Note: This report is issued subject to TÜV SÜD PSB's "Terms and Conditions Governing Technical Services". The terms and conditions governing the issue of this report are set out as attached within this report.

Choose certainty.
Add value.

FORMAL REPORT ON TESTING IN ACCORDANCE WITH 47 CFR FCC Part 15B : 2011 (CLASS B)

OF A

VEHICLE MOUNT TERMINAL [Model : VM1 C] [FCC ID : KDZLXE-VM1]

TEST FACILITY TÜV SÜD PSB Pte Ltd,

Electrical & Electronics Centre (EEC), Product Services, 13 International Business Park #01-01, Singapore 609932

FCC REG. NO. 160581 (3m and 10m Semi-Anechoic Chamber, International Business Park)

IND. CANADA REG. NO. 2932N-1 (10m Semi-Anechoic Chamber, International Business Park)

PREPARED FOR LXE Inc

125 Technology Parkway

Norcross, GA 30092-2913, United States

Tel: +1 770-447 4224 Fax: +1-770-447-6928

QUOTATION NUMBER 219124671

JOB NUMBER 7191006338

TEST PERIOD 05 May 2011 – 13 Jun 2011

PREPARED BY

Quek Keng

Associate En

APPROVED BY

MM

Lim Cher Hwee Assistant Vice President

Laboratory: TÜV SÜD PSB Pte. Ltd. No.1 Science Park Drive Singapore 118221

Phone: +65-6885 1333

Fax: +65-6776 8670

www.tuv-sud-psb.sg

Co. Reg: 199002667R

E-mail: testing@tuv-sud-psb.sg

LA-2007-0380-A LA-2007-0380-A-1 LA-2007-0381-F LA-2007-0382-B LA-2007-0383-G LA-2007-0384-G LA-2007-0385-E

The results reported herein have been performed in accordance with the laboratorys terms of accreditation under the Singapore Accreditation Council - Singapore Laboratory Accreditation Scheme. Tests/Calibrations marked "Not SAC-SINGLAS Accredited" in this Report are not included in the SAC-SINGLAS Accreditation Schedule for our laboratory.

Regional Head Office: TÜV SÜD Asia Pacific Pte. Ltd.

3 Science Park Drive, #04-01/05 The Franklin, Singapore 118223

TABLE OF CONTENTS

TEST SUMMARY

PRODUCT DESCRIPTION

SUPPORTING EQUIPMENT DESCRIPTION

EUT OPERATING CONDITIONS

CONDUCTED EMISSION TEST

RADIATED EMISSION TEST

ANNEX A

ANNEX B

ANNEX C

- EUT PHOTOGRAPHS / DIAGRAMS
- FCC LABEL & POSITION
- USER MANUAL, TECHNICAL DESCRIPTION, BLOCK & CIRCUIT DIAGRAMS

TEST SUMMARY

The product was tested in accordance with the customer's specifications.

Test Results Summary

Test Standard	Description	Pass / Fail
47 CFR FCC Part 15B : 2011		
15.107	Conducted Emissions (Class B)	Pass
15.109	Radiated Emissions (Class B)	Pass

Notes

- 1. All test measurement procedures are according to ANSI C63.4: 2003.
- 2. The following RF modules are FCC certified RF modules:
 - WLAN module (FCC ID: TWG-SDCMSD30AG) and
 - mobile telecom module (WWAN) (FCC ID: N7NGOBI2)

As the modules are integrated onto the Equipment Under Test (EUT) without modifications, only the spurious emissions of the EUT were evaluated.

3. Vehicle Mount Terminal (EUT) come with 2 types of keypad as shown:

Modifications

No modifications were made.

