, Dosimetric R&D**

Submitted by **Jay Sarkar
Technical Director of Standards & Certification**

Released by **Dr. Jacek J. Wojcik, P. Eng.**

Date: 30th Jun 2001

Date: July 30, 2001

Date: July 30/01

FCC ID: L6AR1900G-1-4
Applicant: Research In Motion LTD.
Equipment: BlackBerry Wireless Handheld
Model: R1900G-1-4
Standard: FCC 96-326, Guidelines for Evaluating the Environmental Effects of Radio-Frequency Radiation, Supplement C (Edition 01-01) to OET Bulletin 65

ENGINEERING SUMMARY

This report contains the results of the engineering evaluation performed on the RIM BlackBerry Wireless Handheld operating in PCS mode. The measurements were carried out in accordance with FCC 96-326. The RIM BlackBerry Wireless Handheld was evaluated for its maximum power level 30 dBm with a 12.5 % duty cycle. The end user can not change the duty cycle for this device.

The RIM BlackBerry Wireless Handheld is intended to be used as a handheld device and also in the supplied holster with belt clip during body worn voice/data operation.

The RIM BlackBerry Wireless Handheld was tested in PCS mode at low, middle and high channels for hand exposure on the keyboard up, keyboard down, and left sides. The maximum 10g SAR (1.70 W/kg) was found to coincide with the peak performance RF output power of channel 512 (1850.2MHz) for the left side of the device. (The hot spot is located on the antenna).

The RIM BlackBerry Wireless Handheld was also tested at low, middle and high channels in PCS mode for body exposure on the keyboard up side and bystander exposure on the keyboard down side. The maximum 1g SAR (without the holster) for bystander exposure (1.29 W/kg) was found to coincide with the peak performance RF output power of channel 661 (1880 MHz) for the keyboard down side of the device and with the headset attached. The maximum 1g SAR for the device while attached to the holster (0.14 W/kg) was found to coincide with the peak performance RF output power of channel 661 (1880 MHz) for the keyboard up side of the device while connected to the headset. (The hot spot is located on the antenna).

The RIM BlackBerry Wireless Handheld was tested with and without headset, HDW-03458-001.

Based on the test results and on how the device will be marketed and used, it is certified that the product meets the requirements as set forth in the above specifications, for the RF exposure environment.

(The results presented in this report relate only to the sample tested.)

Table of Contents

1. Introduction.....	4
2. Applicable Documents.....	4
3. Device Under Investigation.....	4
4. Test Equipment.....	5
5. Test Methodology.....	5
6. Test Results.....	6
6.1. Transmitter Characteristics	6
6.2. SAR Measurements	7
7. User's Hand Exposure	9
8. Body Exposure.....	9
9. Bystander Exposure	10
10. Conclusions	11
APPENDIX A. Measurement Setup, Tissue Properties and SAR Graphs	13
APPENDIX B. Uncertainty Budget.....	17
APPENDIX C. Dipole Validation Scan on a Flat Phantom	19
APPENDIX D. Probe Calibration.....	20

TABLES AND FIGURES

Table 1. Sampled RF Power	6
Table 2. SAR Measurements	8
Figure 1&2. Setup	13
Table 3. Dielectric Properties of the Simulated Muscle Tissue at 1900 MHz.....	13
Figure 3. Contour Plot of the Area Scan 2.5mm Above Phantom Surface (Body Exposure) ..	14
Figure 4. Surface Plot of the Area Scan 2.5mm Above Phantom Surface (Body Exposure)..	14
Figure 5. Contour Plot of the Area Scan 2.5mm Above Phantom Surface (Hand Exposure) (View screen is facing down on right side)	15
Figure 6. Surface Plot of the Area Scan 2.5mm Above Phantom Surface (Hand Exposure)..	15
Figure 7. Contour Plot of the Area Scan 2.5mm Above Phantom Surface (Bystander Exposure)	16
Figure 8. Surface Plot of the Area Scan 2.5mm Above Phantom Surface (Bystander Exposure)	16
Table 4. Uncertainty Budget (1 Gram, bystander).....	17
Table 5. Uncertainty Budget (10 gram)	17
Table 6. Uncertainty Budget (1 gram, Body)	18
Figure 9. Surface Plot for Validation Dipole (Area Scan 2.5mm Above Phantom).....	19
Figure 10. Validation Dipole Under Phantom	19

