

STD Manufacturing Ltd.

Application
For
Class II Permissive Change

(FCC ID: KYIJW-160T)

Transmitter

WO# 9912711
DY/kl
December 28, 1999

INTERTEK TESTING SERVICES

LIST OF EXHIBITS

INTRODUCTION

<i>EXHIBIT 1:</i>	General Description
<i>EXHIBIT 2:</i>	System Test Configuration
<i>EXHIBIT 3:</i>	Emission Results
<i>EXHIBIT 4:</i>	Equipment Photographs
<i>EXHIBIT 5:</i>	Product Labelling
<i>EXHIBIT 6:</i>	Technical Specifications
<i>EXHIBIT 7:</i>	Instruction Manual
<i>EXHIBIT 8:</i>	Miscellaneous Information

INTERTEK TESTING SERVICES

MEASUREMENT/TECHNICAL REPORT

STD Manufacturing Ltd. - MODEL: JENSEN JW160T FCC ID: KYIJW-160T

December 28, 1999

This report concerns (check one): Original Grant Class II Change X

Equipment Type: Low Power Transmitter (example: computer, printer, modem, etc.)

Deferred grant requested per 47 CFR 0.457(d)(1)(ii)? Yes No X

If yes, defer until: _____
date

Company Name agrees to notify the Commission by: _____
date

of the intended date of announcement of the product so that the grant can be issued on that date.

Transition Rules Request per 15.37? Yes No X

If no, assumed Part 15, Subpart C for intentional radiator - the new 47 CFR [10-1-98 Edition] provision.

Report prepared by:

Daniel Yau
Intertek Testing Services
Hong Kong Ltd.
2/F., Garment Centre,
576, Castle Peak Road,
Kowloon, Hong Kong
Phone: 852-2173-8542
Fax: 852-2371-0914

INTERTEK TESTING SERVICES

Table of Contents

1.0 General Description	2
1.1 Product Description	2
1.2 Related Submittal(s) Grants	2
1.3 Test Methodology	3
1.4 Test Facility	3
2.0 System Test Configuration	5
2.1 Justification.....	5
2.2 EUT Exercising Software	5
2.3 Special Accessories.....	5
2.4 Equipment Modification	6
2.5 Support Equipment List and Description	6
3.0 Emission Results	8
3.1 Field Strength Calculation.....	9
3.1 Field Strength Calculation (cont)	10
3.2 Radiated Emission Configuration Photograph	11
3.3 Radiated Emission Data.....	12
3.4 Line Conducted Configuration Photograph	15
3.5 Line Conducted Emission Data	17
4.0 Equipment Photographs	19
5.0 Product Labelling	21
6.0 Technical Specifications	23
7.0 Instruction Manual	25
8.0 Miscellaneous Information	27
8.1 Measured Bandwidth	28
8.2 Discussion of Pulse Desensitization.....	29
8.3 Calculation of Average Factor	30
8.4 Emissions Test Procedures.....	31
8.4 Emissions Test Procedures (cont'd).....	32

INTERTEK TESTING SERVICES

List of attached file

Exhibit type	File Description	filename
Cover Letter	Letter of Agency	letter.pdf
Test Report	Test Report	report.doc
Operation Description	Technical Description	descri.pdf
Operation Description	Technical Change	change.pdf
Test Setup Photo	Radiated Emission	radiated1.jpg, radiated2.jpg
Test Setup Photo	Conducted Emission	conduct1.jpg, conduct2.jpg, conduct3.jpg
Test Report	Conducted Emission Test Result	conduct.pdf
Test Report	Bandwidth Plot	bw.pdf
External Photo	External Photo	ophoto1.jpg, ophoto2.jpg
Internal Photo	Internal Photo	iphoto1.jpg, iphoto2.jpg, iphoto3.jpg, iphoto4.jpg, iphoto5.jpg
Block Diagram	Block Diagram	block.pdf
Schematics	Circuit Diagram	circuit.pdf
ID Label/Location	Label Artwork and Location	label.jpg
User Manual	User Manual	manual.pdf

EXHIBIT 1

GENERAL DESCRIPTION

INTERTEK TESTING SERVICES

1.0 General Description

1.1 Product Description

The Equipment Under Test (EUT) is a 900MHz Transmitter operating at 913.5-914.5 MHz. The EUT is powered by 120V AC to 12V DC adaptor. On the rear panel of EUT, there are a channel select switch to select the optimum channel and an audio cable for feeding audio signal. The audio signal is frequency modulated to a RF signal and then transmits to the receiver.

