

SUBMITTAL APPLICATION REPORT

FOR GRANT OF CERTIFICATION

FOR

Model: CL2510-100-232

2400.7 - 2471.0 MHz

FHSS Transceiver

FCC ID: KQL-CL2510

IC: 2268C-CL2510

FOR

Laird Technologies

11160 Thompson Avenue Lenexa KS 66219

Test Report Number: 100313

Authorized Signatory: Sot DRogers

Scot D. Rogers

FCC ID: KQL-CL2510 IC: 2268C-CL2510 SN: ENG 232 Page 1 of 51 Date: April 2, 2010

ROGERS LABS, INC.

4405 West 259th Terrace Louisburg, KS 66053 Phone / Fax (913) 837-3214

Engineering Test Report For Grant of Certification Application

FOR

CFR 47, Part 15C - Intentional Radiator, Paragraph 15.247 and Industry Canada RSS-210

License Exempt Intentional Radiator

For

Laird Technologies

11160 Thompson Avenue Lenexa KS 66219

Daniel Waters Engineering Specialist

Frequency Hopping Spread Spectrum Transceiver Model: CL2510-100-232 Frequency Range 2400.7 - 2471.0 MHz FCC ID#: KQL-CL2510 IC: 2268C-CL2510

Test Date: March 13, 2010

Certifying Engineer: Scot DRogers

Scot D. Rogers Rogers Labs, Inc. 4405 West 259th Terr

4405 West 259th Terrace Louisburg, KS 66053

Telephone/Facsimile: (913) 837-3214

This report shall not be reproduced except in full, without the written approval of the laboratory. This report must not be used by the client to claim product endorsement by NVLAP, NIST, or any agency of the U.S. Government.

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1 Laird Technologies Model: CL2510-100-232 Test #: 100313

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt FCC ID: KQL-CL2510 IC: 2268C-CL2510 SN: ENG 232 Page 2 of 51 Date: April 2, 2010

Table of Contents

TABLE OF CONTENTS	3
FORWARD	6
OPINION / INTERPRETATION OF RESULTS	6
ENVIRONMENTAL CONDITIONS	6
EQUIPMENT TESTED	7
2.1033(B) APPLICATION FOR CERTIFICATION	7
APPLICABLE STANDARDS & TEST PROCEDURES	8
EQUIPMENT, FUNCTION AND TESTING PROCEDURES	8
Equipment and Cable Configurations	9
AC Line Conducted Emission Test Procedure	9
Radiated Emission Test Procedure	9
UNITS OF MEASUREMENTS	9
TEST SITE LOCATIONS	10
LIST OF TEST EQUIPMENT	10
SUBPART C - INTENTIONAL RADIATORS	11
Antenna Requirements	11
Restricted Bands of Operation	11
Radiated Emissions in Restricted Bands Data (6 dBi Omni) (worst-case)	12
Radiated Emissions in Restricted Bands Data (9 dBi Panel) (worst-case)	13
Summary of Results for Radiated Emissions in Restricted Bands	14
Statement of Modifications and Deviations	14
AC line Conducted Emissions Testing Procedure	14
Figure One AC Line Conducted Emissions Line 1	15
Figure Two AC Line Conducted Emissions Line 2.	15
AC Line Conducted Emissions Data (Highest Emissions)	16
Summary of Results for AC Line Conducted Emissions	16
Radiated Emissions Testing Procedure	17

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt

Figure Three General Radiated Emissions taken at 1 meter in screen room	18
Figure Four General Radiated Emissions taken at 1 meter in screen room	18
Figure Five General Radiated Emissions taken at 1 meter in screen room	19
Figure Six General Radiated Emissions taken at 1 meter in screen room	19
Figure Seven General Radiated Emissions taken at 1 meter in screen room	20
Figure Eight General Radiated Emissions taken at 1 meter in screen room	20
Figure Nine General Radiated Emissions taken at 1 meter in screen room	21
Radiated Emissions from EUT Data (Highest Emissions)	22
Summary of Results for General Radiated Emissions	22
Statement of Modifications and Deviations	22
RECEIVER ANTENNA POWER CONDUCTION LIMITS	23
Figure Ten Receiver Temporary Antenna Port Conducted Emissions	24
Figure Eleven Receiver Temporary Antenna Port Conducted Emissions	24
Figure Twelve Receiver Antenna Port Conducted Emissions	25
Figure Thirteen Receiver Antenna Port Conducted Emissions	25
Figure Fourteen Receiver Antenna Port Conducted Emissions	26
Figure Fifteen Receiver Antenna Port Conducted Emissions	26
Receiver Antenna Conducted Emissions Data	27
Receiver Radiated Emissions Data	27
Summary of Results for Receiver Emissions	27
Operation in the Band 2400-2483.5 MHz	28
Figure Sixteen Plot of Antenna Port Conducted Emissions	29
Figure Seventeen Plot of Antenna Port Conducted Emissions	29
Figure Eighteen Plot of Antenna Port Conducted Emissions	30
Figure Nineteen Plot of Antenna Port Conducted Emissions	30
Figure Twenty Plot of Operation Across Operational Band (79 Hop Set)	31
Figure Twenty-one Plot of Operation Across Operational Band (43 Hop Set)	31
Figure Twenty-two Plot of 20 dB Occupied Bandwidth (79 Hop Set)	32
Figure Twenty-three Plot of 20 dB Occupied Bandwidth (79 Hop Set)	32
Figure Twenty-four Plot of 20 dB Occupied Bandwidth (79 Hop Set)	33

Laird Technologies
Model: CL2510-100-232
Test #: 100313
Test to: FCC (15.247), RS

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt FCC ID: KQL-CL2510 IC: 2268C-CL2510 SN: ENG 232 Page 4 of 51 Date: April 2, 2010

	Figure Twenty-five Plot of 20 dB Occupied Bandwidth (43 Hop Set)	33
	Figure Twenty-six Plot of 20 dB Occupied Bandwidth (43 Hop Set)	34
	Figure Twenty-seven Plot of 20 dB Occupied Bandwidth (43 Hop Set)	34
	Figure Twenty-eight Plot of Channel Spacing (79 Hop Set)	35
	Figure Twenty-nine Plot of Channel Spacing (43 Hop Set)	35
	Figure Thirty Plot of Dwell time on Channel (79 Hop Set)	36
	Figure Thirty-one Plot of Channel Occupancy (79 Hop Set)	36
	Figure Thirty-two Plot of Plot of Dwell time on Channel (43 Hop Set)	37
	Figure Thirty-three Plot of Channel Occupancy (43 Hop Set)	37
	Figure Thirty-four Plot of Low Band Edge (79 Hop Set)	38
	Figure Thirty-five Plot of High Band Edge (79 Hop Set)	38
	Figure Thirty-six Plot of Low Band Edge (43 Hop Set)	39
	Transmitter Antenna Conducted Emissions Data	39
	Transmitter Radiated Emissions Data (6 dBi Omni) (43 Hop Set)	40
	Transmitter Radiated Emissions Data (6 dBi Omni) (79 Hop Set)	41
	Transmitter Radiated Emissions Data (9 dBi Panel) (43 Hop Set)	42
	Transmitter Radiated Emissions Data (9 dBi Panel) (79 Hop Set)	43
	Summary of Results for Radiated Emissions of Intentional Radiator	44
	Statement of Modifications and Deviations	44
41	NNEX	45
	Annex A Measurement Uncertainty Calculations	46
	Annex B Test Equipment List For Rogers Labs, Inc	48
	Annex C Rogers Qualifications	49
	Annex D FCC Site Registration Letter	50
	Annex E Industry Canada Site Registration Letter	51

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt

FCC ID: KQL-CL2510 IC: 2268C-CL2510 SN: ENG 232 Page 5 of 51 Date: April 2, 2010

Forward

The following information is submitted for consideration in obtaining Grant of Certification for a License Exempt Intentional Radiator operating under CFR 47 Paragraph 15.247 and RSS-210. The frequency hopping spread spectrum transceiver is design offers low cost solution for remote wireless communications.

Name of Applicant: Laird Technologies 11160 Thompson Avenue Lenexa KS 66219

Model: CL2510-100-232 Note: The design offers operation as either 43 or 79 hopping set version and may be used with authorized antenna configurations as documented.

FCC I.D.: KQL-CL2510 FRN: 0006 3090 82 IC: 2268C-CL2510

Frequency Range: 2400.7 -2471 MHz

Operating Power: 0.125 Watt antenna port conducted, 122.3 dBµV/m @ 3-meters (3- meter

radiated measurement 9 dBi Panel), Occupied Bandwidth 1,144 kHz, and

worst-case receiver radiated emission 26.2 dBμV/m @ 3-meters

Opinion / Interpretation of Results

Tests Performed	Minimum Margin (dB)	Result
Emissions as per CFR 47 paragraphs 2 and 15.205	17.7	Complies
Emissions as per CFR 47 paragraphs 2 and 15.207	30.9	Complies
Emissions as per CFR 47 paragraphs 2 and 15.209	9.5	Complies
Emissions as per CFR 47 paragraphs 2 and 15.247	2.9	Complies
Emissions as per RSS-210 Issue 7, Dated June 2007	As Documented	Complies

Environmental Conditions

Ambient Temperature 21.2° C

Relative Humidity 29%

Atmospheric Pressure 1005.7 mb

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1 Laird Technologies Model: CL2510-100-232 Test #: 100313

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt

FCC ID: KQL-CL2510 IC: 2268C-CL2510 SN: ENG 232 Page 6 of 51 Date: April 2, 2010

Equipment Tested

 Equipment
 Model
 FCC I.D.#

 EUT
 CL2510-100-232
 KQL-CL2510

AC Adapter WR9QC2000LCP-N-NA N/A
CPU HPCRUSA-02T1-75 N/A
Antenna IG2450-RS36 (Omni 6dBi) N/A
Antenna ID2450-RS36 (Patch 9 dBi) N/A

2.1033(b) Application for Certification

(1) Manufacturer: Laird Technologies

11160 Thompson Avenue

Lenexa KS 66219

(2) Identification: Model: CL2510-100-232

FCC ID: KQL-CL2510 IC: 2268C-CL2510

(3) Instruction Book:

Refer to Exhibit for Instruction Manual.