1. INTRODUCTION

Tests were conducted to determine the Specific Absorption Rate (SAR) for a sample RIM BlackBerry Wireless Handheld transceiver. These tests were conducted at APREL Laboratories' facility located at 51 Spectrum Way, Nepean, Ontario, Canada. A view of the SAR measurement setup can be seen in Appendix A Figure 1. This report describes the results obtained.

2. APPLICABLE DOCUMENTS

The following documents are applicable to the work performed:

- 1) FCC 96-326, Guidelines for Evaluating the Environmental Effects of Radio-Frequency Radiation
- 2) ANSI/IEEE C95.1-1999, IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.
- 3) ANSI/IEEE C95.3-1992, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave.
- 4) OET Bulletin 65 (Edition 97-01) Supplement C (Edition 01-01), “Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields”.

3. DEVICE UNDER INVESTIGATION

- RIM BlackBerry Wireless Handheld s/n 004SB-341E8 , received on July 12, 2001.

The RIM BlackBerry Wireless Handheld will be called DUI (Device Under Investigation) in the following.

Refer to the manufacturer's submission documentation for drawings and more design details.

4. TEST EQUIPMENT

- APREL Triangular Dosimetric Probe Model E-009, s/n 115, Asset # 301420
- CRS Robotics A255 articulated robot arm, s/n RA2750, Asset # 301335
- CRS Robotics C500 robotic system controller, s/n RC584, Asset # 301334
- Wavetek communication test instrument 4400M, s/n 1011020511057
- Tissue Recipe and Calibration Requirements, APREL procedure SSI/DRB-TP-D01-033

5. TEST METHODOLOGY

1. The test methodology utilized in the certification of the DUI complies with the requirements of FCC 96-326 and ANSI/IEEE C95.3-1992.
2. The E-field is measured with a small isotropic probe (output voltage proportional to E^2).
3. The probe is moved precisely from one point to the next using the robot (10 mm increments for wide area scanning, 5 mm increments for zoom scanning, and 2.5 mm increments for the final depth profile measurement).
4. The probe travels in the homogeneous liquid simulating human tissue. Appendix A contains information about the properties of the simulated tissue used for these measurements.
5. The liquid is contained in a manikin simulating a portion of the human body with an overall shell thickness of 3 mm.
6. The DUI is positioned with the surface under investigation against the phantom.
7. All tests were performed with the highest power available from the sample DUI under transmit conditions.

More detailed descriptions of the test method are given in Section 6 where appropriate.

6. TEST RESULTS

6.1. TRANSMITTER CHARACTERISTICS

The battery-powered DUI will consume energy from its batteries, which may affect the DUI's transmission characteristics. In order to gage this effect the output Tx power of the transmitter is sampled before and after each SAR run. In the case of this DUI, the conducted power was sampled. The following table shows the conducted RF power sampled before and after each of the seven sets of data used for the worst case SAR in this report.

Scan		Power Readings (dBm)		D (dB)	Battery #
Type	Height (mm)	Before	After		
Area	2.5	29.77	28.85	0.92	5
Zoom	2.5	29.77	28.85	0.92	7
Zoom	7.5	29.77	28.85	0.92	7
Zoom	12.5	29.77	28.85	0.92	7
Zoom	17.5	29.77	28.85	0.92	7
Zoom	22.5	29.77	28.85	0.92	7
Depth	2.5 – 22.5	28.66	28.68	0.02	8

Table 1. Sampled RF Power

6.2. SAR MEASUREMENTS

- 1) RF exposure is expressed as Specific Absorption Rate (SAR). SAR is calculated from the E-field, measured in a grid of test points. SAR is expressed as RF power per kilogram of mass, averaged within 10 grams of tissue for the extremities and 1 gram of tissue elsewhere.
- 2) The DUI was put into test mode for the SAR measurements by enabling a call via the Wavetek communications test instrument. A SIMM card was located in the DUI to enable the interaction between the Wavetek communications test instrument and the DUI. The Wavetek communications test instrument then sent out a command for the DUI to transmit at full power at the specified frequency.
- 3) Figures 3 and 5 in Appendix A show contour plots of the SAR measurements for the DUI (channel 661, 1880 MHz for body exposure) and (channel 512, 1850.2 MHz, left side for hand exposure). It also shows an overlay of the DUI's outlines, superimposed onto the contour plots.