The brief circuit description and change description of the transmitter portion is saved with filename: descri.pdf and change.pdf respectively.

1.2 Related Submittal(s) Grants

This is a single Class II Permissive Change application of a transmitter. The original application is granted on November 8, 1999. **The FCC ID of receiver associated with this transmitter is KYIJW-160R.**

INTERTEK TESTING SERVICES

1.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.4 (1992). Radiated Emission was performed in Open Area Test Sites and Conducted Emission was performed in Shield Room respectively. Preliminary scans were performed in the Open Area Test Sites only to determine worst case modes. For each scan, the procedure for maximizing emissions in Appendices D and E were followed. All Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "**Justification Section**" of this Application.

1.4 Test Facility

The open area test site and conducted measurement facility used to collect the emission data is located at Garment Centre, 576 Castle Peak Road, Kowloon, Hong Kong. This test facility and site measurement data have been fully placed on file with the FCC.

EXHIBIT 2

SYSTEM TEST CONFIGURATION

2.0 System Test Configuration

2.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in ANSI C63.4 (1992.)

The EUT was powered from AC 120V to DC 12V adaptor.

For maximizing emissions, the EUT was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. This step by step procedure for maximizing emissions led to the data reported in Exhibit 3.0.

The unit was placed in the center of the turntable.

For simplicity of testing, the unit was wired to transmit continuously.

2.2 EUT Exercising Software

There was no special software to exercise the device. Once the switch is turned ON, the unit transmits the typical signal. For simplicity of testing, the unit was wired to transmit continuously.

2.3 Special Accessories

There are no special accessories necessary for compliance of this product.

INTERTEK TESTING SERVICES

2.4 Equipment Modification

Any modifications installed previous to testing by STD Manufacturing Ltd. will be incorporated in each production model sold/leased in the United States.

No modifications were installed by Intertek Testing Services.

2.5 Support Equipment List and Description

This product was tested with the following item:

Auxiliary input of EUT connected to a walkman through 1.8 meter cable.
(Provided by ITS)

All the items listed under section 2.0 of this report are

Confirmed by:

*Daniel Yau
Technical Manager- Home Entertainment Electronics
Intertek Testing Services
Agent for STD Manufacturing Ltd.*

Signature

December 28,1999

Date

EXHIBIT 3

EMISSION RESULTS

3.0 Emission Results

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

3.1 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

$$FS = RA + AF + CF - AG + PD + AV$$

where

FS = Field Strength in dB μ V/m

RA = Receiver Amplitude (including preamplifier) in dB μ V

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

PD = Pulse Desensitization in dB

AV = Average Factor in -dB

In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

$$FS = RA + AF + CF - AG + PD + AV$$

3.1 Field Strength Calculation (cont'd)

Example

Assume a receiver reading of 62.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted. The pulse desensitization factor of the spectrum analyzer was 0 dB, and the resultant average factor was -10 dB. The net field strength for comparison to the appropriate emission limit is 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

$$RA = 62.0 \text{ dB}\mu\text{V}$$

$$AF = 7.4 \text{ dB}$$

$$CF = 1.6 \text{ dB}$$

$$AG = 29.0 \text{ dB}$$

$$PD = 0 \text{ dB}$$

$$AV = -10 \text{ dB}$$

$$FS = 62 + 7.4 + 1.6 - 29 + 0 + (-10) = 32 \text{ dB}\mu\text{V/m}$$

$$\text{Level in mV/m} = \text{Common Antilogarithm} [(32 \text{ dB}\mu\text{V/m})/20] = 39.8 \mu\text{V/m}$$

INTERTEK TESTING SERVICES

3.2 Radiated Emission Configuration Photograph

Worst Case Radiated Emission

at 1829.816 MHz

For electronic filing, the worst case radiated emission configuration photograph is saved with filename: radiated1.jpg and radiated2.jpg.

