

Note: This report is issued subject to TÜV SÜD PSB's "Terms and Conditions Governing Technical Services". The terms and conditions governing the issue of this report are set out as attached within this report.

**COMPLIANCE REPORT ON TESTING IN ACCORDANCE WITH
SAR (SPECIFIC ABSORPTION RATE) REQUIREMENTS**

**Supplement C (Edition 01-01)
FCC OET Bulletin 65 (Edition 97-01)**

OF A

**VERTICAL HAND HELD TERMINAL
[Model : MX8]**

**TEST
FACILITY** TÜV SÜD PSB Pte Ltd,
Electrical & Electronics Centre (EEC), Testing Services,
1 Science Park Drive, Singapore 118221

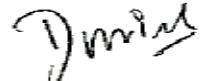
**PREPARED
FOR** Maung Kyaw Htin Aung
Olympus Technologies (S) Pte Ltd
41 Science Park Road, #04-17/18
The Gemini Singapore Science Park 2
Singapore 117610

Tel : (65) 6777 8978

Tel : (65) 6777 8978

**QUOTATION
NUMBER** 56Q0700812

JOB NUMBER 56S070640


TEST PERIOD 28-AUG-2007 to 31-AUG-2007

PREPARED BY

Gary Ng
Team Leader

APPROVED BY

Daniel Yeo
Product Manager

Laboratory:
TÜV SÜD PSB Pte. Ltd.
Testing Group
No.1 Science Park Drive
Singapore 118221

Phone : +65-6885 1333
Fax : +65-6776 8670
E-mail: testing@tuv-sud-psb.sg
www.tuv-sud-psb.sg
Co. Reg : 199002667R

LA-2007-0380-A
LA-2007-0380-A-1
LA-2007-0381-F
LA-2007-0382-B
LA-2007-0383-G
LA-2007-0384-G
LA-2007-0385-E
LA-2007-0386-C

The results reported herein have been performed in accordance with the laboratory's terms of accreditation under the Singapore Accreditation Council - Singapore Laboratory Accreditation Scheme. Tests/Calibrations marked "Not SAC-SINGLAS Accredited" in this Report are not included in the SAC-SINGLAS Accreditation Schedule for our laboratory.

Regional Head Office:
TÜV SÜD Asia Pacific Pte. Ltd.
3 Science Park Drive
#04-01/05 The Franklin
Singapore 118223

TABLE OF CONTENTS

TEST SUMMARY

PRODUCT DESCRIPTION

TEST RESULTS

ANNEX A	- TEST INSTRUMENTATION & GENERAL PROCEDURES
ANNEX B	- EUT PHOTOGRAPHS / DIAGRAMS Test Setup EUT Photographs
ANNEX C	- TISSUE SIMULANT DATA SHEETS
ANNEX D	- SAR VALIDATION RESULTS
ANNEX E	- MEASUREMENT UNCERTAINTY
ANNEX F	- SAR PROBE CALIBRATION CERTIFICATES
ANNEX G	- REFERENCES

TEST SUMMARY

The product was tested in accordance with the following standards.

Test Results Summary

Test Standards	Description	Pass / Fail
<ul style="list-style-type: none">Supplement C (Edition 01-01) to FCC OET Bulletin 65 (Edition 97-01)ANSI/IEEE Standard C95.1-1993	SAR Body Measurement	Pass *

Note:

1. The worst-case SAR value was found to be **0.125W/kg** which is lower than the maximum limit of 1.60 W/kg, over 1g of tissue.

* Based on spatial peak uncontrolled exposure / general population level:
Head: 1.60 W/kg, over 1g of tissue.
Body: 1.60 W/kg, over 1g of tissue.

Modifications

No modifications were made.

DEVICE DESCRIPTION

DEVICE DESCRIPTION

Description	The Equipment Under Test (EUT) is a Vertical Hand Held Terminal.
Device Category	Mobile Device
Manufacturer	Olympus Technologies Singapore Pte Ltd
Exposure Environment	General Population/Uncontrolled exposure
Test Device Type	Production Unit
Brand Name	LXE
Model	MX8
Serial Numbers	801853-000160
FCC ID	NIL

DEVICE OPERATING CONFIGURATION

Operating Frequencies	<u>WIFI Frequency</u>	<u>BT Frequency</u>
	Channel: 01 (2412MHz)	Channel: 01 (2402MHz)
	Channel: 06 (2437MHz)	Channel: 39 (2441MHz)
	Channel: 11 (2462MHz)	Channel: 78 (2480MHz)
Operating Temperature Tolerance	(-10 ~ +50) Degree Celsius	
Operating Voltage Tolerance of AC adaptor	-10% to +6% for 100 to 250V AC	
Continuous Transmission Tolerance	The EUT shall cause no problem transmitting for 8 hours under battery-operated condition	
Rated Output Power	BT Power Class 2 (4 dBm, Maximum) WiFi DSSS (19 dBm, Maximum)	
Antenna Type	No user Detachable Antenna	
EUT Crest Factor	1.0	
Input Power	3 Volt DC	
Accessories	Device with two types of Holsters	

DEVICE OPERATING CONDITION

DEVICE OPERATING CONDITION

The EUT was put into operation as a stand alone device. For every SAR measurement, the EUT was set to maximum output power level using fully charged battery.

TEMPERATURE AND HUMIDITY

Ambient Temperature: $24 \pm 1^{\circ}\text{C}$

Tissue Temperature: $24 \pm 1^{\circ}\text{C}$

Humidity: 54% to 59%

TEST RESULTS

The measurement results were obtained with the EUT tested in the conditions described in this report (Annex A). Detailed measurement data and plots indicating the maximum SAR location of the EUT are indicated as follow.

Table 1 - SAR Test Results (Main Antenna) – Device at Body phantom

Antenna	802.11b or 802.11g	EUT Position	SAR (W/kg), over 10g Tissue Device Test Channel & Frequency		
			Channel: 01 2412MHz	Channel: 06 2437MHz	Channel: 11 2462MHz
Main Antenna	802.11b	Side	0.052	0.041	0.065
		Side w/BT	N.A.	N.A.	0.065
	802.11g	Side	0.012	0.034	0.035
		Side w/BT	N.A.	N.A.	0.035
	802.11b	Rear	0.082	0.020	0.120
		Rear w/BT	N.A.	N.A.	0.120
	802.11g	Rear	0.041	0.051	0.059
		Rear w/BT	N.A.	N.A.	0.059

Main Antenna	802.11b or 802.11g	Channel: 01 2412MHz	Channel: 06 2437MHz	Channel: 11 2462MHz
Conducted Output Power (dBm) Before Test	802.11b	18.2	18.1	18.3
Conducted Output Power (dBm) After Test		18.1	18.0	18.2
Conducted Output Power (dBm) Before Test	802.11g	18.0	18.0	18.1
Conducted Output Power (dBm) After Test		17.9	17.9	17.9

Remarks:

1. All modes of operations were investigated and the worst-case SAR levels are reported.
2. A fully charged battery was used for each mode of operation.
3. For **Main Antenna**, the worst-case SAR value was found to be **0.120W/Kg** at **Channel 11**, which is lower than the maximum limit of 2.0 W/Kg, over 10g of Tissue.
4. For **Auxiliary Antenna**, the worst-case SAR value was found to be **0.125W/Kg** at **Channel 11**, which is lower than the maximum limit of 2.0 W/Kg, over 10g of Tissue.
5. The SAR limit of 1.60W/Kg (Spatial Peak level for Uncontrolled Exposure / General Population) is based on the Test Standards:
 - a) Supplement C (Edition 01-01) to FCC OET Bulletin 65 (Edition 97-01)
 - b) ANSI/IEEE Standard C95.1-1993

TEST RESULTS

The measurement results were obtained with the EUT tested in the conditions described in this report (Annex A). Detailed measurement data and plots indicating the maximum SAR location of the EUT are indicated as follow.