A different presentation of the same data is shown in Appendix A Figures 4 and 6. These are surface plots, where the measured SAR values provide the vertical dimension, which is useful as a visualization aid.

- 4) Wide area scans were performed for the low, middle and high channels on the keyboard up, keyboard down, and left sides of the DUI. The DUI was operating at maximum output power 30 dBm at a 12.5 % duty factor. The peak single point SAR for the scans were:

TYPE OF EXPOSURE	DUI side	Holster	Headset	Channel			Peak Local SAR (W/kg)
				L/M/H	#	Freq (MHz)	
Body & Hand Exposure	Keyboard up side	NO	No	Middle	661	1880	1.13
	Keyboard up side	NO	No	Low	512	1850.2	1.53
	Keyboard up side	NO	No	High	810	1909.8	0.79
	Keyboard up side	NO	HDW-03458-001	Middle	661	1880	0.99
	Keyboard up side	NO	HDW-03458-001	Low	512	1850.2	1.35
	Keyboard up side	NO	HDW-03458-001	High	810	1909.8	0.82
	Keyboard up side	Yes	HDW-03458-001	Middle	661	1880	0.24
	Keyboard up side	Yes	HDW-03458-001	Low	512	1850.2	0.18
	Keyboard up side	Yes	HDW-03458-001	High	810	1909.8	0.18
	Keyboard up side	Yes	No	Middle	661	1880	0.15
	Keyboard up side	Yes	No	Low	512	1850.2	0.20
	Keyboard up side	Yes	No	High	810	1909.8	0.20
	Keyboard down side	NO	No	Middle	661	1880	0.93
	Keyboard down side	NO	No	Low	512	1850.2	0.91
	Keyboard down side	NO	No	High	810	1909.8	0.84
	Keyboard down side	NO	HDW-03458-001	Middle	661	1880	1.21
	Keyboard down side	NO	HDW-03458-001	Low	512	1850.2	1.19
	Keyboard down side	NO	HDW-03458-001	High	810	1909.8	1.10
	Left side	NO	No	Middle	661	1880	3.40
	Left side	NO	No	Low	512	1850.2	3.42
	Left side	NO	No	High	810	1909.8	3.23
	Left side	NO	HDW-03458-001	Low	512	1850.2	3.19

Table 2. SAR Measurements

7. USER'S HAND EXPOSURE

All subsequent testing for user's hand exposure was performed on channel 512 (1850.2 MHz), with the left side of the DUI facing up against the bottom of the phantom. This relates to the position and frequency found to provide the maximum measured SAR value.

- 1) Channel 512 (1850.2 MHz) was then explored on a refined 5 mm grid in three dimensions. The SAR value averaged over 10 grams was determined from these measurements by averaging the 125 points (5x5x5) comprising a 2 cm cube. The maximum SAR value measured averaged over 10 grams was determined from these measurements to be 0.94 W/kg.
- 2) To extrapolate the maximum SAR value averaged over 10 grams to the inner surface of the phantom a series of measurements were made at five (x,y) co-ordinates within the refined grid as a function of depth, with 2.5 mm spacing. The average exponential coefficient was determined to be (-0.124 ± 0.003) mm.
- 3) The distance from the probe tip to the inner surface of the phantom for the lowest point is 2.5 mm. The distance from the probe tip to the tip of the measuring dipole within the APREL Triangular Dosimetric Probe Model E-009 is 2.3 mm. The total extrapolation distance is 4.8 mm, the sum of these two.

Applying the exponential coefficient over the 4.8 mm to the maximum SAR value averaged over 10 grams that was determined previously, we obtain the **maximum SAR value at the surface averaged over 10 grams, 1.70 W/kg**.