(4) Description of Circuit Functions:

Refer to Exhibit of Operational Description.

(5) Block Diagram with Frequencies:

Refer to Exhibit of Operational Description.

(6) Report of Measurements:

Report of measurements follows in this Report.

(7) Photographs: Construction, Component Placement, etc.:

Refer to Exhibit for photographs of equipment.

- (8) List of Peripheral Equipment Necessary for operation. The equipment operates from power received from authorized AC/DC power adapter. The EUT was connected to and communicated with CPU through the RS-232 interface of the laptop computer during testing.
- (9) Transition Provisions of 15.37 are not being requested.
- (10) Not Applicable. The unit is not a scanning receiver.
- (11) Not Applicable. The EUT does not operate in the 59 64 GHz frequency band.
- (12) The equipment is not software defined and this section is not applicable.

Revision 1

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt

NVLAP Lab Code 200087-0

Applicable Standards & Test Procedures

In accordance with the Federal Communications Code of Federal Regulations, dated October 1,

2009, Part 2, Subpart J, Paragraphs 2.907, 2.911, 2.913, 2.925, 2.926, 2.1031 through 2.1057,

and applicable parts of paragraph 15, Part 15C Paragraph 15.247, and Industry Canada RSS-210

the following information is submitted.

Test procedures used are the established Methods of Measurement of Radio-Noise Emissions as

described in the ANSI 63.4-2003 Document, FCC documents DA00-1407 and DA00-705, RSS-

210 and/or TIA/EIA 603-1. Testing for the AC line-conducted emissions were performed as

defined in sections 7 and 13.1.3, testing of the radiated emission was performed as defined in

sections 8 and 13.1.4 of ANSI C63.4.

Equipment, Function and Testing Procedures

The EUT is a 2400.7 - 2471.0 MHz frequency hopping spread spectrum transceiver used to

transmit data in applications offering remote wireless connectivity. The unit is marketed for use

to incorporate a wireless link to exchange data information from one point to another. For

testing purposes the CL2510-100-232 was interfaced and communicating to the laptop computer

allowing for operational control of the transceiver and data communications. Operation may be

set for communications for one of three data modes:

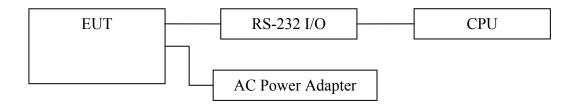
1. 79 hops with 280kbps RF data rate

2. 43 hops with 500kbps RF data rate

3 43 hops with 280kbps RF data rate

The CL2510-100-232 receives power form the authorized external AC/DC power adapter. No

other interfacing options are provided on the design. For testing purposes the CL2510-100-232


and support equipment were powered from the AC power adapter supplies and set to transmit

through all data modes available. The device is marketed for wireless solution and used with

approved antennas only. The design complies with the unique antenna connection requirements.

Equipment and Cable Configurations

AC Line Conducted Emission Test Procedure

The CL2510-100-232 operates from DC power only and must be connected to the authorized AC power adapter for operation. For testing purposes, the manufacturer supplied AC power adapter for the EUT was used to power the system. Testing for the AC line-conducted emissions testing was performed as defined in sections 7 and 13.1.3 of ANSI C63.4. The test setup including the EUT was arranged in a typical equipment configuration and placed on a 1 x 1.5-meter wooden bench, 0.8 meters high located in a screen room. The power lines of the system were isolated from the power source using a standard LISN with a 50 μ Hy choke. EMI was coupled to the spectrum analyzer through a 0.1 μ F capacitor internal to the LISN. The LISN was positioned on the floor beneath the wooden bench supporting the EUT. The power lines and cables were draped over the back edge of the table.

Radiated Emission Test Procedure

The EUT was placed on a rotating 1 x 1.5-meter wooden platform, 0.8 meters above the ground plane at a distance of 3 meters from the FSM antenna. Testing for the radiated emissions was performed as defined in sections 8 and 13.1.4 of ANSI C63.4. EMI energy was maximized by equipment placement, raising and lowering the FSM antenna, changing the antenna polarization, and by rotating the turntable. Each emission was maximized before data was taken using a spectrum analyzer. Refer to photographs in the test setup exhibits for EUT placement during testing.

Units of Measurements

Conducted EMI Data is in dBµV; dB referenced to one microvolt

Radiated EMI Data is in dBµV/m; dB/m referenced to one microvolt per meter

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1

Laird Technologies Model: CL2510-100-232 Test #: 100313 Test to: FCC (15.247), RSS-210

File: Laird CL2510 TestRpt

FCC ID: KQL-CL2510 IC: 2268C-CL2510 SN: ENG 232 Page 9 of 51 Date: April 2, 2010

Test Site Locations

Conducted EMI The AC power line conducted emissions testing were performed in a

shielded screen room located at Rogers Labs, Inc., 4405 W. 259th Terrace,

Louisburg, KS

Radiated EMI The radiated emissions tests were performed at the 3 meters, Open Area

Test Site (OATS) located at Rogers Labs, Inc., 4405 W. 259th Terrace,

Louisburg, KS

Site Registration Refer to Annex for FCC and Industry Canada Site Registration Letters

Lab code 200087-0 **NVLAP**

List of Test Equipment

A Rohde & Schwarz ESU40 and/or Hewlett Packard 8591EM Spectrum Analyzer was used as the measuring device for the emissions testing of frequencies below 1 GHz. A Rohde & Schwarz ESU40 and/or Hewlett Packard 8562A Spectrum Analyzer was used as the measuring device for testing the emissions at frequencies above 1 GHz. The analyzer settings used are described in the following table. Refer to the annex for a complete list of test equipment.

Analyzer Settings						
	AC Line Conducted Emissions	3				
RBW	AVG. BW	Detector Function				
9 kHz	30 kHz	Peak/Quasi Peak				
Ra	adiated Emissions 30-1000 MI	Hz				
RBW	AVG. BW	Detector Function				
100 kHz	100 kHz	Peak				
120 kHz	300 kHz	Peak/Quasi Peak				
Radiated Emissions Above 1000 MHz						
RBW	Video BW	Detector Function				
1 MHz	1 MHz	Peak / Average				

Date: April 2, 2010

Equipment	<u>Manufacturer</u>	<u>Model</u>	Calibration Date	<u>Due</u>
LISN	Comp. Design	FCC-LISN-2-MOD.CD	10/09	10/10
Antenna	ARA	BCD-235-B	10/09	10/10
Antenna	EMCO	3147	10/09	10/10
Antenna	EMCO	3143	5/09	5/10
Analyzer	HP	8591EM	5/09	5/10
Analyzer	HP	8562A	5/09	5/10
Analyzer	Rohde & Schwarz	ESU40	2/09	5/10

Subpart C - Intentional Radiators

As per CFR 47, Subpart C, paragraph 15.247 and RSS-210 the following information is submitted.

Antenna Requirements

The product is produced with reverse polarity SMA antenna connector to be used with approved antenna structures. The antenna connection point complies with the unique antenna connection requirements. The requirements of 15.203 are fulfilled and there are no deviations or exceptions to the specification.

Restricted Bands of Operation

Spurious emissions falling in the restricted frequency bands of operation were measured at a distance of three meters at the OATS. The EUT utilizes frequency, determining circuitry, which generates harmonics falling in the restricted bands. Emissions were checked at the OATS, using appropriate antennas or pyramidal horns, amplification stages, and a spectrum analyzer. No other significant emission was observed which fell into the restricted bands of operation.

Sample Calculations:

RFS $(dB\mu V/m @ 3m) = FSM(dB\mu V) + A.F.(dB) - Gain(dB)$

RFS = Radiated Field Strength calculated

FSM = Field Strength Measured

A.F. = Receive Antenna Factor

Gain = Amplifier gains and Cable losses in system

Radiated Emissions in Restricted Bands Data (6 dBi Omni) (worst-case)

43 hop set

Frequency in MHz	FSM Horz. (dBµV)	FSM Vert. (dBµV)	A.F. (dB/m)	Amp. Gain (dB)	RFS Horz. @ 3m (dBµV/m)	RFS Vert. @ 3m (dBµV/m)	FCC Class B Limit @ 3m (dBµV/m)
2390.0	16.5	16.5	32.9	25.0	24.4	24.4	54.0
2483.5	16.3	19.5	33.3	25.0	24.6	27.8	54.0
4808.0	17.6	17.5	32.7	25.0	25.3	25.2	54.0
4870.8	16.5	16.7	32.7	25.0	24.2	24.4	54.0
4933.8	16.8	16.7	32.8	25.0	16.6	24.5	54.0
7212.0	13.2	13.2	36.3	25.0	24.5	24.5	54.0
7306.2	13.3	13.3	36.4	25.0	24.7	24.7	54.0
7400.7	14.2	14.3	36.5	25.0	16.6	25.8	54.0
12020.0	12.6	12.6	40.0	25.0	27.6	27.6	54.0
12177.0	11.7	11.8	40.4	25.0	27.1	27.2	54.0
12334.5	12.5	12.5	40.5	25.0	16.6	28.0	54.0

Other emissions present had amplitudes at least 20 dB below the limit.

79 hop set

Frequency in MHz	FSM Horz. (dBµV)	FSM Vert. (dBµV)	A.F. (dB/m)	Amp. Gain (dB)	RFS Horz. @ 3m (dBµV/m)	RFS Vert. @ 3m (dBµV/m)	FCC Class B Limit @ 3m (dBµV/m)
2390.0	17.4	25.3	32.9	25.0	25.3	33.2	54.0
2483.5	19.9	27.9	33.3	25.0	28.2	36.2	54.0
4801.4	17.7	17.8	32.7	25.0	25.4	25.5	54.0
4871.6	16.3	16.3	32.7	25.0	24.0	24.0	54.0
4941.8	16.7	16.5	32.8	25.0	16.6	24.3	54.0
7202.1	13.4	13.8	36.3	25.0	24.7	25.1	54.0
7307.4	12.4	12.9	36.4	25.0	23.8	24.3	54.0
7412.7	13.9	14.3	36.6	25.0	16.6	25.9	54.0
12003.5	12.1	12.1	40.0	25.0	27.1	27.1	54.0
12179.0	12.9	12.9	40.4	25.0	28.3	28.3	54.0
12354.5	12.2	12.2	40.5	25.0	16.6	27.7	54.0

Other emissions present had amplitudes at least 20 dB below the limit.