Table 2 - SAR Test Results (Auxiliary Antenna) – Device at Body phantom

Antenna	802.11b or 802.11g	EUT Position	SAR (W/kg), over 10g Tissue Device Test Channel & Frequency		
			Channel: 01 2412MHz	Channel: 06 2437MHz	Channel: 11 2462MHz
Auxiliary Antenna	802.11b	Side	0.056	0.063	0.050
		Side w/BT	N.A.	0.063	N.A.
	802.11g	Side	0.027	0.024	0.029
		Side w/BT	N.A.	N.A.	0.030
	802.11b	Rear	0.080	0.094	0.120
		Rear w/BT	N.A.	N.A.	0.125
	802.11g	Rear	0.043	0.052	0.062
		Rear w/BT	N.A.	N.A.	0.067

Auxiliary Antenna	802.11b or 802.11g	Channel: 01 2412MHz	Channel: 06 2437MHz	Channel: 11 2462MHz
Conducted Output Power (dBm) Before Test	802.11b	18.1	18.4	18.0
Conducted Output Power (dBm) After Test		18.0	18.2	17.9
Conducted Output Power (dBm) Before Test	802.11g	18.2	18.2	18.2
Conducted Output Power (dBm) After Test		18.0	18.1	18.0

Remarks:

1. All modes of operations were investigated and the worst-case SAR levels are reported.
2. A fully charged battery was used for each mode of operation.
3. For **Main Antenna**, the worst-case SAR value was found to be **0.120W/Kg** at **Channel 11**, which is lower than the maximum limit of 2.0 W/Kg, over 10g of Tissue.
4. For **Auxiliary Antenna**, the worst-case SAR value was found to be **0.125W/Kg** at **Channel 11**, which is lower than the maximum limit of 2.0 W/Kg, over 10g of Tissue.
5. The SAR limit of 1.60W/Kg (Spatial Peak level for Uncontrolled Exposure / General Population) is based on the Test Standards:
 - a) Supplement C (Edition 01-01) to FCC OET Bulletin 65 (Edition 97-01)
 - b) ANSI/IEEE Standard C95.1-1993

TEST RESULTS

Ambient Temperature: $24 \pm 1^{\circ}\text{C}$
Tissue Temperature: $24 \pm 1^{\circ}\text{C}$
Humidity: 54% to 59%

For Main Antenna, the worst-case SAR value was found to be **0.120W/Kg** at **Channel 11**, see the measured SAR measurement result as follows:

Test Laboratory: TUV SUD PSB Pte Ltd, Electronics & Electrical Centre.

File Name: [EUT Rear with Holster_Main Antenna_Ch 11_11b 11Mbps_2462MHz_Data 11.da4](#)

Program Name: Job Nos.: 56S070640

Phantom section: Flat Section

DUT: Olympus MX8 Device - Holster A

Communication System: 2450 Mhz_WiFi Mode

Frequency: 2462 MHz

Duty Cycle: 1:1

Medium: Body 2450 MHz
Medium parameters used: $f = 2450 \text{ MHz}$; $\sigma = 2.04 \text{ mho/m}$; $\epsilon_r = 51.9$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

Electronics: DAE4 Sn627	Calibrated: 6/14/2007	
Phantom: SAM 12	Measurement SW: DASY4, V4.7 Build 53	
Probe: EX3DV4 - SN3541	ConvF(7.07, 7.07, 7.07)	Calibrated: 7/13/2007
Postprocessing SW: SEMCAD, V1.8 Build 172		
Sensor-Surface: 4mm (Mechanical Surface Detection)		

TEST RESULTS

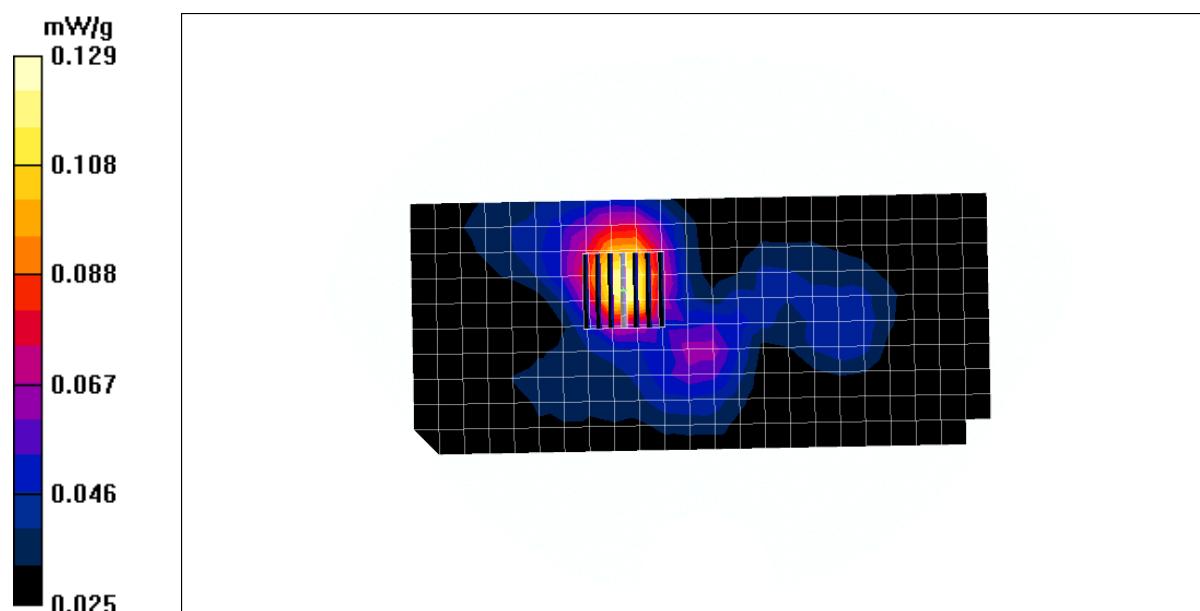
File Name: [EUT Rear with Holster Main Antenna Ch 11_11b 11Mbps_2462MHz_Data_11.da4](#)

EUT Rear with Holster_Main Antenna_Ch 11_11b 11Mbps_2462MHz_Data

11/Area Scan (11x24x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.121 mW/g

EUT Rear with Holster_Main Antenna_Ch 11_11b 11Mbps_2462MHz_Data


11/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.20 V/m; Power Drift = -0.010 dB

Peak SAR (extrapolated) = 0.205 W/kg

SAR(1 g) = 0.120 mW/g; SAR(10 g) = 0.074 mW/g

Maximum value of SAR (measured) = 0.129 mW/g

TEST RESULTS

Ambient Temperature: $24 \pm 1^{\circ}\text{C}$
Tissue Temperature: $24 \pm 1^{\circ}\text{C}$
Humidity: 54% to 59%

For Auxiliary Antenna, the worst-case SAR value was found to be 0.125W/Kg at Channel 11, see the measured SAR measurement result as follows:

Test Laboratory: TUV SUD PSB Pte Ltd, Electronics & Electrical Centre.

File Name: [EUT Rear with Holster_Aux Antenna Ch 11_11b 11Mbps 2462MHz with BT Data 31.da4](#)

Program Name: Job Nos.: 56S070640

Phantom section: Flat Section

DUT: Olympus MX8 Device - Holster A

Communication System: 2450 Mhz_WiFi Mode

Frequency: 2462 MHz

Duty Cycle: 1:1

Medium: Body 2450 MHz
Medium parameters used: $f = 2450 \text{ MHz}$; $\sigma = 2.04 \text{ mho/m}$; $\epsilon_r = 51.9$; $\rho = 1000 \text{ kg/m}^3$

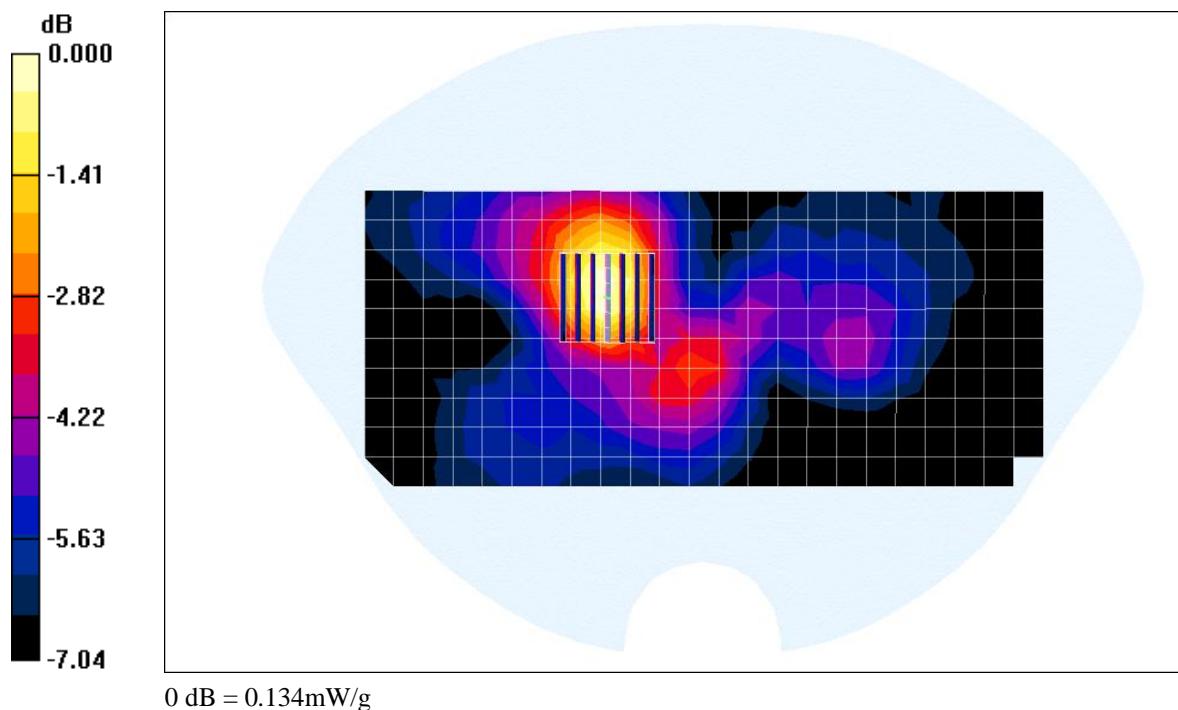
DASY4 Configuration:

Electronics: DAE4 Sn627	Calibrated: 6/14/2007	
Phantom: SAM 12	Measurement SW: DASY4, V4.7 Build 53	
Probe: EX3DV4 - SN3541	ConvF(7.07, 7.07, 7.07)	Calibrated: 7/13/2007
Postprocessing SW: SEMCAD, V1.8 Build 172		
Sensor-Surface: 4mm (Mechanical Surface Detection)		

TEST RESULTS

File Name: [EUT Rear with Holster_Aux Antenna_Ch 11_11b 11Mbps_2462MHz with BT_Data 31.da4](#)

EUT Rear with Holster_Aux Antenna_Ch 11_11b 11Mbps_2462MHz with BT_Data 31/Area Scan (11x24x1): Measurement grid: dx=10mm, dy=10mm
Maximum value of SAR (measured) = 0.135 mW/g


EUT Rear with Holster_Aux Antenna_Ch 11_11b 11Mbps_2462MHz with BT_Data 31/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.47 V/m; Power Drift = -0.011 dB

Peak SAR (extrapolated) = 0.213 W/kg

SAR(1 g) = 0.125 mW/g; SAR(10 g) = 0.078 mW/g

Maximum value of SAR (measured) = 0.134 mW/g

This Report is issued under the following conditions:

1. Results of the testing/calibration in the form of a report will be issued immediately after the service has been completed or terminated.
2. Unless otherwise requested, a report shall contain only technical results. Analysis and interpretation of the results and professional opinion and recommendations expressed thereupon, if required, shall be clearly indicated and additional fee paid for, by the Client.
3. This report applies to the sample of the specific product/equipment given at the time of its testing/calibration. The results are not used to indicate or imply that they are applicable to other similar items. In addition, such results must not be used to indicate or imply that TÜV SÜD PSB approves, recommends or endorses the manufacturer, supplier or user of such product/equipment, or that TÜV SÜD PSB in any way "guarantees" the later performance of the product/equipment.
4. The sample/s mentioned in this report is/are submitted/supplied/manufactured by the Client. TÜV SÜD PSB therefore assumes no responsibility for the accuracy of information on the brand name, model number, origin of manufacture, consignment or any information supplied.
5. Additional copies of the report are available to the Client at an additional fee. No third party can obtain a copy of this report through TÜV SÜD PSB, unless the Client has authorised TÜV SÜD PSB in writing to do so.
6. TÜV SÜD PSB may at its sole discretion add to or amend the conditions of the report at the time of issue of the report and such report and such additions or amendments shall be binding on the Client.
7. All copyright in the report shall remain with TÜV SÜD PSB and the Client shall, upon payment of TÜV SÜD PSB's fees for the carrying out of the tests/calibrations, be granted a license to use or publish the report to the third parties subject to the terms and conditions herein, provided always that TÜV SÜD PSB may at its absolute discretion be entitled to impose such conditions on the license as it sees fit.
8. Nothing in this report shall be interpreted to mean that TÜV SÜD PSB has verified or ascertained any endorsement or marks from any other testing authority or bodies that may be found on that sample.
9. This report shall not be reproduced wholly or in parts and no reference shall be made by the Client to TÜV SÜD PSB or to the report or results furnished by TÜV SÜD PSB in any advertisements or sales promotion.
10. Unless otherwise stated, the tests are carried out in TÜV SÜD PSB Pte Ltd, No.1 Science Park Drive Singapore 118221.

May 2007

TEST INSTRUMENTATION & GENERAL PROCEDURES

ANNEX A

ANNEX A

**TEST INSTRUMENTATION
&
GENERAL PROCEDURE**

TEST INSTRUMENTATION & GENERAL PROCEDURES

ANNEX A

A.1 General Test Procedure

In the SAR measurement, the positioning of the probes must be performed with sufficient accuracy to obtain repeatable measurements in the presence of rapid spatial attenuation phenomena. The accurate positioning of the E-field probe is accomplished by using a high precision robot. The robot can be taught to position the probe sensor following a specific pattern of points. In a first sweep, the sensor is positioned as close as possible to the interface, with the sensor enclosure touching the inside of the fiberglass shell. The SAR is measured on a grid of points, which covers the curved surface of the phantom in an area larger than the size of the EUT. After the initial scan, a high-resolution grid is used to locate the absolute maximum measured energy point. At this location, attenuation versus depth scan will be accomplished by the measurement system to calculate the SAR value.

A.2 SAR Test Instrumentation

SAR Measurement System

• Positioning Equipment

Type: High Precision Industrial Robot, RX90.
Precision: High precision (repeatability 0.02mm)
Reliability: High reliability (industrial design)

• Compaq Computer

Type: 2.4GHz Pentium
Memory: 512MB SDRAM
Operating System: Windows 2000
Dell Monitor: 17" LCD

• Dosimetric E-Field Probe

Type: ET3DV6
Isotropy Error (\emptyset): ± 0.25 dB
Dynamic Range: 0.01 – 100 W/kg

• Phantom & Tissue

Phantom: "Phantom SAM 12" and "450MHz Phantom" were manufactured by SPEAG.
Tissue: Simulated Tissue with electrical characteristics similar to those of the human at normal body temperature ($23 \pm 1^\circ\text{C}$)
Shell: Fiberglass shell phantom with 2mm thickness for "Phantom SAM 12".
Fiberglass shell phantom with 2mm or 6mm thickness for "450MHz Flat Phantom".

TEST INSTRUMENTATION & GENERAL PROCEDURES

ANNEX A

A.3 Test Setup

Phantom

The "Phantom SAM 12", manufactured by SPEAG is a fiberglass shell phantom with 2 mm shell thickness. It has three measurement areas:

- Left hand
- Right hand
- Flat phantom

The phantom table comes in the sizes: A 100x50x85 cm (LxWxH) table for use with free standing robots.

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. Only one device holder is necessary if two phantoms are used (e.g., for different solutions).

Simulated tissue

Simulated Tissue: Suggested in a paper by George Hartsgrove and colleagues in University of Ottawa Ref.: Bioelectromagnetics 8:29-36 (1987)

This simulated tissue is mainly composed of water, sugar and salt. At higher frequencies, in order to achieve the proper conductivity, the solution does not contain salt. Also, at these frequencies, D.I. water and alcohol is preferred.

Tissue Density : Approximately 1.25 g/cm³

• **Preparation**

The ingredients (i.e. water, sugar, salt, etc) required to prepare the simulated tissue are carefully weighed and poured into a clean container for mixing. A stirring paddle, that is attached to a hand drill is used to stir the solution for a duration of about 30 minutes or more. When the ingredients are completely dissolved, the solution is left in the container for the air bubbles to disappear.

• **Measurement of Electrical Characteristics of Simulated Tissue**

- 1) S-PARAMETER Network Analyzer, Agilent 8753ES (30kHz – 6GHz)
- 2) Agilent 85070D Dielectric Probe Kit

TEST INSTRUMENTATION & GENERAL PROCEDURES

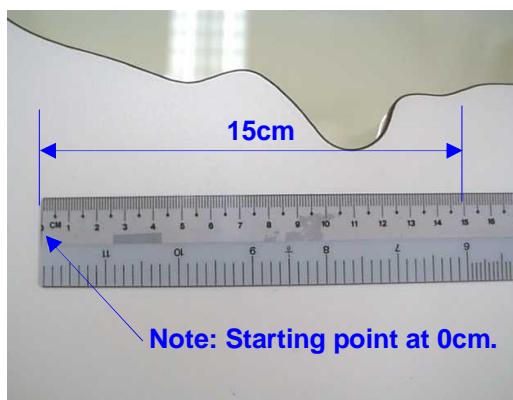
ANNEX A

**ELECTRICAL CHARACTERISTIC
MEASUREMENT SETUP**

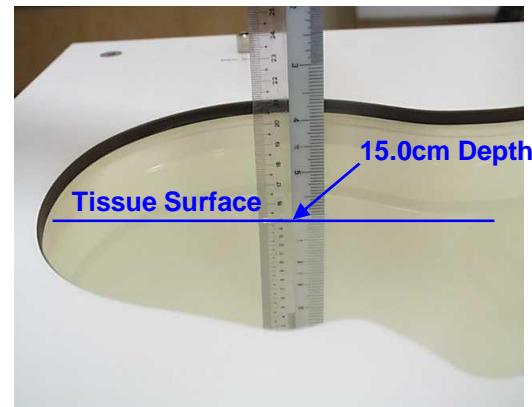
• **Description of the Agilent 85070D Dielectric Probe Kit**

The 85070D is a dielectric probe that is used to measure the intrinsic electrical properties of materials in the RF and microwave frequency bands. The 85070D software allows you to measure the complex dielectric constant (also called permittivity) of liquids and semi-solids, including the dielectric loss factor or loss tangent.