INTERTEK TESTING SERVICES

3.3 Radiated Emission Data

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Judgement: Passed with 3.6 dB margin

TEST PERSONNEL:

Signature

Prudence S. M. Poon, Compliance Engineer
Typed/Printed Name

December 28,1999
Date

INTERTEK TESTING SERVICES

Company: STD Manufacturing Ltd.

Date of Test: December 15, 1999

Model: JENSEN JW160T

Worst-Case Operating Mode: Transmitting

Table 1 - Channel A

Radiated Emissions

Polarity	Frequency (MHz)	Reading (dB μ V)	Antenna Factor (dB)	Pre-Amp Gain (dB)	Net at 3m (dB μ V/m)	Limit at 3m (dB μ V/m)	Margin (dB)
V	913.723	71.4	33.0	16	88.4	94.0	-5.6
V	1827.446	57.7	26.5	34	50.2	54.0	-3.8
V	*2740.947	51.6	29.1	34	46.7	54.0	-7.3
V	*3654.596	40.1	32.8	34	38.9	54.0	-15.1
V	*4568.273	39.1	34.0	34	39.1	54.0	-14.9

Notes: 1. Peak Detector Data unless otherwise stated.

2. All measurements were made at 3 meter. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
3. Negative value in the margin column shows emission below limit.
4. Horn antenna and average detector are used for the emission over 1000MHz.

*Emission within the restricted band meets the requirement of part 15.205.

The corresponding limit as per 15.209 is based on Quasi peak detector data for frequencies below 1000 MHz and average detector data for frequencies over 1000 MHz.

Test Engineer: Prudence S. M. Poon

INTERTEK TESTING SERVICES

Company: STD Manufacturing Ltd.

Date of Test: December 15, 1999

Model: JENSEN JW160T

Worst-Case Operating Mode: Transmitting

Table 2 - Channel B

Radiated Emissions

Polarity	Frequency (MHz)	Reading (dB μ V)	Antenna Factor (dB)	Pre-Amp Gain (dB)	Net at 3m (dB μ V/m)	Limit at 3m (dB μ V/m)	Margin (dB)
V	914.906	94.9	10	16	88.9	94.0	-5.1
V	1829.816	64.4	20	34	50.4	54.0	-3.6
V	*2744.538	59.4	22	34	47.4	54.0	-6.6
V	*3659.532	49.5	24	34	39.5	54.0	-14.5
V	*4574.415	46.7	26	34	38.7	54.0	-15.3

Notes: 1. Peak Detector Data unless otherwise stated.

2. All measurements were made at 3 meter. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
3. Negative value in the margin column shows emission below limit.
4. Horn antenna and average detector are used for the emission over 1000MHz.

*Emission within the restricted band meets the requirement of part 15.205. The corresponding limit as per 15.209 is based on Quasi peak detector data for frequencies below 1000 MHz and average detector data for frequencies over 1000 MHz.

Test Engineer: Prudence S. M. Poon

3.4 Line Conducted Configuration Photograph

Worst Case Line-Conducted Configuration

For electronic filing, the worst case line-conducted configuration photograph are saved with filename: conduct1.jpg, conduct2.jpg and conduct3.jpg.

INTERTEK TESTING SERVICES

Company: STD Manufacturing Ltd.
Model: JENSEN JW160T

Date of Test: December 15,1999

Conducted Emissions
Section 15.107 Requirements

For electronic filing, the conducted emission test result is saved with filename: conduct.pdf

INTERTEK TESTING SERVICES

3.5 Line Conducted Emission Configuration Data

The data on the following page lists the significant emission frequencies, the limit, and the margin of compliance. Numbers with a minus sign are below the limit.

