FCC 47 CFR MPE REPORT

Korg Inc

BASE

Model Number: WH-L1B

FCC ID: KIJ-WHLB

Applicant:	Korg Inc			
Address:	4015-2 Yanokuchi, Inagi-City, Tokyo, 206-0812 Japan			
Prepared By:	EST Technology Co., Ltd.			
	Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China			
Tel: 86-769-83081888-808				

Report Number:	ESTE-R2308294		
Date of Test:	Jul. 11~Aug. 23, 2023		
Date of Report:	Aug. 24, 2023		

Maximum Permissible Exposure

1. Applicable Standards

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2m normally can be maintained between the user and the device.

1.1. Limits for Maximum Permissible Exposure (MPE)

(a) Limits for Occupational/Controlled Exposure

Frequency	Electric Field	Magnetic Field	Power Density (S)	Averaging Times	
Range	Strength (E)	Strength (H)	(mW/cm^2)	$\mid E \mid^2$, $\mid H \mid^2$ or S	
(MHz)	(V/m)	(A/m)		(minutes)	
0.3-3.0	614	1.63	(100)*	6	
3.0-30	1842/f	4.89/f	(900/f)*	6	
30-300	61.4	0.163	1.0	6	
300-1500			F/300	6	
1500-10000			5	6	

(b) Limits for General Population / Uncontrolled Exposure

Frequency	Electric Field	Magnetic Field	Power Density (S)	Averaging Times
Range (MHz)	Strength (E)	Strength (H)	(mW/cm^2)	$\mid E \mid ^{2}$, $\mid H \mid ^{2}$ or S
	(V/m)	(A/m)		(minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-10000			1.0	30

Report No. ESTE-R2308294

Note: f=frequency in MHz; *Plane-wave equivalent power density

1.2. MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd $(W/m^2) = \frac{E^2}{377}$

E = Electric Field (V/m)

P = Peak RF output Power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

2. Conducted Power Result

Ant gain=1.59dBi

Ant numeric gain=1.442

Avg Field strength = 85.56dBuV/m@3m

 $P = \{ \ [10^{(85.56/20)} \ / 10^6 \ *3]^2 / \ (30*1) \ \} *1000 mW = 0.108 mW$

3. Calculated Result and Limit

		Antenna gain			Limited	
Mode	Target power (mW)	(dBi)	(Linear)	Power Density (S) (mW /cm²)	of Power Density (S) (mW /cm²)	Test Result
TX	0.108	1.59	1.442	0.000031	1	Complies

End of Test Report