

PRODUCT NAME: Cisco Systems AIR-LMC34X RADIO

NAME OF TEST: The Processing Gain of a Direct Sequence System.

FCC Part 15.247 (e) specifies:

The processing gain of a direct sequence system shall be at least 10 dB.

Guidance on measurement by FCC

The processing gain may be measured using the CW jamming margin method. The test consists of stepping a signal generator in 50khz increments across the passband of the system. At each point, the generator level required to the produce the recommended Bit Error Rate (10-5) is recorded. This is the jammer level. The output power of the transmitting unit is measured at the same point. The Jammer to Signal (J/S) ratio is then calculated. Discard the worst 20% of the J/S data points. Total losses in a system including transmitter and receiver, should be assumed to be no more than 2 dB.

therefore, processing gain = S/N + Mj + Lsys

Where:

S/N = Signal to noise ratio required at the receiver output for 10-5 error rate of a ideal receiver for your demodulation scheme

Mj = Jammer to signal ratio Lsys = System losses (2dB max)

Test results:

for 1 mb data rate:

S/N = 13 dB; taken from Wireless Information Networks by Pahlavan & Levesque

Mj = - 4.2 dB; worst case jamming margin from tests in lab

Lsys = 2.0 dB; system losses

therefore the processing gain at 1mb is 13 dB - 4.2 dB + 2.0 dB = 10.8 dB

for 2 mb data rate:

S/N = 13 dB; taken from Wireless Information Networks by Pahlavan & Levesque

Mj = -4.2 dB; worst case jamming margin from tests in lab

Lsys = 2.0 dB; system losses

therefore the processing gain at 2mb is 13 dB - 4.2 dB + 2.0 dB = 10.8 dB

for 5.5 mb data rate:

S/N = 13.6 dB; taken from Harris CCK encoding modulation

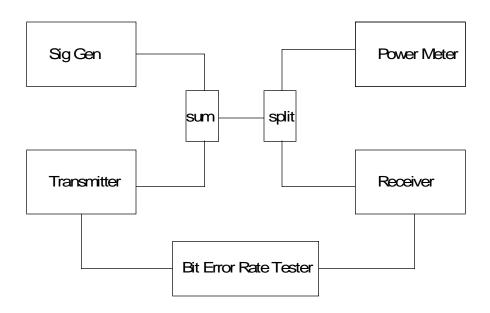
Mj = - 4.4 dB; worst case jamming margin from tests in lab (after 20% discard)

Lsys = 2.0 dB; system losses

therefore the processing gain at 5.5mb is 13.6 dB - 4.4 dB + 2.0 dB = 11.2 dB

for 11 mb data rate:

S/N = 16.0 dB; taken from Harris CCK encoding modulation


Mj = - 7.4 dB; worst case jamming margin from tests in lab (after 20% discarded)

Lsys = 2.0 dB; system losses

therefore the processing gain at 11mb is 16.0 dB - 7.4 dB + 2.0 dB = 10.6 dB

Jamming Test Setup

AIRONET	RF Systems Engineering				
24 Ghz SPREAD SPECTRUM RADIO, 2nd GEN					
Jammer Test, R240					
eng: J. Friedmann dwg: J. Friedmann	File:F00025_2.ds4 Date: 3/21/96 rev:				

AIRONET CONFIDENTIAL

LM340 Spread Spectrum Transceiver Alignment Procedures

Set	power out:	put radio in	TX mode	use power	meter to	o set i	nower	Out
υcι	power out.	put rauro m	1/1 mouc,	usc power	IIICULI U	U SCL	DOWCI	Out

1)TX on,ch 12-84: set power amp output power by adjusting voltage to the IF attenuator in the tx chain. This is done by software, which changes the DAC voltage output.

TX power out; set power to +15dBm + 1dB /-1 dB for highest power setting