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1 Laird Technologies Model: CL2510-100-232 Test #: 100313

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt FCC ID: KQL-CL2510 IC: 2268C-CL2510 SN: ENG 232 Page 12 of 51 Date: April 2, 2010

Radiated Emissions in Restricted Bands Data (9 dBi Panel) (worst-case)

43 hop set

Frequency in MHz	FSM Horz. (dBµV)	FSM Vert. (dBµV)	A.F. (dB/m)	Amp. Gain (dB)	RFS Horz. @ 3m (dBµV/m)	RFS Vert. @ 3m (dBµV/m)	FCC Class B Limit @ 3m (dBµV/m)
2390.0	24.8	16.8	32.9	25.0	32.7	24.7	54.0
2483.5	20.0	16.8	33.3	25.0	28.3	25.1	54.0
4808.0	17.4	17.5	32.7	25.0	25.1	25.2	54.0
4870.8	16.5	16.4	32.7	25.0	24.2	24.1	54.0
4933.8	16.4	16.4	32.8	25.0	16.6	24.2	54.0
7212.0	13.2	13.3	36.3	25.0	24.5	24.6	54.0
7306.2	13.3	13.4	36.4	25.0	24.7	24.8	54.0
7400.7	14.2	14.1	36.5	25.0	16.6	25.6	54.0
12020.0	12.5	12.5	40.0	25.0	27.5	27.5	54.0
12177.0	11.7	11.8	40.4	25.0	27.1	27.2	54.0
12334.5	12.4	12.4	40.5	25.0	16.6	27.9	54.0

Other emissions present had amplitudes at least 20 dB below the limit.

79 hop set

Frequency in MHz	FSM Horz. (dBµV)	FSM Vert. (dBµV)	A.F. (dB/m)	Amp. Gain (dB)	RFS Horz. @ 3m (dBµV/m)	RFS Vert. @ 3m (dBµV/m)	FCC Class B Limit @ 3m (dBµV/m)
2390.0	27.6	18.6	32.9	25.0	35.5	26.5	54.0
2483.5	28.0	18.9	33.3	25.0	36.3	27.2	54.0
4801.4	17.6	17.8	32.7	25.0	25.3	25.5	54.0
4871.6	16.2	16.5	32.7	25.0	23.9	24.2	54.0
4941.8	16.9	16.9	32.8	25.0	16.6	24.7	54.0
7202.1	13.1	13.1	36.3	25.0	24.4	24.4	54.0
7307.4	12.4	12.4	36.4	25.0	23.8	23.8	54.0
7412.7	13.7	14.0	36.6	25.0	16.6	25.6	54.0
12003.5	12.1	12.1	40.0	25.0	27.1	27.1	54.0
12179.0	12.9	12.9	40.4	25.0	28.3	28.3	54.0
12354.5	12.1	12.2	40.5	25.0	16.6	27.7	54.0

Other emissions present had amplitudes at least 20 dB below the limit.

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1 Laird Technologies Model: CL2510-100-232 Test #: 100313

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt

FCC ID: KQL-CL2510 IC: 2268C-CL2510 SN: ENG 232 Page 13 of 51 Date: April 2, 2010

Summary of Results for Radiated Emissions in Restricted Bands

The EUT demonstrated compliance with the radiated emissions requirements of CFR 47 Part 15C Intentional Radiators. The EUT demonstrated a minimum margin of 17.7 dB below the requirements. Peak, Quasi-peak, and average amplitudes were checked for compliance with the regulations. Worst-case emissions are reported with other emissions found in the restricted frequency bands at least 20 dB below the requirements.

Statement of Modifications and Deviations

No modifications to the EUT were required for the unit to demonstrate compliance with the FCC Part 15C paragraph 15.205 or RSS-210 emissions requirements. There were no deviations or exceptions to the specifications.

AC line Conducted Emissions Testing Procedure

The EUT was arranged in the test setup configuration emulating typical equipment configuration and placed on a 1 x 1.5-meter wooden bench 80 cm above the conducting ground plane, floor of a screen room. The bench was positioned 40 cm away from the wall of the screen room. The LISN was positioned on the floor of the screen room 80-cm from the rear of the EUT. The manufacturer supplied AC power adapter for the EUT was connected to the LISN. A second LISN was positioned on the floor of the screen room 80-cm from the rear of the supporting equipment of the EUT. All power cords except the EUT were then powered from the second LISN. EMI was coupled to the spectrum analyzer through a 0.1 µF capacitor, internal to the LISN. Power line conducted emissions testing were carried out individually for each current carrying conductor of the EUT. The excess length of lead between the system and the LISN receptacle was folded back and forth to form a bundle not exceeding 40 cm in length. The screen room, conducting ground plane, analyzer, and LISN were bonded together to the protective earth ground. Preliminary testing was performed to identify the frequency of each radio frequency emission displaying the highest amplitude. The cables were repositioned to obtain maximum amplitude of measured EMI level. Once the worst-case configuration was identified, plots were made of the EMI from 0.15 MHz to 30 MHz then the data was recorded with maximum conducted emissions levels. Refer to figures one and two for plots of the worst case AC Line conducted emissions.

File: Laird CL2510 TestRpt

IC: 2268C-CL2510 SN: ENG 232 Page 14 of 51 Date: April 2, 2010

FCC ID: KQL-CL2510

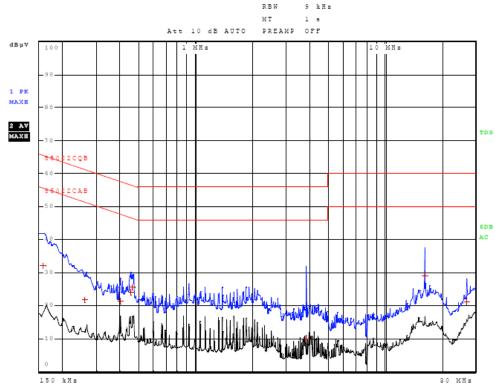


Figure One AC Line Conducted Emissions Line 1

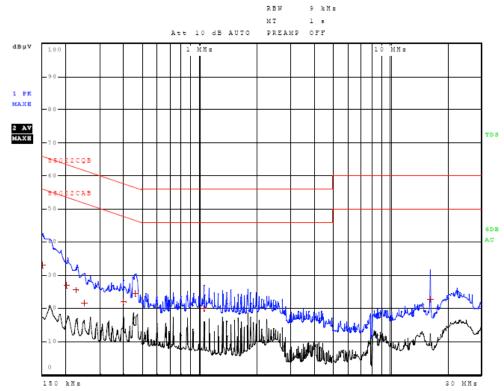


Figure Two AC Line Conducted Emissions Line 2

Laird Technologies Model: CL2510-100-232 Test #: 100313

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt FCC ID: KQL-CL2510 IC: 2268C-CL2510 SN: ENG 232 Page 15 of 51 Date: April 2, 2010

AC Line Conducted Emissions Data (Highest Emissions)

Trace	Frequenc	у	Level (dBµV)	Detector	Delta Limit/dB
1	158.000000000	kHz	32.00	Quasi Peak	-33.57
1	262.000000000	kHz	21.71	Quasi Peak	-39.66
1	398.000000000	kHz	21.29	Quasi Peak	-36.61
1	454.000000000	kHz	24.02	Quasi Peak	-32.78
1	466.000000000	kHz	25.59	Quasi Peak	-30.99
1	3.854000000	MHz	9.93	Quasi Peak	-46.07
1	16.276000000	MHz	29.06	Quasi Peak	-30.94
1	27.124000000	MHz	21.04	Quasi Peak	-38.96
Line 1					

Trace	Frequenc	y	Level (dBµV)	Detector	Delta Limit/dB
1	150.000000000	kHz	33.11	Quasi Peak	-32.89
1	202.000000000	kHz	27.01	Quasi Peak	-36.52
1	226.000000000	kHz	25.55	Quasi Peak	-37.05
1	250.000000000	kHz	21.59	Quasi Peak	-40.17
1	394.000000000	kHz	22.01	Quasi Peak	-35.97
1	458.000000000	kHz	24.43	Quasi Peak	-32.30
1	1.054000000	MHz	20.08	Quasi Peak	-35.92
1	16.276000000	MHz	22.78	Quasi Peak	-37.22

Line 2 Other emissions present had amplitudes at least 10 dB below the limit.

Summary of Results for AC Line Conducted Emissions

The EUT demonstrated compliance with the conducted emissions requirements for CISPR 22, RSS-210, and CFR 47 Part 15C equipment. The EUT demonstrated minimum margin of 30.9 dB below the Quasi-Peak limit. Measurements were taken using the peak, quasi peak, and average, measurement function for each emissions amplitude and were below the limits stated in the specification. Other emissions were present with recorded data representing worst-case amplitudes.

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt

Radiated Emissions Testing Procedure

The EUT was arranged in the test system configuration emulating typical equipment configuration and operated through all available modes with worst-case data recorded. Preliminary testing was performed in a screen room with the EUT positioned 1 meter from the FSM. Radiated emissions measurements were performed to identify the frequencies, which produced the highest emissions. Plots were made of the radiated frequency spectrum from 30 MHz to 25,000 MHz for the preliminary testing. Refer to figures three through nine for plots of the general radiated emissions spectrum taken in a screen room. The highest radiated emission was then re-maximized at the OATS location before final radiated emissions measurements were performed. Final data was taken with the EUT located at the OATS at a distance of 3 meters between the EUT and the receiving antenna. The frequency spectrum from 30 MHz to 25,000 MHz was searched for general radiated emissions. Measured emission levels were maximized by EUT placement on the table, rotating the turntable through 360 degrees, varying the antenna height between 1 and 4 meters above the ground plane and changing antenna position between horizontal and vertical polarization. Antennas used were Broadband Biconical from 30 to 200 MHz, Biconilog from 30 to 1000 MHz, Log Periodic from 200 MHz to 5 GHz and or, pyramidal horns and mixers from 4 GHz to 30 GHz, notch filters and appropriate amplifiers were utilized.