PRODUCT DESCRIPTION

Description

The Equipment Under Test (EUT) is a **VEHICLE MOUNT TERMINAL WITH QUICK MOUNT CRADLE.** It is designated for industrial environment and vehicle use. The terminal integrated with the following wireless modules:

- Bluetooth module
- certified WLAN module (FCC ID: TWG-SDCMSD30AG) and
- mobile telecom module (WWAN) (FCC ID: N7NGOBI2)

It also integrated with audio function and basic I/O ports as follows:

- serial-RS232
- USB and
- CANBUS

Input and output ports are available for peripheral support like power input, RS232, USB and CANBUS/Audio. The terminal can be powered by vehicle battery from 10V to 60V or an AC-DC adapter or UPS battery. The UPS battery provides an alternate power when the terminal is removed from the cradle mount or when the vehicle is powered off. The front panel of the display designated with 64-Key QWERTY keyboard and/or 13 functional keys. Four SMA antennas connectors are mounted at the top-rear for the housing panel for external connection.

Applicant : LXE Inc

125 Technology Parkway

Norcross, GA 30092-2913, United States

Manufacturer : GES Singapore Pte Ltd

28 Marsiling Lane, Singapore 739152

Factor (ies) : GES Manufacturing Services (M) Sdn Bhd

PLO 34 Fasa 2, Kawasan Perindustrian Senai,

81400 Senai, Johor, Malaysia

Model Number : VM1 C

FCC ID KDZLXE-VM1

Serial Number : VM1110300173 (Config#1: 64-Key)

VM1110400348 (Config#2: 13-Key)

Microprocessor : Intel Atom, Z530

PRODUCT DESCRIPTION

Continued

Operating Frequency : <u>Bluetooth (FCC ID: KDZLXE-VM1)</u>

2.412GHz - 2.480GHz

WLAN 802.11a/b/g (FCC ID: TWG-SDCMSD30AG)

2.412GHz - 2.462GHz 5.180GHz to 5.240GHz 5.260GHz to 5.320GHz 5.500GHz to 5.700GHz

WWAN (FCC ID: N7NGOBI2)

824.2MHz - 848.8MHz 1850.2MHz - 1909.8MHz

Clock / Oscillator Frequency : Z530 CPU speed: 1.6GHz

FSB, front-side bus: 400MHz, 533MHz

Clock generator: 14.31818MHz, 100MHz, 133.33MHz, 200MHz,

1666.67MHz,

Crystal clock (USB CAD BUS): 24MHz

Crystal clock: 32.768kHz

Port / Connectors : Refer to manufacturer's user manual / operating manual

Rated Input Power : 7-12Vdc, 7.5A (Terminal)

10Vdc to 60Vdc, 6.4A (Terminal and Quick Mount Cradle)

Accessories : Refer to manufacturer's user manual / operating manual

SUPPORTING EQUIPMENT DESCRIPTION

Equipment Description (Including Brand Name)	Model, Serial & FCC ID Number	Cable Description (List Length, Type & Purpose)
DMC Monitor	M/N: AM1564	3.00m unshielded power cable
	S/N: MT71C3014046	
	FCC ID: I84AM1564	
HP PC	M/N: HPDX2300	1.80m unshielded power cable
	S/N: SGH73006RP	
	FCC ID: DoC	
Datamini Mouse	M/N: 80XX	1.80m PS/2 cable
	S/N: SG74800268	
	FCC ID: DoC	e e
Symbol Scanner	M/N: SBRE	1.50m USB cable
1	S/N: M1J37F764	
	FCC ID: Nil	
HP Keyboard	M/N: SK-2501K	1.80m PS/2 cable
	S/N: M970936881	
	FCC ID: GYVR385K	
CanBus cable Power Adapter	M/N: GT81081-6015-T3	1.80m unshielded power cable
	S/N: RCHS10082139/09	
	FCC ID: DoC	
Microsoft Mouse	M/N: Nil	1.50m USB cable
	S/N: Nil	
	FCC ID: DoC	77

EUT OPERATING CONDITIONS

47 CFR FCC Part 15B

- 1. Conducted Emissions
- 2. Radiated Emissions

The EUT was exercised in its typical operating modes (all possible supported modes) as listed below throughout the test:

- a. 802.11b/g + ITE + Active Sync + WWAN + Bluetooth (using internal antennas)
- b. 802.11a + ITE + Active Sync + WWAN + Bluetooth (using internal antennas)
- c. 802.11b/g + ITE + Active Sync + WWAN + Bluetooth (using external antennas)
- d. 802.11a + ITE + Active Sync + WWAN + Bluetooth (using external antennas)