To obtain data at hundreds of frequencies in seconds, simply immerse the probe into liquids or semi-solids - no special fixtures or containers are required. The 85070D must be used in conjunction with an Agilent network analyzer. The network analyzer provides the high frequency stimulus, and measures the reflected response.

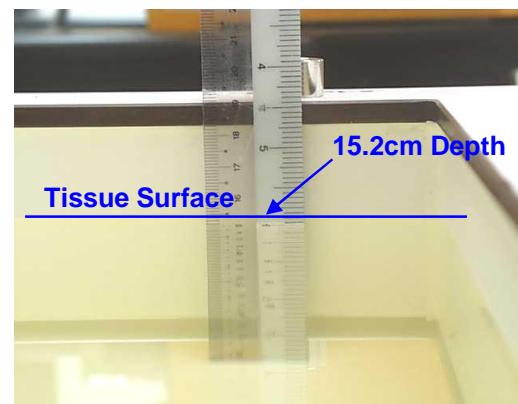

The probe transmits a signal into the material under test (MUT). The measured reflected response from the materials is then related to its dielectric properties. A computer controls the system, and runs software that guides the user through a measurement sequence. An effort is made to keep the results dielectric constant and conductivity within 5 % of published data.

TEST INSTRUMENTATION & GENERAL PROCEDURES

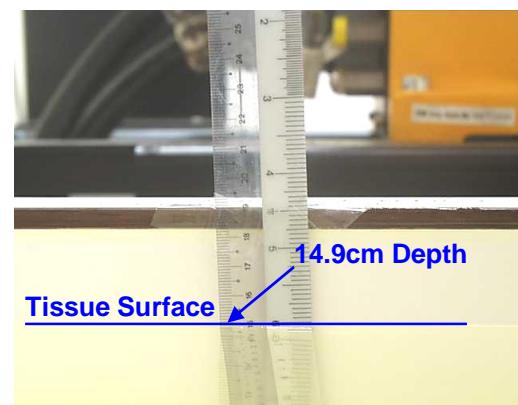

ANNEX A

Tissue Depth

The tissue depth at the "Phantom SAM 12", "450MHz Flat Phantom – 6mm Shell Thickness" and "450MHz Flat Phantom – 2mm Shell Thickness" is approximately 15cm \pm 0.5cm.

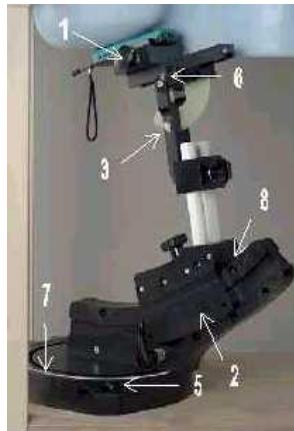

At "Phantom SAM 12"

Tissue – 15.0cm Depth


At "450MHz Flat Phantom – 6mm Shell Thickness"

Tissue – 15.2cm Depth

At "450MHz Flat Phantom – 2mm Shell Thickness"



Tissue – 14.9cm Depth

TEST INSTRUMENTATION & GENERAL PROCEDURES

ANNEX A

Positioning of EUT

The DASY4 holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The intended use position in the CENELEC document has a rotation angle of 65° and an inclination angle of 80°. The rotation centers for both scales is the ear opening. Thus the device needs no repositioning when changing the angles. The device rotation around the device axis is not changed in the holder. In the CENELEC standard it is always 0°. If the standard changes, a support will be provided with the new angle.

1. **“Cheek/Touch Position”** – the device is brought toward the mouth of the head phantom by pivoting against the “ear reference point” or along the “N-F” line for the SCC-34/SC-2 head phantom. This test position is established:
 - i) When any point on the display, keypad or mouthpiece portions of the handset is in contact with the phantom.
 - ii) (Or) When any portion of a foldout, sliding or similar keypad cover opened to its intended self-adjusting normal use position is in contact with the cheek or mouth of the phantom.

For existing head phantoms – when the handset loses contact with the phantom at the pivoting point, rotation should continue until the device touches the cheek of the phantom or breaks its last contact from the ear spacer.
2. **“Ear/Tilt Position”** – With the handset aligned in the “Cheek/Touch Position”:
 - i) If the earpiece of the handset is not in full contact with the phantom’s ear spacer (in the “Cheek/Touch position”) and the peak SAR location for the “Cheek/Touch” position is located at the ear spacer region or corresponds to the earpiece region of the handset, the device should be returned to the “initial ear position” by rotating it away from the mouth until the earpiece is in full contact with the ear spacer.
 - ii) (Otherwise) The handset should be moved (translated) away from the cheek perpendicular to the line passes through both “ear reference points” (note: one of these ear reference points may not physically exist on a split head model) for approximate 2-3 cm. While it is in this position, the handset is tilted away from the mouth with respect to the “test device reference point” by 15°. After the tilt, it is then moved (translated) back toward the head perpendicular to the line passes through both “ear reference points” until the device touches the phantom or the ear spacer. If the antenna touches the head first, the positioning process should be repeated with a tilt angle less than 15° so that the device and its antenna would touch the phantom simultaneously. This test position may require a device holder or positioner to achieve the translation and tilting with acceptable positioning repeatability.
3. **Body Worn Configuration**

All body worn accessories are tested for the FCC RF exposure compliance. The phone is positioned into carrying case (if available) and placed below of the flat phantom. Headset or ear piece (if available) is connected during measurements.

TEST INSTRUMENTATION & GENERAL PROCEDURES

ANNEX A

<u>Instrument</u>	<u>Model</u>	<u>S/No</u>	<u>Cal Due Date</u>	
Boonton RF Power Meter (Dual Channel)	4532	97701	28 Feb 2008	X
Boonton Peak Power Sensor	56218-S/1	1417	-	
Boonton Power Sensor (used as reference)	51075	32002	28 Feb 2008	X
Boonton Power Sensor	51075	32097	28 Feb 2008	X
S-Parameter Network Analyzer (30kHz – 6GHz)	8753ES	MY40001026	15 Mar 2008	X
Agilent 85070D Dielectric Probe Kit	85075D	21356	-	X
Anritsu RF Signal Generator (10MHz – 20GHz)	68347C	04306	-	X
Amplifier Research Power Amplifier (1MHz – 1000MHz)	25W1000B	27225	-	
Amplifier Research Power Amplifier (800MHz – 4.2GHz)	25S1G4A	29346	-	X
Agilent Dual Directional Coupler (0.1~2.0)GHz	HP778D	18289	-	
AR Directional Coupler (0.8~4.2)GHz	DC7144	29245	-	X
2450MHz System Validation Dipole	D2450V2	752	19 Jun 2008	X
Data Acquisition Electronics (DAE4)	DAE4	627	14 Jun 2008	X
Dosimetric E-field Probe	EX3DV4	3541	13 Jul 2008	X

