

TABLE OF CONTENTS LIST

APPLICANT: TEKCOM INDUSTRIES LTD.

FCC ID: KLLTM-338

TEST REPORT:

PAGE	1.....	COVER SHEET - GENERAL INFORMATION & TECHNICAL DESCRIPTOR
PAGE	2.....	TECHNICAL DESCRIPTION CONTINUE & RF POWER OUTPUT
PAGE	3.....	TECHNICAL DATA
PAGE	4.....	AUDIO FREQUENCY RESPONSE & AUDIO LOW PASS FILTER
PAGE	5.....	MODULATION LIMITING - 300 Hz, 1000 Hz
PAGE	6.....	MODULATION LIMITING - 2500 Hz
PAGE	7.....	OCCUPIED BANDWIDTH
PAGE	8-9....	OCCUPIED BANDWIDTH PLOTS
PAGE	10-11...	SPURIOUS EMISSIONS AT ANTENNA TERMINALS
PAGE	12-13...	FIELD STRENGTH OF SPURIOUS EMISSIONS
PAGE	13.....	METHOD OF MEASURING RADIATED SPURIOUS EMISSIONS
PAGE	14.....	FREQUENCY STABILITY
PAGE	15.....	RF EXPOSURE REQUIREMENTS
PAGE	16.....	MPE CALCULATION
PAGE	17-20..	LIST OF TEST EQUIPMENT

EXHIBIT CONTAINING:

EXHIBIT 1.....	FCC ID LABEL SAMPLE
EXHIBIT 2.....	SKETCH OF FCC ID LOCATION
EXHIBIT 3.....	EXTERNAL PHOTOGRAPHS
EXHIBIT 4.....	INTERNAL PHOTOGRAPHS
EXHIBIT 5.....	TEST SETUP PHOTOGRAPH
EXHIBIT 6.....	BLOCK DIAGRAM
EXHIBIT 7.....	SCHEMATICS
EXHIBIT 8.....	USER'S MANUAL
EXHIBIT 9.....	TUNING PROCEDURE
EXHIBIT 10.....	PARTS LIST
EXHIBIT 11.....	PARTS - FUNCTION OF DEVICES
EXHIBIT 12.....	CRYSTAL SPECIFICATION
EXHIBIT 13.....	OPERATIONAL DESCRIPTION

APPLICANT: TEKCOM INDUSTRIES LTD.

FCC ID: KLLTM-338

REPORT #: T\TEKCOM_KLL\120AUT3\120AUT3TestReport.doc
TALBE OF CONTENTS LIST

GENERAL INFORMATION REQUIRED
FOR TYPE ACCEPTANCE

2.1033(c) TEKCOM INDUSTRIES LTD. will sell the FCC ID: KLLTM-338 VHF Marine transmitter in quantity, for use under FCC RULES PART 80.

TEKCOM INDUSTRIES LTD.
BLOCK C, 9/F., KAISER ESTATE, PHASE 1
41 MAN YUE STREET
HUNGKONG, KOWLOON, FO TAN N.T. HONG KONG

2.1033(c) TECHNICAL DESCRIPTION

(4) Type of Emission: 13K5G3E/13K5F3E

```

Bn = 2M + 2DK
    M = 3000
D = 3.75 kHz (Peak Deviation)
    K = 1
Bn = 2(3000) + 2(3750)(1) = 6000 + 7500 = 13.5 k

```

80.205(A) ALLOWED AUTHORIZED BANDWIDTH = 20.00 kHz.

(4) Type of Emission: 13K5G2B

```

Bn = 2M + 2DK
    M = 3000
D = 3.75 kHz (Peak Deviation)
    K = 1
Bn = 2(3000) + 2(3750)(1) = 6000 + 7500 = 13.5 k

```

80.205(A) ALLOWED AUTHORIZED BANDWIDTH = 20.00 kHz.

2.1033(c)(5) Frequency Range: 156.05 - 157.425 MHz

2.1033(c)(6) Power Range and Controls: There is a user Power switch for High/Low Power.

Maximum Output Power Rating:
High - 23 WATTS
LOW - 1 WATT
into a 50 ohm resistive load

2.1033(c)(8) DC Voltages and Current into Final Amplifier:

POWER INPUT
FINAL AMPLIFIER ONLY

High Vce = 13.6 Volts I _{ce} = 5.66 A	Low Vce = 13.6 VDC I _{ce} = 1.51
--	---

Pin = 76.97 Watts Pin = 20.53 Watts

Function of each electron tube or semiconductor device or other active circuit device: - SEE EXHIBIT# 7

APPLICANT: TEKCOM INDUSTRIES LTD.

ECC ID: KLI TM-338

REPORT #: TTEKCOM_KLI\120AUT3\120AUT3TestReport.doc

2.1033(c)(10) Complete Circuit Diagrams: The circuit diagram is included as EXHIBIT 7A-7C. The block diagram is included as EXHIBIT 6A-5E.

2.1033(c)(3) Instruction book. The instruction manual is included as EXHIBIT #8.

2.1033(c) (9) Tune-up procedure. The tune-up procedure is given in EXHIBIT #9.

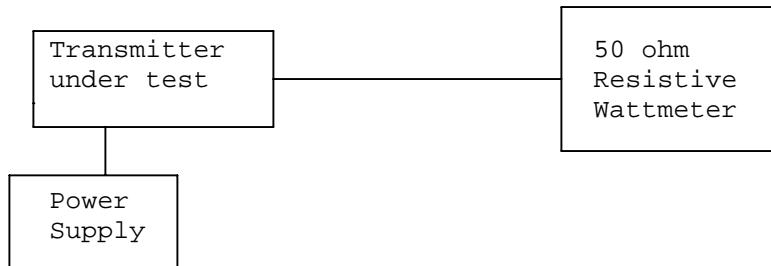
Description of all circuitry and devices provided for determining and stabilizing frequency is included in the circuit description in the instruction manual.

2.1033(c) (13) Digital modulation. This unit does NOT use digital modulation.

The data required by 2.1046 through 2.1055 is submitted below.

