

CETECOM ICT Services

consulting - testing - certification >>>

TEST REPORT

Test report no.: 1-1172/16-01-04-A

DAKKS Deutsche Akkreditierungsstelle D-PL-12076-01-00

Testing laboratory

CETECOM ICT Services GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: http://www.cetecom.com e-mail: ict@cetecom.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-00

Applicant

PHONAK Communications AG

Laenggasse 17

3280 Murten / SWITZERLAND Phone: +41 2 66 72 96 72 Fax: +41 2 66 72 35 11 Contact: Neviana Nikoloski

e-mail: neviana.nikoloski@phonakcom.ch

Phone: +41 2 66 72 92 42

Manufacturer

PHONAK Communications AG

Laenggasse 17

3280 Murten / SWITZERLAND

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS - 247 Issue 1 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence - Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item:

Model name:

Roger BaseStation

KWCDMBase

FCC ID: KWCDMBase IC: 2262A-DMBase

Frequency: DTS band 2400 MHz to 2483.5 MHz

Technology tested: Proprietary

Antenna: Antenna glued and permanently fixed (not removable

by user)

Power supply: 100 V to 240 V AC, $50/60 \, \text{Hz} \, / \, 5.3 \, \text{V DC}$

Temperature range: 0°C to +45°C

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Testing Manager

Radio Communications & EMC

Test report authorized:	Test performed:
David Lang	Mihail Dorongovskij

Radio Communications & EMC

Lab Manager

Table of contents

1	Table	of contents	2
2	Gener	al information	
_		Notes and disclaimer	
		Application details	
3		tandard/s and references	
4		nvironment	
5		em	
		General description	
		Additional information	
6	Test la	boratories sub-contracted	5
7	Descri	ption of the test setup	6
	7.1	Shielded semi anechoic chamber	7
		Shielded fully anechoic chamber	
		Radiated measurements > 12.75 GHz	
		AC conducted	
		Conducted measurements C.BER system	
8	Seque	nce of testing	12
	8.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	12
	8.2	Sequence of testing radiated spurious 30 MHz to 1 GHz	13
		Sequence of testing radiated spurious 1 GHz to 18 GHz	
		Sequence of testing radiated spurious above 18 GHz	
9		rement uncertainty	
10	Sum	mary of measurement results	17
11		itional comments	
12	Mea	surement results	19
	12.1	Antenna gain	
	12.2	Carrier frequency separation	
	12.3	Number of hopping channels	
	12.4	Time of occupancy (dwell time)	
	12.5	Spectrum bandwidth of a FHSS system	
	12.6	Maximum output power	34
	12.7 12.8	Detailed spurious emissions @ the band edge - conducted	
	12.9	Spurious emissions conducted	
	12.10	Spurious emissions radiated below 30 MHz	
	12.11	Spurious emissions radiated 30 MHz to 1 GHz	
	12.12	Spurious emissions radiated above 1 GHz	
	12.13	Spurious emissions conducted below 30 MHz (AC conducted)	
13		ervations	
	ex A	Document history	
Anr	ex B	Further information	
Anr	nex C	Accreditation Certificate	71

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-1172/16-01-04 and dated 2016-03-31

2.2 Application details

Date of receipt of order: 2016-01-25
Date of receipt of test item: 2016-02-09
Start of test: 2016-02-23
End of test: 2016-03-30

Person(s) present during the test: -/-

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15		Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 1	May 2015	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices

Guidance	Version	Description
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic
ANSI C63.10-2013	-/-	equipment in the range of 9 kHz to 40 GHz American national standard of procedures for compliance testing of unlicensed wireless devices

4 Test environment

:	T_{nom} T_{max} T_{min}	+22 °C during room temperature tests +45 °C during high temperature tests 0 °C during low temperature tests
Relative humidity content :		55 %
:		not relevant for this kind of testing
	V _{nom}	5.3 V DC by external power supply
:		5.8 V DC by external power supply4.8 V DC by external power supply
	: :	: T _{max} T _{min}

5 Test item

5.1 General description

Kind of test item :	2.4 GHz BaseStation
Type identification :	Roger BaseStation
HMN :	-/-
PMN :	Roger BaseStation
HVIN :	Roger BaseStation
FVIN :	1.0
S/N serial number :	Rad. #25 #3 (only for highest channel measurements) Cond. #25
HW hardware status :	Not available.
SW software status :	1.0
Frequency band :	DTS band 2400 MHz to 2483.5 MHz
Type of radio transmission: Use of frequency spectrum:	FHSS
Type of modulation :	GFSK
Number of channels :	40
Antenna :	Antenna glued and permanently fixed (not removable by user)
Power supply :	100 V to 240 V AC, 50/60 Hz / 5.3 V DC
Temperature range :	0°C to +45°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-1172/16-01-01_AnnexA 1-1172/16-01-01_AnnexB

1-1172/16-01-01_AnnexD

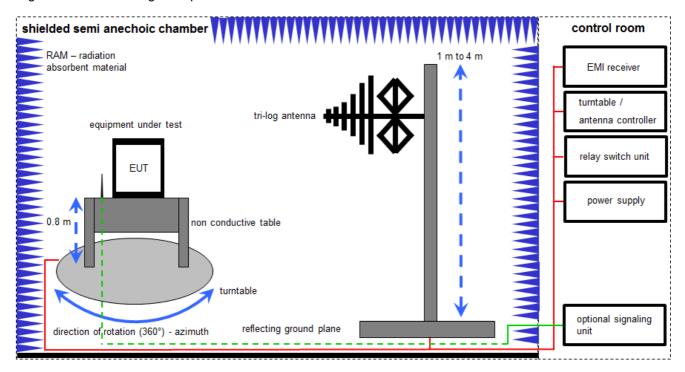
6 Test laboratories sub-contracted

None

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).


Agenda: Kind of Calibration

k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

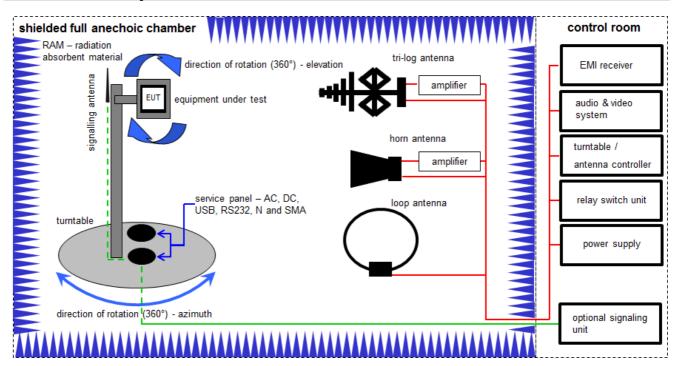
7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


Example calculation:

 $\overline{\text{FS [dB}\mu\text{V/m]}} = 12.35 \text{ [dB}\mu\text{V/m]} + 1.90 \text{ [dB]} + 16.80 \text{ [dB/m]} = 31.05 \text{ [dB}\mu\text{V/m]} (35.69 \mu\text{V/m})$

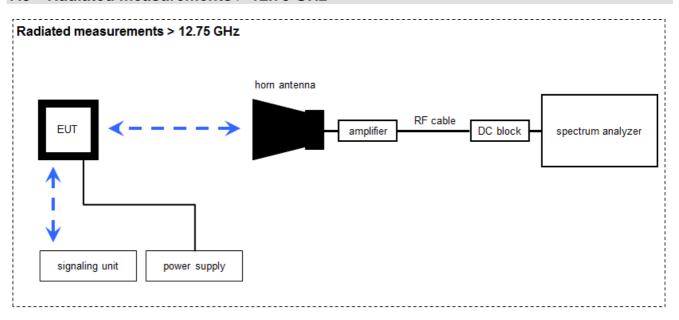
No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	RF-Filter-section	85420E	HP	3427A00162	300002214	k	27.11.2006	-/-
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	Α	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	22.04.2014	22.04.2016
7	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	28.01.2016	27.01.2017

7.2 Shielded fully anechoic chamber

Measurement distance: tri-log antenna and horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)


Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \ \mu V/m)$

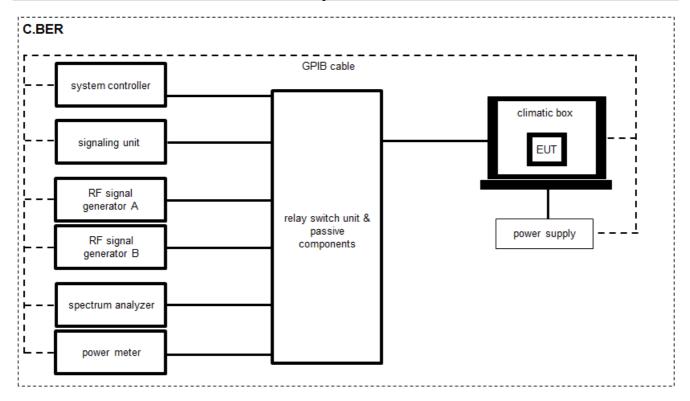
No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	vIKI!	20.05.2015	20.05.2017
2	A, B, C	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	A, B, C	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
4	С	Active Loop Antenna 10 kHz to 30 MHz	6502	EMCO/2	8905-2342	300000256	k	24.06.2015	24.06.2017
5	А	Amplifier	js42-00502650-28- 5a	Parzich GMBH	928979	300003143	ne	-/-	-/-
6	Α	Band Reject filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	11	300003351	ev	-/-	-/-
7	A, B	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	371	30000	vlKl!	29.10.2014	29.10.2017
8	A, B, C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
9	A, B, C	EMI Test Receiver 9kHz-26,5GHz	ESR26	R&S	101376	300005063	k	04.09.2015	04.09.2016

