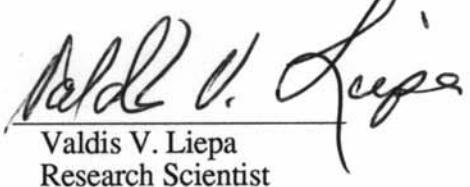


The University of Michigan
Radiation Laboratory
3228 EECS Building
Ann Arbor, MI 48109-2122
Tel: (734) 764-0500

Measured Radio Frequency Emissions
From

**Lear GM Passkey3 Immobilizer
GM PN: 22671216**

Report No. 415031-146
January 2, 2003


Copyright © 2003

For:
Lear Corporation
5200 Auto Club Drive
Dearborn, Michigan 48126-9982

Contact:
Riad Ghabra
e-mail: rghabra@lear.com
Tel: 313-593-9204
Fax: 313-240-3062
PO: verbal

Measurements made by: Valdis Liepa

Tests supervised by:
Report approved by:

Valdis V. Liepa
Research Scientist

Summary

Tests for compliance with FCC Regulations, Part 15, Subpart C, and for compliance with Industry Canada RSS-210, were performed on Lear GM Passkey3 Immobilizer. This device is subject to Rules and Regulations as a transmitter. As a digital device it is exempt.

In testing performed November 4, 2002, the device tested in the worst case met the allowed specifications for transmitter radiated emissions by 47.0 dB (see p. 6).

The conductive emission tests do not apply, since the device is powered from an automotive 12-volt battery.

1. Introduction

Lear GM Passkey3 Immobilizer was tested for compliance with FCC Regulations, Part 15, adopted under Docket 87-389, April 18, 1989, and with Industry Canada RSS-210, Issue 5, dated February 14, 1998. The tests were performed at the University of Michigan Radiation Laboratory Willow Run Test Range following the procedures described in ANSI C63.4-1992 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The Site description and attenuation characteristics of the Open Site facility are on file with FCC Laboratory, Columbia, Maryland (FCC Reg. No: 91050) and with Industry Canada, Ottawa, ON (File Ref. No: IC 2057).

2. Test Procedure and Equipment Used

The test equipment commonly used in our facility is listed in Table 2.1 below. The second column identifies the specific equipment used in these tests. The HP 8593E spectrum analyzer is used for primary amplitude and frequency reference.

Table 2.1. Test Equipment.

Test Instrument	Eqpt Used	Manufacturer/Model
Spectrum Analyzer (0.1-1500 MHz)		Hewlett-Packard, 182T/8558B
Spectrum Analyzer (9kHz-22GHz)	X	Hewlett-Packard 8593A SN: 3107A01358
Spectrum Analyzer (9kHz-26GHz)	X	Hewlett-Packard 8593E, SN: 3412A01131
Spectrum Analyzer (9kHz-26GHz)		Hewlett-Packard 8563E, SN: 3310A01174
Spectrum Analyzer (9kHz-40GHz)		Hewlett-Packard 8564E, SN: 3745A01031
Power Meter		Hewlett-Packard, 432A
Power Meter		Anritsu, ML4803A/MP
Harmonic Mixer (26-40 GHz)		Hewlett-Packard 11970A, SN: 3003A08327
Harmonic Mixer (40-60 GHz)		Hewlett-Packard 11970U, SN: 2332A00500
Harmonic Mixer (75-110 GHz)		Hewlett-Packard 11970W, SN: 2521A00179
Harmonic Mixer (140-220 GHz)		Pacific Millimiter Prod., GMA, SN: 26
S-Band Std. Gain Horn		S/A, Model SGH-2.6
C-Band Std. Gain Horn		University of Michigan, NRL design
XN-Band Std. Gain Horn		University of Michigan, NRL design
X-Band Std. Gain Horn		S/A, Model 12-8.2
X-band horn (8.2- 12.4 GHz)		Narda 640
X-band horn (8.2- 12.4 GHz)		Scientific Atlanta , 12-8.2, SN: 730
K-band horn (18-26.5 GHz)		FXR, Inc., K638KF
Ka-band horn (26.5-40 GHz)		FXR, Inc., U638A
U-band horn (40-60 GHz)		Custom Microwave, HO19
W-band horn(75-110 GHz)		Custom Microwave, HO10
G-band horn (140-220 GHz)		Custom Microwave, HO5R
Bicone Antenna (30-250 MHz)	X	University of Michigan, RLBC-1
Bicone Antenna (200-1000 MHz)	X	University of Michigan, RLBC-2
Dipole Antenna Set (30-1000 MHz)		University of Michigan, RLDP-1,-2,-3
Dipole Antenna Set (30-1000 MHz)		EMCO 2131C, SN: 992
Active Rod Antenna (30 Hz-50 MHz)		EMCO 3301B, SN: 3223
Active Loop Antenna (30 Hz-50 MHz)	X	EMCO 6502, SN: 2855
Ridge-horn Antenna (300-5000 MHz)		University of Michigan
Amplifier (5-1000 MHz)		Avantak, A11-1, A25-1S
Amplifier (5-4500 MHz)		Avantak
Amplifier (4.5-13 GHz)		Avantek, AFT-12665
Amplifier (6-16 GHz)		Trek
Amplifier (16-26 GHz)		Avantek
LISN (50 μ H)		University of Michigan
Signal Generator (0.1-2060 MHz)		Hewlett-Packard, 8657B
Signal Generator (0.01-20 GHz)		Hewlett-Packard