2.1046(a)
80.215(e)(1)

RF power output.
RF power is measured by connecting a 50 ohm, resistive wattmeter to the RF output connector. With a nominal battery voltage of 13.6 V, and the transmitter properly adjusted the RF output measures:


POWER OUTPUT
INPUT POWER: (13.6V)(5.66A) = 75.97 Watts
OUTPUT POWER: LOW - 1 WATTS
HIGH - 23 WATTS

80.911 (d)(5) For primary supply voltages, measured in accordance with the procedures in this paragraph, greater than 11.5 volts, but less than 12.6 volts, the required transmitter output power shall be equal or greater than the value calculated below.

$P=4.375(V)-35.313$.
For 12.0 volts this equals 17.2 watts.

The measured power at this voltage is

METHOD OF MEASURING RF POWER OUTPUT

APPLICANT: TEKCOM INDUSTRIES LTD.

FCC ID: KLLTM-338

REPORT #: T\TEKCOM_KLL\120AUT3\120AUT3TestReport.doc

Page 2 of 20

Technical Data:

80.203(b) External Controls: The transmitter is capable of changing frequency between 156.05 – 157.425 MHz by external control. The available channels are shown in the User Manual description Channel List. These channels are preprogrammed by the manufacturer and change of frequency is inaccessible to the station operator.

80.203(c) Five minute continuous transmission test. The antenna was connected to a dummy load and the radio was locked in a transmit PTT mode. An external timer digital clock was used to observe the duration of the unmodulated transmission. The transmitter turned off and the radio went to receive mode at 4 minutes, 58 seconds as displayed by the external digital clock.

80.203(n) This radio complies with the requirement for DSC capability in the 156-162 MHz band and in accordance with 80.225.

80.873; 80.956 Transmitter G3E emission capability: The transmitter was connected to 50 ohm resistive wattmeter and the frequency was set to 156.300 and to 156.800 MHz. With normal modulation, the output power displayed was 23 Watts at the high power setting and 1 watt at low power setting, consistent with previous measurements.

The transmitter has been demonstrated to be capable, with normal operating voltages applied, of delivering 23 watts of carrier power into a 50 ohm resistive load over the specified frequencies.

80.911(a); 80.956 G3E Transmissions: This radio is capable of G3E emission on 156.300 and 156.800 MHz.

80.911(c) With 13.6 VDC applied and with the radio connected to a 50 ohm resistive wattmeter, the output power was measured at 156.300 and 156.800 MHz with a measured reading of 23 Watts under normal speech modulation.

80.911(d)(2); 80.959 With the power supply set to 13.6 VDC, and the output of the transmitter terminated in a 50 ohm matching artificial load, the transmitter output power was monitored over a 10 minute continuous operational period while in full power. The output power varied from the nominal 23 Watts output power to 22.8 Watts output power

80.911(d)(5); 80.959 The primary supply voltage shall be set between 11.5-12.6 VDC. For a primary power of 12.0 volts, the output power shall be equal or greater than the value calculated from the following formula:

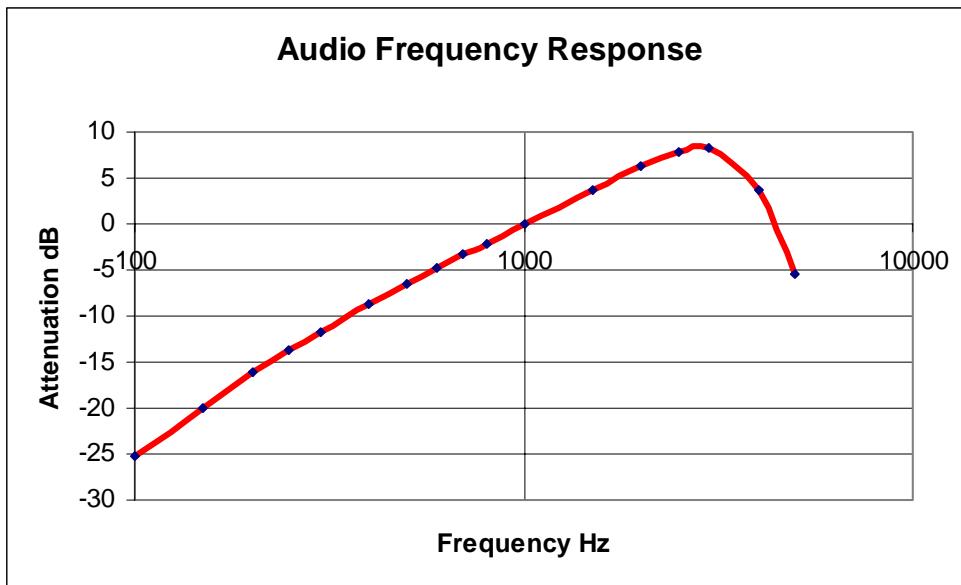
$$P=4.375(12.0)-35.313 \text{ or } 17.2 \text{ Watts.}$$

The actual power was measured to be: XXXX Watts.

APPLICANT: TEKCOM INDUSTRIES LTD.

FCC ID: KLLTM-338

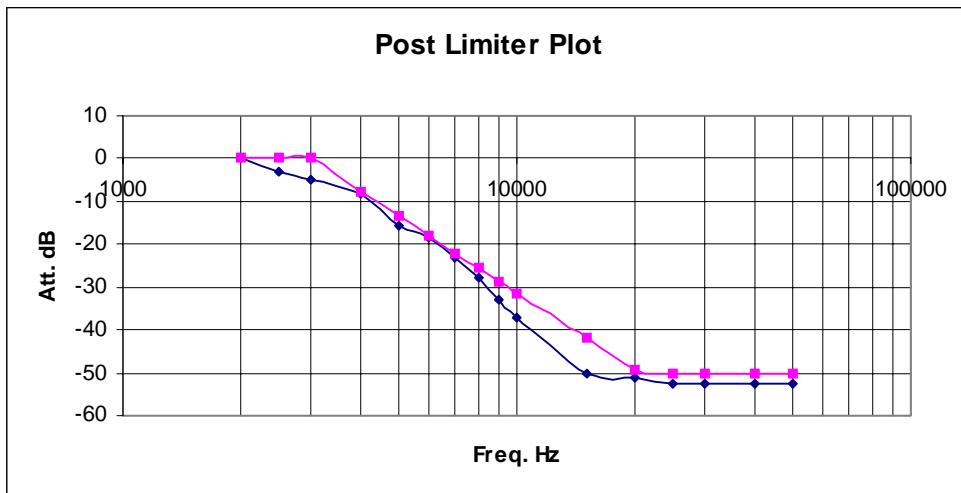
REPORT #: T\TEKCOM_KLL\120AUT3\120AUT3TestReport.doc