8. BODY EXPOSURE

All subsequent testing for body exposure was performed on channel 661 (1880 MHz), with the keyboard up side of the DUI facing up against the bottom of the phantom and the DUI inserted into the holster with the headset attached. This relates to the position and frequency found to provide the maximum measured SAR value.

- 1) Channel 661 (1880 MHz) was also explored on a refined 5 mm grid in three dimensions. The SAR value averaged over 1 gram was determined from these measurements by averaging the 27 points (3x3x3) comprising a 1 cm cube. The maximum SAR value measured averaged over 1 gram was determined from these measurements to be 0.09 W/kg.

- 2) To extrapolate the maximum SAR value averaged over 1 gram to the inner surface of the phantom a series of measurements were made at a five (x,y) co-ordinates within the refined grid as a function of depth, with 2.5 mm spacing. The average exponential coefficient was determined to be (-0.101 ± 0.012) mm.
- 3) The distance from the probe tip to the inner surface of the phantom for the lowest point is 2.5 mm. The distance from the probe tip to the tip of the measuring dipole within the APREL Triangular Dosimetric Probe Model E-009 is 2.3 mm. The total extrapolation distance is 4.8 mm, the sum of these two.

Applying the exponential coefficient over the 4.8 mm to the maximum SAR value averaged over 1 gram that was determined previously, we obtain the **maximum SAR value at the surface averaged over 1 gram, 0.14 W/kg**.

9. BYSTANDER EXPOSURE

All subsequent testing for bystander exposure was performed on channel 661 (1880 MHz), with the keyboard down side of the DUI facing up against the bottom of the phantom and with the headset attached. This relates to the position and frequency found to provide the maximum measured SAR value.

- 1) Channel 661 (1880 MHz) was also explored on a refined 5 mm grid in three dimensions. The SAR value averaged over 1 gram was determined from these measurements by averaging the 27 points (3x3x3) comprising a 1 cm cube. The maximum SAR value measured averaged over 1 gram was determined from these measurements to be 0.76 W/kg.
- 2) To extrapolate the maximum SAR value averaged over 1 gram to the inner surface of the phantom a series of measurements were made at a five (x,y) co-ordinates within the refined grid as a function of depth, with 2.5 mm spacing. The average exponential coefficient was determined to be (-0.111 ± 0.008) mm.
- 3) The distance from the probe tip to the inner surface of the phantom for the lowest point is 2.5 mm. The distance from the probe tip to the tip of the measuring dipole within the APREL Triangular Dosimetric Probe Model E-009 is 2.3 mm. The total extrapolation distance is 4.8 mm, the sum of these two.

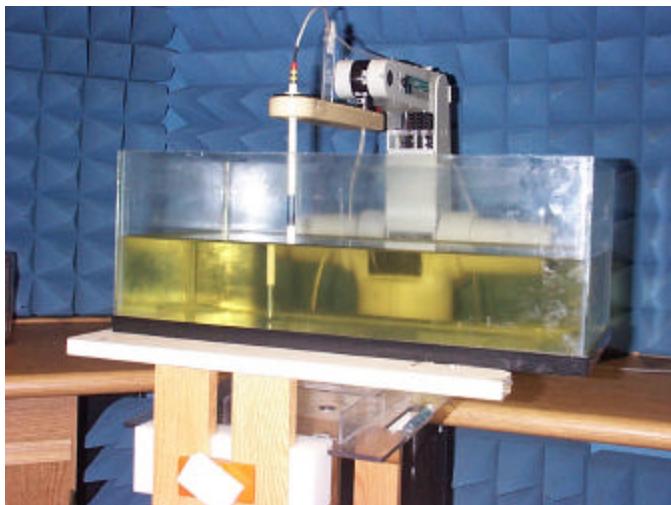
Applying the exponential coefficient over the 4.8 mm to the maximum SAR value averaged over 1 gram that was determined previously, we obtain the **maximum SAR value at the surface averaged over 1 gram, 1.29 W/kg**.