TEST SETUP PHOTOGRAPHS

ANNEX B

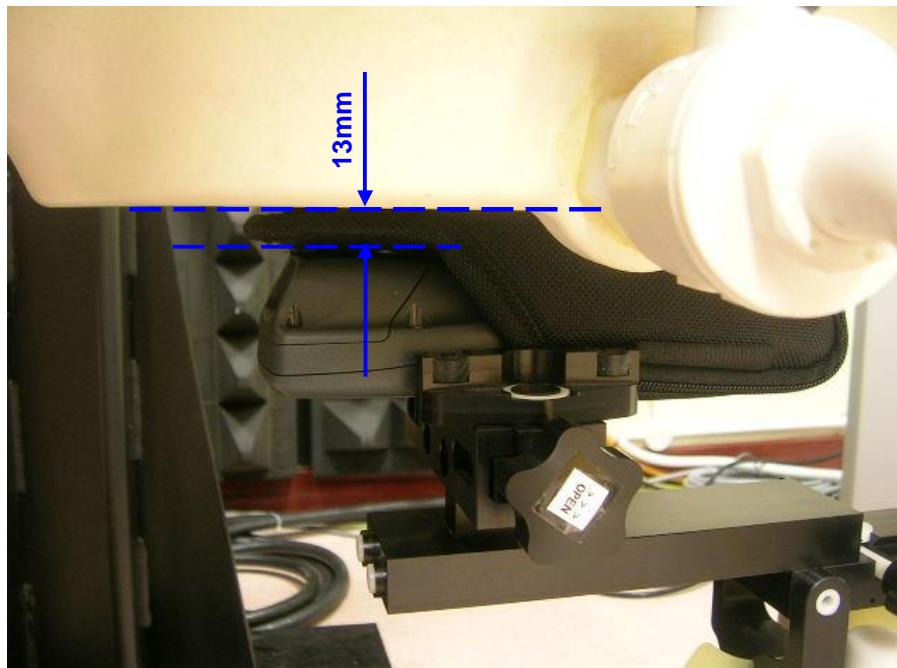
ANNEX B

TEST SETUP PHOTOGRAPHS

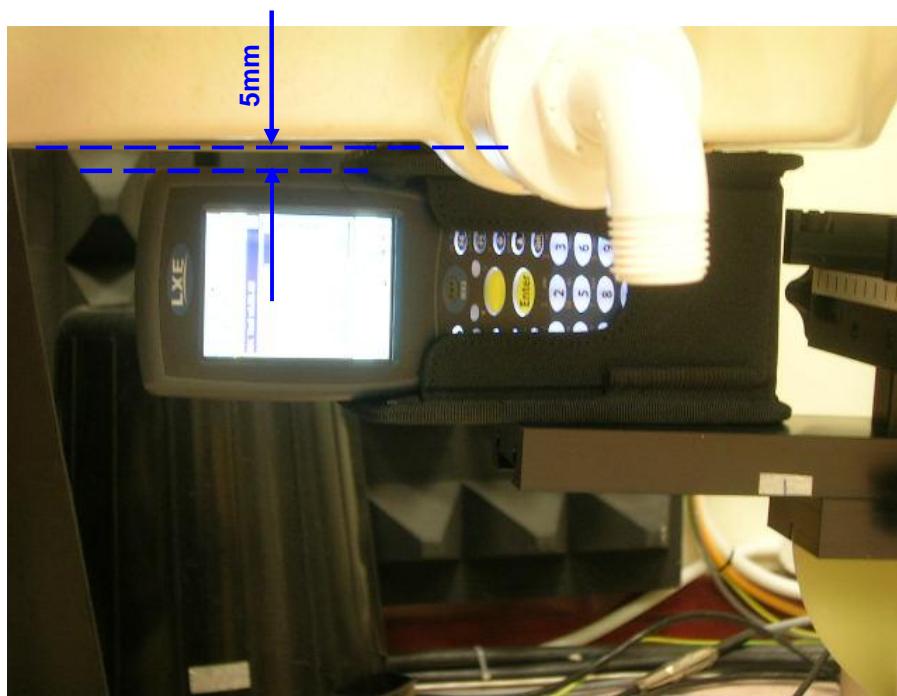
TEST SETUP PHOTOGRAPHS

ANNEX B

SAR Test Setup Photographs



SAR Test Setup (Device at Body phantom)


TEST SETUP PHOTOGRAPHS

ANNEX B

SAR Test Setup Photographs

EUT Rear towards Phantom

Main Antenna Side View

TEST SETUP PHOTOGRAPHS

ANNEX B

SAR Test Setup Photographs

Auxiliary Antenna Side View

TEST SETUP PHOTOGRAPHS

ANNEX B

Conducted Power Measurement Setup

Conducted Power Measurement Setup

TEST SETUP PHOTOGRAPHS

ANNEX B

EUT PHOTOGRAPHS

Front of EUT

Rear of EUT

TEST SETUP PHOTOGRAPHS

ANNEX B

EUT PHOTOGRAPHS

TISSUE SIMULANT DATA SHEETS

ANNEX C

ANNEX C

TISSUE SIMULANT DATA SHEETS

TISSUE SIMULANT DATA SHEETS

ANNEX C

Type of Tissue	Body
Target Frequency (MHz)	2450
Target Dielectric Constant	52.7
Target Conductivity (S/m)	1.95
Composition (by weight)	Water (72.55%) Glycol (27.34%) Sugar (0%) Salt (0.11%) HEC (0%) Preventol D7 (0%)
Measured Dielectric Constant	51.86
Measured Conductivity (S/m)	2.0390

Probe Name	Dosimetric E-field Probe ET3DV6
Probe Serial Number	3541
Sensor Offset (mm)	1.0
Conversion Factor	7.07 ± 11.8 %
Probe Calibration Due Date (DD/MM/YY)	13 July 2008

TISSUE SIMULANT DATA SHEETS

ANNEX C

Body Tissue at 2450MHz

Frequency	e'	e"	Conductivity
2440000000	52.51	14.92	2.0230
2441000000	52.45	14.92	2.0232
2442000000	52.36	14.92	2.0238
2443000000	52.28	14.92	2.0250
2444000000	52.20	14.93	2.0268
2445000000	52.16	14.91	2.0258
2446000000	52.09	14.94	2.0302
2447000000	52.02	14.94	2.0308
2448000000	51.97	14.95	2.0330
2449000000	51.91	14.98	2.0380
2450000000	51.86	14.98	2.0390
2451000000	51.81	15.01	2.0439
2452000000	51.74	15.02	2.0460
2453000000	51.70	15.06	2.0529
2454000000	51.64	15.09	2.0575
2455000000	51.61	15.11	2.0608
2456000000	51.58	15.15	2.0668
2457000000	51.55	15.18	2.0719
2458000000	51.51	15.21	2.0771
2459000000	51.48	15.26	2.0840
2460000000	51.46	15.28	2.0885
2461000000	51.45	15.33	2.0962
2462000000	51.43	15.36	2.1015
2463000000	51.42	15.42	2.1095
2464000000	51.41	15.45	2.1144
2465000000	51.40	15.50	2.1227
2466000000	51.40	15.56	2.1316
2467000000	51.40	15.60	2.1382
2468000000	51.41	15.64	2.1440
2469000000	51.42	15.70	2.1531
2470000000	51.44	15.73	2.1585
2471000000	51.45	15.80	2.1685
2472000000	51.47	15.84	2.1748
2473000000	51.50	15.89	2.1836
2474000000	51.53	15.94	2.1902
2475000000	51.57	15.98	2.1967
2476000000	51.60	16.03	2.2056
2477000000	51.65	16.08	2.2127
2478000000	51.67	16.13	2.2199
2479000000	51.72	16.16	2.2257
2480000000	51.78	16.21	2.2334

(e' = Dielectric Constant)

(e" = Loss Factor)

Tested by: Gary Ng
Date : 28th Aug 07
Frequency: 2450MHz
Mixture: Body Tissue
Tissue temp: 24°C

Composition		
Tap Water	0.0g	0.00%
Ultra Pure Water	25500.0g	72.55%
Sugar	0.0g	0.00%
Glyco	9610.0g	27.34%
Salt	38.4g	0.11%
Preventol D7	0.0g	0.00%
Total Weight	35148.4g	100.0%

Result	Dielectric Constant	Conductivity
Measured	51.86	2.0390
Target	52.7	1.95
Low Limit	50.065	1.8525
High Limit	55.335	2.0475
% Off Target	-1.60	4.56

SAR VALIDATION RESULTS

ANNEX D

ANNEX D

SAR VALIDATION RESULTS

SAR VALIDATION RESULTS

ANNEX D

SAR Validation – Body Tissue at 2450MHz (Dipole forward power = 250mW)

Test Laboratory: TUV SUD PSB Pte Ltd, Electronics & Electrical Centre.

File Name: [2450MHz Body System Validation.da4](#)

Program Name: Job Nos.: 56S070640

Phantom section: Flat Section

DUT: Dipole 2450MHz

Communication System: CW

Frequency: 2450 MHz

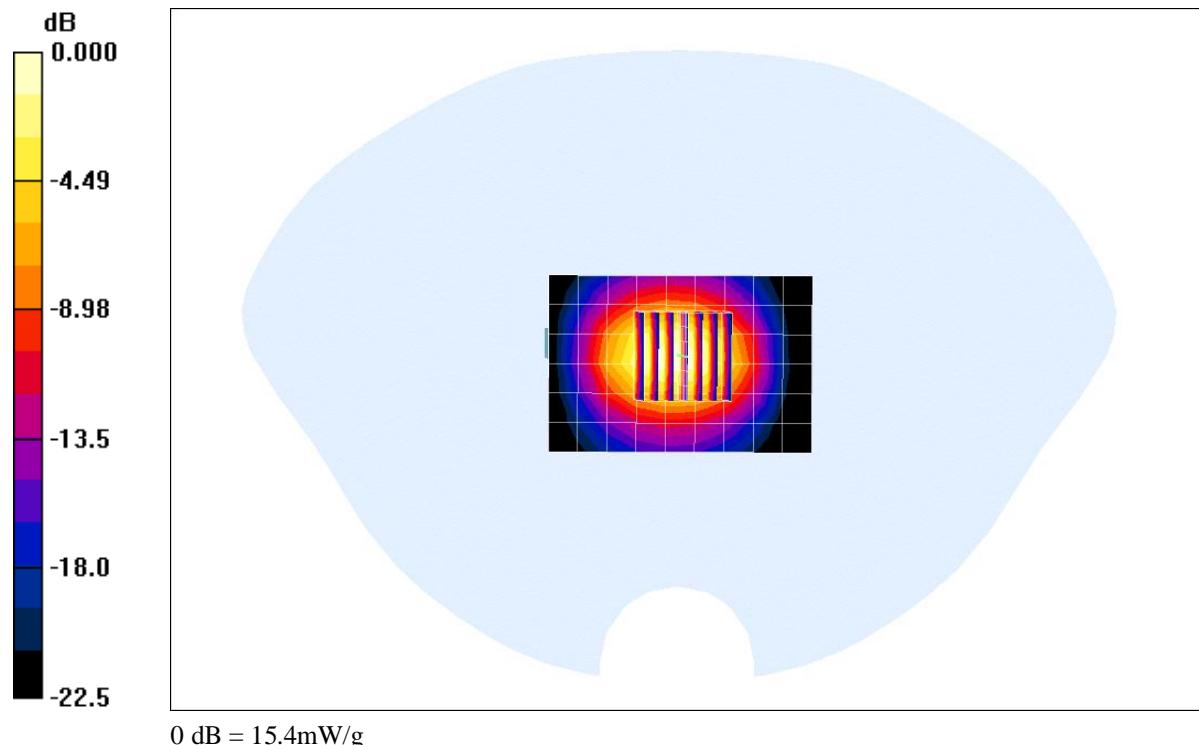
Duty Cycle: 1:1

Medium: Body 2450 MHz Medium parameters used: $f = 2450$ MHz; $\sigma = 2.04$ mho/m; $\epsilon_r = 51.9$; $\rho = 1000$ kg/m³