Page 3 of 20

2.1047(a)

Voice Modulation characteristics:

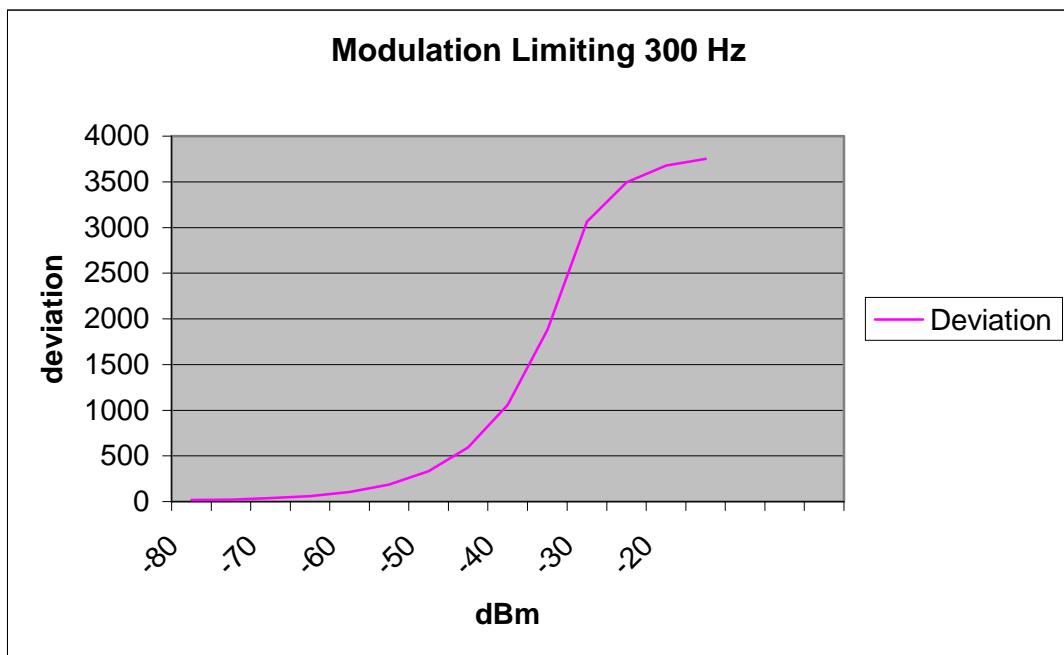
(b)


AUDIO_FREQUENCY_RESPONSE

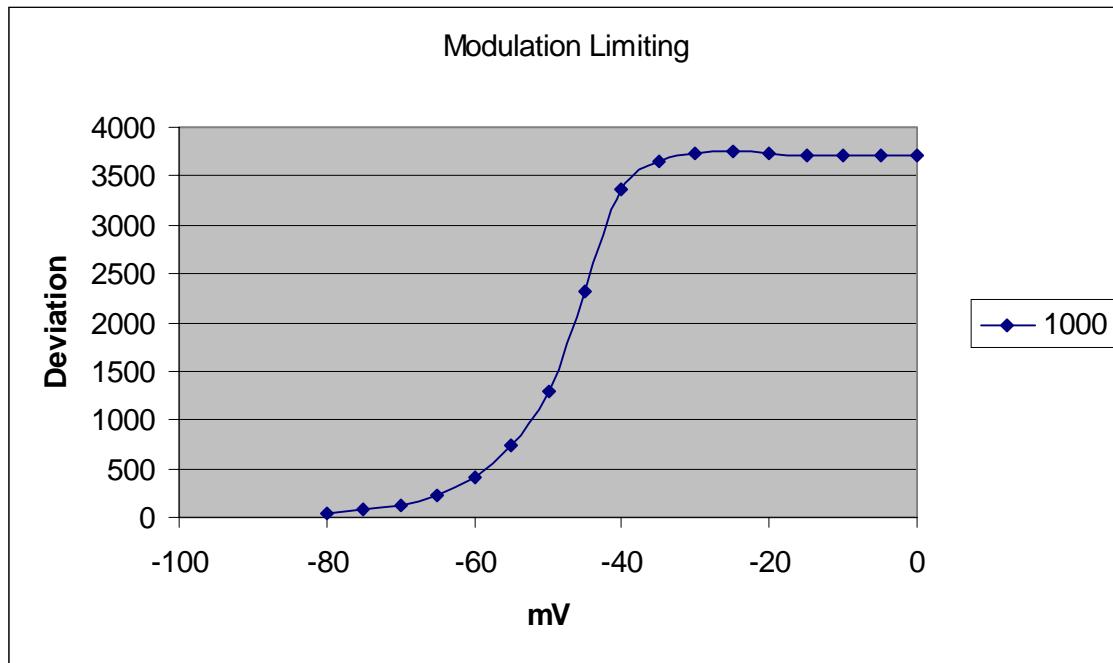
2.1047(a)

AUDIO_LOW_PASS_FILTER

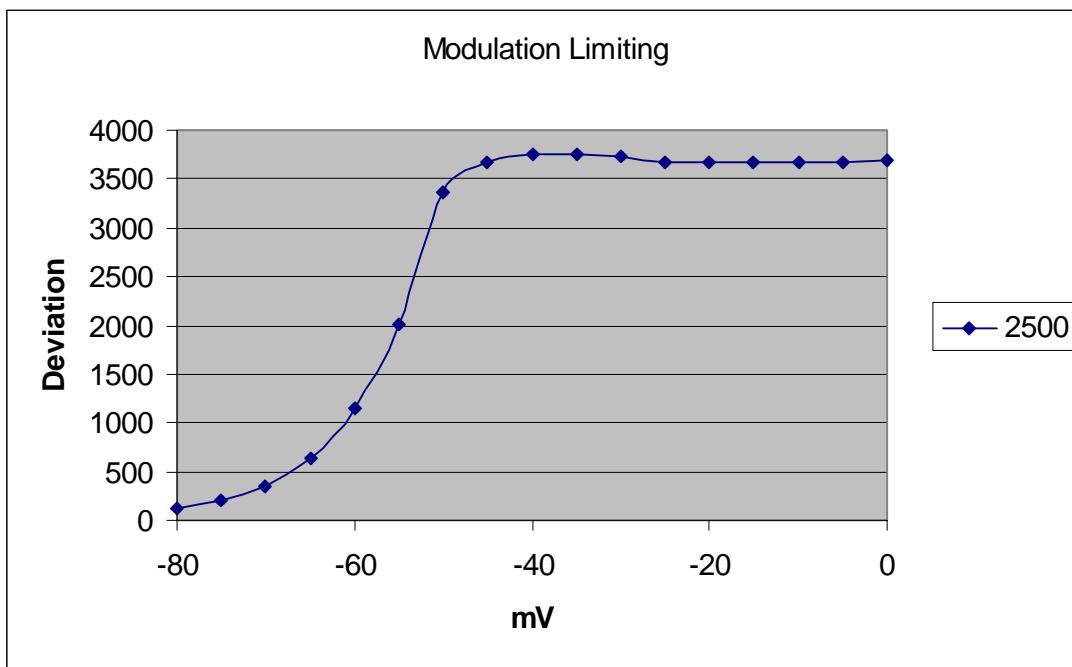
The audio low pass filter is included and the plot is shown as EXHIBIT #9. Rules 80.213(e) for ship stations with a low pass filter.