7.3 Radiated measurements > 12.75 GHz

Measurement distance: horn antenna 50 cm

 $FS = U_R + CA + AF$

(FS-field strength; U_R-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)


Example calculation:

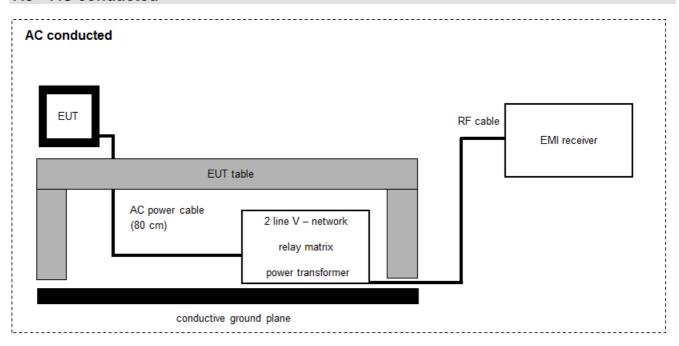
 $\overline{\text{FS [dB}\mu\text{V/m]}} = 40.0 \text{ [dB}\mu\text{V/m]} + (-60.1) \text{ [dB]} + 36.74 \text{ [dB/m]} = 16.64 \text{ [dB}\mu\text{V/m]} (6.79 \ \mu\text{V/m})$

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	А	Std. Gain Horn Antenna 12.4 to 18.0 GHz	639	Narda	8402	300000787	k	14.08.2015	14.08.2017
2	А	Std. Gain Horn Antenna 18.0 to 26.5 GHz	638	Narda	8402	300000486	k	10.09.2015	10.09.2017
3	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	21.01.2016	21.01.2017
4	А	Amplifier 2-40 GHz	JS32-02004000-57- 5P	MITEQ	1777200	300004541	ev	-/-	-/-

7.4 Conducted measurements C.BER system

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)


Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch / Control Unit	3488A	HP		300000929	ne	-/-	-/-
2	Α	Signal Analyzer 30GHz	FSV30	R&S	103170	300004855	k	25.01.2016	25.01.2017
3	Α	Directional Coupler	101020010	Krytar	70215	300002840	ev	-/-	-/-
4	Α	DC-Blocker	8143	Inmet Corp.	none	300002842	ne	-/-	-/-
5	Α	Powersplitter	6005-3	Inmet Corp.	none	300002841	ev	-/-	-/-
6	Α	RF-Cable	ST18/SMAm/SMAm/ 72	Huber & Suhner	Batch no. 605505	400001187	ev	-/-	-/-
7	Α	RF-Cable	Sucoflex 104	Huber & Suhner	147636/4	400001188	ev	-/-	-/-

7.5 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:

 $FS [dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 \(\mu V/m \))$

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	А	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	892475/017	300002209	k	17.06.2014	17.06.2016
2	Α	MXE EMI Receiver 20 Hz to 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405	k	06.03.2015	06.03.2016
3	Α	software	SPS_PHE 1.4f	Spitzenberger & Spiess	B5981; 5D1081;B5979	300000210	ne	-/-	-/-

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all
 emissions.

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes
 the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table
 positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

9 Measurement uncertainty

Measurement uncertainty				
Test case	Uncertainty			
Antenna gain	± 3 dB			
Carrier frequency separation	± 21.5 kHz			
Number of hopping channels	-/-			
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative			
Maximum output power	± 1 dB			
Detailed conducted spurious emissions @ the band edge	± 1 dB			
Band edge compliance radiated	± 3 dB			
Spurious emissions conducted	± 3 dB			
Spurious emissions radiated below 30 MHz	± 3 dB			
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB			
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB			
Spurious emissions radiated above 12.75 GHz	± 4.5 dB			
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB			

10 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS - 247, Issue 1	See table!	2016-04-21	-/-

Test specification	Test case	Temperature	Power source	Mode	С	NC	NA	NP	Remark
clause	rest case	conditions	voltages	WIOGE		140	IVA	141	Nemark
§15.247(b)(4) RSS - 247 / 5.4 (2)	Antenna gain	Nominal	Nominal	GFSK	×				-/-
§15.247(a)(1) RSS - 247 / 5.1 (2)	Carrier frequency separation	Nominal	Nominal	GFSK	X				-/-
§15.247(a)(1) RSS - 247 / 5.1 (4)	Number of hopping channels	Nominal	Nominal	GFSK	X				-/-
§15.247(a)(1) (iii) RSS - 247 / 5.1 (4)	Time of occupancy (dwell time)	Nominal	Nominal	GFSK	×				-/-
§15.247(a)(1) RSS - 247 / 5.1 (1)	Spectrum bandwidth of a FHSS system bandwidth	Nominal	Nominal	GFSK	×				-/-
§15.247(b)(1) RSS - 247 / 5.4 (2)	Maximum output power	Nominal	Nominal	GFSK	X				-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	Nominal	Nominal	GFSK	×				-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	Nominal	Nominal	GFSK	×				-/-
§15.247(d) RSS - 247 / 5.5	Spurious emissions conducted	Nominal	Nominal	GFSK	×				-/-
§15.209(a) RSS - Gen	Spurious emissions radiated below 30 MHz	Nominal	Nominal	GFSK	×				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated 30 MHz to 1 GHz	Nominal	Nominal	GFSK RX mode	×				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated above 1 GHz	Nominal	Nominal	GFSK RX mode	×				-/-
§15.107(a) §15.207	Conducted emissions below 30 MHz (AC conducted)	Nominal	Nominal	GFSK RX mode	×				-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

11 Additional comments

Reference documents: None

Special test descriptions: TN_RogerBasestation_homologation_User_manual

Configuration descriptions: For measurements on the highest channel (channel 40) the

POWER_Full_Powermode.bat file was changed from

"@echo OFF call setup.bat

%HELIOS_HELPER_WRITE_DB% --symbol=HomoCommand2 --

value=00;04;00;00"

to

"@echo OFF call setup.bat

%HELIOS_HELPER_WRITE_DB% --symbol=HomoCommand2 --

value=03;04;00;00"

Test mode: Special software is used.

EUT is transmitting pseudo random data by itself

Antennas and transmit operating modes:

Equipment with 1 antenna,

- Equipment with 2 diversity antennas operating in switched diversity mode

by which at any moment in time only 1 antenna is used,

 Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)

12 Measurement results

12.1 Antenna gain

Measurement:

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	3 MHz		
Video bandwidth	3 MHz		
Span	5 MHz		
Trace mode	Max hold		
Test setup	See sub clause 7.2 B (radiated) See sub clause 7.4 A (conducted)		
Measurement uncertainty	See sub clause 9		

Limits:

FCC	IC	
Antenna gain		
6 dBi		

Results:

T _{nom}	V_{nom}	lowest channel 2402 MHz	middle channel 2440 MHz	highest channel 2480 MHz
Conducted power [dBm] Measured with GFSK modulation		15.8	15.7	15.0
Radiated power [dBm] Measured with GFSK modulation		20.3	20.3	18.6
	[dBi] ulated	4.5	4.4	3.6

12.2 Carrier frequency separation

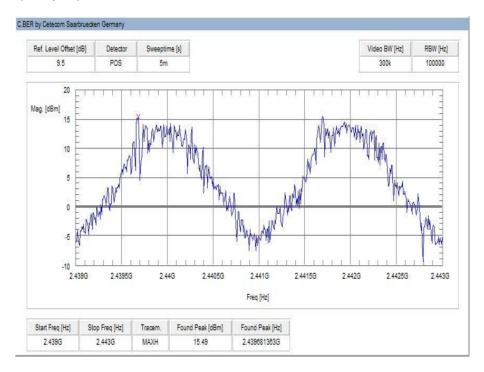
Description:

Measurement of the carrier frequency separation of a hopping system. The carrier frequency separation is constant for all modulation-modes.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	100 kHz		
Video bandwidth	300 kHz		
Span	4 MHz		
Trace mode	Max hold		
Test setup	See sub clause 7.4 A		
Measurement uncertainty	See sub clause 9		

Limits:

FCC	IC	
Carrier frequency separation		
Minimum 25 kHz or two-thirds of the 20 dB bandwidth of the hopping system whichever is greater.		