DASY4 Configuration:

Electronics: DAE4 Sn627 Calibrated: 6/14/2007
Phantom: SAM 12 Measurement SW: DASY4, V4.7 Build 53
Probe: EX3DV4 - SN3541 ConvF(7.07, 7.07, 7.07) Calibrated: 7/13/2007
Postprocessing SW: SEMCAD, V1.8 Build 172
Sensor-Surface: 4mm (Mechanical Surface Detection)

2450MHz Body_System Validation/Area Scan (7x10x1): Measurement grid: dx=10mm, dy=10mm
Maximum value of SAR (measured) = 14.3 mW/g


2450MHz Body_System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 85.1 V/m; Power Drift = 0.006 dB
Peak SAR (extrapolated) = 27.2 W/kg
SAR(1 g) = 13.5 mW/g; SAR(10 g) = 6.26 mW/g
Maximum value of SAR (measured) = 15.4 mW/g

SAR VALIDATION RESULTS

ANNEX D

SAR Validation – Body Tissue at 2450MHz (Dipole forward power = 250mW)

File Name: [2450MHz Body System Validation.da4](#)

MEASUREMENT UNCERTAINTY

ANNEX E

ANNEX E

MEASUREMENT UNCERTAINTY

MEASUREMENT UNCERTAINTY

ANNEX E

Measurement Uncertainty

All test measurement carried out are traceable to national standards. The uncertainty of measurement at a confidence level of 95%, with a coverage of 2, is **±20.6%**.

Error Description	Uncertainty Value ± %	Probability Distribution	Divisor	ci 1g	Standard Unc.(1g)	Vi or Veff
Measurement System						
Probe Calibration	± 4.8	normal	1	1	± 4.8	∞
Axial isotropy	± 4.7	rectangular	$\sqrt{3}$	$(1-cp)^{1/2}$	± 1.9	∞
Hemispherical Isotropy	± 9.6	rectangular	$\sqrt{3}$	$(cp)^{1/2}$	± 3.9	∞
Spatial resolution	± 0.0	rectangular	$\sqrt{3}$	1	± 0.0	∞
Boundary effects	± 1.0	rectangular	$\sqrt{3}$	1	± 0.6	∞
Linearity	± 4.7	rectangular	$\sqrt{3}$	1	± 2.7	∞
System Detection limit	± 1.0	rectangular	$\sqrt{3}$	1	± 0.6	∞
Readout electronics	± 1.0	normal	1	1	± 1.0	∞
Response time	± 0.8	rectangular	$\sqrt{3}$	1	± 0.5	∞
Integration time	± 2.6	rectangular	$\sqrt{3}$	1	± 1.5	∞
RF ambient conditions	± 3.0	rectangular	$\sqrt{3}$	1	± 1.7	∞
Probe Positioning Mechanical Tolerance	± 0.4	rectangular	$\sqrt{3}$	1	± 0.2	∞
Probe Positioning with respect to Phantom Shell	± 2.9	rectangular	$\sqrt{3}$	1	± 1.7	∞
Extrapolation, Interpolation and Integration Algorithms for Max. SAR Evaluation	± 1.0	rectangular	$\sqrt{3}$	1	± 0.6	∞
Test Sample Related						
Device positioning	± 2.9	normal	1	1	± 2.9	145
Device holder uncertainty	± 3.6	normal	1	1	± 3.6	5
Power drift	± 5.0	rectangular	$\sqrt{3}$	1	± 2.9	∞
Phantom and Tissue Parameters						
Phantom uncertainty	± 4.0	rectangular	$\sqrt{3}$	1	± 2.3	∞
Liquid conductivity (target)	± 5.0	rectangular	$\sqrt{3}$	0.64	± 1.8	∞
Liquid conductivity (meas)	± 2.5	normal	1	0.64	± 1.6	∞
Liquid permittivity (target)	± 5.0	rectangular	$\sqrt{3}$	0.6	± 1.7	∞
Liquid permittivity (meas)	± 2.5	normal	1	0.6	± 1.5	∞
Combined Standard Uncertainty						
Coverage Factor for 95%		k=2			± 10.3	330
Extended Standard Uncertainty						
					± 20.6	

SAR PROBE CALIBRATION CERTIFICATES

ANNEX F

ANNEX F

SAR PROBE CALIBRATION CERTIFICATES

SAR PROBE CALIBRATION CERTIFICATES

ANNEX F

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client TUV SUD PSB Pte Ltd

Certificate No: EX3-3541_Jul07

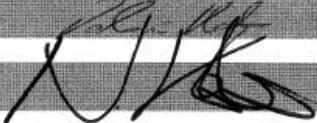
CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3541

Calibration procedure(s)
QA CAL-01.v6 and QA CAL-14.v3
Calibration procedure for dosimetric E-field probes

Calibration date: July 13, 2007

Condition of the calibrated item In Tolerance


This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-07 (METAS, No. 217-00670)	Mar-08
Power sensor E4412A	MY41495277	29-Mar-07 (METAS, No. 217-00670)	Mar-08
Power sensor E4412A	MY41498087	29-Mar-07 (METAS, No. 217-00670)	Mar-08
Reference 3 dB Attenuator	SN: S5054 (3c)	10-Aug-06 (METAS, No. 217-00592)	Aug-07
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-07 (METAS, No. 217-00671)	Mar-08
Reference 30 dB Attenuator	SN: S5129 (30b)	10-Aug-06 (METAS, No. 217-00593)	Aug-07
Reference Probe ES3DV2	SN: 3013	4-Jan-07 (SPEAG, No. ES3-3013_Jan07)	Jan-08
DAE4	SN: 654	20-Apr-07 (SPEAG, No. DAE4-654_Apr07)	Apr-08

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Nov-05)	In house check: Nov-07
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Oct-06)	In house check: Oct-07

Calibrated by:	Name	Function	Signature
	Katja Pokovic	Technical Manager	

Approved by:	Name	Function	Signature
	Niels Kuster	Quality Manager	

Issued: July 13, 2007

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3541_Jul07

Page 1 of 9

SAR PROBE CALIBRATION CERTIFICATES

ANNEX F

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
NORM x,y,z	sensitivity in free space
ConF	sensitivity in TSL / NORM x,y,z
DCP	diode compression point
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- $NORMx,y,z$: Assessed for E-field polarization $\vartheta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). $NORMx,y,z$ are only intermediate values, i.e., the uncertainties of $NORMx,y,z$ does not effect the E^2 -field uncertainty inside TSL (see below *ConvF*).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- $DCPx,y,z$: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORMx,y,z * ConvF$ whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical Isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

SAR PROBE CALIBRATION CERTIFICATES

ANNEX F

EX3DV4 SN:3541

July 13, 2007

Probe EX3DV4

SN:3541

Manufactured:	May 3, 2004
Last calibrated:	June 23, 2006
Repaired:	June 19, 2007
Recalibrated:	July 13, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

SAR PROBE CALIBRATION CERTIFICATES

ANNEX F

EX3DV4 SN:3541

July 13, 2007

DASY - Parameters of Probe: EX3DV4 SN:3541

Sensitivity in Free Space^A

NormX	0.460 \pm 10.1%	$\mu\text{V}/(\text{V}/\text{m})^2$
NormY	0.420 \pm 10.1%	$\mu\text{V}/(\text{V}/\text{m})^2$
NormZ	0.410 \pm 10.1%	$\mu\text{V}/(\text{V}/\text{m})^2$

Diode Compression^B

DCP X	93 mV
DCP Y	99 mV
DCP Z	96 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 900 MHz Typical SAR gradient: 5 % per mm

Sensor Center to Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%] Without Correction Algorithm	3.6	1.2
SAR _{be} [%] With Correction Algorithm	0.0	0.0