APPLICANT: TEKCOM INDUSTRIES LTD.

FCC ID: KLLTM-338


REPORT #: T\TEKCOM_KLL\120AUT3\120AUT3TestReport.doc

Page 4 of 20


MODULATION LIMITING PLOT - 300 Hz

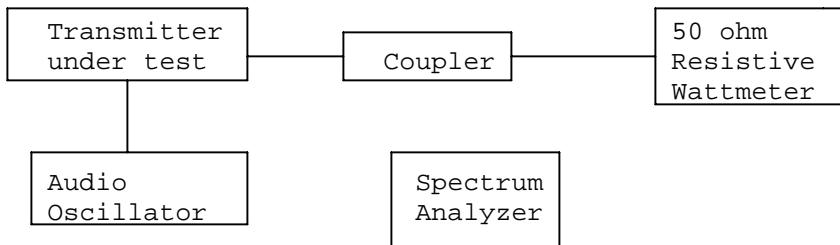
MODULATION LIMITING PLOT - 1000 Hz

MODULATION LIMITING PLOT - 2500 Hz

2.1047 With modulation frequencies of 300, 1000, and 2500 Hz respectively,
80.213(a)(2) System deviation must not exceed + or - 5kHz when using phase or
Frequency modulation.

2.1049(c) Occupied_bandwidth:

80.213(b)


Data in the plots shows that on any frequency removed from the assigned frequency by more than 50%, but not more than 100%: At least 25dB. On any frequency removed from the assigned frequency by more than 100%, but not more than 250%: At least 35dB. On any frequency removed from the assigned frequency by more than 250% of the authorized bandwidth: At least $43+\log(P)$ dB.

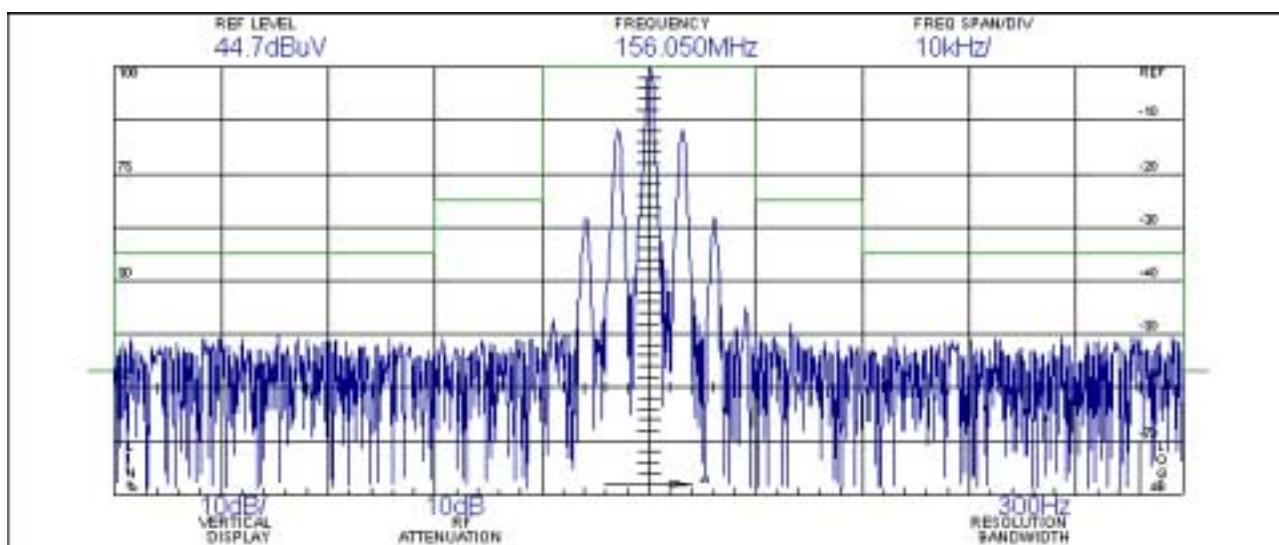
Radiotelephone transmitter with modulation limiter.

Test procedure: TIA/EIA-603 para 2.2.11 , with the exception that various tones were used.

Test procedure diagram

OCCUPIED BANDWIDTH MEASUREMENT

APPLICANT: TEKCOM INDUSTRIES LTD.