Result:

Carrier frequency separation	~ 2 MHz
------------------------------	---------

Plot:

Plot 1: Carrier frequency separation

12.3 Number of hopping channels

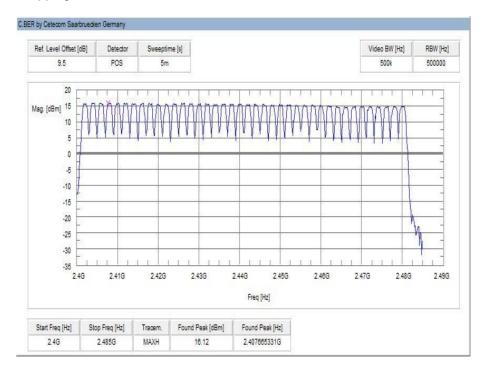
Description:

Measurement of the total number of used hopping channels. DUT is in hopping mode.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	500 kHz		
Video bandwidth	500 kHz		
Span	Plot 1: 2400 – 2445 MHz Plot 2: 2445 – 2485 MHz		
Trace mode	Max hold		
Test setup	See sub clause 7.4 A		
Measurement uncertainty	See sub clause 9		

Limits:

FCC	IC	
Number of hopping channels		
At least 15 non overlapping hopping channels		


Result:

	-
Number of hopping channels	40

Plots:

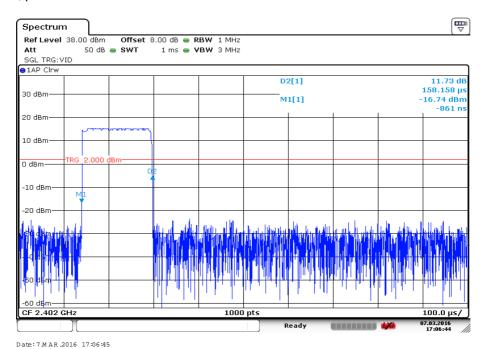
Plot 1: Number of hopping channels

12.4 Time of occupancy (dwell time)

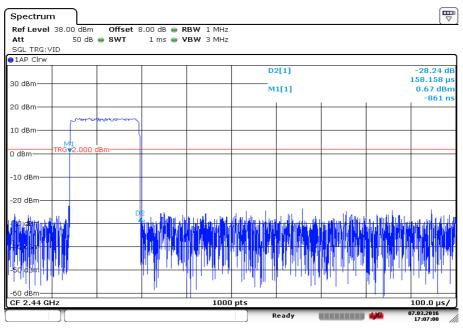
Measurement parameters		
Detector	Peak	
Sweep time	1 ms / 4 s / 16 s	
Resolution bandwidth	1 MHz	
Video bandwidth	3 MHz	
Trace mode	Max hold	
Span	Zero span	
Additional EUT parameters:	Hopping on Channel 0, 19 and 39 GFSK modulation	
Test setup	See sub clause 7.4 A	
Measurement uncertainty	See sub clause 9	

Results:

Channel frequency [MHz]	Measured pulse width [ms]	Number of hops during observation time 4s	Number of hops during observation time 16s	Calculated staying time[ms]
2402	0.158	104	416	65.73
2440	0.158	84	336	53.09
2480	0.158	96	384	60.67

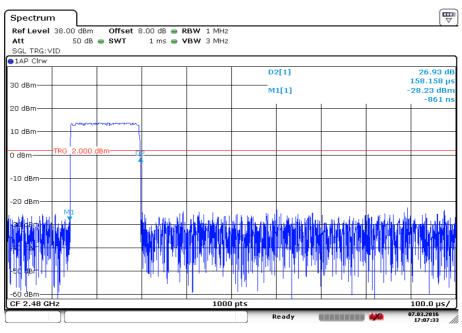

Limits:

FCC	IC	
Time of occupancy (dwell time)		
The frequency hopping operation shall have an average time of occupancy on any frequency not exceeding 0.4 seconds within a duration in seconds equal to the number of hopping frequencies multiplied by 0.4.		

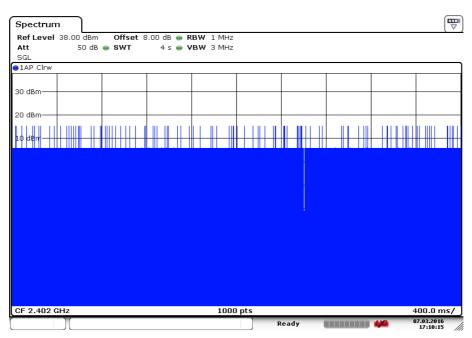


Plots:

Plot 1: 2402 MHz, pulse width

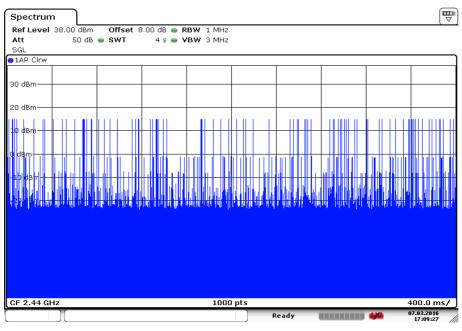

Plot 2: 2440 MHz, pulse width

Date: 7 M AR .2016 17:07:00

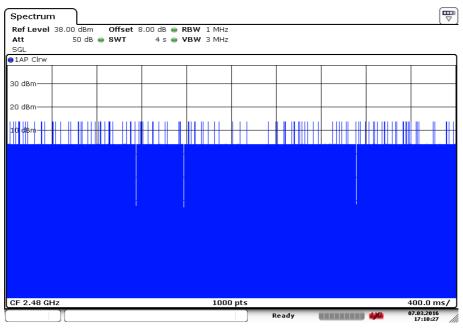


Plot 3: 2480 MHz, pulse width

Date: 7 M AR .2016 17:07:34

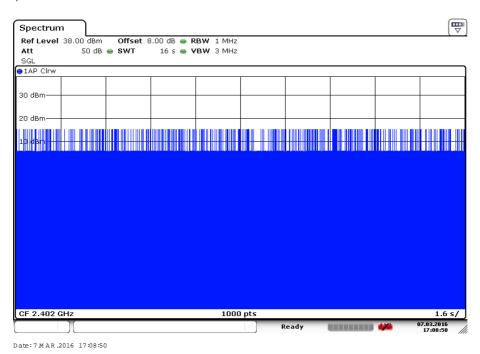

Plot 4: 2402 MHz, 4 seconds observation time

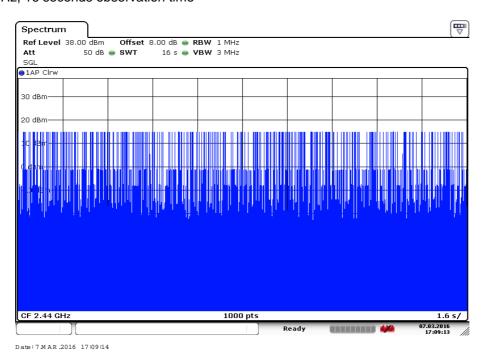
Date: 7 M AR .2016 17:10:15



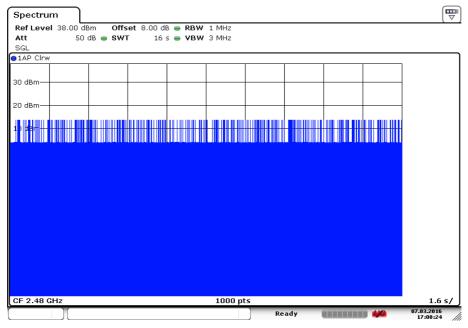
Plot 5: 2440 MHz, 4 seconds observation time

Date: 7 M AR .2016 17:09:26


Plot 6: 2480 MHz, 4 seconds observation time


Date: 7 M AR .2016 17:10:27

Plot 7: 2402 MHz, 16 seconds observation time



Plot 8: 2440 MHz, 16 seconds observation time

Plot 9: 2480 MHz, 16 seconds observation time

Date: 7 M AR .2016 17:08:24

12.5 Spectrum bandwidth of a FHSS system

Description:

Measurement of the 20dB bandwidth and 99% bandwidth of the modulated signal. The measurement is performed according to the "Measurement Guidelines" (DA 00-705, March 30, 2000). EUT is in single channel mode.

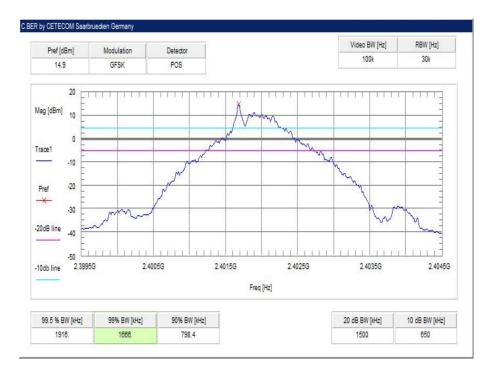
Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	30 kHz	
Video bandwidth	100 kHz	
Span	3 MHz	
Trace mode	Max hold	
Test setup	See sub clause 7.4 A	
Measurement uncertainty	See sub clause 9	

Limits:

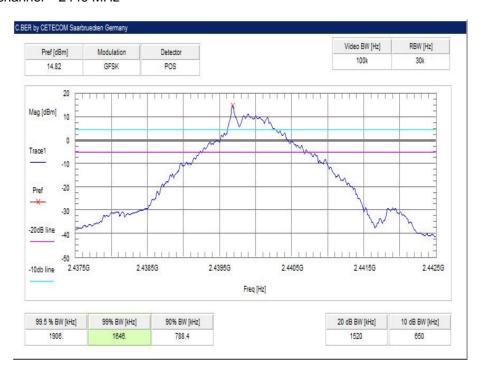
FCC	IC
Spectrum bandwidtl	h of a FHSS system

Results:

Modulation	20 dB bandwidth [kHz]		
Frequency	2402 MHz	2440 MHz	2480 MHz
GFSK	1500	1520	1500

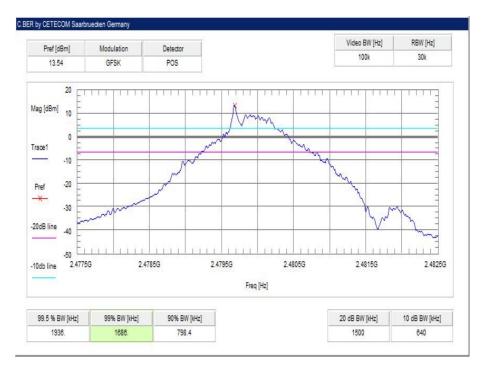

Results:

Modulation	99 % bandwidth [kHz]		
Frequency	2402 MHz	2440 MHz	2480 MHz
GFSK	1666	1646	1686



Plots:

Plot 1: lowest channel - 2402 MHz



Plot 2: middle channel - 2440 MHz

Plot 3: highest channel – 2480 MHz

12.6 Maximum output power

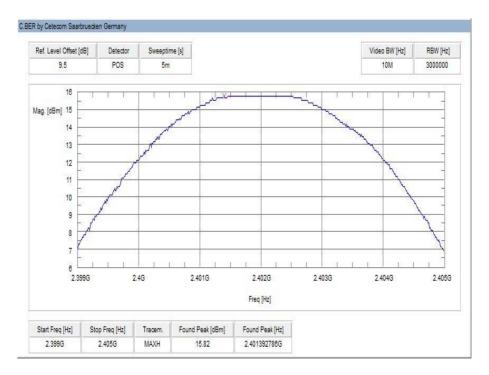
Description:

Measurement of the maximum output power conducted and radiated. EUT in single channel mode. The measurement is performed according to the ANSI C63.10.