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt

Figure Three General Radiated Emissions taken at 1 meter in screen room

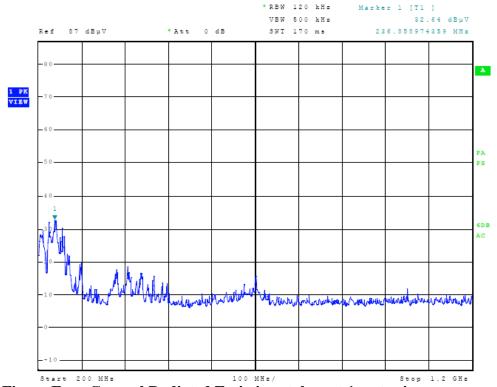


Figure Four General Radiated Emissions taken at 1 meter in screen room

Laird Technologies Model: CL2510-100-232 Test #: 100313

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt

FCC ID: KQL-CL2510 IC: 2268C-CL2510 SN: ENG 232 Page 18 of 51 Date: April 2, 2010

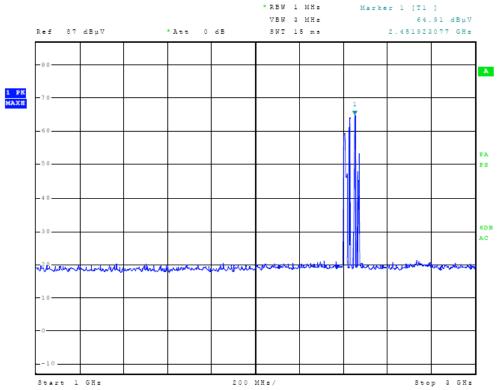


Figure Five General Radiated Emissions taken at 1 meter in screen room

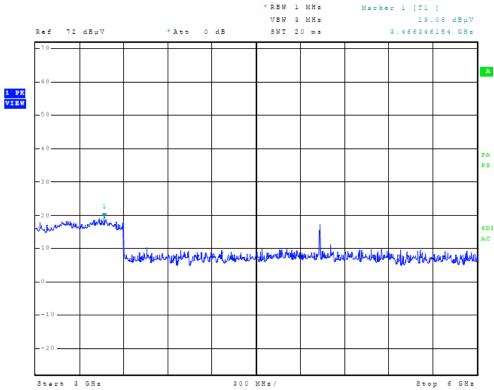


Figure Six General Radiated Emissions taken at 1 meter in screen room

Laird Technologies Model: CL2510-100-232 Test #: 100313

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt

FCC ID: KQL-CL2510 IC: 2268C-CL2510 SN: ENG 232 Page 19 of 51 Date: April 2, 2010

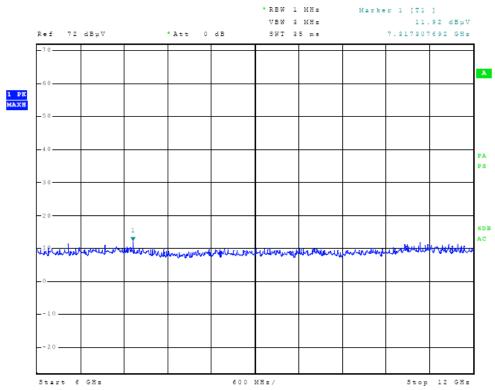


Figure Seven General Radiated Emissions taken at 1 meter in screen room

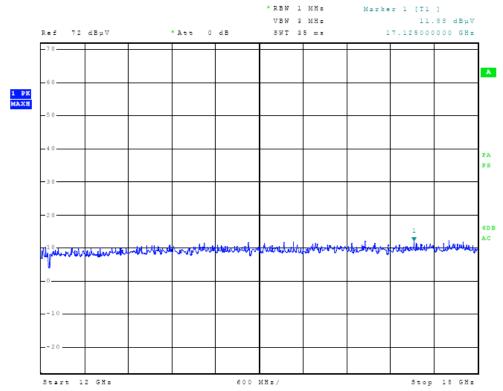


Figure Eight General Radiated Emissions taken at 1 meter in screen room

Laird Technologies Model: CL2510-100-232 Test #: 100313

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt

FCC ID: KQL-CL2510 IC: 2268C-CL2510 SN: ENG 232 Page 20 of 51 Date: April 2, 2010

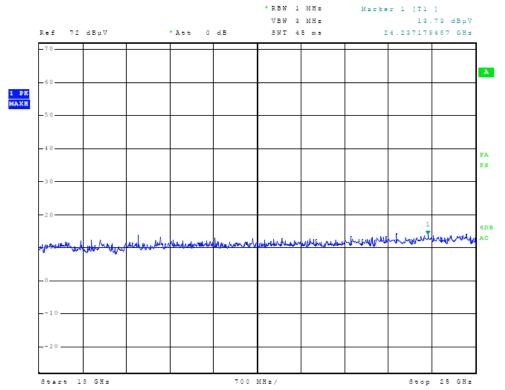


Figure Nine General Radiated Emissions taken at 1 meter in screen room

Revision 1

Laird Technologies Model: CL2510-100-232 Test #: 100313

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt

FCC ID: KQL-CL2510 IC: 2268C-CL2510 SN: ENG 232 Page 21 of 51 Date: April 2, 2010

Radiated Emissions from EUT Data (Highest Emissions)

Frequency in MHz	FSM Horz. (dBµV)	FSM Vert. (dBµV)	A.F. (dB/m)	Amp. Gain (dB)	RFS Horz. @ 3m (dBµV/m)	RFS Vert. @ 3m (dBµV/m)	Limit @ 3m (dBµV/m)
90.0	48.6	52.8	7.4	30	26.0	30.2	43.5
133.0	44.3	50.8	8.4	30	22.7	29.2	43.5
144.0	39.5	51.7	12.3	30	21.8	34.0	43.5
144.2	40.3	50.7	12.3	30	22.6	33.0	43.5
145.3	40.3	48.3	12.3	30	22.6	30.6	43.5
146.4	38.7	47.1	12.3	30	21.0	29.4	43.5
149.5	37.8	47.4	10.2	30	18.0	27.6	43.5
150.0	42.7	51.8	10.2	30	22.9	32.0	43.5
194.1	46.5	50.6	10.5	30	27.0	31.1	43.5
199.5	47.8	48.8	10.5	30	28.3	29.3	43.5
210.4	48.8	45.1	11.0	30	29.8	26.1	43.5
224.3	47.4	47.6	11.2	30	28.6	28.8	46.0
225.3	46.3	47.8	11.2	30	27.5	29.0	46.0
226.3	45.2	48.1	11.2	30	26.4	29.3	46.0
227.4	44.7	48.3	11.3	30	26.0	29.6	46.0
233.0	42.8	52.9	11.5	30	24.3	34.4	46.0
251.3	40.3	42.4	12.2	30	22.5	24.6	46.0
254.5	44.9	44.5	12.4	30	27.3	26.9	46.0
257.8	49.3	47.8	12.8	30	32.1	30.6	46.0

Other emissions present had amplitudes at least 20 dB below the limit.

Summary of Results for General Radiated Emissions

The EUT demonstrated compliance with the radiated emissions requirements of CFR 47 Part 15C paragraph 15.209 and RSS-210 Intentional Radiators. The EUT demonstrated a minimum margin of 9.5 dB below the requirements. Other emissions were present with amplitudes at least 20 dB below the Limits.

Statement of Modifications and Deviations

No modifications to the EUT were required for the equipment to demonstrate compliance with the RSS-210 and CFR 47 emissions requirements. There were no deviations or exceptions to the specifications.

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt FCC ID: KQL-CL2510 IC: 2268C-CL2510 SN: ENG 232 Page 22 of 51 Date: April 2, 2010

Receiver Antenna Power Conduction Limits

Receivers which provide terminals for the connection of an external receiving antenna may be tested to demonstrate compliance with the provisions of 15.109 with the antenna terminals shielded and terminated with a termination equal to the impedance specified for the antenna, provided these receivers also comply with the following: With the receiver antenna terminal connected to a resistive termination equal to the impedance specified or employed for the antenna, the power at the antenna terminal at any frequency within the range of measurements specified in 15.33 shall not exceed 2.0 nanowatts. The antenna port was connected to a spectrum analyzer for testing the antenna-conducted emissions. The antenna connection under test was connected to the spectrum analyzer through a short coaxial cable. The spectrum analyzer provided the 50-ohm load for the antenna port. The frequency spectrum was investigated at the antenna port with the worst case data presented. Refer to figures ten through fifteen showing the spectrum analyzer display of worst-case receiver antenna conduction emissions. Antenna Port conducted emissions data is shown below. Compliance to receiver radiated emissions requirements were tested both at antenna port and 3 meter OATS with data presented elsewhere in this report.