CONDUCTED EMISSION TEST

47 CFR FCC Part 15.107 Conducted Emission Limits (Class B)

AC Port

Frequency Range	Limit Values (dBµV)		
(MHz)	Quasi-peak (QP) Average (AV)		
0.15 - 0.5	66 – 56 *	56 – 46 *	
0.5 - 5.0	56	46	
5.0 - 30.0	60	50	
* Decreasing linearly with the logar	rithm of the frequency		

47 CFR FCC Part 15.107 Conducted Emission Test Instrumentation

Instrument	Model	S/No	Cal Due Date
Rohde & Schwarz EMI Test Receiver (9kHz-3GHz)	ESCI	100477	24 Sep 2011
Schaffner LISN 2-Line V-Network (EUT) (9kHz-30MHz)	NNB41	04/10152	14 Sep 2011
Schaffner LISN 2-Line V-Network (9kHz-30MHz)	NNB41	04/10151	14 Sep 2011

CONDUCTED EMISSION TEST

AC Port

47 CFR FCC Part 15.107 Conducted Emission Test Setup

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard as shown in the setup photos.
- 2. The power supply for the EUT was fed through a $50\Omega/50\mu H$ EUT LISN, connected to filtered mains.
- 3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable.
- 4. All other supporting equipment were powered separately from another LISN.

47 CFR FCC Part 15.107 Conducted Emission Test Method

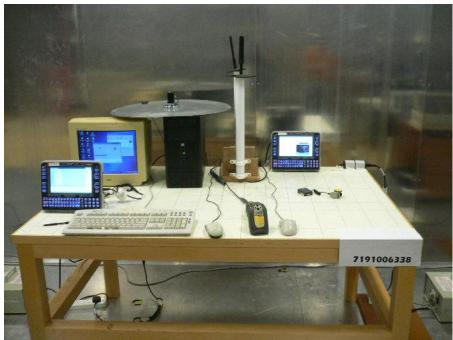
- 1. The EUT was switched on and allowed to warm up to its normal operating condition.
- 2. A scan was made on the NEUTRAL line over the required frequency range using an EMI test receiver.
- 3. High peaks, relative to the limit line, were then selected.
- 4. The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 9kHz. Both Quasi-peak and Average measurements were made.
- 5. Steps 2 to 4 were then repeated for the LIVE line.

Sample Calculation Example

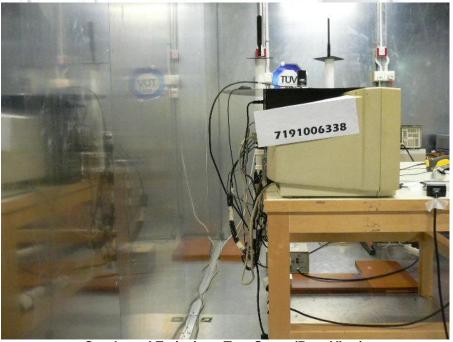
At 20 MHz

Q-P limit (Class B) = $1000 \mu V = 60.0 dB\mu V$

Transducer factor of LISN, pulse limiter & cable loss at 20 MHz = 11.2 dB


Q-P reading obtained directly from EMI Receiver = $40.0 \text{ dB}\mu\text{V}$ (Calibrated for system losses)

Therefore, Q-P margin = 40.0 - 60.0 = -20.0


i.e. 20.0 dB below Q-P limit

CONDUCTED EMISSION TEST

Conducted Emissions Test Setup (Front View)

Conducted Emissions Test Setup (Rear View)

CONDUCTED EMISSION TEST

47 CFR FCC Part 15.107 Conducted Emission Results

Operating Mode	Internal Antenna + 802.11b/g + ITE + BT + Active Sync + WWAN mode (Worst mode)	Temperature	23°C
Test Input Power	110V 60Hz	Relative Humidity	58%
Line Under Test	AC Mains	Atmospheric Pressure	1030mbar
Class	В	Tested By	Kelvin Cheng