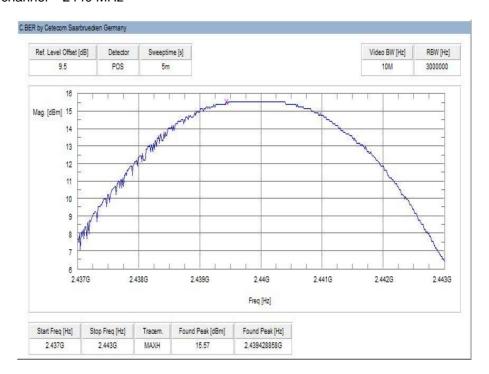
Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	3 MHz	
Video bandwidth	10 MHz	
Span	6 MHz	
Trace mode	Max hold	
Test setup	See sub clause 7.4 A	
Measurement uncertainty	See sub clause 9	

Limits:

FCC	IC	
Maximum output power		
[Conducted: 0.125 W – antenna gain max. 6 dBi] Systems using more than 75 hopping channels: Conducted: 1.0 W – antenna gain max. 6 dBi		

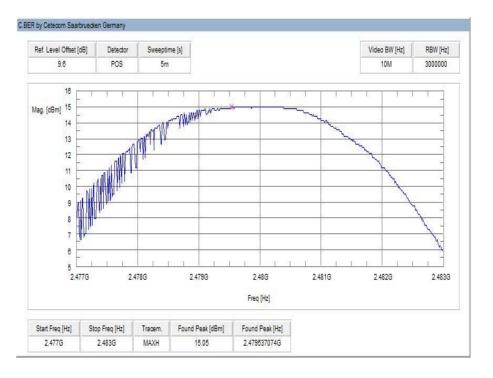

Results:

Modulation	Maximum output power conducted [dBm]		
Frequency	2402 MHz	2440 MHz	2480 MHz
GFSK	15.8	15.6	15.1



Plots:

Plot 1: lowest channel - 2402 MHz



Plot 2: middle channel - 2440 MHz

Plot 3: highest channel – 2480 MHz

12.7 Detailed spurious emissions @ the band edge - conducted

Description:

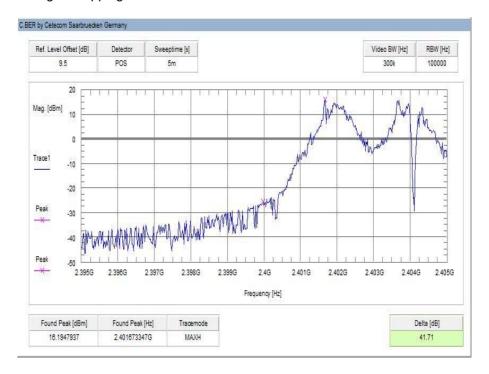
Measurement of the conducted band edge compliance. EUT is measured at the lower and upper band edge in single channel and hopping mode. The measurement is repeated for all modulations.

Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	100 kHz	
Video bandwidth	300 kHz / 500 kHz	
Span	Lower Band Edge: 2395 – 2405 MHz Upper Band Edge: 2478 – 2489 MHz	
Trace mode	Max hold	
Test setup	See sub clause 7.4 A	
Measurement uncertainty	See sub clause 9	

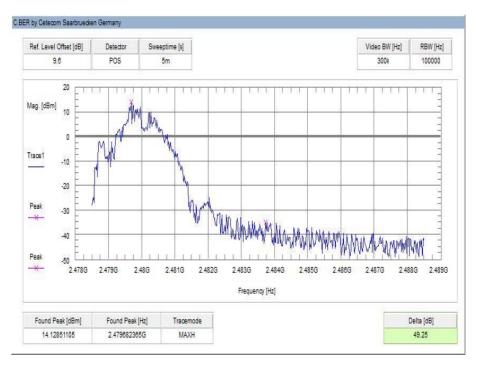
Limits:

FCC	IC

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.


Results:

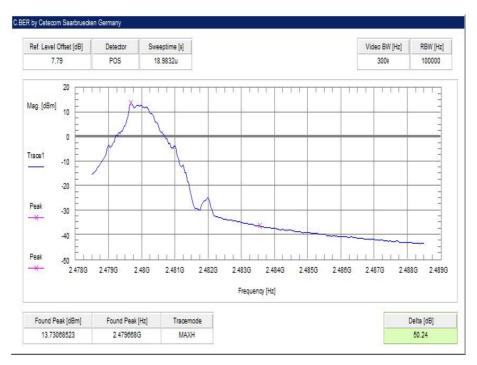
Scenario	Spurious band edge conducted [dB]
Modulation	
Lower band edge – hopping on	> 20 dB
Upper band edge – hopping on	> 20 dB
Lower band edge – hopping off	> 20 dB
Upper band edge – hopping off	> 20 dB



Plots:

Plot 1: Lower band edge - hopping on

Plot 2: Upper band edge - hopping on



Plot 3: Lower band edge - hopping off

Plot 4: Upper band edge - hopping off

12.8 Band edge compliance radiated

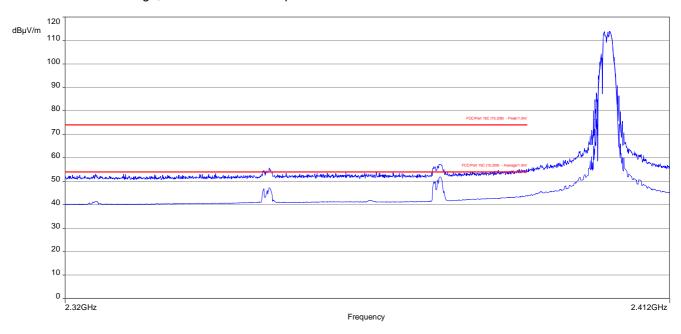
Description:

Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to single channel mode and the transmit channel is channel 00 for the lower restricted band and channel 39 for the upper restricted band. The measurement is repeated for all modulations. Measurement distance is 3m.

Measurement parameters		
Detector	Peak / RMS	
Sweep time	17.5s	
Resolution bandwidth	1 MHz	
Video bandwidth	3 MHz	
Span	Lower Band: 2370 – 2400 MHz Upper Band: 2480 – 2500 MHz	
Trace mode	Max hold	
Test setup	See sub clause 7.2 B	
Measurement uncertainty	See sub clause 9	

Limits:

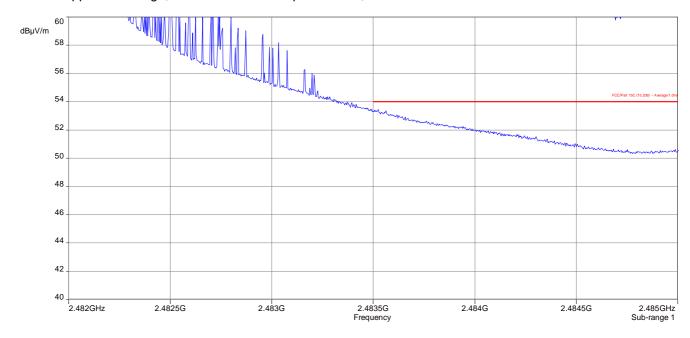
FCC	IC	
Band edge compliance radiated		
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).		
54 dBμV/m AVG 74 dBμV/m Peak		


Results:

Scenario	Band edge compliance radiated [dBµV/m]	
Modulation		
Lower restricted band	< 51.5 AVG / < 74 PP	
Upper restricted band	< 53.3 AVG / < 74 PP	

Plots:

Plot 1: Lower band edge, vertical & horizontal polarization



Plot 2: Upper band edge, vertical & horizontal polarization

Plot 3: Upper band edge, vertical & horizontal polarization, zoomed in

12.9 Spurious emissions conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The EUT is transmitting on channel 0, 19 and 39 at the same time.

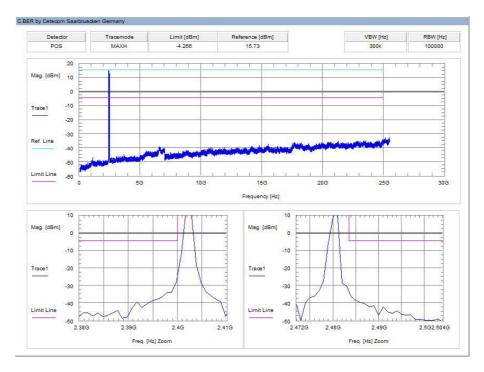
Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	100 kHz	
Video bandwidth	300 kHz	
Span	9 kHz to 25 GHz	
Trace mode	Max hold	
Test setup	See sub clause 7.4 A	
Measurement uncertainty	See sub clause 9	

Limits:

FCC	IC
TX spurious emissions conducted	

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required

Results:


TX spurious emissions conducted					
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results
2402		15.3	30 dBm	>20	Operating frequency
All detected em	nissions are mor the limit!	e than 6 dB below	-20 dBc		compliant
2440		15.7	30 dBm	>20	Operating frequency
All detected em	nissions are mor the limit!	e than 6 dB below	-20 dBc		compliant
2480		14.0	30 dBm	>20	Operating frequency
All detected en	nissions are mor the limit!	e than 6 dB below	-20 dBc		compliant

NOTE: The EUT was transmitting on lowest, middle and highest channel with full power at the same time.