10. CONCLUSIONS

The maximum Specific Absorption Rate (SAR) for the hand averaged over 10 grams, determined at 1850.2 (channel 512) of the RIM BlackBerry Wireless Handheld, is 1.70 W/kg. The overall margin of uncertainty for this measurement is $\pm 14.2\%$ (Appendix B). The SAR limit given in the FCC 96-326 Safety Guideline is 4 W/kg for hand exposure to the general population.

For a user exposing a part of the body other than the extremities (body), the maximum Specific Absorption Rate (SAR) averaged over 1 gram is 0.14 W/kg while the DUI is attached to the holster. The SAR limit given in the FCC 96-326 Safety Guideline is 1.6 W/kg for uncontrolled partial body exposure of the general population. The overall margin of uncertainty for this measurement is $\pm 14.2\%$ (Appendix B). The SAR limit given in the FCC 96-326 Safety Guideline is 1.6 W/kg for body exposure for the general population.

For a bystander exposing a part of the body other than the extremities, at a separation distance of 0 cm from the device, the maximum Specific Absorption Rate (SAR) averaged over 1 g is 1.29 W/kg. The SAR limit given in the FCC 96-326 Safety Guideline is 1.6 W/kg for uncontrolled partial body exposure of the general population. The overall margin of uncertainty for this measurement is $\pm 14.2\%$ (Appendix B).

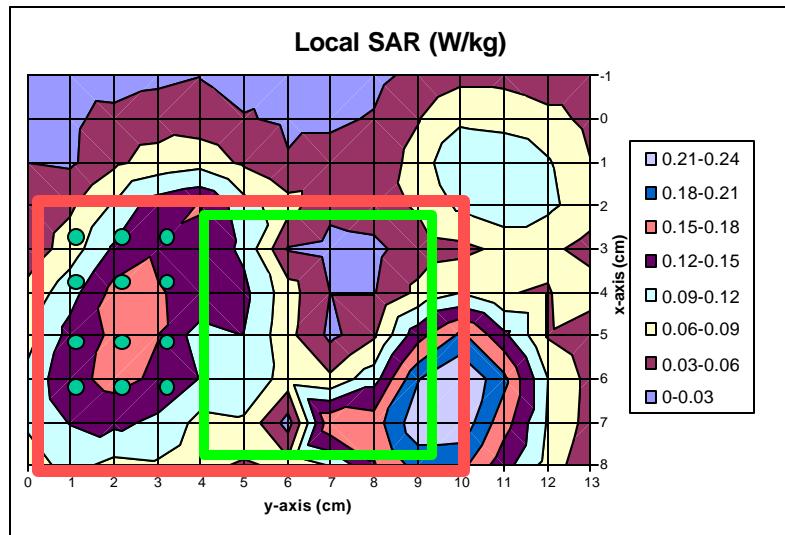


Considering the above, this unit as tested, and as it will be marketed and used, is found to be compliant with the FCC 96-326 requirement.

