

} pDESKJET3 (} .OP
.PL 11.5"
.REPORT FOR 49 MHZ REMOTE CONTROL TX - UPDATED 6/26/98 PUT CIR DESC ON PA W
TEST PRO
.SV DATE, JANUARY 22, 1999
.SV APPLICANT, DSI (HK) LTD.
.SV FCCID, KNZ48435

---!
TABLE OF CONTENTS LIST

APPLICANT: &APPLICANT&

FCC ID: &FCCID&

TEST REPORT CONTAINING:

PAGE 1.....TEST PROCEDURE
PAGE 2.....TEST PROCEDURE CONTD. & CIRCUIT DESCRIPTION
PAGE 3-4....RADIATION INTERFERENCE TEST DATA
PAGE 5.....OCCUPIED BANDWIDTH TEST DATA

EXHIBITS CONTAINING:

" " EXHIBIT 1.....POWER OF ATTORNEY LETTER

" " EXHIBIT 2.....SAMPLE OF FCC ID LABEL

" " EXHIBIT 3.....SKETCH OF FCC ID LABEL LOCATION

" " EXHIBIT 4.....BLOCK DIAGRAM

" " EXHIBIT 5.....SCHEMATIC

" " EXHIBIT 6A-6B.....PARTS LIST

" " EXHIBIT 7.....INSTRUCTION MANUAL

" " EXHIBIT 8.....EXTERNAL PHOTO - FRONT SIDE

" "

EXHIBIT 9.....EXTERNAL PHOTO - BACK SIDE

" " EXHIBIT 10.....INTERNAL PHOTO - COMPONENT SIDE

" " EXHIBIT 11.....INTERNAL PHOTO - COPPER SIDE

" " EXHIBIT 12.....OCCUPIED BANDWIDTH PLOT - CW

" " EXHIBIT 13.....OCCUPIED BANDWIDTH PLOT - LOUD VOICE

APPLICANT: &APPLICANT&
FCC ID: &FCCID&
REPORT #: &\&
PAGE: TABLE OF CONTENTS LIST
.PA
ð : 3 ř.op
.PL 11.5"
.UPDATED 10/9/97 TO ADD CALIBRATION DATES
.4/23/97 revised for LISN Description

APPLICANT: &APPLICANT&
FCC ID: &FCCID&

TEST EQUIPMENT LIST

.rm 70

1. Spectrum Analyzer: Hewlett Packard 8566B - Opt 462, w/
preselector 85685A, & Quasi-Peak Adapter HP 85650A, & HP
8449B - OPT H02 Cal. 6/26/98
2. Signal Generator, Hewlett Packard 8640B, cal. 10/1/98
3. Eaton Biconnical Antenna Model 94455-1
20-200 MHz Serial No. 0997 Cal. 5/15/98
4. Electro-Metric Dipole Kit, 20-1000 MHz, Model TDA-30 10/15/98
5.
h "
Electro-Metric Horn 1-18 GHz, Model RGA-180, Cal. 8/15/98

6. Electro-Metric Antennas Model TDA-30/1-4, Cal. 10/15/98
7. Electro-Metric Line Impedance Stabilization Network Model

" "
No. EM-7821, Serial No. 101; 100KHz-30MHz 50uH. Cal. 11/19/98
8. Electro-Metric Line Impedance Stabilization Network Model

" "
No. EM-7820, Serial No. 2682; 10KHz-30MHz 50uH. Cal. 11/19/98
9. Special low loss cable was used above 1 GHz
10. Tenney Temperature Chamber

TEST PROCEDURE

.rm70

GENERAL: This report shall NOT be reproduced except in full without the written approval of TIMCO ENGINEERING, INC.

RADIATION INTERFERENCE: The test procedure used was ANSI STANDARD C63.4-1992 using a HEWLETT PACKARD spectrum analyzer with a prese lector. The bandwidth of the spectrum analyzer was 100 kHz with an appropriate sweep speed. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The resolution bandwidth was 100KHz and the video bandwidth was 300KHz. The ambient temperature of the UUT was 55 ° F with a humidity of 69%.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was estab lished by adding the meter reading of the spectrum analyzer (which is set to read in units of dBuV) to the antenna correction factor sup plied by the antenna manufacturer. The antenna correction factors are stated in terms of dB. The gain of the Preselector was accounted for in the Spectrum Analyzer Meter Reading.

" "
Example:

Freq (MHz) METER READING + ACF = FS
33 20 dBuV + 10.36 dB = 30.36 dBuV/m @ 3m

POWER LINE CONDUCTED INTERFERENCE: The procedure used was ANSI STAN DARD C63.4-1992 using a 50uH LISN. Both lines were observed. The bandwidth of the spectrum analyzer was 10kHz with an appro priate sweep speed. The ambient temperature of the UUT was 55 ° F with a humidity of 69%.

APPLICANT: &APPLICANT&

FCC ID: &FCCID&

REPORT #: &\&

PAGE #: 1

.pa

ð : `6

Š

!

TEST PROCEDURES CONTINUED

APPLICANT: &APPLICANT&

FCC ID: &FCCID&

.rm 65

ANSI STANDARD C63.4-1992 10.1.7 MEASUREMENT PROCEDURES: The unit under test was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The table used for radiated measurements is capable of continuous rotation.