3. Configuration and Identification of Device Under Test

The DUT is a car security system that electronically identifies the "real" ignition key for the car. The system tested consisted of a T/R module (including coupling coil antenna) and a "passive" transponder imbedded in the key. The transponder in the key is considered passive because it uses the energy supplied by the transmitter coil to operate its micro and, hence, is not subject to the regulations. The DUT 0.5 m harness was connected to the control/junction box, which along with a 12-volt power supply was placed on the test table. A remote laptop was connected to the junction box to put the DUT in appropriate modes for testing.

The DUT was designed and manufactured by Lear Corporation, 5200 Auto Club Drive, Dearborn, MI 48126. It is identified as:

Lear GM Passkey3 Immobilizer
Lear PN: 601-1270-010
GM PN: 22671216
S/N: 2267-010-AC
FCC ID: KOBLEARARGIPK
IC: 3521A-LEARGIPK

3.1 EMI Relevant Modifications

None.

4. Emission Limits

4.1 Radiated Emission Limits

The DUT tested falls under the category of an Intentional Radiators and the Digital Devices, subject to Subpart C, Section 15.209; and Subpart B, Section 15.109 (transmitter generated signals excluded); and Subpart A, Section 15.33. The applicable testing frequencies with corresponding emission limits are given in Tables 4.1 and 4.2 below. As a digital device, it is exempt.

Table 4.1. Radiated Emission Limits (FCC: 15.205, 15.35; IC: RSS-210 (6.2.2(r), 6.3)).
(Transmitter)

Frequency (MHz)	Fundamental and Spurious* (μ V/m)
0.009-0.490	2400/F(kHz), 300m
0.490-1.705	24,000/F(kHz), 30m
0.090-0.110	Restricted
0.49-0.51	Bands

* Harmonics must be below the fundamental.

For extrapolation to other distances, see Section 6.6.

Table 4.2. Radiated Emission Limits (FCC: 15.33, 15.35, 15.109; IC: RSS-210, 6.2.2(r)).
(Digital Class B)

Freq. (MHz)	E_{lim} (3m) μ V/m	E_{lim} dB(μ V/m)
30-88	100	40.0
88-216	150	43.5
216-960	200	46.0
960-2000	500	54.0

Note: Average readings apply above 1000 MHz (1 MHz BW)
Quasi-Peak readings apply to 1000 MHz (120 kHz BW)

4.2 Conductive Emission Limits

The conductive emission limits and tests do not apply here, since the DUT is powered from an automobile 12VDC system.

5. Radiated Emission Tests and Results

5.1 Anechoic Chamber Measurements

To familiarize with the radiated emission behavior of the DUT, the DUT was first studied and measured in a shielded anechoic chamber. In the chamber there is a set-up similar to that of an outdoor 3-meter site, with a turntable, an antenna mast, and a ground plane. Instrumentation includes spectrum analyzers and other equipment as needed. In this case, the receiving antenna was an active loop, placed on a tripod, approximately 1.5 meters above ground.

The DUT was laid on the test table as seen in the Appendix Setup Photos. Using the loop antenna we studied emissions up to 2 MHz. The spectrum analyzer resolution and video bandwidths were usually set to 1 kHz, and sometimes down to 300 Hz. Emissions were studied with the plane of the loop perpendicular and parallel to the direction of propagation from the DUT. Larger emissions were observed when the loop was perpendicular. In the chamber we also recorded the spectrum and modulation characteristics of the carrier. These data are presented in subsequent sections. In scanning from 0.0-2.0 MHz there were no spurious emissions observed other than harmonics. In some instances, it was difficult to separate the DUT emissions from AM band signals.

5.2 Outdoor Measurements

After the chamber measurements, the emissions on our outdoor 3-meter site were measured. For transmitter emissions a loop antenna was used; the resolution bandwidth was usually 1 kHz. See Appendix for measurement set-up. For digital emissions bicone and dipole antennas were used.