Frequency (MHz)	Q-P Value (dBμV)	Q-P Margin (dB)	AV Value (dBμV)	AV Margin (dB)	Line
0.1745	37.5	-27.2	17.7	-37.0	Neutral
0.7455	38.7	-17.3	33.5	-12.5	Live
2.6893	44.3	-11.7	41.4	-4.6	Live
7.6901	44.6	-15.4	43.9	-6.1	Live
9.8206	41.2	-18.8	40.4	-9.6	Neutral
15.3805	33.6	-26.4	31.8	-18.2	Live

Operating Mode	Internal Antenna + 802.11a + ITE + BT + Active Sync + WWAN mode (Worst mode)	Temperature	23°C
Test Input Power	110V 60Hz	Relative Humidity	58%
Line Under Test	AC Mains	Atmospheric Pressure	1030mbar
Class	B \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Tested By	Kelvin Cheng

Frequency (MHz)	Q-P Value (dBμV)	Q-P Margin (dB)	AV Value (dBμV)	AV Margin (dB)	Line
0.7286	40.7	-15.3	35.9	-10.1	Live
6.2785	42.0	-18.0	35.1	-14.9	Live
6.8219	46.7	-13.3	39.1	-10.9	Live
7.7301	51.8	-8.2	43.6	-6.4	Live
9.8239	42.2	-17.8	34.2	-15.8	Live
11.8208	39.4	-20.6	31.5	-18.5	Live

Notes

- All possible modes of operation were investigated from 150kHz to 30MHz. Only the worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. EMI receiver Resolution Bandwidth (RBW) and Video Bandwidth (VBW) settings: 150kHz - 30MHz

RBW: 9kHz VBW: 30kHz

4. Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95%, with a coverage factor of 2, in the range 9kHz - 30MHz is $\pm 3.0dB$.

RADIATED EMISSION TEST

47 CFR FCC Part 15.109 Radiated Emission Limits (Class B)

Frequency Range (MHz)	Quasi-Peak Limit Values (dBμV/m) @ 3m			
30 - 88	40.0			
88 - 216 43.5				
216 - 960 46.0				
Above 960 54.0*				
* Above 1GHz, average detector was used. A peak limit of 20dB above the average limit does apply.				

47 CFR FCC Part 15.109 Radiated Emission Test Instrumentation

Instrument	Model	S/No	Cal Due Date
Rohde & Schwarz EMI Test Receiver	ESMI	829179/002	28 Jul 2011
(20Hz – 26.5GHz)		829179/005	
TDK RF Solutions Hybrid Log Periodic Antenna	HLP-3003C	130238	19 Mar 2012
(30MHz-3GHz)			
Sonoma Preamplifier (9kHz – 1GHz)	310N	270640	13 Sep 2011
TDK RF Solution Horn Antenna (1GHz-18GHz)	HRN-0118	130256	15 Mar 2012
Schwarzbeck Horn Antenna (2-18GHz) /	BBHA 9120 C/	00000004	25 Mar 2012
Pre-amplifier assembly HAP-series	HAP06-18W		
Sonoma Preamplifier (9kHz – 1GHz)	310N	270640	13 Sep 2011
Toyo MicroWave Preamplifier (1GHz - 8GHz)	TPA0108-40	0443	02 Feb 2012
ETS Horn Antenna (18GHz – 40GHz)	3116	0004-2474	19 Apr 2012
Micro-Tronics Bandstop Filter (2.4-2.5 GHz)	BRM50701	017	13 Aug 2011

RADIATED EMISSION TEST

47 CFR FCC Part 15.109 Radiated Emission Test Setup

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard as shown in the setup photos.
- 2. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
- The relevant broadband antenna was set at the required test distance away from the EUT and 3. supporting equipment boundary.