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt

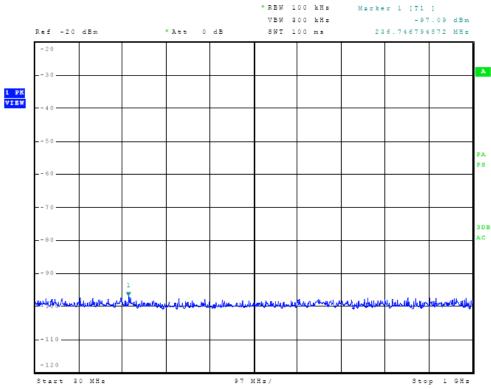
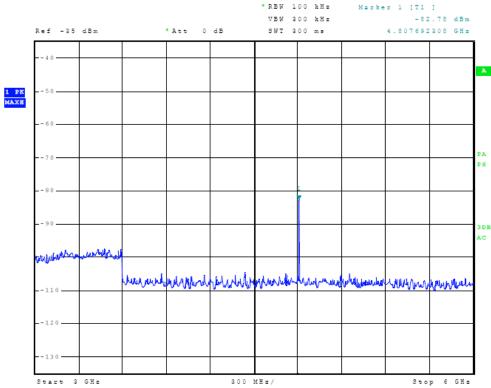


Figure Ten Receiver Temporary Antenna Port Conducted Emissions



Laird Technologies Model: CL2510-100-232 Test #: 100313

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt

FCC ID: KQL-CL2510 IC: 2268C-CL2510 SN: ENG 232 Page 24 of 51 Date: April 2, 2010

Figure Twelve Receiver Antenna Port Conducted Emissions

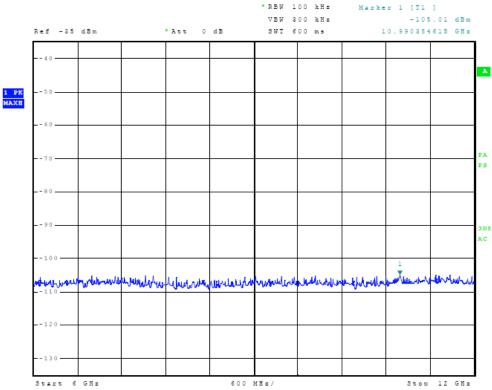


Figure Thirteen Receiver Antenna Port Conducted Emissions

Laird Technologies Model: CL2510-100-232 Test #: 100313

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt

FCC ID: KQL-CL2510 IC: 2268C-CL2510 SN: ENG 232 Page 25 of 51 Date: April 2, 2010

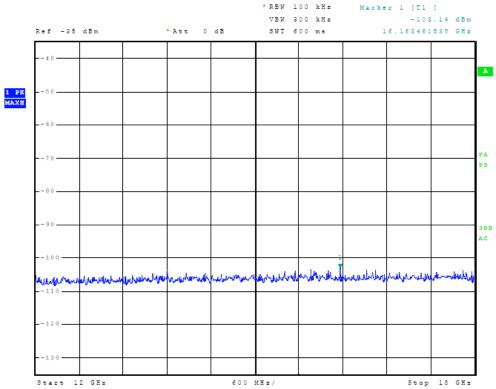
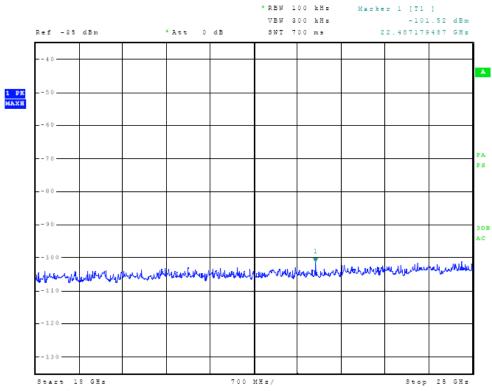



Figure Fourteen Receiver Antenna Port Conducted Emissions

Figure Fifteen Receiver Antenna Port Conducted Emissions

Laird Technologies Model: CL2510-100-232 Test #: 100313

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt

FCC ID: KQL-CL2510 IC: 2268C-CL2510 SN: ENG 232 Page 26 of 51 Date: April 2, 2010

Receiver Antenna Conducted Emissions Data

Frequency (MHz)	Emission Level (dBm)	Limit (dBm)	Margin (dB)	
2404.0	-96.87	-57.0	-39.9	
4808.0	-82.57	-57.0	-25.6	
2435.5	-98.45	-57.0	-41.5	
4870.9	-83.95	-57.0	-27.0	
2466.9	-98.63	-57.0	-41.6	
4933.8	-85.41	-57.0	-28.4	

Other emissions present had amplitudes at least 20 dB below the limit.

Receiver Radiated Emissions Data

Emission Freq. (MHz)	FSM Horz. (dBµV)	FSM Vert. (dBµV)	Ant. Factor (dB)	Amp. Gain (dB)	RFS Horz. @ 3m (dBµV/m)	RFS Vert. @ 3m (dBµV/m)	Limit @ 3m (dBµV/m)
2404.0	16.7	16.5	32.9	25	24.6	24.4	54
4808.0	16.3	16.4	32.7	25	24.0	24.1	54.0
7212.0	15.0	14.6	36.3	25	26.3	25.9	54.0
9616.0	14.5	14.7	38.1	25	27.6	27.8	54.0
12020.0	12.1	12.1	40.0	25	27.1	27.1	54.0
2435.4	15.7	15.9	33.1	25	23.8	24.0	54
4870.8	15.5	15.3	32.7	25	23.2	23.0	54.0
7306.2	14.7	14.8	36.4	25	26.1	26.2	54.0
9741.6	14.1	14.3	38.2	25	27.3	27.5	54.0
12177.0	11.5	11.4	40.4	25	26.9	26.8	54.0
2466.9	15.5	15.7	28.1	25	18.6	18.8	54
4933.8	15.6	15.7	32.8	25	23.4	23.5	54.0
7400.7	14.3	14.9	36.4	25	25.7	26.3	54.0
9867.6	13.5	14.1	38.3	25	26.8	27.4	54.0
12334.5	11.1	11.8	40.3	25	26.4	27.1	54.0

Other emissions were present with amplitudes at least 20 dB below limits.

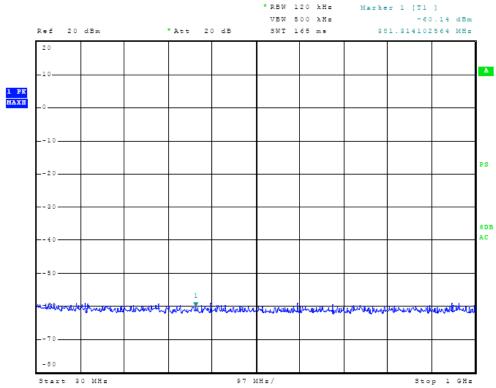
Summary of Results for Receiver Emissions

The EUT demonstrated compliance with the antenna conducted emissions requirements of CFR 47 Part 15B and RSS-GEN with an antenna port conducted minimum margin of 25.6 dB below requirements. The EUT demonstrated compliance with the radiated emissions requirements of CFR 47 Part 15B and RSS-GEN with a minimum 26.2 dB margin below requirements. Other emissions were present with amplitudes at least 20 dB below the CFR 47 15B and RSS-GEN limits.

Revision 1

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt

Operation in the Band 2400-2483.5 MHz


The power output was measured at the antenna port and again on the Open Area Test Site at a 3 meters distance utilizing the antenna configurations listed. The EUT and test fixture was placed on a wooden turntable 0.8 meters above the ground plane and at a distance of 3 meters from the FSM antenna. The peak and average amplitude of the carrier frequency was measured using a spectrum analyzer. The peak and average amplitude of the spurious emissions above 1000 MHz were measured using a spectrum analyzer then data was recorded from the analyzer display. Refer to figures sixteen through thirty-six for plots of the transmitter emissions taken at the antenna port demonstrating compliance to the specifications. The EUT is a frequency hopping spread spectrum intentional radiator utilizing either 43 or 79 hopping channels. The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 0.4 seconds multiplied by number of channels employed. Figures thirty through thirty-three demonstrate compliance with dwell time on channel. As described in the operational description exhibit, the equipment complies with requirements of channel occupancy. The 2400 and 2483.5 MHz band edges are protected due to the lowest and highest channels used for frequency of operation. Figures thirty-four through thirty-six and radiated emissions measurements demonstrate compliance at band edges. The amplitude of each emission was maximized by varying the FSM antenna height, polarization, and by rotating the turntable. Emissions were measured in dBµV/m at three meters. The amplitude of each radiated emission measured was maximized by varying the FSM antenna height, polarization, and by rotating the turntable. A Biconilog Antenna was used for measuring emissions from 30 to 1000 MHz, a Log Periodic Antenna for 200 to 5000 MHz, and Double Ridge and/or Pyramidal Horn Antennas from 4 GHz to 40 GHz. Data was taken per CFR 47 Paragraphs 2.1046(a), 15.247 and RSS-210.

File: Laird CL2510 TestRpt

IC: 2268C-CL2510 SN: ENG 232 Page 28 of 51 Date: April 2, 2010

FCC ID: KQL-CL2510

Figure Sixteen Plot of Antenna Port Conducted Emissions

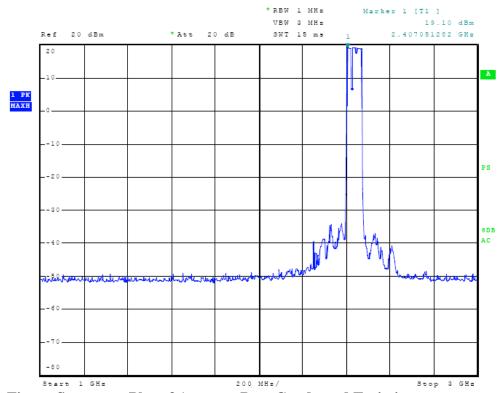


Figure Seventeen Plot of Antenna Port Conducted Emissions

Laird Technologies Model: CL2510-100-232 Test #: 100313

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt

FCC ID: KQL-CL2510 IC: 2268C-CL2510 SN: ENG 232 Page 29 of 51 Date: April 2, 2010

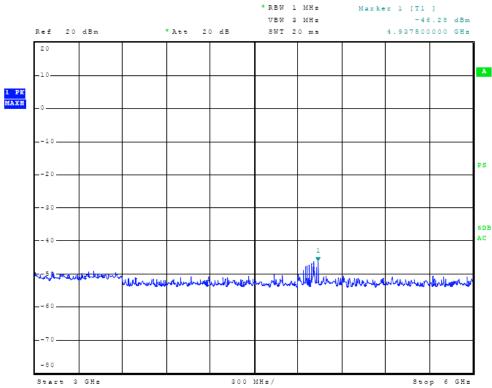
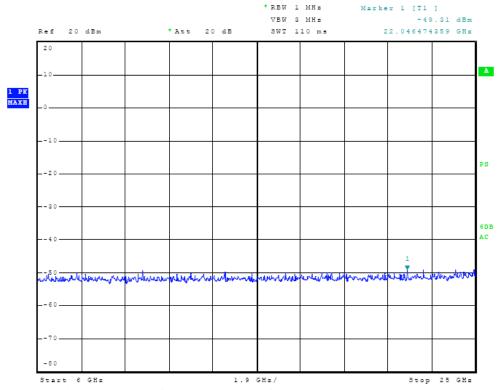