Plots:

Plot 1: Channel 0, 19 and 39

12.10 Spurious emissions radiated below 30 MHz

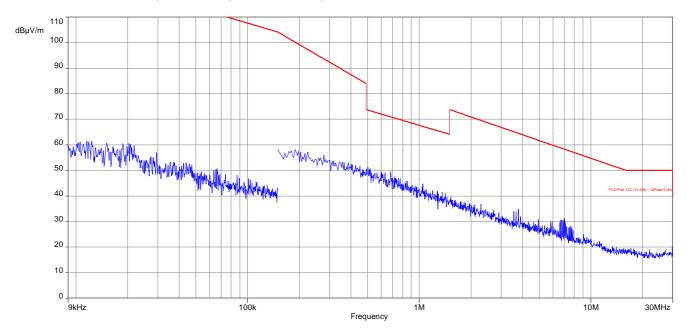
Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channels are 00; 19 and 39. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

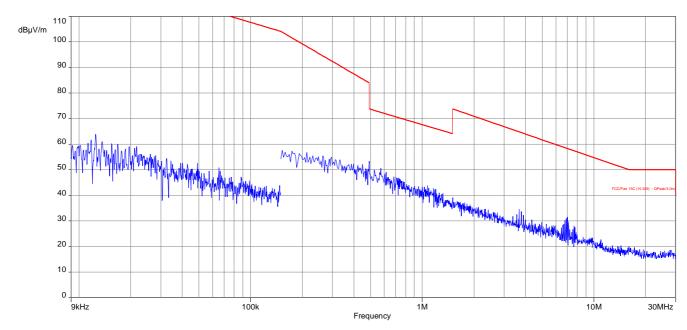
Measurement parameters		
Detector	Peak / Quasi peak	
Sweep time	Auto	
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz	
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz	
Span	9 kHz to 30 MHz	
Trace mode	Max hold	
Test setup	See sub clause 7.2 C	
Measurement uncertainty	See sub clause 9	

Limits:

FCC		IC		
TX spurious emissions radiated below 30 MHz		Hz		
Frequency (MHz)	Field strength (dBµV/m)		Measuren	nent distance
0.009 – 0.490	2400/F(kHz)		;	300
0.490 – 1.705	24000/F(kHz)			30
1.705 – 30.0	30			30

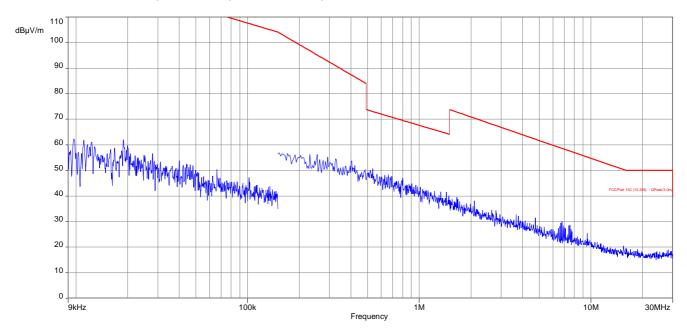

Results:

TX spurious emissions radiated below 30 MHz [dBµV/m]				
F [MHz] Detector Level [dBµV/m]				
All detected emissions are more than 20 dB below the limit.				

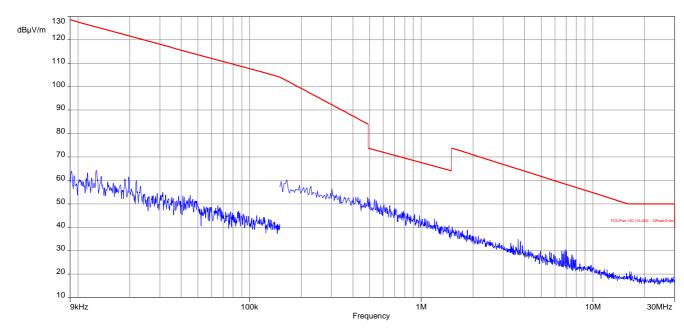


Plots:

Plot 1: 9 kHz to 30 MHz, channel 00, transmit mode, unmodulated carrier



Plot 2: 9 kHz to 30 MHz, channel 19, transmit mode, unmodulated carrier



Plot 3: 9 kHz to 30 MHz, channel 39, transmit mode, unmodulated carrier

Plot 4: 9 kHz to 30 MHz, channels 0, 19 and 39, modulated carriers

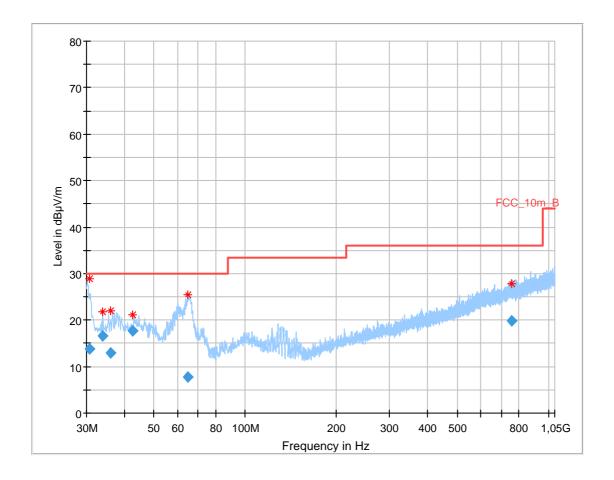
12.11 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 19 and channel 39. The measurement is performed in the mode with the highest output power.

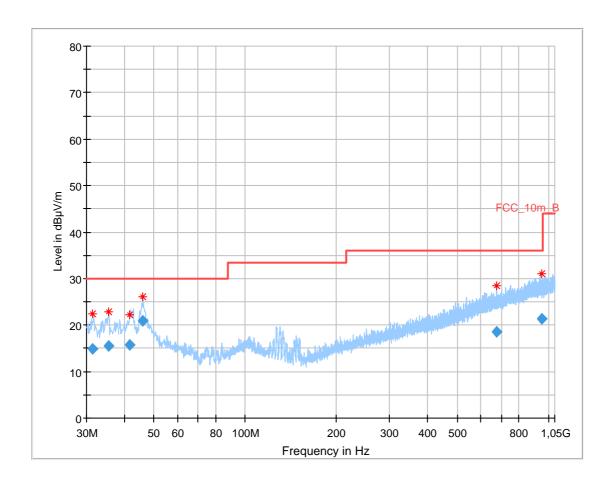
Measurement parameters					
Detector	Peak / Quasi Peak				
Sweep time	Auto				
Resolution bandwidth	3 x VBW				
Video bandwidth	120 kHz				
Span	30 MHz to 1 GHz				
Trace mode	Max hold				
Measured modulation	GFSK				
Test setup	See sub clause 7.1 A				
Measurement uncertainty	See sub clause 9				

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

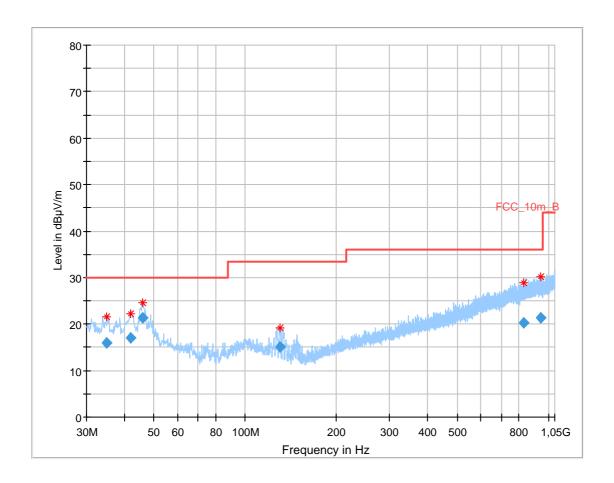

Limits:

FCC			IC .					
TX spurious emissions radiated								
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).								
	§15.209							
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance					
30 - 88	30	.0	10					
88 – 216	33	.5	10					
216 – 960 36.0 10								
Above 960	54	.0	3					

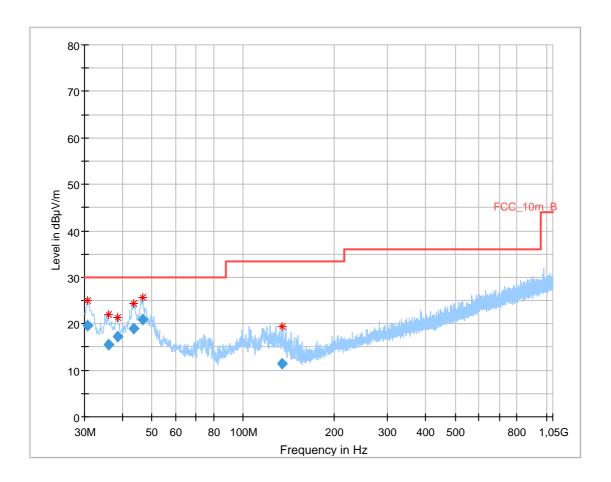
Plots: Transmit mode


Plot 1: 30 MHz to 1 GHz, TX mode, channel 00, unmodulated carrier, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.687397	13.74	30.00	16.26	1000.0	120.000	170.0	V	59.0	13.4
33.997650	16.61	30.00	13.39	1000.0	120.000	170.0	V	335.0	13.7
36.096750	12.86	30.00	17.14	1000.0	120.000	170.0	V	353.0	13.8
42.687300	17.71	30.00	12.29	1000.0	120.000	101.0	V	164.0	13.9
64.938750	7.83	30.00	22.17	1000.0	120.000	101.0	V	223.0	9.5
756.332550	19.88	36.00	16.12	1000.0	120.000	98.0	V	203.0	22.7