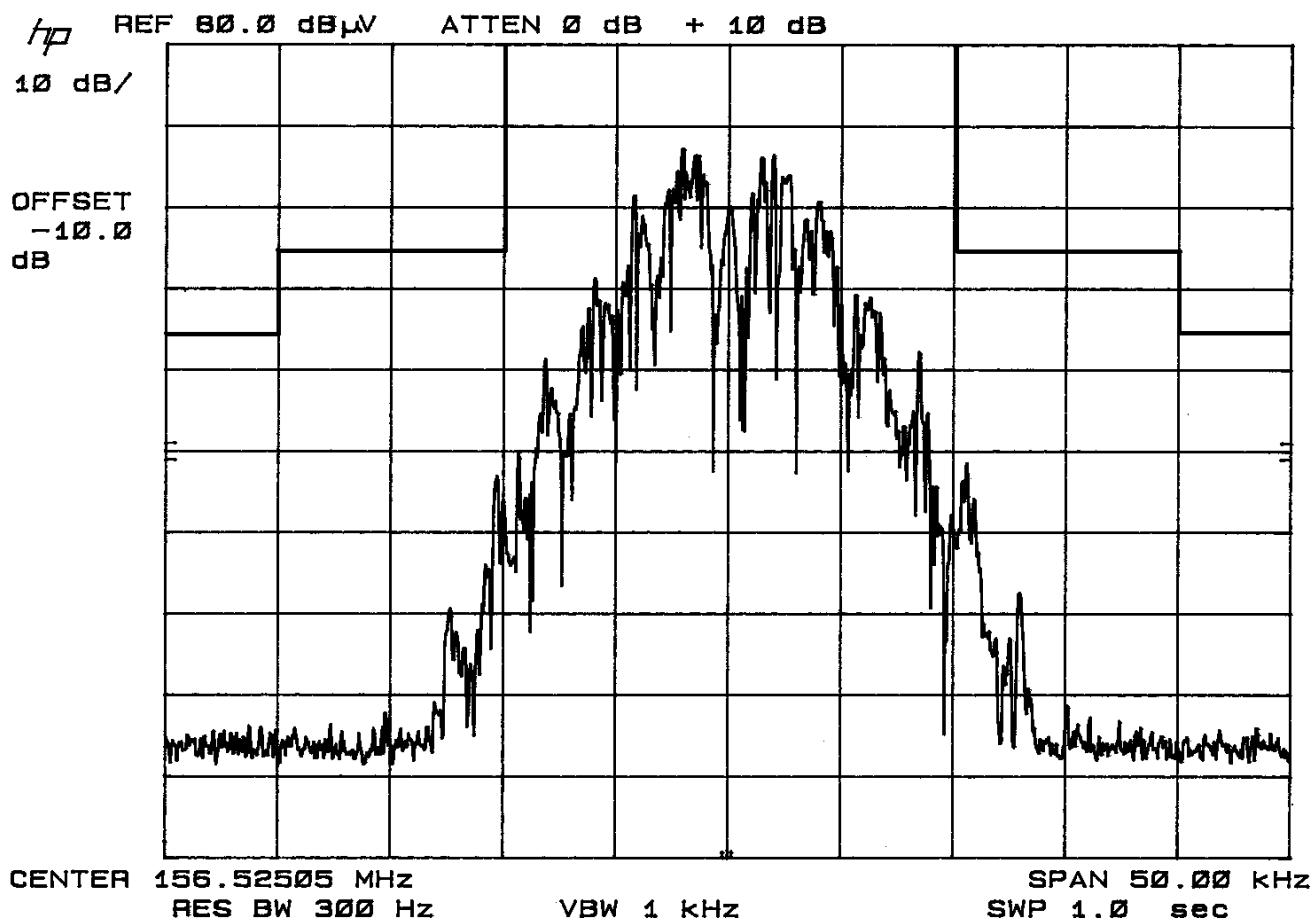

FCC ID: KLLTM-338

REPORT #: T\TEKCOM_KLL\120AUT3\120AUT3TestReport.doc

Page 7 of 20

OCCUPIED BANDWIDTH PLOT

G3E



APPLICANT: TEKCOM INDUSTRIES LTD.

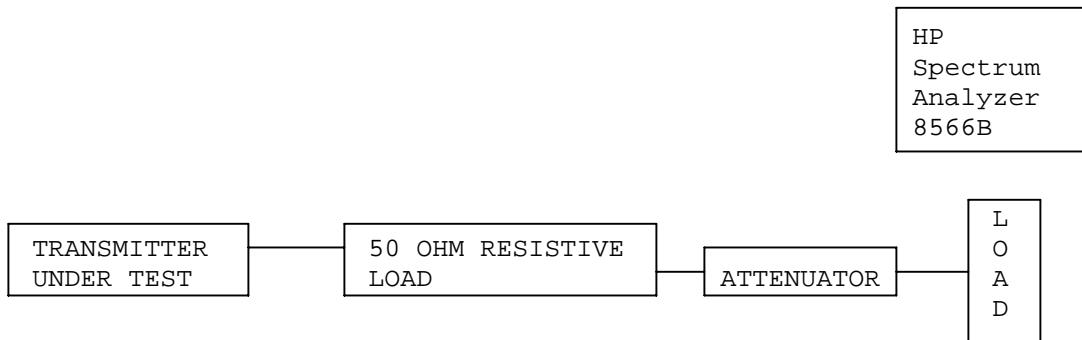
FCC ID: KLLTM-338

REPORT #: T\TEKCOM_KLL\120AUT3\120AUT3TestReport.doc

Page 8 of 20

APPLICANT: TEKCOM INDUSTRIES LTD.

FCC ID: KLLTM-338


REPORT #: T\TEKCOM_KLL\120AUT3\120AUT3TestReport.doc

Page 9 of 20

2.1051
80.211

Spurious_emissions_at_antenna_terminals(conducted):
The data on the following page shows the level of conducted spurious responses. The carrier was modulated 100% using a 2500Hz tone. The spectrum was scanned from 0.4 to at least the 10th harmonic of the fundamental. The measurements were made in accordance with standard TIA/EIA-603.

Method of Measuring Conducted Spurious Emissions

2.1051 Continued

Spurious_Emissions_at_the_Antenna_Terminals:

REQUIREMENTS:

Emissions must be $43 + 10\log(P_o)$ dB below the mean power output of the transmitter.

$$\begin{array}{ll} \text{HIGH POWER} & 43 + 10\log(25) = 43 + 13.98 = 57.0 \text{dB} \\ \text{LOW POWER} & 43 + 10\log(1) = 43 + 0 = 43 \text{dB} \end{array}$$

HIGH POWER

TF	EF	dB below carrier
156	156	0
312	77.9	
468	75.4	
624	97.5	
780	95	
936	106.1	
1092	102.3	
1248	97.1	
1404	101.9	
1560	98.5	

APPLICANT: TEKCOM INDUSTRIES LTD.