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

The situation was similar for the conducted measurement except that the table did not rotate. The EUT was setup as described in ANSI C63.4-1992 with the EUT 40 cm from the vertical ground wall.

CIRCUIT DESCRIPTION:

In the transmit mode the speaker is switched so that it is connected to the input of the audio amplifiers Q1, Q4 & Q5 and the output of Q5 drives the transformer T2, which modulates the voltage of the crystal controlled oscillator, Q6. The crystal controlled oscillator is the transmitter. Q6 is connected to the antenna via the output filter made up of C24, C2, & L1.

ANTENNA AND GROUND CIRCUITRY

This unit makes use of a external 5" antenna. The antenna is inductively coupled. This unit is powered from a 9.0V battery.

No ground connection is provided. The unit relies on the ground tract of the printed circuit board.

APPLICANT: &APPLICANT&

FCC ID: &FCCID&

REPORT #: &\&

PAGE #: 2

.PA
 Õ : `6 Š.OP
 .SV RULES,15.235
 .SV PASS/FAIL,DOES
 ..ENTER DOES OR DOES NOT
 APPLICANT: &APPLICANT&
 FCC ID: &FCCID&
 NAME OF TEST: RADIATION INTERFERENCE
 RULES PART NO.: &RULES&
 REQUIREMENTS: CARRIER FREQUENCY WILL NOT EXCEED 80 dBuV/m AT 3M.
 OUT-OF-BAND EMISSIONS SHALL NOT EXCEED:
 30 - 88 MHz 40.0 dBuV/M MEASURED AT 3 METERS
 88 - 216 MHz 43.5 dBuV/M
 216 - 960 MHz 46.0 dBuV/M
 ABOVE 960 MHz 54.0 dBuV/M
 .RM 70
 TEST DATA:

EMISSION FREQUENCY MHz	METER READING dBuV	COAX LOSS dB	ANTENNA CORRECTION FACTOR	FIELD STRENGTH dB	MARGIN dBuV/m@3m	ANT. dB
49.86	19.50	0.25	10.99	30.74	49.26	V
99.70	8.50	0.80	8.39	17.69	25.81	H
149.60	2.50	0.80	16.90	20.20	23.30	V
199.40	4.10	0.90	12.66	17.66	25.84	V
249.30	3.80	1.20	13.35	18.35	27.65	V
299.20	2.50	1.40	15.65	19.55	26.45	V
349.00	2.30	1.40	15.52	19.22	26.78	H
398.90	2.50	1.40	16.97	20.87	25.13	H
448.70	3.50	1.60	18.12	23.22	22.78	V
498.60	3.90	1.60	19.27	24.77	21.23	H
548.40	2.30	1.60	19.69	23.59	22.41	V
598.30	2.90	1.60	20.09	24.59	21.41	H
648.20	3.60	1.60	21.16	26.36	19.64	H
698.00	3.20	2.00	22.26	27.46	18.54	H
747.90	3.10	2.00	21.88	26.98	19.02	H
797.70	3.30	2.00	22.01	27.31	18.69	H

SAMPLE CALCULATION:

$$FSdBuV/m = MR(dBuV) + ACFdB.$$

APPLICANT: &APPLICANT&

FCC ID: &FCCID&

REPORT #: &\&

PAGE #: 3

.PA

Đ 8 ' 6 Š .OP
' Đ D' Đ D

APPLICANT: &APPLICANT&

FCC ID: &FCCID&

NAME OF TEST: RADIATION INTERFERENCE CONTINUED

TEST PROCEDURE: The procedure used was ANSI STANDARD C63.4-1992. The spectrum was scanned from 30 MHz to 1000 MHz. When an emission was found, the table was rotated to produce the maximum signal strength. The antenna was placed in both the horizontal and vertical planes and the worse case emissions were reported. The UUT was tested in 3 orthogonal planes.

TEST RESULTS: THE UNIT &PASS/FAIL& MEET THE FCC REQUIREMENTS.

PERFORMED BY: S. S. SANDERS

DATE: &DATE&

.RR

APPLICANT: &APPLICANT&
FCC ID: &FCCID&
REPORT #: &\&
PAGE #: 4

.PA

δ : `6 Š.OP
.SV RULESPART, 15.235

APPLICANT: &APPLICANT&
FCC ID: &FCCID&
NAME OF TEST: Occupied Bandwidth
RULES PART NO.: &RULESPART&
.oj off

REQUIREMENTS: The field strength of any emissions appearing between the band edges and up to 10 kHz above and below the band edges shall be attenuated at least 26 dB below the level of the unmodulated carrier or to the general limits of 15.209, whichever permits the higher emission levels.

THE GRAPHS IN EXHIBITS 12-14 REPRESENT THE EMISSIONS TAKEN FOR THE DEVICE.

.oj on

METHOD OF MEASUREMENT: A small sample of the transmitter output was fed into the spectrum analyzer and the attached plot was taken. The vertical scale is set to -10 dBm per division. The horizontal scale is set to 5 kHz per division.

TEST RESULTS: The unit DOES meet the FCC requirements.

PERFORMED BY: S. S. SANDERS DATE: &DATE&

APPLICANT: &APPLICANT&

FCC ID: &FCCID&

REPORT #: &\&

PAGE #: 5