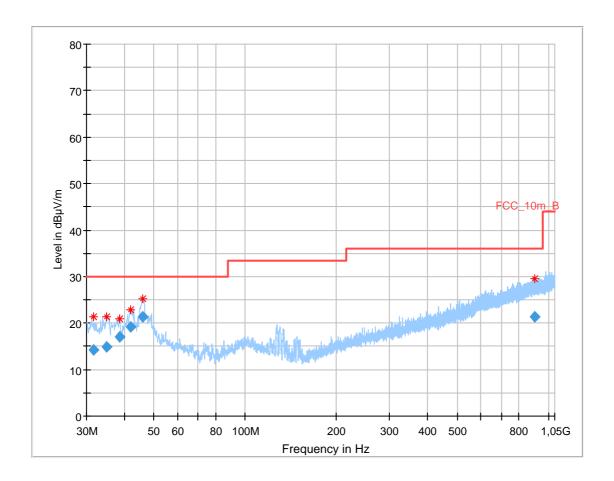

Plot 2: 30 MHz to 1 GHz, TX mode, channel 19, unmodulated carrier, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
31.511550	14.87	30.00	15.13	1000.0	120.000	170.0	V	28.0	13.5
35.530950	15.47	30.00	14.53	1000.0	120.000	101.0	V	348.0	13.8
41.692800	15.73	30.00	14.27	1000.0	120.000	170.0	V	184.0	14.0
45.779400	20.97	30.00	9.03	1000.0	120.000	101.0	V	47.0	13.7
677.124900	18.54	36.00	17.46	1000.0	120.000	100.0	Н	295.0	21.3
947.670300	21.43	36.00	14.57	1000.0	120.000	101.0	V	148.0	24.3


Plot 3: 30 MHz to 1 GHz, TX mode, channel 39, unmodulated carrier, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.989750	15.99	30.00	14.01	1000.0	120.000	101.0	V	148.0	13.8
42.055350	17.08	30.00	12.92	1000.0	120.000	170.0	V	113.0	14.0
46.117650	21.37	30.00	8.63	1000.0	120.000	98.0	V	85.0	13.6
130.233450	15.16	33.50	18.34	1000.0	120.000	98.0	V	69.0	9.4
831.253500	20.36	36.00	15.64	1000.0	120.000	170.0	V	55.0	23.2
941.152800	21.31	36.00	14.69	1000.0	120.000	170.0	V	203.0	24.2

Plot 4: 30 MHz to 1 GHz, TX mode, channel 0, 19 and 39, modulated carriers, vertical & horizontal polarization



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.619950	19.67	30.00	10.33	1000.0	120.000	100.0	٧	224.0	13.4
36.067050	15.52	30.00	14.48	1000.0	120.000	101.0	٧	65.0	13.8
38.682450	17.30	30.00	12.70	1000.0	120.000	101.0	٧	120.0	14.0
43.418700	18.97	30.00	11.03	1000.0	120.000	170.0	٧	216.0	13.9
46.533900	21.01	30.00	8.99	1000.0	120.000	98.0	٧	13.0	13.5
134.082600	11.47	33.50	22.03	1000.0	120.000	170.0	٧	49.0	9.1

Plots: Receiver mode

Plot 1: 30 MHz to 1 GHz, RX / idle – mode, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
31.585800	14.30	30.00	15.70	1000.0	120.000	170.0	٧	62.0	13.5
35.066550	14.92	30.00	15.08	1000.0	120.000	170.0	٧	345.0	13.8
38.691300	17.07	30.00	12.93	1000.0	120.000	101.0	٧	145.0	14.0
42.020700	19.15	30.00	10.85	1000.0	120.000	101.0	٧	130.0	14.0
46.029300	21.30	30.00	8.70	1000.0	120.000	98.0	٧	206.0	13.6
898.658700	21.35	36.00	14.65	1000.0	120.000	170.0	Н	26.0	24.1

12.12 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 19 and channel 39. The measurement is performed in the mode with the highest output power.

Measurem	nent parameters
Detector	Peak / RMS
Sweep time	Auto
Resolution bandwidth	1 MHz
Video bandwidth	3 x RBW
Span	1 GHz to 26 GHz
Trace mode	Max hold
Measured modulation	GFSK
Test setup	See sub clause 7.2 A (1 GHz - 12.75 GHz) See sub clause 7.3 A (12.75 GHz - 26 GHz)
Measurement uncertainty	See sub clause 9

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

FCC IC								
	TX spurious em	issions radiated						
radiator is operating, the radio frequence that in the 100 kHz bandwidth within the conducted or a radiated measurement. In addition, radiated emissions which for	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).							
	§15.	.209						
Frequency (MHz) Field strength (dBµV/m) Measurement distance								
Above 960	Above 960 54.0 3							

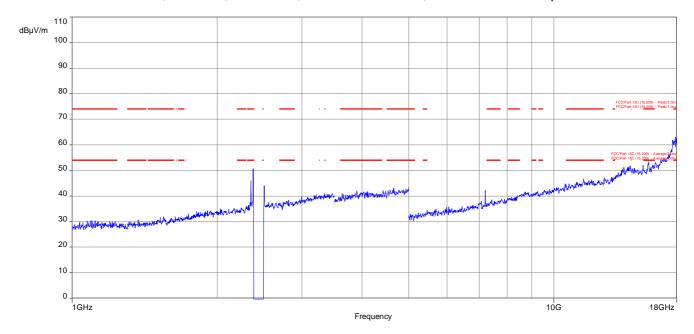
Results: Transmitter mode unmodulated carrier

	TX spurious emissions radiated [dBμV/m]							
2402 MHz 2440 MHz 2480 MHz								
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]
,	Peak	-/-	7320	Peak	53.7	2376	Peak	51.3
-/-	AVG	-/-	7320	AVG	50.2	2370	AVG	44.6
,	Peak	-/-	,	Peak	-/-	7440	Peak	55.6
-/-	AVG	-/-	-/-	AVG	-/-	7440	AVG	52.4

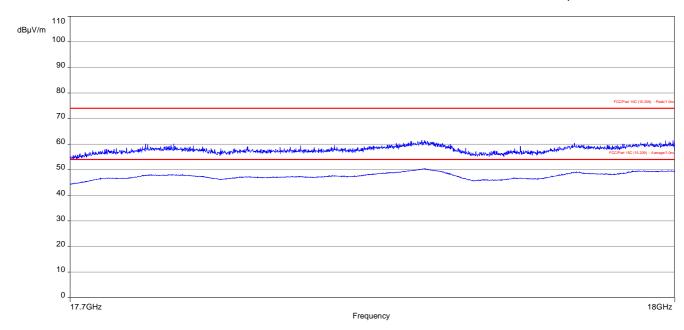
Results: Transmitter mode modulated carriers

TX spurious emissions radiated [dBµV/m]						
	2402 MHz					
F [MHz]	Detector	Level [dBµV/m]				
7319	Peak	51.4				
7319	AVG	46.5				
7439	Peak	56.1				
7439 AVG 52.7						
,	-/-					
-/-	AVG	-/-				

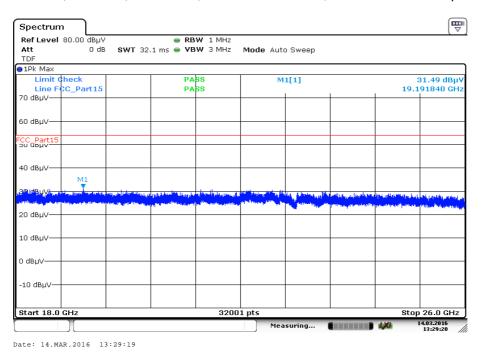
Results: Receiver mode


RX spurious emissions radiated [dBμV/m]							
F [MHz] Detector Level [dBµV/m]							
All detect	ed emissions are more than 20 dB below	the limit.					
,	-/-						
-/-	AVG	-/-					

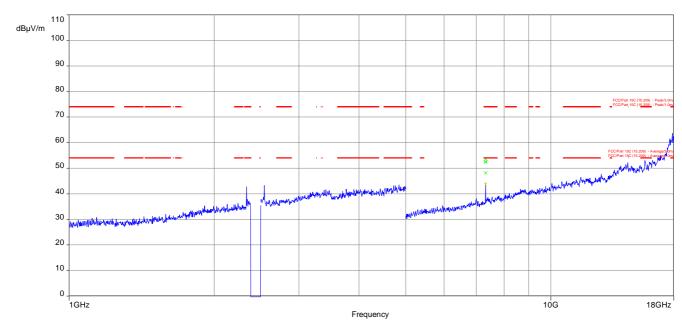
Note: The limit was recalculated with 20 dB / decade (Part 15.31) for all radiated spurious emissions 30 MHz to 1 GHz from 3 meter limit to a 10 meter distance. (40dB/decade for emissions < 30MHz)