FCC ID: KLLTM-338

REPORT #: T\TEKCOM_KLL\120AUT3\120AUT3TestReport.doc

Page 10 of 20

LOW POWER

TF	EF	dB below carrier
156	156	0
	312	79.8
	468	87.5
	624	92.8
	780	91.1
	936	107.1
	1092	96.6
	1248	95.6
	1404	94
	1560	95.3

HIGH POWER

TF	EF	dB below carrier
157.4	157.4	0
	314.8	82
	472.2	77.6
	629.6	101.2
	787	95.7
	944.4	107.5
	1101.8	103.2
	1259.2	97.1
	1416.6	103.4
	1574	93.8

LOW POWER

TF	EF	dB below carrier
157.4	157.4	0
	314.8	82.6
	472.2	86.7
	629.6	94.2
	787	92.8
	944.4	106.4
	1101.8	96.2
	1259.2	94
	1416.6	94
	1574	97.2

METHOD OF MEASUREMENT: The procedure used was TIA/EIA-603 STANDARD without any exceptions. An audio generator was connected to the UUT through a dummy microphone circuit and the output of the transmitter connected to a standard load and from the standard load through a pre-selector filter of the spectrum analyzer. The spectrum was scanned from 400 kHz to at least the tenth harmonic of the fundamental using a HP model 8566B spectrum analyzer. The measurements were made using the shielded room located at TIMCO ENGINEERING INC. 849 STATE ROAD, NEWBERRY FLORIDA 32669.

APPLICANT: TEKCOM INDUSTRIES LTD.

FCC ID: KLLTM-338

REPORT #: T\TEKCOM_KLL\120AUT3\120AUT3TestReport.doc

Page 11 of 20

2.1053(a) Field_strength_of_spurious_emissions:

NAME OF TEST: RADIATED SPURIOUS EMISSIONS

REQUIREMENTS: Emissions must be $43 + 10\log(P_0)$ dB below the mean power output of the transmitter.

$$\begin{array}{ll} \text{HIGH POWER} & 43 + 10\log(23) = 56.62 \text{ dB} \\ \text{LOW POWER} & 43 + 10\log(1) = 43.00 \text{ dB} \end{array}$$

TEST DATA:

Emission Frequency MHz	ATTN dBc	dBm
HIGH POWER		
156.05	0	43.6
312.10	66	-22
468.10	80	-36
624.20	78	-34
780.30	82	-38
936.30	91	-47
1,092.40	87	-43
1,248.40	71	-27
1,404.50	77	-33
1,560.60	76	-32
LOW POWER		
156.05	0	30
312.10	66	-36
468.10	73	-43
624.20	78	-48
780.30	72	-42
936.30	89	-59
1,092.40	78	-48
1,248.40	69	-29
1,404.50	75	-45
1,560.60	75	-45
HIGH POWER		
157.40	0	43.6
314.80	67	-23
472.30	79	-35
629.70	79	-35
787.20	81	-37
944.60	94	-50
1,102.00	88	-44
1,259.50	69	-25
1,416.90	73	-29
1,574.40	75	-31

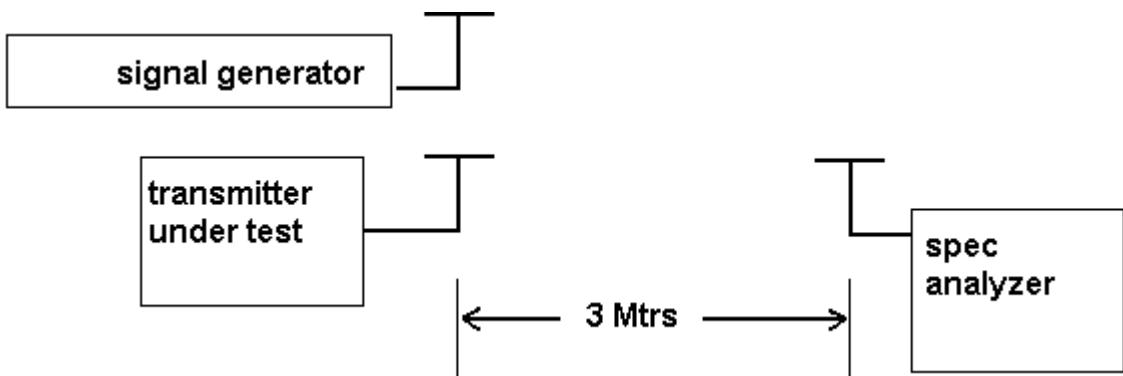
APPLICANT: TEKCOM INDUSTRIES LTD.

FCC ID: KLLTM-338

REPORT #: T\TEKCOM_KLL\120AUT3\120AUT3TestReport.doc

Page 12 of 20

TEST DATA CONTINUED:


LOW POWER

157.40	0	30
314.80	67	-37
472.30	74	-44
629.70	78	-48
787.20	72	-42
944.60	89	-59
1,102.00	77	-47
1,259.50	69	-39
1,416.90	72	-42
1,574.40	74	-44

METHOD OF MEASUREMENT: The tabulated data shows the results of the radiated field strength emissions test. The spectrum was scanned from 30 to at least the tenth harmonic of the fundamental. This test was conducted per TIA/EIA STANDARD 603 using the substitution method. Measurements were made at the open field test site of TIMCO ENGINEERING, INC. located at 849 N.W. State Road 45, Newberry, FL 32669.

2.1053(a) Continued Field_strength_of_spurious_emissions:

Method of Measuring Radiated Spurious Emissions

APPLICANT: TEKCOM INDUSTRIES LTD.

FCC ID: KLLTM-338

REPORT #: T\TEKCOM_KLL\120AUT3\120AUT3TestReport.doc

Page 13 of 20

Frequency_stability:

2.1055(a)(2)

80.209(a)

Temperature and voltage tests were performed to verify that the frequency remains within the .005%, 5.0 ppm specification limit, for 20kHz spacing. The test was conducted as follows: The transmitter was placed in the temperature chamber at 25 degrees C and allowed to stabilize for one hour. The transmitter was keyed ON for one minute during which four frequency readings were recorded at 15 second intervals. The worse case number was taken for temperature plotting. The assigned channel frequency was considered to be the reference frequency. The temperature was then reduced to -30 degrees C after which the transmitter was again allowed to stabilize for one hour. The transmitter was keyed ON for one minute, and again frequency readings were noted at 15 second intervals. The worst case number was recorded for temperature plotting. This procedure was repeated in 10 degree increments up to + 50 degrees C.

Readings were also taken at minus 15% of the battery voltage of 13.6 V, which we estimate to be the battery endpoint.