Figure Eighteen Plot of Antenna Port Conducted Emissions

Figure Nineteen Plot of Antenna Port Conducted Emissions

Laird Technologies Model: CL2510-100-232 Test #: 100313

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt

FCC ID: KQL-CL2510 IC: 2268C-CL2510 SN: ENG 232 Page 30 of 51 Date: April 2, 2010

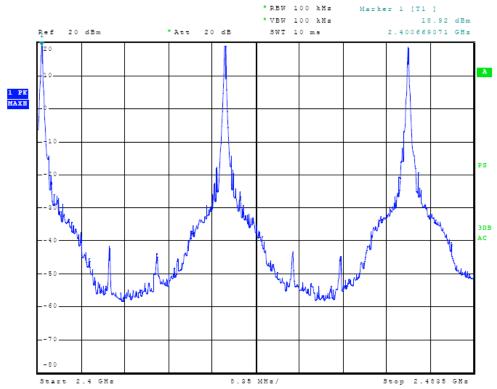


Figure Twenty Plot of Operation Across Operational Band (79 Hop Set)

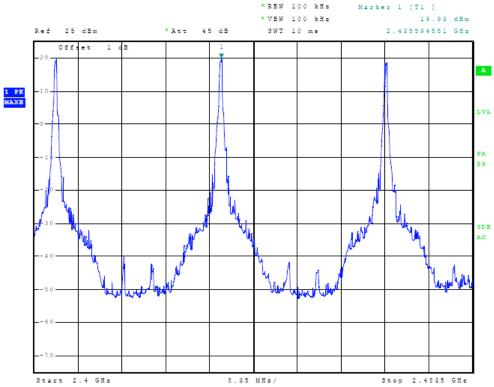


Figure Twenty-one Plot of Operation Across Operational Band (43 Hop Set)

Laird Technologies Model: CL2510-100-232 Test #: 100313

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt

FCC ID: KQL-CL2510 IC: 2268C-CL2510 SN: ENG 232 Page 31 of 51 Date: April 2, 2010

Figure Twenty-two Plot of 20 dB Occupied Bandwidth (79 Hop Set)



Figure Twenty-three Plot of 20 dB Occupied Bandwidth (79 Hop Set)

Laird Technologies Model: CL2510-100-232 Test #: 100313

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt FCC ID: KQL-CL2510 IC: 2268C-CL2510 SN: ENG 232 Page 32 of 51

Date: April 2, 2010



Figure Twenty-four Plot of 20 dB Occupied Bandwidth (79 Hop Set)

Figure Twenty-five Plot of 20 dB Occupied Bandwidth (43 Hop Set)

Laird Technologies Model: CL2510-100-232 Test #: 100313

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt

FCC ID: KQL-CL2510 IC: 2268C-CL2510 SN: ENG 232 Page 33 of 51 Date: April 2, 2010

Figure Twenty-six Plot of 20 dB Occupied Bandwidth (43 Hop Set)

Figure Twenty-seven Plot of 20 dB Occupied Bandwidth (43 Hop Set)

Laird Technologies Model: CL2510-100-232 Test #: 100313

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt

FCC ID: KQL-CL2510 IC: 2268C-CL2510 SN: ENG 232 Page 34 of 51 Date: April 2, 2010

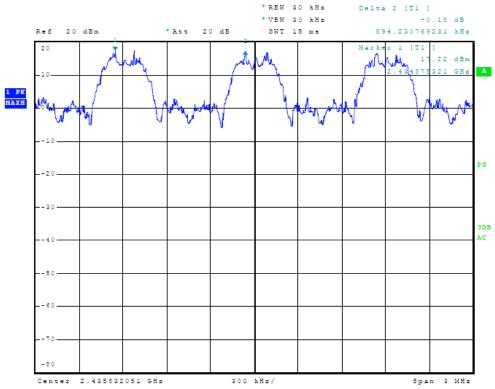


Figure Twenty-eight Plot of Channel Spacing (79 Hop Set)



Figure Twenty-nine Plot of Channel Spacing (43 Hop Set)

Laird Technologies Model: CL2510-100-232 Test #: 100313

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt

FCC ID: KQL-CL2510 IC: 2268C-CL2510 SN: ENG 232 Page 35 of 51 Date: April 2, 2010

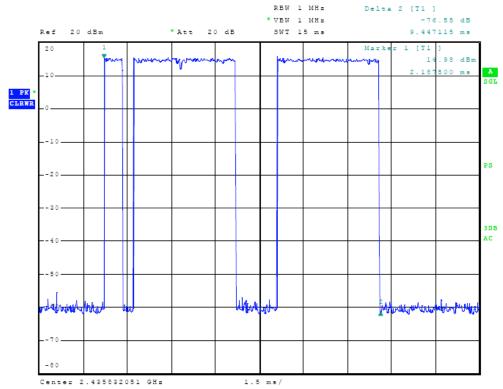


Figure Thirty Plot of Dwell time on Channel (79 Hop Set)

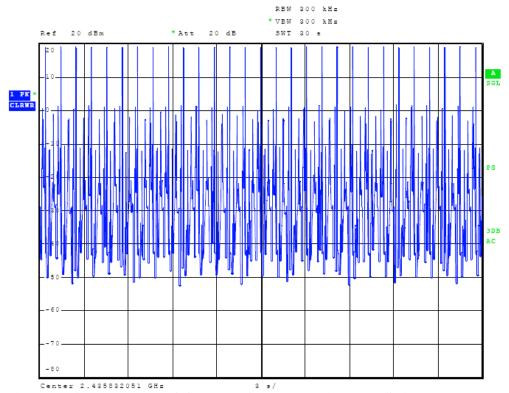


Figure Thirty-one Plot of Channel Occupancy (79 Hop Set)

Laird Technologies Model: CL2510-100-232 Test #: 100313

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt

FCC ID: KQL-CL2510 IC: 2268C-CL2510 SN: ENG 232 Page 36 of 51 Date: April 2, 2010

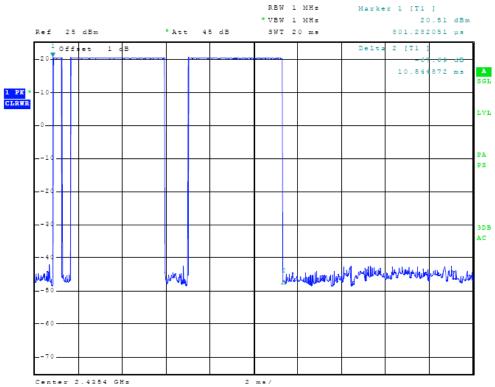


Figure Thirty-two Plot of Plot of Dwell time on Channel (43 Hop Set)

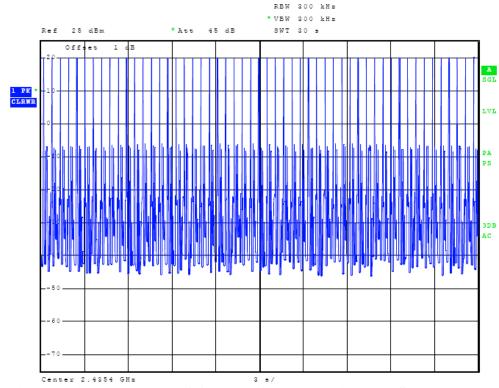


Figure Thirty-three Plot of Channel Occupancy (43 Hop Set)

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1 Laird Technologies Model: CL2510-100-232 Test #: 100313

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt

FCC ID: KQL-CL2510 IC: 2268C-CL2510 SN: ENG 232 Page 37 of 51 Date: April 2, 2010

Figure Thirty-four Plot of Low Band Edge (79 Hop Set)

Figure Thirty-five Plot of High Band Edge (79 Hop Set)

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1 Laird Technologies Model: CL2510-100-232 Test #: 100313

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt

FCC ID: KQL-CL2510 IC: 2268C-CL2510 SN: ENG 232 Page 38 of 51 Date: April 2, 2010

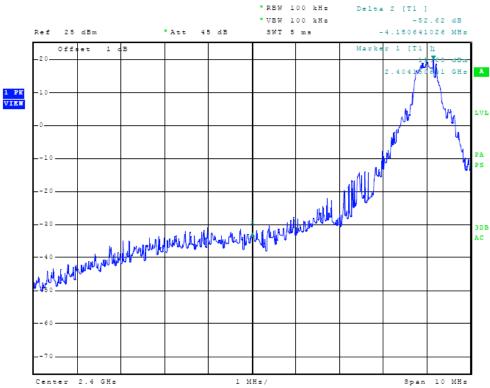


Figure Thirty-six Plot of Low Band Edge (43 Hop Set)

Transmitter Antenna Conducted Emissions Data

The antenna conducted output power, power spectral density, and 20-dB bandwidth were measured while operating in available modes. The data reported below represents the worst-case operational conditions.