See Section 6.6 for field extrapolation of transmitter data from 3 m to 300 m.

5.3 Computations and Results

To convert the dBm measured on the spectrum analyzer to dB(μ V/m), we use expression

$$E_3(\text{dB}\mu\text{V/m}) = 107 + P_R + K_A - K_G + K_E$$

where P_R = power recorded on spectrum analyzer, dB, measured at 3 m

K_A = antenna factor, dB/m

K_G = pre-amplifier gain, including cable loss, dB

K_E = pulse operation correction factor, dB (see 6.1)

When presenting the data, at each frequency the highest measured emission under all of the possible orientations is given. Computations and results are given in Table 5.1. There we see that as a transmitter, the DUT meets the limit by 47.7 dB.

6. Other Measurements and Computations

6.1 Correction For Pulse Operation

In normal operation the transmitter is activated when the ignition key is first turned on. The device then transmits for about 61ms. See Figure 6.1. The averaging factor for such operation is

$$K_E = 61 \text{ ms} / 100 \text{ ms} = 0.61 \text{ or } -4.3 \text{ dB}$$

6.2 Emission Spectrum

Using the loop antenna, the emission spectrum was recorded and is shown in Figure 6.2. Unfortunately, the measurement is contaminated by AM stations.

6.3 Bandwidth of the Emission Spectrum

The measured spectrum of the signal is shown in Figure 6.3. From the plot we see that the -20 dB bandwidth is 25 kHz and the center frequency is about 125.03 kHz. The noise spikes outside of the main lobe appear to come from ASK modulation.

6.4 Effect of Supply Voltage Variation

The DUT has been designed to be operated from an automobile 12VDC system. For this test, the relative power radiated was measured at the fundamental as the voltage was varied from 6.0 to 18.0 volts. The emission variation is shown in Figure 6.4.

6.5 Input Voltage and Current

$$V = 12.0 \text{ V}$$

$$I = 124 \text{ mA (during transmission)}$$

6.6 Field Behavior from 125 kHz to 1.25 MHz

Because at the specified 300/30 m measurement distance the signal is too small to measure, measurements were made at 3 m. To translate the measurement from 3 m to the 300/30 m distance, we computed the field behavior for a Hertzian (small loop) dipole using equations found in most antenna books, such as, Balanis Antenna Theory Analysis and Design, 1997 John Wiley & Sons, 2nd Edition, pg. 207-208. The applicable results that we need are:

Freq (kHz)	H-component	Extrap positions	Correction (dB)	Notes
125	Radial	3m/300m	117.9 dB	Axial coupling
125	Transverse	3m/300m	121.2 dB	Planar coupling
250	Radial	3m/300m	114.6 dB	Axial coupling
250	Transverse	3m/300m	113.4 dB	Planar coupling
375	Radial	3m/300m	111.9 dB	Axial coupling
375	Transverse	3m/300m	105.6 dB	Planar coupling
500	Radial	3m/30m	59.6 dB	Axial coupling
500	Transverse	3m/30m	60.6 dB	Planar coupling
625	Radial	3m/30m	59.4 dB	Axial coupling
625	Transverse	3m/30m	60.6 dB	Planar coupling
750	Radial	3m/30m	59.1 dB	Axial coupling
750	Transverse	3m/30m	60.8 dB	Planar coupling
875	Radial	3m/30m	58.9 dB	Axial coupling
875	Transverse	3m/30m	61.0 dB	Planar coupling
1000	Radial	3m/30m	58.6 dB	Axial coupling
1000	Transverse	3m/30m	61.2 dB	Planar coupling
1125	Radial	3m/30m	58.3 dB	Axial coupling
1125	Transverse	3m/30m	61.2 dB	Planar coupling
1250	Radial	3m/30m	57.9 dB	Axial coupling
1250	Transverse	3m/30m	61.2 dB	Planar coupling

In the data table, Table 5.1, the measured field is decreased by the dB values given above to represent the field at 300m/30m.

Table 5.1 Highest Emissions Measured

Digital Radiated Emissions, Class B

Meets class B limit by more than 20dB

Meas. 11/04/02; U of Mich.

Figure 6.1. Transmission modulation characteristics.