Judgement: Passed with below 20 dB margin

* All readings are peak unless stated otherwise.

TEST PERSONNEL:

Signature

Prudence S. M. Poon, Compliance Engineer

Typed/Printed Name

December 28, 1999

Date

EXHIBIT 4

EQUIPMENT PHOTOGRAPHS

4.0 **Equipment Photographs**

For electronic filing, the photographs are saved with filename: ophoto1.jpg to ophoto2.jpg and iphoto1.jpg to iphoto5.jpg.

EXHIBIT 5

PRODUCT LABELLING

5.0 **Product Labelling**

For electronic filing, the FCC ID label location and the artwork location are saved with filename: label.jpg

EXHIBIT 6

TECHNICAL SPECIFICATIONS

6.0 Technical Specifications

For electronic filing, the block diagram and schematics are saved with filename: block.pdf and circuit.pdf respectively.

EXHIBIT 7

INSTRUCTION MANUAL

7.0 **Instruction Manual**

For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf.

This manual will be provided to the end-user with each unit sold/leased in the United States.

EXHIBIT 8

MISCELLANEOUS INFORMATION

8.0 **Miscellaneous Information**

This miscellaneous information includes details of the measured bandwidth, the test procedure and calculation of factors such as pulse desensitization and averaging factor.

8.1 Measured Bandwidth

The plot on saved in bw.pdf shows the fundamental emission. From the plot, it shows the emission is within the band edge(902MHz and 928MHz). The unit meets the FCC requirement.

Figure 8.1 Bandwidth

8.2 Discussion of Pulse Desensitization

The determination of pulse desensitivity was made in accordance with Hewlett Packard Application Note 150-2, *Spectrum Analysis ... Pulsed RF*.

Pulse desensitivity is not applicable for this device. Since the transmitted frequency is a continue signal.

8.3 Calculation of Average Factor

The average factor is not applicable for this device as the transmitted signal is a continue signal.

8.4 Emissions Test Procedures

The following is a description of the test procedure used by Intertek Testing Services in the measurements of transmitters operating under Part 15, Subpart C rules.

The test set-up and procedures described below are designed to meet the requirements of ANSI C63.4 - 1992.

The transmitting equipment under test (EUT) is placed on a wooden turntable which is four feet in diameter and approximately one meter in height above the ground plane. During the radiated emissions test, the turntable is rotated and any cables leaving the EUT are manipulated to find the configuration resulting in maximum emissions. The antenna height and polarization are varied during the testing to search for maximum signal levels.

Detector function for radiated emissions is in peak mode. Average readings, when required, are taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings. A detailed description for the calculation of the average factor can be found in Exhibit 8.3.

The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower. For line conducted emissions, the range scanned is 450 kHz to 30 MHz.

8.4 Emissions Test Procedures (cont'd)

The EUT is warmed up for 15 minutes prior to the test.

AC power to the unit is varied from 85% to 115% nominal and variation in the fundamental emission field strength is recorded. If battery powered, a new, fully charged battery is used.

Conducted measurements are made as described in ANSI C63.4 - 1992.

The IF bandwidth used for measurement of radiated signal strength was 100 kHz or greater below 1000 MHz. Where pulsed transmissions of short enough pulse duration warrant, a greater bandwidth is selected according to the recommendations of Hewlett Packard Application Note 150-2. A discussion of whether pulse desensitivity is applicable to this unit is included in this report (See Exhibit 8.2). Above 1000 MHz, a resolution bandwidth of 1 MHz is used.

Transmitter measurements are normally conducted at a measurement distance of three meters. However, to assure low enough noise floor in the forbidden bands and above 1 GHz, signals are acquired at a distance of one meter or less. All measurements are extrapolated to three meters using inverse scaling, but those measurements taken at a closer distance are so marked.