Frequency MHz	Antenna Conducted Output Power dBm	Antenna Conducted Output Power mW	Occupied Bandwidth kHz			
79 Hop Set						
2400.7	20.97	125.03	967.95			
2434.8	20.96	124.74	897.44			
2470.9	20.66	116.41	942.31			
	43 Hop Set					
2404.0	20.85	121.62	1,041.66			
2435.5	20.87	122.18	1,144.23			
2466.9	20.76	119.12	1,121.79			

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1 Laird Technologies Model: CL2510-100-232 Test #: 100313

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt FCC ID: KQL-CL2510 IC: 2268C-CL2510 SN: ENG 232 Page 39 of 51 Date: April 2, 2010

Transmitter Radiated Emissions Data (6 dBi Omni) (43 Hop Set)

Tansmitter Natiated Limssions Data to distribution (43 Hop Set)							
Frequency in MHz	FSM Horz. (dBµV)	FSM Vert. (dBµV)	A.F. (dB/m)	Amp. Gain (dB)	RFS Horz. @ 3m (dBµV/m)	RFS Vert. @ 3m (dBμV/m)	Limit @ 3m (dBμV/m)
2404.0	99.3	110.3	32.9	25	107.2	118.2	
4808.0	17.6	17.5	32.7	25	25.3	25.2	54.0
7212.0	13.2	13.2	36.3	25	24.5	24.5	54.0
9616.0	15.8	15.8	38.1	25	28.9	28.9	54.0
12020.0	12.6	12.6	40.0	25	27.6	27.6	54.0
2435.4	99.2	109.5	33.1	25	107.3	117.6	
4870.8	16.5	16.7	32.7	25	24.2	24.4	54.0
7306.2	13.3	13.3	36.4	25	24.7	24.7	54.0
9741.6	15.8	15.9	38.2	25	29.0	29.1	54.0
12177.0	11.7	11.8	40.4	25	27.1	27.2	54.0
2466.9	103.5	108.4	33.5	25	107.7	116.9	
4933.8	28.9	16.7	32.8	25	24.6	24.5	54.0
7400.7	25.5	14.3	36.5	25	25.7	25.8	54.0
9867.6	27.3	15.5	38.3	25	29.0	28.8	54.0
12334.5	24.1	12.5	40.5	25	28.0	28.0	54.0
Band Edge Compliance							
2400.0	Con	npliance de	emonstrate	ed throug	gh band edge p	olots CFR 47	15.247(d)
2483.5	16.3	19.5	33.3	25	24.6	27.8	54.0

Other emissions present had amplitudes at least 20 dB below the limit.

Transmitter Radiated Emissions Data (6 dBi Omni) (79 Hop Set)

Tansinitter Natiated Linissions Data to distribution (19 Hop Set)							
Frequency in MHz	FSM Horz. (dBµV)	FSM Vert. (dBµV)	A.F. (dB/m)	Amp. Gain (dB)	RFS Horz. @ 3m (dBµV/m)	RFS Vert. @ 3m (dBµV/m)	Limit @ 3m (dBµV/m)
2400.7	98.8	109.9	32.9	25	106.7	117.8	
4801.4	17.7	17.8	32.7	25	25.4	25.5	54.0
7202.1	13.4	13.8	36.3	25	24.7	25.1	54.0
9602.8	14.3	14.3	38.1	25	27.4	27.4	54.0
12003.5	12.1	12.1	40.0	25	27.1	27.1	54.0
2435.8	98.6	108.8	33.1	25	106.7	116.9	
4871.6	16.3	16.3	32.7	25	24.0	24.0	54.0
7307.4	12.4	12.9	36.4	25	23.8	24.3	54.0
9743.2	14.5	14.3	38.2	25	27.7	27.5	54.0
12179.0	12.9	12.9	40.4	25	28.3	28.3	54.0
2470.9	97.8	107.5	33.6	25	106.4	116.1	
4941.8	16.7	16.5	32.8	25	24.5	24.3	54.0
7412.7	13.9	14.3	36.6	25	25.5	25.9	54.0
9883.6	10.8	11.3	38.3	25	24.1	24.6	54.0
12354.5	12.2	12.2	40.5	25	27.7	27.7	54.0
	Band Edge Compliance						
2400.0	Con	npliance de	emonstrate	ed throug	gh band edge p	olots CFR 47	15.247(d)
2483.5	19.9	27.9	33.3	25	28.2	36.2	54.0

Other emissions present had amplitudes at least 20 dB below the limit.

Laird Technologies Model: CL2510-100-232 Test #: 100313

Transmitter Radiated Emissions Data (9 dBi Panel) (43 Hop Set)

ransmitter Natiated Emissions Data (9 dbi r anei) (43 hop Set)							
Frequency in MHz	FSM Horz. (dBµV)	FSM Vert. (dBµV)	A.F. (dB/m)	Amp. Gain (dB)	RFS Horz. @ 3m (dBµV/m)	RFS Vert. @ 3m (dBµV/m)	Limit @ 3m (dBµV/m)
2404.0	114.4	100.3	32.9	25	122.3	108.2	
4808.0	17.4	17.5	32.7	25	25.1	25.2	54.0
7212.0	13.2	13.3	36.3	25	24.5	24.6	54.0
9616.0	15.7	15.7	38.1	25	28.8	28.8	54.0
12020.0	12.5	12.5	40.0	25	27.5	27.5	54.0
2435.4	113.6	100.5	33.1	25	121.7	108.6	
4870.8	16.5	16.4	32.7	25	24.2	24.1	54.0
7306.2	13.3	13.4	36.4	25	24.7	24.8	54.0
9741.6	15.8	15.7	38.2	25	29.0	28.9	54.0
12177.0	11.7	11.8	40.4	25	27.1	27.2	54.0
2466.9	113.2	99.6	33.5	25	121.7	108.1	
4933.8	16.4	16.4	32.8	25	24.2	24.2	54.0
7400.7	14.2	14.1	36.5	25	25.7	25.6	54.0
9867.6	15.5	15.5	38.3	25	28.8	28.8	54.0
12334.5	12.4	12.4	40.5	25	27.9	27.9	54.0
	Band Edge Compliance						
2400.0	Con	npliance de	emonstrate	ed throug	gh band edge p	olots CFR 47	15.247(d)
2483.5	20.0	16.8	33.3	25	28.3	25.1	54.0

Other emissions present had amplitudes at least 20 dB below the limit.

Transmitter Radiated Emissions Data (9 dBi Panel) (79 Hop Set)

					41101) (10 110		
Frequency in MHz	FSM Horz. (dBµV)	FSM Vert. (dBµV)	A.F. (dB/m)	Amp. Gain (dB)	RFS Horz. @ 3m (dBµV/m)	RFS Vert. @ 3m (dBµV/m)	Limit @ 3m (dBµV/m)
2400.7	114.3	100.8	32.9	25	122.2	108.7	
4801.4	17.6	17.8	32.7	25	25.3	25.5	54.0
7202.1	13.1	13.1	36.3	25	24.4	24.4	54.0
9602.8	14.0	14.4	38.1	25	27.1	27.5	54.0
12003.5	12.1	12.1	40.0	25	27.1	27.1	54.0
2435.8	113.7	99.6	33.1	25	121.8	107.7	
4871.6	16.2	16.5	32.7	25	23.9	24.2	54.0
7307.4	12.4	12.4	36.4	25	23.8	23.8	54.0
9743.2	14.8	14.9	38.2	25	28.0	28.1	54.0
12179.0	12.9	12.9	40.4	25	28.3	28.3	54.0
2470.9	113.6	99.0	33.6	25	122.2	107.6	
4941.8	16.9	16.9	32.8	25	24.7	24.7	54.0
7412.7	13.7	14.0	36.6	25	25.3	25.6	54.0
9883.6	13.7	13.8	38.3	25	27.0	27.1	54.0
12354.5	12.1	12.2	40.5	25	27.6	27.7	54.0
	Band Edge Compliance						
2400.0	Con	npliance de	emonstrate	ed throug	gh band edge p	olots CFR 47	15.247(d)
2483.5	28.0	18.6	33.3	25	36.3	27.2	54.0

Other emissions present had amplitudes at least 20 dB below the limit.

File: Laird CL2510 TestRpt

Summary of Results for Radiated Emissions of Intentional Radiator

The EUT demonstrated maximum antenna conducted output power of 125.03 milliwatt (at antenna port) and highest radiated emission of 122.3 dBµV/m at 3 meters. The EUT demonstrated a worst-case of 24.9 dB margin below the limit for harmonic emissions. The EUT demonstrated compliance with the radiated emissions requirements for CFR 47 Part 15.247 and RSS-210 Intentional Radiators. There are no measurable emissions in the restricted bands other than those recorded in this report. Other emissions were present with amplitudes at least 20 dB below the requirements. The EUT demonstrated compliance with the specifications of 15.247 and RSS-210. There were no deviations or exceptions to the requirements.

Statement of Modifications and Deviations

No modifications to the EUT were required for the equipment to demonstrate compliance with the CFR 47 Part 15C and RSS-210 emissions standards. There were no deviations to the specifications.

Test #: 100313 Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt

Laird Technologies

Model: CL2510-100-232

FCC ID: KQL-CL2510 IC: 2268C-CL2510 SN: ENG 232 Page 44 of 51

Date: April 2, 2010

Annex

- Annex A Measurement Uncertainty Calculations
- Annex B Test Equipment List
- Annex C Rogers Qualifications
- Annex D FCC Site Registration Letter
- Annex E Industry Canada Site Registration Letter

Laird Technologies

Annex A Measurement Uncertainty Calculations

Radiated Emissions Measurement Uncertainty Calculation

Measurement of vertically polarized radiated field strength over the frequency range 30 MHz to 1 GHz on an open area test site at 3m and 10m includes following uncertainty:

	Probability	Uncertainty
Contribution	Distribution	(dB)
Antenna factor calibration	normal $(k = 2)$	± 0.58
Cable loss calibration	normal $(k = 2)$	±0.2
Receiver specification	rectangular	±1.0
Antenna directivity	rectangular	± 0.1
Antenna factor variation with height	rectangular	±2.0
Antenna factor frequency interpolation	rectangular	± 0.1
Measurement distance variation	rectangular	± 0.2
Site Imperfections	rectangular	±1.5
Combined standard uncertainty u (w) is		