TSL 1750 MHz Typical SAR gradient: 10 % per mm

Sensor Center to Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%] Without Correction Algorithm	4.8	2.8
SAR _{be} [%] With Correction Algorithm	0.1	0.4

Sensor Offset

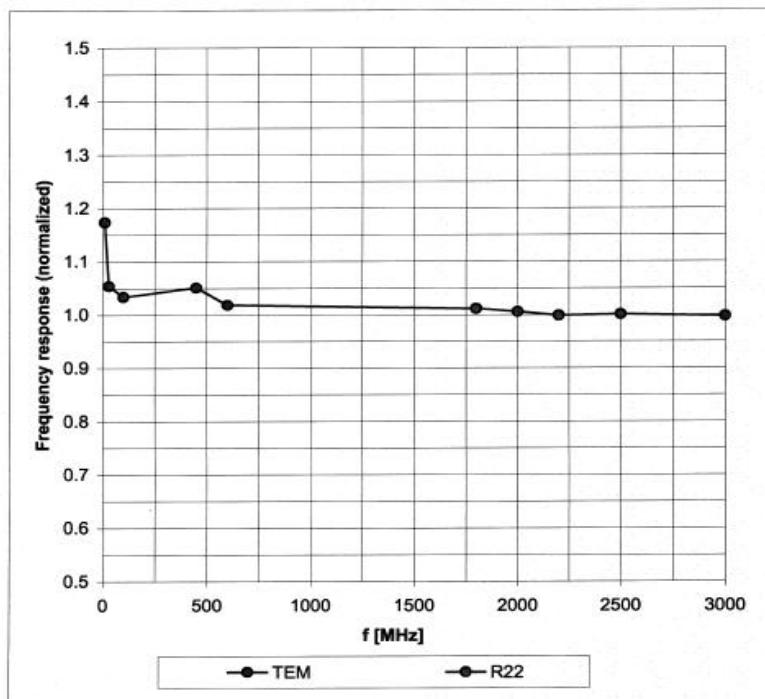
Probe Tip to Sensor Center **1.0** mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

SAR PROBE CALIBRATION CERTIFICATES


ANNEX F

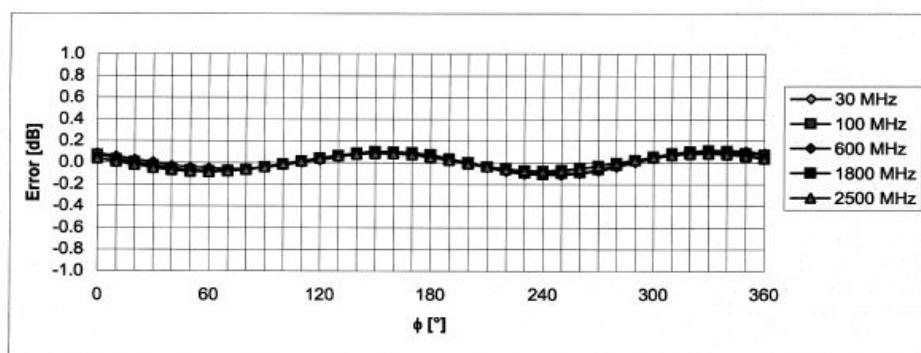
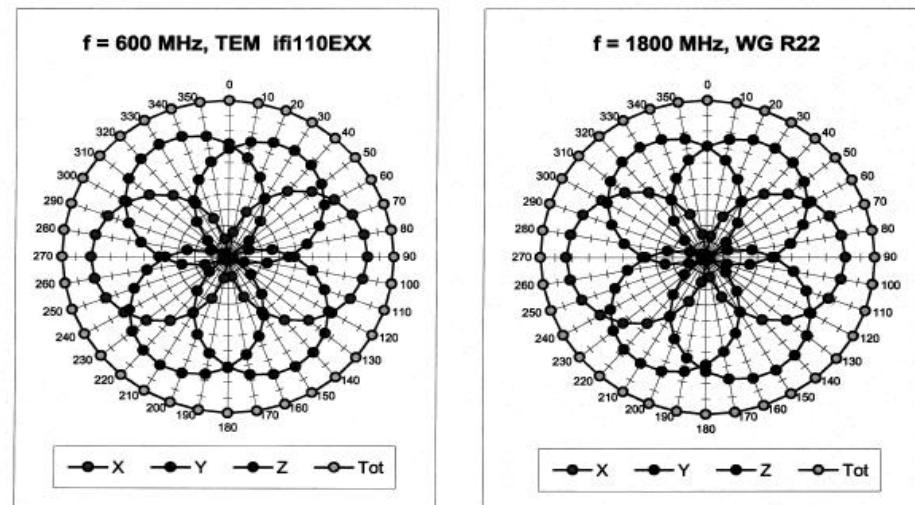
EX3DV4 SN:3541

July 13, 2007

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)



SAR PROBE CALIBRATION CERTIFICATES

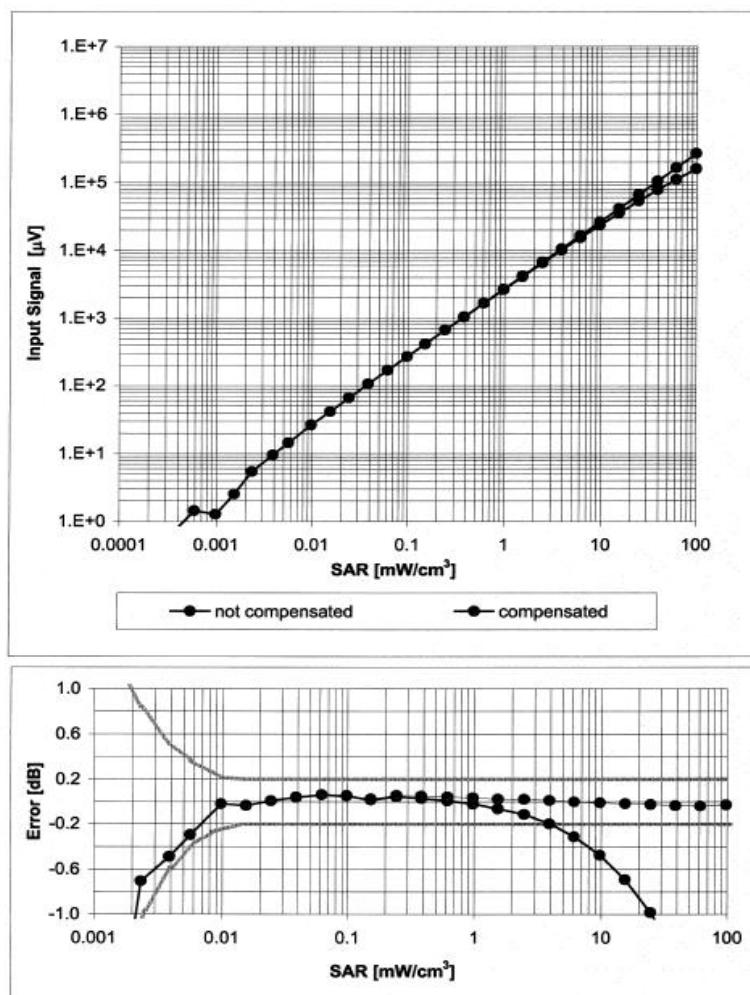
ANNEX F

EX3DV4 SN:3541

July 13, 2007

Receiving Pattern (ϕ), $\theta = 0^\circ$

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)


SAR PROBE CALIBRATION CERTIFICATES

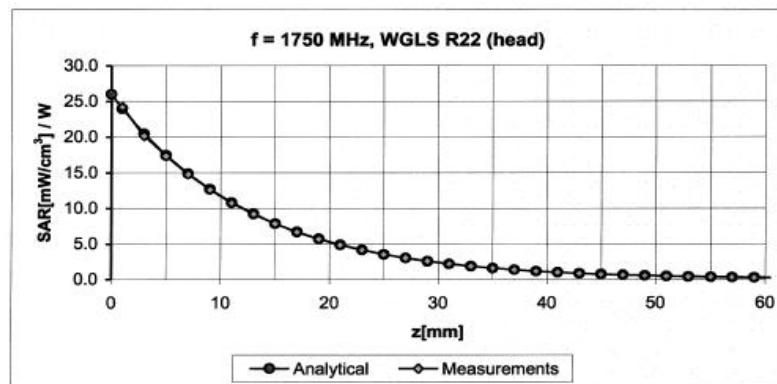
ANNEX F

EX3DV4 SN:3541

July 13, 2007

Dynamic Range $f(\text{SAR}_{\text{head}})$
(Waveguide R22, $f = 1800$ MHz)

Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)