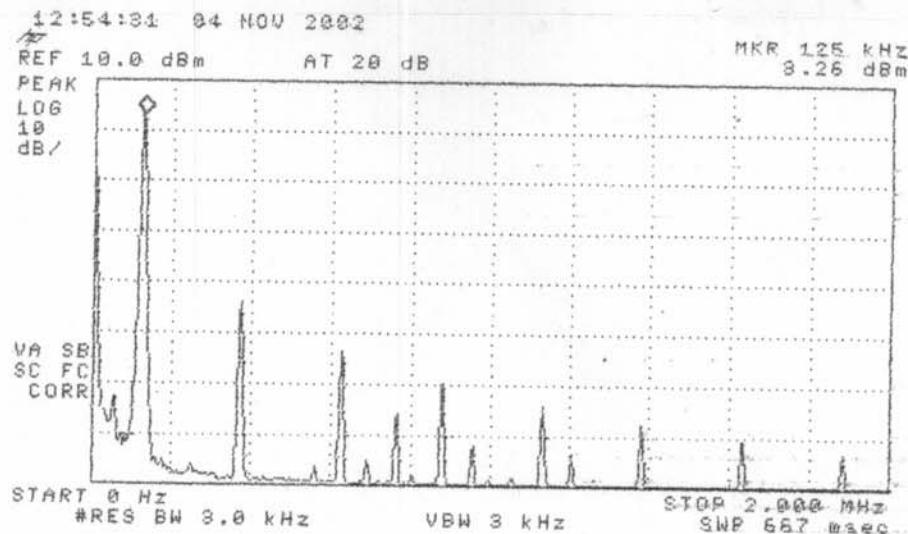


Figure 6.2. Emission spectrum of the DUT.
The amplitudes are only indicative (not calibrated).

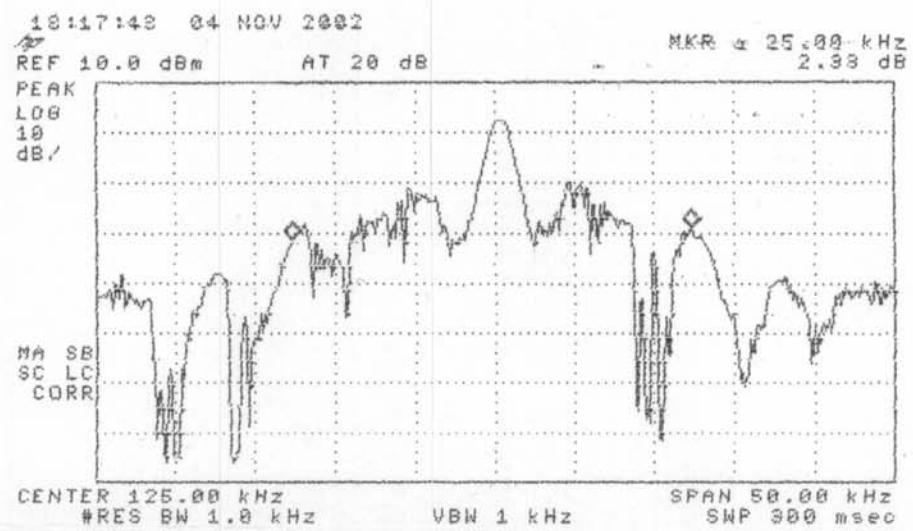


Figure 6.3. Measured bandwidth of the DUT. (repeated pulses)

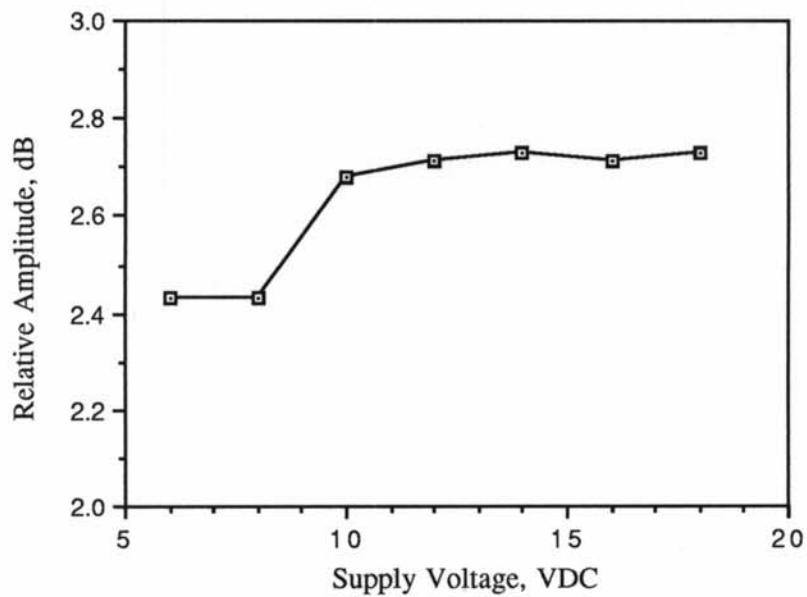


Figure 6.4. Relative emission at 125 kHz vs. supply voltage.

DUT on OATS

Close-up on the DUT on OATS