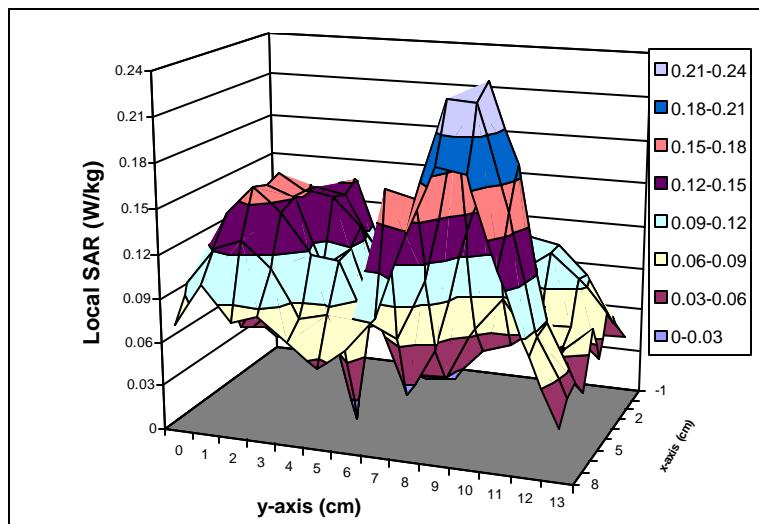
Tested by K.P. Date JULY 16, 2001

APPENDIX A. Measurement Setup, Tissue Properties and SAR Graphs

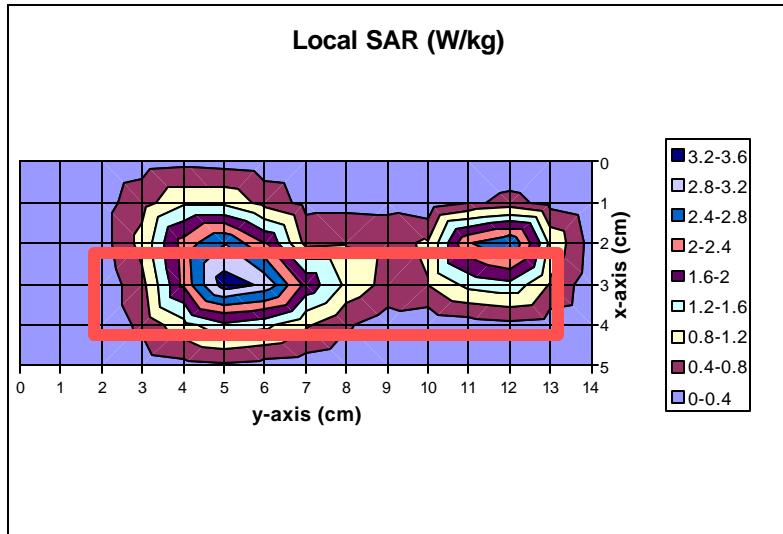
Figure's 1&2. Setup

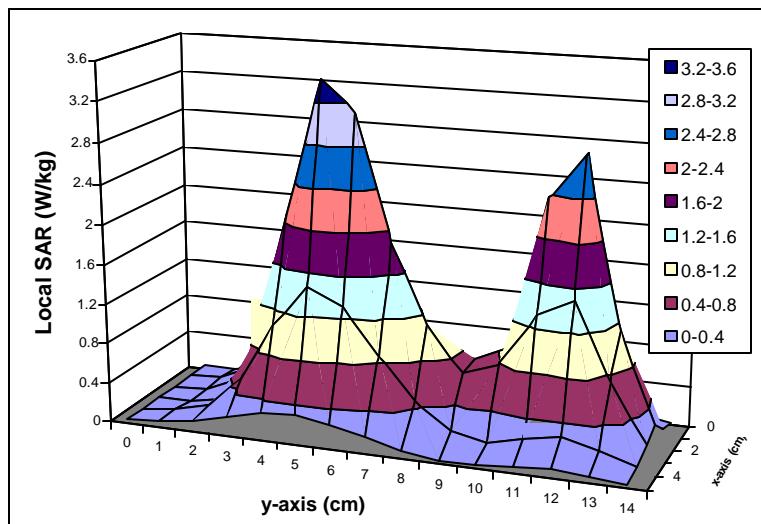

Simulated Tissue Material and Calibration Technique

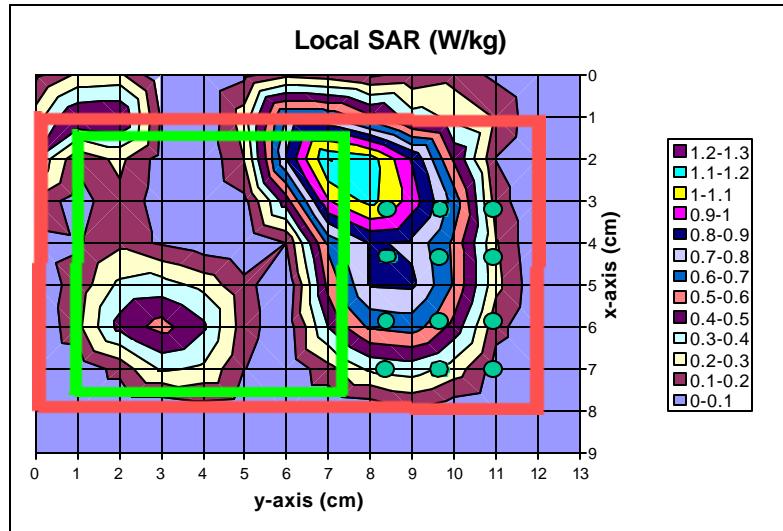
The mixture used was based on that presented SSI/DRB-TP-D01-033, “Tissue Recipe and Calibration Requirements”. The density used to determine SAR from the measurements was the recommended 1000 kg/m^3 found in Appendix C of Supplement C to OET Bulletin 65, Edition 01-01).