Plots: Transmitter mode

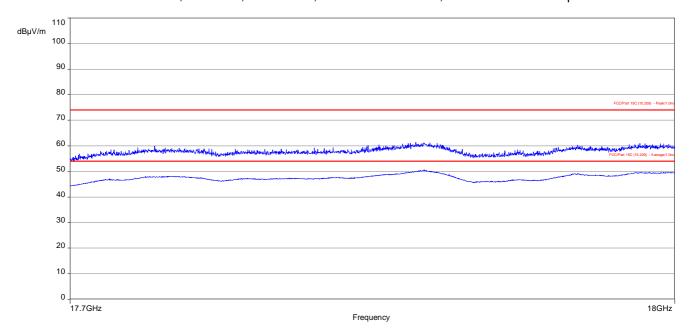
Plot 1: 1 GHz to 18 GHz, TX mode, channel 00, unmodulated carrier, vertical & horizontal polarization

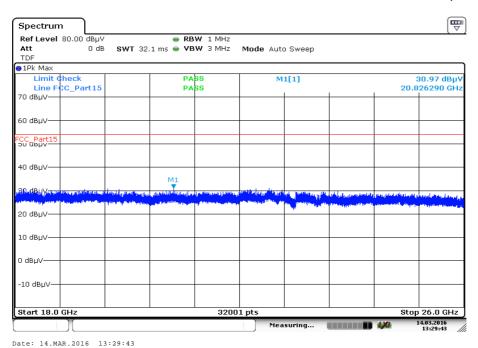

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 2: 17.7 GHz to 18 GHz, TX mode, channel 00, unmodulated carrier, vertical & horizontal polarization

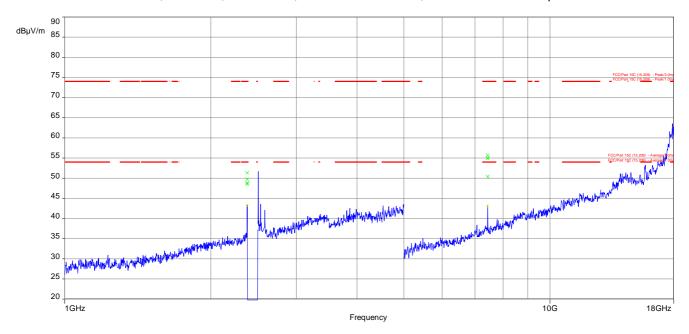


Plot 3: 18 GHz to 26 GHz, TX mode, channel 00, unmodulated carrier, vertical & horizontal polarization

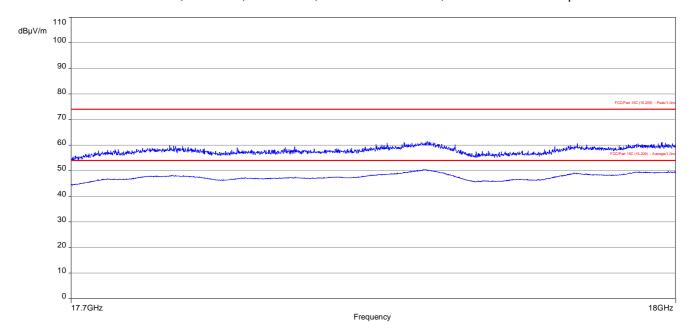

Plot 4: 1 GHz to 18 GHz, TX mode, channel 19, unmodulated carrier, vertical & horizontal polarization


The carrier signal is notched with a 2.4 GHz band rejection filter.

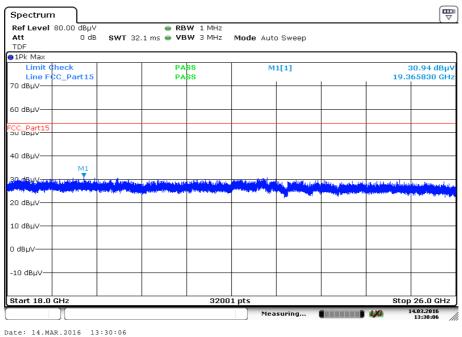
Plot 5: 17.7 GHz to 18 GHz, TX mode, channel 19, unmodulated carrier, vertical & horizontal polarization



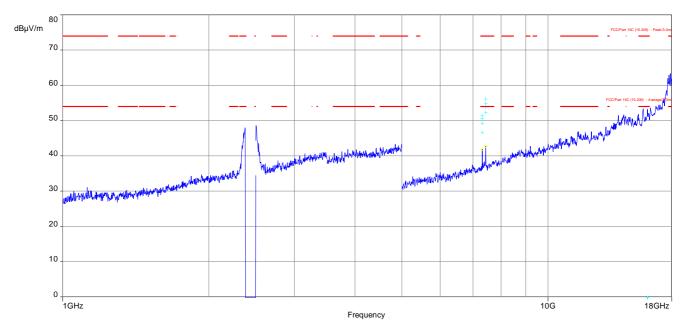
Plot 6: 18 GHz to 26 GHz, TX mode, channel 19, unmodulated carrier, vertical & horizontal polarization



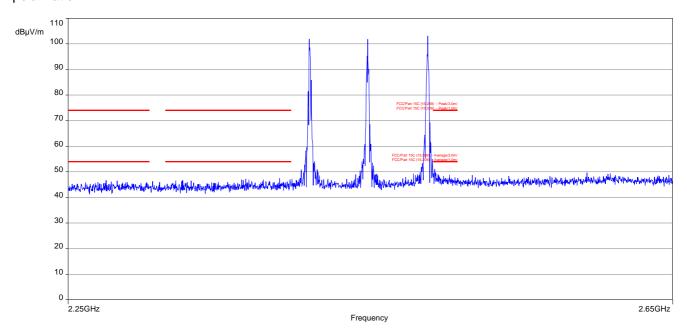
Plot 7: 1 GHz to 18 GHz, TX mode, channel 39, unmodulated carrier, vertical & horizontal polarization

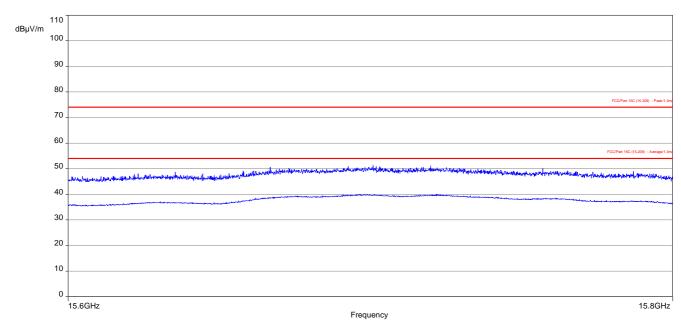

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 8: 17.7 GHz to 18 GHz, TX mode, channel 39, unmodulated carrier, vertical & horizontal polarization

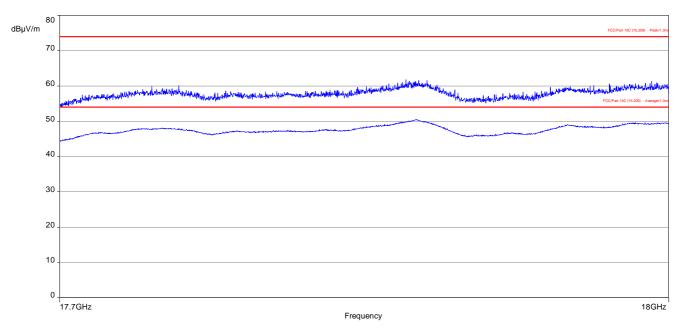


Plot 9: 18 GHz to 26 GHz, TX mode, channel 39, unmodulated carrier, vertical & horizontal polarization

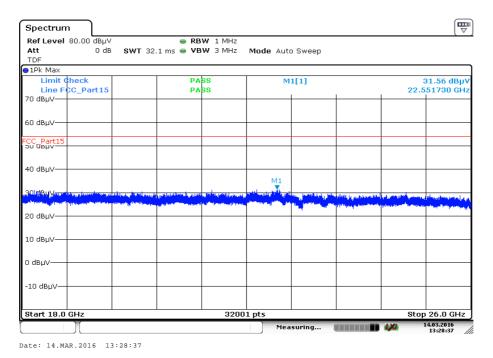

Plot 10: 1 GHz to 18 GHz, TX mode, channel 0, 19 and 39, modulated carriers, vertical & horizontal polarization


The carrier signal is notched with a 2.4 GHz band rejection filter.