MEASUREMENT DATA:

Assigned Frequency (Ref. Frequency): 156.050 000 MHz

TEMPERATURE_C	FREQUENCY_MHz	PPM
REFERENCE_____	156.050 000	00.0
-30_____	156.049 429	-3.66
-20_____	156.049 058	0.37
-10_____	156.05 054	3.46
0_____	156.050 657	4.21
+10_____	156.050 518	3.32
+20_____	156.04 988	1.59
+30_____	156.049 603	-0.77
+40_____	156.049 603	-2.54
+50_____	156.049 714	-1.83
11.5VDC 0.85% Battery Voltage		
	156.050 155	0.99
	156.050 174	1.12

RESULTS OF MEASUREMENTS: The maximum frequency variation over the temperature range was -3.66 to 4.21 ppm. The maximum frequency variation over the voltage range was 1.12 ppm.

APPLICANT: TEKCOM INDUSTRIES LTD.

FCC ID: KLLTM-338

REPORT #: T\TEKCOM_KLL\120AUT3\120AUT3TestReport.doc

Page 14 of 20

FCC RF Exposure Requirements

General information:

FCCID:

Device category: Mobile per Part 2.1091

Environment: General Population/Uncontrolled Exposure

Antenna:

The manufacturer does not specify any antenna to be used with this device.

This device has provisions for operation in a boat.

Configuration	Antenna p/n	Type	Max. Gain (dBi)
Boat	Any	-	5 dBi (3 dBd)

Operating configuration and exposure conditions:

Part 2.1091 states that devices are excluded from routine evaluation if the EIRP is less than 2.46 Watts (or 1.5 WERP).

A 50% on time (15 minutes transmitting over a 30 minute period) is used to average over .

Boat Operation: Cable length = 32 ft exposed and 3 feet internal to radom = 35 ft. Total. 35 feet cable loss including connector insertion loss at 156 MHz is 2.5 dB. The maximum antenna gain that can be used is 5 dBi (3 dBd).

APPLICANT: TEKCOM INDUSTRIES LTD.

FCC ID: KLLTM-338

REPORT #: T\TEKCOM_KLL\120AUT3\120AUT3TestReport.doc

Page 15 of 20

MPE CALCULATION

W := 23.0 power in Watts D := 1 Duty Factor in decimal % (1=100%)(FM)

E := 15 exposure time in minutes U := 30 (use 6 for controlled and 30 for uncontrolled)

$$W_{exp} := W \cdot D \cdot \left(\frac{E}{U} \right)$$

$$PC := \frac{E}{U}$$

$$PC = 0.5 \quad \text{percent on time}$$

$$W_{exp} = 11.5 \quad \text{Watts}$$

$$CL := 2.5 \quad \text{Coax loss in dB}$$

Po := 11500 mWatts dBd := 3 antenna gain f := 158 Frequency in MHz

$$G := dBd + 2.15 - CL \quad \text{gain in dBi}$$

$$Gn := 10^{\frac{G}{10}} \quad \text{gain numeric} \quad S := .2 \quad \text{uncontrolled below 300 MHz}$$

$$Gn = 1.841 \quad S = 0.2$$

$$R := \sqrt{\frac{(Po \cdot Gn)}{(4 \cdot \pi \cdot S)}}$$

$$R_{inches} := \frac{R}{2.54}$$

$$R = 91.776 \quad \text{distance in centimeters required for compliance} \quad R_{inches} = 36.132$$

Conclusion:

The device complies with the MPE requirements for a typical transceiver with 50 % transmit time by providing a safe separation distance of 91 cm between the antenna, including any radiating structure, and any persons when normally operated .

APPLICANT: TEKCOM INDUSTRIES LTD.

FCC ID: KLLTM-338

REPORT #: T\TEKCOM_KLL\120AUT3\120AUT3TestReport.doc

Page 16 of 20

EMC Equipment List

	DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
X	3-Meter OATS	TEI	N/A	N/A	Listed 1/13/03	1/13/06
	3/10-Meter OATS	TEI	N/A	N/A	Listed 3/26/01	3/26/04
	Receiver, Beige Tower Spectrum Analyzer	HP	8566B Opt 462	3138A07786 3144A20661	CAL 8/31/01	8/31/03
	RF Preselector	HP	85685A	3221A01400	CAL 8/31/01	8/31/03
	Quasi-Peak Adapter	HP	85650A	3303A01690	CAL 8/31/01	8/31/03
X	Receiver, Blue Tower Spectrum Analyzer	HP	8568B	2928A04729 2848A18049	CAL 4/15/03	4/15/05
X	RF Preselector	HP	85685A	2926A00983	CAL 4/15/03	4/15/05
X	Quasi-Peak Adapter	HP	85650A	2811A01279	CAL 4/15/03	4/15/05
	Receiver, Silver/Grey Tower Spectrum Analyzer	HP	8566B Opt 462	3552A22064 3638A08608	CAL 10/14/02	10/14/04
	RF Preselector	HP	85685A	2620A00294	CAL 10/14/02	10/14/04
	Quasi-Peak Adapter	HP	85650A	3303A01844	CAL 10/14/02	10/14/04
	Preamplifier	HP	8449B	3008A01075	CHAR 1/28/02	1/28/04
X	Biconnical Antenna	Electro-Metrics	BIA-25	1171	CAL 4/26/01	4/26/03
	Biconnical Antenna	Eaton	94455-1	1096	CAL 10/1/01	10/1/03
	Biconnical Antenna	Eaton	94455-1	1057	CAL 3/18/03	3/18/05
	BiconiLog Antenna	EMCO	3143	9409-1043		
X	Log-Periodic Antenna	Electro-Metrics	LPA-25	1122	CAL 10/2/01	10/2/03
	Log-Periodic Antenna	Electro-Metrics	EM-6950	632	CHAR 10/15/01	10/15/03

APPLICANT: TEKCOM INDUSTRIES LTD.