SAR PROBE CALIBRATION CERTIFICATES

ANNEX F

EX3DV4 SN:3541

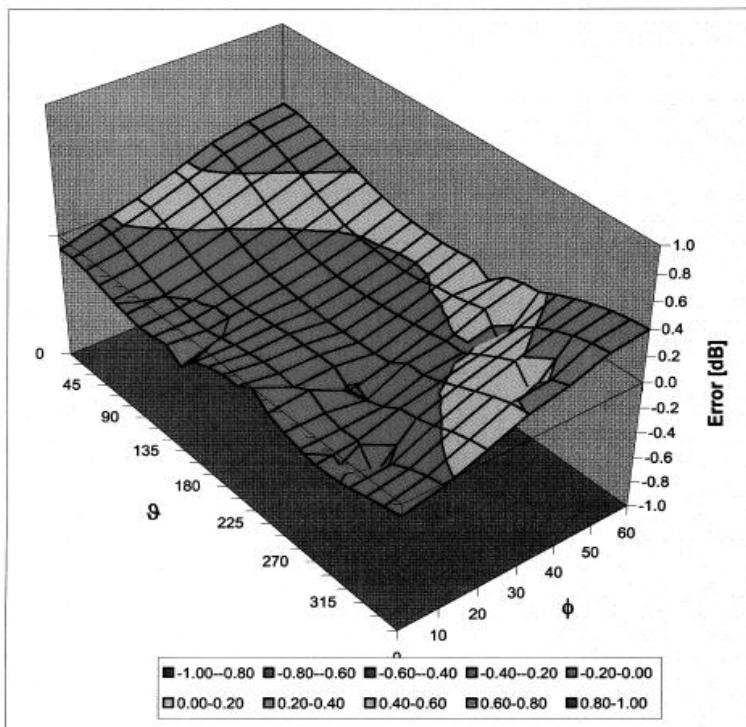
July 13, 2007

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
835	± 50 / ± 100	Head	41.5 ± 5%	0.90 ± 5%	0.55	0.80	9.62	± 11.0% (k=2)
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.55	0.80	9.43	± 11.0% (k=2)
1750	± 50 / ± 100	Head	40.1 ± 5%	1.37 ± 5%	0.16	1.30	8.00	± 11.0% (k=2)
1900	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.19	1.16	7.87	± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.42	1.00	7.35	± 11.8% (k=2)
5200	± 50 / ± 100	Head	36.0 ± 5%	4.66 ± 5%	0.33	1.78	5.01	± 13.1% (k=2)
5500	± 50 / ± 100	Head	35.6 ± 5%	4.96 ± 5%	0.35	1.78	4.76	± 13.1% (k=2)
5800	± 50 / ± 100	Head	35.3 ± 5%	5.27 ± 5%	0.32	1.78	4.55	± 13.1% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	0.62	0.80	9.66	± 11.0% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.60	0.80	9.25	± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	1.49 ± 5%	0.20	1.07	8.07	± 11.0% (k=2)
1900	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.18	1.15	7.79	± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.45	1.00	7.07	± 11.8% (k=2)
5200	± 50 / ± 100	Body	49.0 ± 5%	5.30 ± 5%	0.35	1.80	4.42	± 13.1% (k=2)
5500	± 50 / ± 100	Body	48.6 ± 5%	5.65 ± 5%	0.32	1.80	4.07	± 13.1% (k=2)
5800	± 50 / ± 100	Body	48.2 ± 5%	6.00 ± 5%	0.31	1.80	4.30	± 13.1% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

SAR PROBE CALIBRATION CERTIFICATES


ANNEX F

EX3DV4 SN:3541

July 13, 2007

Deviation from Isotropy in HSL

Error (ϕ, θ), $f = 900$ MHz

Uncertainty of Spherical Isotropy Assessment: $\pm 2.6\%$ ($k=2$)

SAR PROBE CALIBRATION CERTIFICATES

ANNEX F

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughaussstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalementage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client TUV SUD PSB

Certificate No: DAE4-627_Jun07

CALIBRATION CERTIFICATE

Object DAE4 - SD 000 D04 BA - SN: 627

Calibration procedure(s) QA CAL-06.v12
Calibration procedure for the data acquisition electronics (DAE)

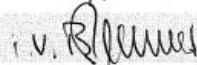
Calibration date: June 14, 2007

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)


Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Fluke Process Calibrator Type 702	SN: 6295803	13-Oct-06 (Elcal AG, No: 5492)	Oct-07
Keithley Multimeter Type 2001	SN: 0810278	03-Oct-06 (Elcal AG, No: 5478)	Oct-07
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Calibrator Box V1.1	SE UMS 006 AB 1002	15-Jun-06 (SPEAG, in house check)	In house check Jun-07

Calibrated by: Name Dominique Steffen Function Technician

Signature

Approved by: Name Fin Bornholt Function R&D Director

Issued: June 14, 2007

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

SAR PROBE CALIBRATION CERTIFICATES

ANNEX F

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary

DAE	data acquisition electronics
Connector angle	information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- *DC Voltage Measurement*: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters contain technical information as a result from the performance test and require no uncertainty.
- *DC Voltage Measurement Linearity*: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
- *Common mode sensitivity*: Influence of a positive or negative common mode voltage on the differential measurement.
- *Channel separation*: Influence of a voltage on the neighbor channels not subject to an input voltage.
- *AD Converter Values with inputs shorted*: Values on the internal AD converter corresponding to zero input voltage
- *Input Offset Measurement*: Output voltage and statistical results over a large number of zero voltage measurements.
- *Input Offset Current*: Typical value for information; Maximum channel input offset current, not considering the input resistance.
- *Input resistance*: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
- *Low Battery Alarm Voltage*: Typical value for information. Below this voltage, a battery alarm signal is generated.
- *Power consumption*: Typical value for information. Supply currents in various operating modes.

SAR PROBE CALIBRATION CERTIFICATES

ANNEX F

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1 μ V, full range = -100...+300 mV

Low Range: 1LSB = 61nV, full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	405.082 \pm 0.1% (k=2)	404.004 \pm 0.1% (k=2)	404.555 \pm 0.1% (k=2)
Low Range	3.94466 \pm 0.7% (k=2)	3.96422 \pm 0.7% (k=2)	3.95337 \pm 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	204 ° \pm 1 °
---	-----------------

SAR PROBE CALIBRATION CERTIFICATES

ANNEX F

Appendix

1. DC Voltage Linearity

High Range	Input (µV)	Reading (µV)	Error (%)
Channel X + Input	200000	200000.4	0.00
Channel X + Input	20000	20005.14	0.03
Channel X - Input	20000	-19995.61	-0.02
Channel Y + Input	200000	200000.2	0.00
Channel Y + Input	20000	20005.27	0.03
Channel Y - Input	20000	-20002.39	0.01
Channel Z + Input	200000	200000	0.00
Channel Z + Input	20000	20004.96	0.02
Channel Z - Input	20000	-19999.55	0.00

Low Range	Input (µV)	Reading (µV)	Error (%)
Channel X + Input	2000	2000.1	0.00
Channel X + Input	200	200.11	0.06
Channel X - Input	200	-200.71	0.36
Channel Y + Input	2000	2000	0.00
Channel Y + Input	200	198.90	-0.55
Channel Y - Input	200	-200.21	0.11
Channel Z + Input	2000	2000	0.00
Channel Z + Input	200	199.07	-0.47
Channel Z - Input	200	-200.90	0.45

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (µV)
Channel X	200	15.14	13.75
	- 200	-13.53	-14.26
Channel Y	200	7.77	7.70
	- 200	-8.05	-9.02
Channel Z	200	8.45	8.40
	- 200	-10.68	-10.60

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	3.20	0.40
Channel Y	200	-0.05	-	5.25
Channel Z	200	-0.01	-0.11	-

SAR PROBE CALIBRATION CERTIFICATES

ANNEX F

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15897	14024
Channel Y	16247	17138
Channel Z	15820	15417

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec
Input 10MΩ

	Average (µV)	min. Offset (µV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	-0.18	-1.03	2.48	0.45
Channel Y	-1.12	-2.08	0.01	0.43
Channel Z	-0.47	-2.88	0.79	0.41

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2001	201.3
Channel Y	0.2001	201.8
Channel Z	0.2001	202.0

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9

ANNEX G

REFERENCES

REFERENCES

ANNEX G

The methods and procedures used for the measurements contained in this report are details in the following reference standards:

Publications	Year	Title
Supplement C (Edition 01-01) to FCC OET Bulletin 65 (Edition 97-01)	2001	"Evaluating Compliance with FCC Guidelines for Human Exposure to radio Frequency Fields"
IEEE Standard 1528-200X	2000	"Product Performance Standards Relative to the safe Use of Electromagnetic Energy"
ANSI/IEEE C95.3	1992	"Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave"
ANSI/IEEE C95.1	1992	"Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300GHz"
ACA, Radio Communications (EMR Human Exposure)	2000 (No.2)	"Radiocommunication (Electromagnetic Radiation – Human Exposure)"
EN50360	2001	Product Standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300MHz – 3GHz)
EN50361	2001	Basic Standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phone (300MHz – 3GHz)
EN62209-1	2006	Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (300MHz – 3GHz)