Dielectric parameters of the simulated tissue material were determined using a Hewlett Packard 8510 Network Analyzer, a Hewlett Packard 809B Slotted Line Carriage, and an APREL SLP-001 Slotted Line Probe.

	APREL	Target Values	Δ (%)
Dielectric constant, ϵ_r	47.16	51.50	-8.4 %
Conductivity, σ [S/m]	1.85	1.95	-5.3 %
Tissue Conversion Factor, γ	11.5	-	-


Table 3. Dielectric Properties of the Simulated Muscle Tissue at 1900 MHz


Figure 3. Contour Plot of the Area Scan 2.5mm Above Phantom Surface (Body Exposure)


Figure 4. Surface Plot of the Area Scan 2.5mm Above Phantom Surface (Body Exposure)

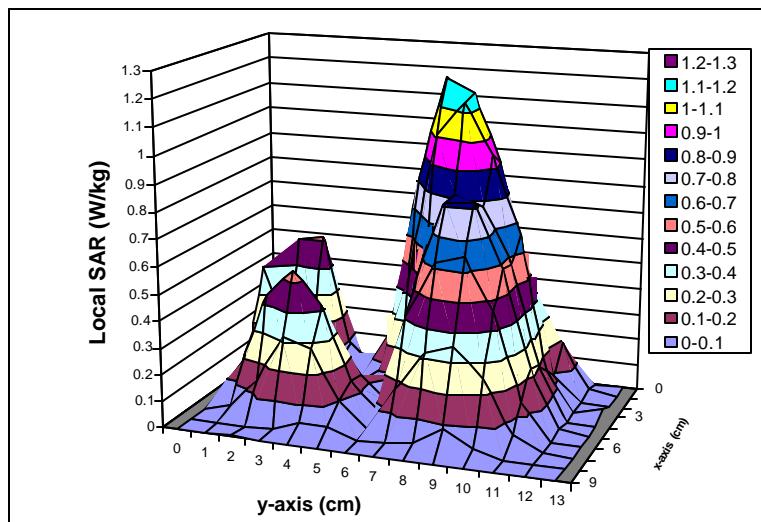

Figure 5. Contour Plot of the Area Scan 2.5mm Above Phantom Surface Hand Exposure (View screen is facing down on right side)

Figure 6. Surface Plot of the Area Scan 2.5mm Above Phantom Surface (Hand Exposure)

Figure 7. Contour Plot of the Area Scan 2.5mm Above Phantom Surface (Bystander Exposure)

Figure 8. Surface Plot of the Area Scan 2.5mm Above Phantom Surface (Bystander Exposure)