Combined standard uncertainty $u_c(y)$ is

$$U_c(y) = \pm \sqrt{\left[\frac{1.0}{2}\right]^2 + \left[\frac{0.2}{2}\right]^2 + \left[\frac{1.0^2 + 0.1^2 + 2.0^2 + 0.1^2 + 0.2^2 + 1.5^2}{3}\right]}$$

$$U_{c}(y) = \pm 1.6 \text{ dB}$$

It is probable that $u_c(y) / s(q_k) > 3$, where $s(q_k)$ is estimated standard deviation from a sample of n readings unless the repeatability of the EUT is particularly poor, and a coverage factor of k = 2 will ensure that the level of confidence will be approximately 95%, therefore:

$$s(q_k) = \sqrt{\frac{1}{(n-1)} \sum_{k-1}^{n} (q_k - \bar{q})^2}$$

$$U = 2 U_c(y) = 2 x \pm 1.6 dB = \pm 3.2 dB$$

Notes:

- Uncertainties for the antenna and cable were estimated, based on a normal probability distribution with k = 2.
- 1.2 The receiver uncertainty was obtained from the manufacturer's specification for which a rectangular distribution was assumed
- 1.3 The antenna factor uncertainty does not take account of antenna directivity.
- 1.4 The antenna factor varies with height and since the height was not always the same in use as when the antenna was calibrated an additional uncertainty is added.
- 1.5 The uncertainty in the measurement distance is relatively small but has some effect on the received signal strength. The increase in measurement distance as the antenna height is increased is an inevitable consequence of the test method and is therefore not considered a contribution to uncertainty.
- 1.6 Site imperfections are difficult to quantify but may include the following contributions:
 - -Unwanted reflections from adjacent objects.
 - -Ground plane imperfections: reflection coefficient, flatness, and edge effects.
 - -Losses or reflections from "transparent" cabins for the EUT or site coverings.
 - -Earth currents in antenna cable (mainly effect biconical antennas).

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1 Laird Technologies Model: CL2510-100-232 Test #: 100313

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt FCC ID: KQL-CL2510 IC: 2268C-CL2510 SN: ENG 232 Page 46 of 51 Date: April 2, 2010

The specified limits for the difference between measured site attenuation and the theoretical value (\pm 4 dB) were not included in total since the measurement of site attenuation includes uncertainty contributions already allowed for in this budget, such as antenna factor.

Conducted Measurements Uncertainty Calculation

Measurement of conducted emissions over the frequency range 9 kHz to 30 MHz includes following uncertainty:

	Probability	Uncertainty
Contribution	Distribution	(dB)
Receiver specification	rectangular	±1.5
LISN coupling specification	rectangular	±1.5
Cable and input attenuator calibration	normal (k=2)	±0.5
Combined standard uncertainty $u_c(y)$ is		

$$U_c(y) = \pm \sqrt{\frac{0.5}{2}^2 + \frac{1.5^2 + 1.5^2}{3}}$$

$$U_c(y) = \pm 1.2 \text{ dB}$$

As with radiated field strength uncertainty, it is probable that $u_c(y) / s(q_k) > 3$ and a coverage factor of k = 2 will suffice, therefore:

$$U = 2 U_c(y) = 2 x \pm 1.2 dB = \pm 2.4 dB$$

Laird Technologies

IC: 2268C-CL2510 SN: ENG 232 Page 47 of 51 Date: April 2, 2010

FCC ID: KQL-CL2510

Annex B Test Equipment List For Rogers Labs, Inc.

The test equipment used is maintained in calibration and good operating condition. Use of this calibrated equipment ensures measurements are traceable to national standards.

List of Test Equipment	Calibration Date
Oscilloscope Scope: Tektronix 2230	2/10
Wattmeter: Bird 43 with Load Bird 8085	2/10
Power Supplies: Sorensen SRL 20-25, SRL 40-25, DCR 150, DCR 140	2/10
H/V Power Supply: Fluke Model: 408B (SN: 573)	2/10
R.F. Generator: HP 606A	2/10
R.F. Generator: HP 8614A	2/10
R.F. Generator: HP 8640B	2/10
Spectrum Analyzer: Rohde & Schwarz ESU40	2/09
Spectrum Analyzer: HP 8562A,	5/09
Mixers: 11517A, 11970A, 11970K, 11970U, 11970V, 11970W	
HP Adapters: 11518, 11519, 11520	
Spectrum Analyzer: HP 8591EM	5/09
Frequency Counter: Leader LDC825	2/10
Antenna: EMCO Biconilog Model: 3143	5/09
Antenna: EMCO Log Periodic Model: 3147	10/09
Antenna: Antenna Research Biconical Model: BCD 235	10/09
Antenna: EMCO Dipole Set 3121C	2/10
Antenna: C.D. B-101	2/10
Antenna: Solar 9229-1 & 9230-1	2/10
Antenna: EMCO 6509	2/10
Audio Oscillator: H.P. 201CD	2/10
R.F. Power Amp 65W Model: 470-A-1010	2/10
R.F. Power Amp 50W M185- 10-501	2/10
R.F. PreAmp CPPA-102	2/10
LISN 50 μHy/50 ohm/0.1 μf	10/09
LISN Compliance Eng. 240/20	2/10
LISN Fischer Custom Communications FCC-LISN-50-16-2-08	2/10
Peavey Power Amp Model: IPS 801	2/10
Power Amp A.R. Model: 10W 1010M7	2/10
Power Amp EIN Model: A301	2/10
ELGAR Model: 1751	2/10
ELGAR Model: TG 704A-3D	2/10
ESD Test Set 2010i	2/10
Fast Transient Burst Generator Model: EFT/B-101	2/10
Current Probe: Singer CP-105	2/10
Current Probe: Solar 9108-1N	2/10
Field Intensity Meter: EFM-018	2/10
KEYTEK Ecat Surge Generator	2/10

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1 Laird Technologies Model: CL2510-100-232 Test #: 100313 Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt FCC ID: KQL-CL2510 IC: 2268C-CL2510 SN: ENG 232 Page 48 of 51 Date: April 2, 2010 NVLAP Lab Code 200087-0

Annex C Rogers Qualifications

Scot D. Rogers, Engineer

Rogers Labs, Inc.

Mr. Rogers has approximately 17 years experience in the field of electronics. Six years working in the automated controls industry and 6 years working with the design, development and testing of radio communications and electronic equipment.

Positions Held

Systems Engineer: A/C Controls Mfg. Co., Inc. 6 Years

Electrical Engineer: Rogers Consulting Labs, Inc. 5 Years

Electrical Engineer: Rogers Labs, Inc. Current

Educational Background

Bachelor of Science Degree in Electrical Engineering from Kansas State University

Bachelor of Science Degree in Business Administration Kansas State University

Several Specialized Training courses and seminars pertaining to Microprocessors and Software programming

Scot DRogers

Scot D. Rogers

Revision 1

Annex D FCC Site Registration Letter

FEDERAL COMMUNICATIONS COMMISSION

Laboratory Division 7435 Oakland Mills Road Columbia, MD 21046

June 18, 2008

Registration Number: 90910

Rogers Labs, Inc. 4405 West 259th Terrace, Louisburg, KS 66053

Attention:

Scot Rogers

Re:

Measurement facility located at Louisburg

3 & 10 meter site

Date of Renewal: June 18, 2008

Dear Sir or Madam:

Your request for renewal of the registration of the subject measurement facility has been received. The information submitted has been placed in your file and the registration has been renewed. The name of your organization will remain on the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years.

Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website www.fcc.gov under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms.

Sincerely

Industry Analyst

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

Laird Technologies Model: CL2510-100-232 Test #: 100313

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt

FCC ID: KQL-CL2510 IC: 2268C-CL2510 SN: ENG 232 Page 50 of 51

Page 50 of 51 Date: April 2, 2010

Annex E Industry Canada Site Registration Letter

*

Industry Canada

Industrie Canada

July 29th, 2008

OUR FILE: 46405-3041 Submission No: 127059

Rogers Labs Inc. 4405 West 259th Terrace Louisburg KY 66053 USA

Attention: Scot D. Rogers

Dear Sir/Madame:

The Bureau has received your application for the registration / renewal of a 3/10m OATS. Be advised that the information received was satisfactory to Industry Canada. The following number(s) is now associated to the site(s) for which registration / renewal was sought (3040A-1). Please reference the appropriate site number in the body of test reports containing measurements performed on the site. In addition, please be informed that the Bureau is now utilizing a new site numbering scheme in order to simplify the electronic filing process. Our goal is to reduce the number of secondary codes associated to one particular company. The following changes have been made to your records.

Your primary code is: 3041

The company number associated to the site(s) located at the above address is: 3041A The table below is a summary of the changes made to the unique site registration

number(s):

New Site Number	Obsolete Site Number	Description of Site	Expiry Date (YYYY-MM-DD)
3041A-1	3041-1	3 / 10m OATS	2010-07-29

Furthermore, to obtain or renew a unique site number, the applicant shall demonstrate that the site has been accredited to ANSI C63.4-2003 or later. A scope of accreditation indicating the accreditation by a recognized accreditation body to ANSI C63.4-2003 shall be accepted. Please indicate in a letter the previous assigned site number if applicable and the type of site (example: 3 meter OATS or 3 meter chamber). If the test facility is not accredited to ANSI C63.4-2003 or later, the test facility shall submit test data demonstrating full compliance with the ANSI standard. The Bureau will evaluate the filing to determine if recognition shall be granted.

The frequency for re-validation of the test site and the information that is required to be filed or retained by the testing party shall comply with the requirements established by the accrediting organization. However, in all cases, test site re-validation shall occur on an interval not to exceed two years. There is no fee or form associated with an OATS filing. OATS submissions are encouraged to be submitted electronically to the Bureau using the following URL;

If you have any questions, you may contact the Bureau by e-mail at <u>certification.bureau@ic.gc.ca</u> Please reference our file and submission number above for all correspondence. Yours sincerely,

S. Proulx Wireless Laboratory Manager Certification and Engineering Bureau Industry Canada 3701 Carling Ave., Building 94 Ottawa, Ontario K2H 8S2 Canada

Canada

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1 Laird Technologies Model: CL2510-100-232 Test #: 100313

Test to: FCC (15.247), RSS-210 File: Laird CL2510 TestRpt

FCC ID: KQL-CL2510 IC: 2268C-CL2510 SN: ENG 232 Page 51 of 51

Date: April 2, 2010