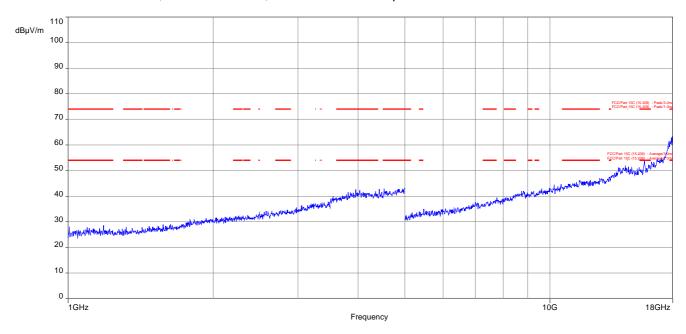
Plot 11: 2.25 GHz to 2.65 GHz, TX mode, channel 0, 19 and 39, modulated carriers, vertical & horizontal polarization

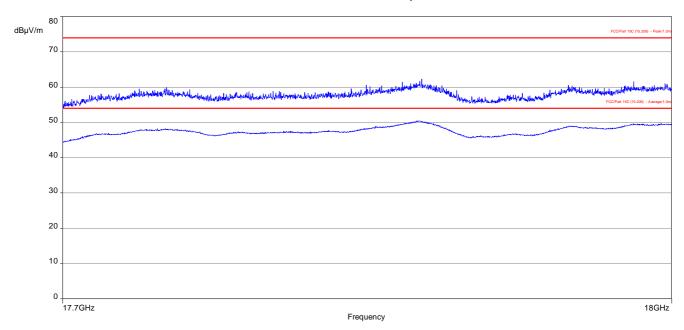


Plot 12: 15.6 GHz to 15.8 GHz, TX mode, channel 0, 19 and 39, modulated carriers, vertical & horizontal polarization



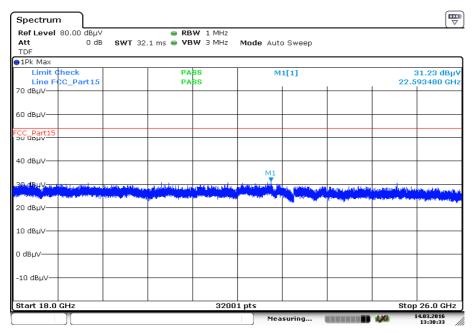
Plot 13: 17.7 GHz to 18 GHz, TX mode, channel 0, 19 and 39, modulated carriers, vertical & horizontal polarization


Plot 14: 18 GHz to 26 GHz, TX mode, channel 0, 19 and 39, modulated carriers, vertical & horizontal polarization



Plots: Receiver mode

Plot 1: 1 GHz to 18 GHz, RX / idle – mode, vertical & horizontal polarization



Plot 2: 17.7 GHz to 18 GHz, RX / idle – mode, vertical & horizontal polarization

Plot 3: 18 GHz to 26 GHz, RX / idle – mode, vertical & horizontal polarization

Date: 14.MAR.2016 13:30:33

12.13 Spurious emissions conducted below 30 MHz (AC conducted)

Description:

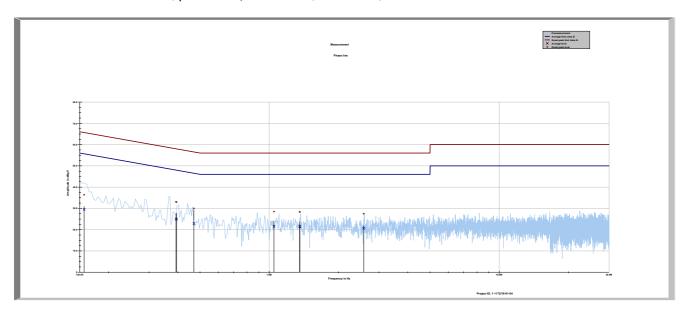
Measurement of the conducted spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channel is channel 19. This measurement is representative for all channels and modes. If critical peaks are found channel 00 and channel 39 will be measured too. The measurement is performed in the mode with the highest output power. Both power lines, phase and neutral line, are measured. Found peaks are remeasured with average and quasi peak detection to show compliance to the limits.

Measurement parameters					
Detector	Peak - Quasi peak / average				
Sweep time	Auto				
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz				
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz				
Span	9 kHz to 30 MHz				
Trace mode	Max hold				
Test setup	See sub clause 7.5. A				
Measurement uncertainty	See sub clause 9				

Limits:

FCC		IC		
TX spurious emissions conducted < 30 MHz				
Frequency (MHz)	Quasi-peak (dBµV/m)		Average (dBμV/m)	
0.15 – 0.5	66 to 56*		56 to 46*	
0.5 – 5	56		46	
5 – 30.0	60		50	

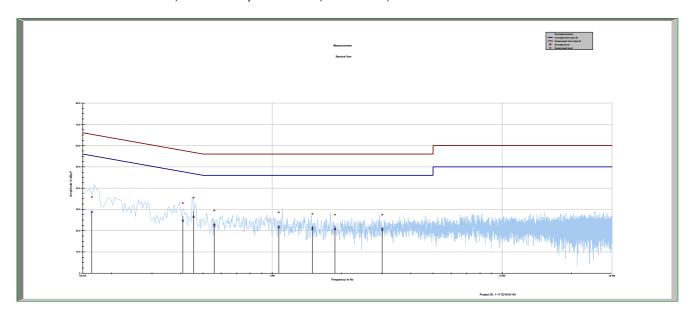
^{*}Decreases with the logarithm of the frequency


Results:

Spurious emissions conducted < 30 MHz [dBµV/m]					
F [MHz] Detector Level [dBµV/m]					
No emissions detected					

Plots:

Plot 1: 150 kHz to 30 MHz, phase line, channels 0, 19 and 39, modulated carriers



Final results:

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	đВ	dΒμV	dΒμV	dв	dΒμV
0.156716	36.39	29.25	65.636	29.52	26.29	55.808
0.393122	33.06	24.94	57.997	25.01	24.05	49.054
0.394983	32.90	25.06	57.958	24.89	24.11	49.000
0.470149	29.96	26.55	56.511	22.87	23.98	46.853
1.048348	28.47	27.53	56.000	21.54	24.46	46.000
1.356070	28.34 27.66		56.000	21.36	24.64	46.000
1.358653	28.39	27.61	56.000	21.45	24.55	46.000
2.573131	131 27.50 28.50		56.000	20.64	25.36	46.000

Plot 2: 150 kHz to 30 MHz, neutral line, channels 0, 19 and 39, modulated carriers

Final results:

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	đВ	dΒμV	dΒμV	đВ	dΒμV
0.164107	35.76	29.49	65.253	28.92	26.68	55.597
0.408626	32.93	24.74	57.676	24.71	23.90	48.611
0.454584	35.54	21.25	56.791	26.48	20.82	47.298
0.559297	29.49	26.51	56.000	22.58	23.42	46.000
1.067465	28.61	27.39	56.000	21.59	24.41	46.000
1.494430	27.92	28.08	56.000	20.90	25.10	46.000
1.872494	27.52	28.48	56.000	20.76	25.24	46.000
3.006194	194 27.50 28.50		56.000	20.55	25.45	46.000

1	3	<u></u>	bservations
	-7	.,	usei vaiiulis

No observations except those reported with the single test cases have been made.

Annex A Document history

Version	Applied changes	Date of release
	Initial release	2016-03-31
А	Antenna connector information added	2016-04-21

Annex B Further information

Glossary

AVG - Average

DUT - Device under test

EMC - Electromagnetic Compatibility

EN - European Standard EUT - Equipment under test

ETSI - European Telecommunications Standard Institute

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware IC - Industry Ca

IC - Industry Canada
Inv. No. - Inventory number
N/A - Not applicable
PP - Positive peak
QP - Quasi peak
S/N - Serial number
SW - Software

PMN - Product marketing name HMN - Host marketing name

HVIN - Hardware version identification number FVIN - Firmware version identification number

Annex C Accreditation Certificate

Front side of certificate

Back side of certificate

Deutsche Akkreditierungsstelle GmbH

Beliehene gemäß § 8 Absatz 1 AkkStelleG i.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilateralen Abkommen von EA, ILAC und IAF zur gegenseitigen Anerkennung

Akkreditierung

Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaboratorium

CETECOM ICT Services GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken

die Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen durchzuführen:

Drahtgebundene Kommunikation einschileßlich xDSL VolP und DECT Akustik

Volr und DELI
Akustik
Funk einschließlich WLAN
Funk einschließlich WLAN
Stell Range Devices (SRD)
Stell
MilMax und Richtfunk
Mobilitunk (S0M) / DCS, Over the Air (OTA) Performance)
Elektromagnetische Verträglichkeit (EMV) einschließlich Autom
Forduktsicherheit
SAR und Hearing Aid Compatibility (HAC)
Umweltsimulation
Smart Card Terminals
Bluetooth
Wi-Fi- Services

Die Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheld vom 07 03 2014 mit der Akkreditierungsmammer D-PI-12076-01 und ist giltig 17.01.2018. Sie besteht aus diesem Deckblatt, der Rückseite des Deckblat, sund der folgenden Anlage mit Insgesamt 77 Seiten.

Registrierunganummer der Urkunde: D-PL-12076-01-00

Frankfurt om Main, 07.03.2014

Deutsche Akkreditierungsstelle GmbH

Standort Berlin Spittelmarkt 10 10117 Berlin

Standort Frankfurt am Main Gartenstraße 6 60594 Frankfurt am Main

Die Akkreditierung erfolgte gemöß des Grechtes über die Akkreditierungsstelle (AkkstelleC) vom 31. Juli 2009 (BiGB. I. S. 2673) sewie der Veronfrung (EG) Nr. 765/2008 des Curogaischen Parlament und des Rattes vom 9. Juli 2008 über die Versachfund (die Akkreditierung und Mahrtüberwechung im Zusammenhang mit der Vermunktung von Produkten (Abl. 1.218 vom 9. Juli 2008 Sex. 30.). Die Die Akkreditierung von Sex. 31.0. Die Die Akkreditierung von Sex. 31.0. Die Die Akkreditierung der Fürgenen er operation for Autzeitätism (EA), des Heinrattenal Accreditation form ((Ar)) and der Intermational Laberdung Accreditation Cooperation for Akkreditierung der Die Akkreditierung der Sex. 31.0. Die Unterzeichner eieser Abkommen erkonnen ihre Akkreditierungen gegenstellig an.

Der aktue le Stund der Mitgliedschaft kann folgenden Webseiten entnommen werden: FA: www.curopeum-accred tation.org IASC www.cikin.org IASC www.cikin.org

Note:

The current certificate including annex may be received from CETECOM ICT Services on request.