APPENDIX B. Uncertainty Budget

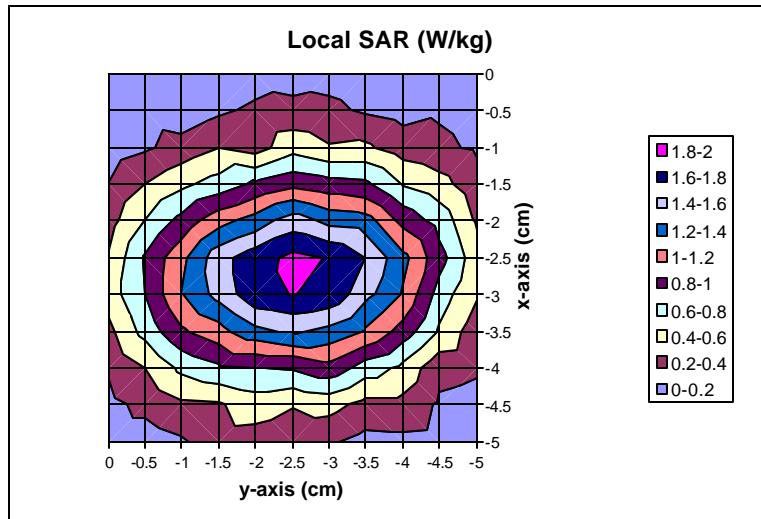
Calculated Uncertainties		
Type of Uncertainty	Specific to	Uncertainty
Power variation due to battery condition	DUI	3.0%
Extrapolation due to curve fit of SAR vs depth	Setup	3.0%
Extrapolation due to depth measurement	Setup	4.8%
Conductivity	Setup	5.3%
Permitivity	Setup	8.4%
Probe Calibration	Setup	7.0%
Probe Positioning	Setup	2.0%
Probe Isotropicity	Setup	3.5%
Other Setup Uncertainty (Ambient,,,)	Setup	3.0%
28.7% Expanded Uncertainty K²		

Table 4. Uncertainty Budget (1 Gram, bystander)

Calculated Uncertainties		
Type of Uncertainty	Specific to	Uncertainty
Power variation due to battery condition	DUI	3.0%
Extrapolation due to curve fit of SAR vs depth	Setup	3.0%
Extrapolation due to depth measurement	Setup	4.8%
Conductivity	Setup	5.3%
Permitivity	Setup	8.4%
Probe Calibration	Setup	7.0%
Probe Positioning	Setup	2.0%
Probe Isotropicity	Setup	3.5%
Other Setup Uncertainty (Ambient,,,)	Setup	3.0%
28.8% Expanded Uncertainty K²		

Table 5. Uncertainty Budget (10 gram)

Calculated Uncertainties


Type of Uncertainty	Specific to	Uncertainty
Power variation due to battery condition	DUI	3.0%
Extrapolation due to curve fit of SAR vs depth	Setup	3.0%
Extrapolation due to depth measurement	Setup	4.8%
Conductivity	Setup	5.3%
Permitivity	Setup	8.4%
Probe Calibration	Setup	6.5%
Probe Positioning	Setup	2.0%
Probe Isotropicity	Setup	3.5%
Other Setup Uncertainty (Ambient,,)	Setup	3.0%

28.8% Expanded Uncertainty K^2

Table 6. Uncertainty Budget (1 gram, Body)

APPENDIX C. Dipole Validation Scan on a Flat Phantom

Figure 9. Surface Plot for Validation Dipole (Area Scan 2.5mm Above Phantom)

Frequency (MHz)	1 Gram SAR (W/Kg)	Target Value (W/Kg)	Delta (%)	Input Power to Dipole (dBm)	Distance from Dipole to Tissue (mm)
1900	1.77	1.74	1.7%	16.8	10

Figure 10. Validation Dipole Under Phantom

APPENDIX D. Probe Calibration

NCL CALIBRATION LABORATORIES

Calibration File No.: 301420

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the
NCL CALIBRATION LABORATORIES by qualified personnel following recognized
procedures and using transfer standards traceable to NRC/NIST.

Equipment: Miniature Isotropic RF Probe

Manufacturer: APREL Laboratories/IDX Robotics Inc

Model No.: E-009

Serial No.: 115

Customer: APREL

Asset No.:301420

Calibration Procedure: SSI/DRB-TP-D01-032

Cal. Date: 9 November, 2000 Cal. Due Date: 8 November, 2001

Remarks: None

Calibrated By:

NCL CALIBRATION LABORATORIES

51 SPECTRUM WAY
NEPEAN, ONTARIO
CANADA K2R 1E6

Division of APREL Lab
TEL: (613) 820-4988
FAX: (613) 820-4161

Page 20 of 20

51 Spectrum Way
Nepean, Ontario, K2R 1E6

© APREL 2000

This report shall not be reproduced, except in full,

Project #RIMB-BlackBerry R1900G-1-4-3761:

Tel. (613) 820-2730

Fax (613) 820 4161

e-mail: info@aprel.com

without the express written approval of APREL Laboratories.