47 CFR FCC Part 15.109 Radiated Emission Test Method

- The EUT was switched on and allowed to warm up to its normal operating condition.
- A prescan was carried out to pick the worst emission frequencies from the EUT. For EUT which is a 2. portable device, the prescan was carried out by rotating the EUT through three orthogonal axes to determine which altitude and equipment arrangement produces such emissions.
- The test was carried out at the selected frequency points obtained from the prescan in step 2. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner: 3.
 - Vertical or horizontal polarisation (whichever gave the higher emission level over a full rotation of the EUT) was chosen.
 - b.
 - The EUT was then rotated to the direction that gave the maximum emission. Finally, the antenna height was adjusted to the height that gave the maximum emission.
- A Quasi-peak measurement was made for that frequency point if it was less than or equal to 1GHz. For frequency point that above 1GHz, both Peak and Average measurements were carried out. 4.
- Steps 3 and 4 were repeated for the next frequency point, until all selected frequency points were 5.
- The frequency range covered was from 30MHz to 5th harmonic of the highest frequency used or 6. generated by the EUT, using the Bi-log antenna for frequencies from 30MHz up to 1GHz, and the Horn antenna above 1GHz.

Sample Calculation Example

At 300 MHz

Q-P limit (Class B) = $70.8 \mu V/m = 37.0 dB\mu V/m$

Log-periodic antenna factor & cable loss at 300 MHz = 18.5 dB

Q-P reading obtained directly from EMI Receiver = 31.0 dB_µV/m (Calibrated level including antenna factors & cable losses)

Therefore, Q-P margin = 31.0 - 37.0 = -6.0

i.e. 6 dB below Q-P limit

RADIATED EMISSION TEST

30MHz - 1GHz Test Setup

Radiated Emissions Test Setup (Front View)

Radiated Emissions Test Setup (Rear View)



RADIATED EMISSION TEST

1GHz - 40GHz Test Setup

Radiated Emissions Test Setup (Front View)

Radiated Emissions Test Setup (Rear View)

RADIATED EMISSION TEST

47 CFR FCC Part 15.109 Radiated Emission Results

Operating Mode	Internal Antenna + 802.11b/g + ITE + BT + Active Sync + WWAN mode	Temperature	23°C
Test Input Power	110V 60Hz	Relative Humidity	58%
Test Distance	3m	Atmospheric Pressure	1030mbar
Class	В	Tested By	Derrick Ng

Emissions ranging from 30MHz – 1GHz

Frequency (MHz)	Q-P Value (dBμV/m)	Q-P Margin (dB)	Azimuth (Degrees)	Height (cm)	Polarisation (H/V)
67.6120	24.3	-15.7	192	112	V
233.2160	28.3	-17.7	284	104	V
333.7400	37.4	-8.6	10	103	Н
367.1400	34.5	-11.5	10	106	Н
719.9660	41.4	-4.6	77	102	Н
847.2380	45.4	-0.6	351	139	V

Emissions above 1GHz – 25GHz

Frequency (GHz)	Peak Value (dBμV/m)	Peak Margin (dB)	Average Value (dBμV/m)	Average Margin (dB)	Azimuth (Degrees)	Height (cm)	Pol (H/V)
1.3478	48.2	-25.8	25.2	-28.8	353	301	V
1.5106	46.2	-27.8	24.1	-29.9	19	301	V
2.9975	48.6	-25.4	34.8	-19.2	345	101	V
3.7551	49.1	-24.9	31.4	-22.6	353	101	V
8.9492	29.9	-44.1	20.1	-33.9	353	301	V
10.4844	40.7	-33.3	11.0	-43.0	11	399	Н

Notes

- 1. All possible modes of operation were investigated. Only the worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. EMI receiver Resolution Bandwidth (RBW) and Video Bandwidth (VBW) settings:

30MHz - 1GHz

RBW: 120kHz VBW: 1MHz

>1GHz

RBW: 1MHz VBW: 1MHz

4. Radiated Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95%, with a coverage factor of 2, in the range 30 MHz - 40.0 GHz is $\pm 4.6 \text{dB}$.