FCC ID: KLLTM-338

REPORT #: T\TEKCOM_KLL\120AUT3\120AUT3TestReport.doc

Page 17 of 20

	DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
	Log-Periodic Antenna	Electro-Metrics	LPA-30	409	CAL 3/4/03	3/4/05
	Dipole Antenna Kit	Electro-Metrics	TDA-30/1-4	152	CAL 3/21/01	3/21/04
	Dipole Antenna Kit	Electro-Metrics	TDA-30/1-4	153	CAL 9/26/02	9/26/05
	Double-Ridged Horn Antenna	Electro-Metrics	RGA-180	2319	CAL 2/17/03	2/17/05
	Horn Antenna	Electro-Metrics	EM-6961	6246	CAL 3/31/03	3/31/05
	Horn Antenna	ATM	19-443-6R	None	No Cal Required	
	Passive Loop Antenna	EMC Test Systems	EMCO 6512	9706-1211	CHAR 7/10/01	7/10/03
	Line Impedance Stabilization . . .	Electro-Metrics	ANS-25/2	2604	CAL 10/9/01	10/9/03
	Line Impedance Stabilization . . .	Electro-Metrics	EM-7820	2682	CAL 3/12/03	3/12/05
	Termaline Wattmeter	Bird Electronic Corporation	611	16405	CAL 5/25/99	5/25/01
	Termaline Wattmeter	Bird Electronic Corporation	6104	1926	CHAR 12/12/01	12/12/03
	Oscilloscope	Tektronix	2230	300572	CHAR 2/1/01	2/1/03
	System One	Audio Precision	System One	SYS1-45868	CHAR 4/25/02	4/25/04
	Temperature Chamber	Tenney Engineering	TTRC	11717-7	CHAR 1/22/02	1/22/04
	AC Voltmeter	HP	400FL	2213A14499	CAL 10/9/01	10/9/03
	AC Voltmeter	HP	400FL	2213A14261	CHAR 10/15/01	10/15/03
	AC Voltmeter	HP	400FL	2213A14728	CHAR 10/15/01	10/15/03
X	Digital Multimeter	Fluke	77	35053830	CHAR 1/8/02	1/8/04
	Digital Multimeter	Fluke	77	43850817	CHAR 1/8/02	1/8/04
	Digital Multimeter	HP	E2377A	2927J05849	CHAR 1/8/02	1/8/04
	Multimeter	Fluke	FLUKE-77-3	79510405	CHAR 9/26/01	9/26/03

APPLICANT: TEKCOM INDUSTRIES LTD.

FCC ID: KLLTM-338

REPORT #: T\TEKCOM_KLL\120AUT3\120AUT3TestReport.doc

Page 18 of 20

DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
Peak Power Meter	HP	8900C	2131A00545	CHAR 1/26/01	1/26/03
Power Meter	HP	432A	1141A07655	CAL 4/15/03	4/15/05
Power Meter And Sensor	Bird	4421-107 4022	0166 0218	CAL 4/16/03	4/16/05
Power Sensor	HP	478A	72129	CAL 4/15/03	4/15/05
Digital Thermometer	Fluke	2166A	42032	CAL 1/16/02	1/16/04
Thermometer	Traulsen	SK-128		CHAR 1/22/02	1/22/04
Thermometer	Extech	4028	14871-2	CAL 3/7/03	3/7/05
X Hygro-Thermometer	Extech	445703	0602	CAL 10/4/02	10/4/04
Frequency Counter	HP	5352B	2632A00165	CAL 11/28/01	11/28/03
Frequency Counter	HP	5385A	2730A03025	CAL 3/7/03	3/7/05
Power Sensor	Agilent Technologies	84811A	2551A02705	CHAR 1/26/01	1/26/03
Service Monitor	IFR	FM/AM 500A	5182	CAL 11/22/00	11/22/02
Comm. Serv. Monitor	IFR	FM/AM 1200S	6593	CAL 5/12/02	5/12/04
Signal Generator	HP	8640B	2308A21464	CAL 2/15/02	2/15/04
Sweep Generator	Wiltron	6648	101009	CAL 4/15/03	4/15/05
Sweep Generator	Wiltron	6669M	007005	CAL 3/3/03	3/3/05
Modulation Analyzer	HP	8901A	3435A06868	CAL 9/5/01	9/5/03
Modulation Meter	Boonton	8220	10901AB	CAL 4/15/03	4/15/05
Near Field Probe	HP	HP11940A	2650A02748	CHAR 2/1/01	2/1/03
BandReject Filter	Lorch Microwave	5BR4-2400/60-N	Z1	CHAR 3/2/01	3/2/03
BandReject Filter	Lorch Microwave	6BR6-2442/300-N	Z1	CHAR 3/2/01	3/2/03

APPLICANT: TEKCOM INDUSTRIES LTD.

FCC ID: KLLTM-338

REPORT #: T\TEKCOM_KLL\120AUT3\120AUT3TestReport.doc

Page 19 of 20

DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
BandReject Filter	Lorch Microwave	5BR4-10525/ 900-S	Z1	CHAR 3/2/01	3/2/03
High Pass Filter	Microlab	HA-10N		CHAR 10/4/01	10/4/03
High Pass Filter	Microlab	HA-20N		CHAR 2/7/03	2/7/05
Audio Oscillator	HP	653A	832-00260	CHAR 3/1/01	3/1/03
Frequency Counter	HP	5382A	1620A03535	CHAR 3/2/01	3/2/03
Frequency Counter	HP	5385A	3242A07460	CAL 3/7/03	3/7/05
Preamplifier	HP	8449B-H02	3008A00372	CHAR 3/4/01	3/4/03
Amplifier	HP	11975A	2738A01969	CHAR 3/1/01	3/1/03
Egg Timer	Unk			CHAR 8/31/01	8/31/03
Measuring Tape, 20M	Kraftixx	0631-20		CHAR 2/1/02	2/1/04
Measuring Tape, 7.5M	Kraftixx	7.5M PROFI		2/1/02	2/1/04
Coaxial Cable #51	Insulated Wire Inc.	NPS 2251- 2880	Timco #51	CHAR 1/23/02	1/23/04
Coaxial Cable #64	Semflex Inc.	60637	Timco #64	CHAR 1/24/02	1/24/04
Coaxial Cable #65	General Cable Co.	E9917 RG233/U	Timco #65	CHAR 1/23/02	1/23/04
Coaxial Cable #106	Unknown	Unknown	Timco #106	CHAR 1/23/02	1/23/04

APPLICANT: TEKCOM INDUSTRIES LTD.

FCC ID: KLLTM-338

REPORT #: T\TEKCOM_KLL\120AUT3\120AUT3TestReport.doc

Page 20 of 20