RADIATED EMISSION TEST

47 CFR FCC Part 15.109 Radiated Emission Results

Operating Mode	Internal Antenna + 802.11a + ITE + BT + Active Sync + WWAN mode	Temperature	23°C
Test Input Power	110V 60Hz	Relative Humidity	58%
Test Distance	3m	Atmospheric Pressure	1030mbar
Class	В	Tested By	Derrick Ng

Emissions ranging from 30MHz - 1GHz

Frequency (MHz)	Q-P Value (dBμV/m)	Q-P Margin (dB)	Azimuth (Degrees)	Height (cm)	Polarisation (H/V)
41.7180	35.1	-4.9	62	108	V
53.9480	20.5	-19.5	348	356	Н
84.0500	33.6	-6.4	292	250	Н
126.0050	28.4	-15.1	293	113	V
333.7510	36.7	-9.3	9	105	Н
847.2710	41.8	-4.2	1///	146	V

Emissions above 1GHz – 40GHz

Frequency (GHz)	Peak Value (dBμV/m)	Peak Margin (dB)	Average Value (dB _µ V/m)	Average Margin (dB)	Azimuth (Degrees)	Height (cm)	Pol (H/V)
1.3366	49.2	-24.8	32.0	-22.0	10	201	V
2.9919	49.8	-24.2	40.3	-13.7	7	201	V
3.7550	50.1	-23.9	31.3	-22.7	7	201	V
4.4957	47.7	-26.3	43.8	-10.2	353	101	V
4.9671	51.7	-22.3	42.1	-11.9	353	301	Н
6.9965	34.1	-39.9	15.6	-38.4	353	301	V

Notes

- 1. All possible modes of operation were investigated. Only the worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- EMI receiver Resolution Bandwidth (RBW) and Video Bandwidth (VBW) settings:

<u>30MHz - 1GHz</u>

RBW: 120kHz VBW: 1MHz

>1GHz

RBW: 1MHz VBW: 1MHz

4. Radiated Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95%, with a coverage factor of 2, in the range 30MHz - 40.0GHz is $\pm 4.6\text{dB}$.

RADIATED EMISSION TEST

47 CFR FCC Part 15.109 Radiated Emission Results

Operating Mode	External Antenna + 802.11b/g + ITE + BT + Active Sync + WWAN mode	Temperature	23°C
Test Input Power	110V 60Hz	Relative Humidity	58%
Test Distance	3m	Atmospheric Pressure	1030mbar
Class	В	Tested By	Derrick Ng

Emissions ranging from 30MHz – 1GHz

Frequency (MHz)	Q-P Value (dBμV/m)	Q-P Margin (dB)	Azimuth (Degrees)	Height (cm)	Polarisation (H/V)
83.4500	30.7	-9.3	307	100	V
89.9920	35.2	-8.3	64	100	V
119.8160	28.0	-15.5	301	100	V
300.3280	41.9	-4.2	14	100	Н
333.7180	44.9	-1.1	10	100	Н
748.3910	42.6	-3.4	351	100	V

Emissions above 1GHz – 25GHz

Frequency (GHz)	Peak Value (dBμV/m)	Peak Margin (dB)	Average Value (dBμV/m)	Average Margin (dB)	Azimuth (Degrees)	Height (cm)	Pol (H/V)
1.3479	49.1	-24.9	24.7	-29.3	345	201	V
1.5050	49.0	-25.0	39.6	-14.4	335	101	V
3.0032	48.6	-25.4	32.8	-21.2	10	399	V
3.6429	48.1	-25.9	33.3	-20.7	910	399	V
3.7494	50.2	-23.8	38.3	-15.8	353	101	V
4.5013	47.7	-26.3	35.8	-18.2	352	101	V

Notes

- 1. All possible modes of operation were investigated. Only the worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- EMI receiver Resolution Bandwidth (RBW) and Video Bandwidth (VBW) settings:

<u>30MHz - 1GHz</u>

RBW: 120kHz VBW: 1MHz

>1GHz

RBW: 1MHz VBW: 1MHz

4. Radiated Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95%, with a coverage factor of 2, in the range 30MHz - 40.0GHz is $\pm 4.6dB$.

RADIATED EMISSION TEST

47 CFR FCC Part 15.109 Radiated Emission Results

Operating Mode	External Antenna + 802.11a + ITE + BT + Active Sync + WWAN mode	Temperature	23°C
Test Input Power	110V 60Hz	Relative Humidity	58%
Test Distance	3m	Atmospheric Pressure	1030mbar
Class	В	Tested By	Derrick Ng

Emissions ranging from 30MHz – 1GHz

Frequency (MHz)	Q-P Value (dBμV/m)	Q-P Margin (dB)	Azimuth (Degrees)	Height (cm)	Polarisation (H/V)
42.3560	37.2	-2.8	121	101	V
44.7730	35.9	-4.1	140	101	V
66.2770	30.8	-9.2	267	200	V
300.3280	41.1	-4.9	351	155	Н
333.6840	43.2	-2.8	16	101	Н
748.4020	42.2	-3.8	1///	101	V

Emissions above 1GHz – 40GHz

Frequency (GHz)	Peak Value (dBμV/m)	Peak Margin (dB)	Average Value (dBμV/m)	Average Margin (dB)	Azimuth (Degrees)	Height (cm)	Pol (H/V)
1.1122	43.7	-30.3	40.7	-13.3	353	101	V
1.3367	49.2	-24.8	45.2	-8.8	7	201	V
1.5050	50.1	-23.9	40.2	-13.8	2	101	V
1.9988	44.8	-29.2	42.0	-12.0	353	101	V
3.0088	49.0	-25.0	34.0	-20.0	353	301	V
3.7551	50.5	-23.5	34.5	-19.5	352	301	V

Notes

- 1. All possible modes of operation were investigated. Only the worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- EMI receiver Resolution Bandwidth (RBW) and Video Bandwidth (VBW) settings:

<u>30MHz - 1GHz</u>

RBW: 120kHz VBW: 1MHz

>1GHz

RBW: 1MHz VBW: 1MHz

4. Radiated Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95%, with a coverage factor of 2, in the range 30MHz - 40.0GHz is $\pm 4.6\text{dB}$.

This Report is issued under the following conditions:

- 1. Results of the testing/calibration in the form of a report will be issued immediately after the service has been completed or terminated.
- Unless otherwise requested, this report shall contain only technical results carried out by TÜV SÜD PSB. Analysis and interpretation of the results and professional opinion and recommendations expressed thereupon, if required, shall be clearly indicated and additional fee paid for, by the Client.
- 3. This report applies to the sample of the specific product/equipment given at the time of its testing/calibration. The results are not used to indicate or imply that they are applicable to other similar items. In addition, such results must not be used to indicate or imply that TÜV SÜD PSB approves, recommends or endorses the manufacturer, supplier or user of such product/equipment, or that TÜV SÜD PSB in any way "guarantees" the later performance of the product/equipment. Unless otherwise stated in this report, no tests were conducted to determine long term effects of using the specific product/equipment.
- 4. The sample/s mentioned in this report is/are submitted/supplied/manufactured by the Client. TÜV SÜD PSB therefore assumes no responsibility for the accuracy of information on the brand name, model number, origin of manufacture, consignment or any information supplied.
- Additional copies of the report are available to the Client at an additional fee. No third party can obtain a copy of this report through TÜV SÜD PSB, unless the Client has authorised TÜV SÜD PSB in writing to do so.
- 6. TÜV SÜD PSB may at its sole discretion add to or amend the conditions of the report at the time of issue of the report and such report and such additions or amendments shall be binding on the Client.
- 7. All copyright in the report shall remain with TÜV SÜD PSB and the Client shall, upon payment of TÜV SÜD PSB's fees for the carrying out of the tests/calibrations, be granted a license to use or publish the report to the third parties subject to the terms and conditions herein, provided always that TÜV SÜD PSB may at its absolute discretion be entitled to impose such conditions on the license as it sees fit.
- 8. Nothing in this report shall be interpreted to mean that TÜV SÜD PSB has verified or ascertained any endorsement or marks from any other testing authority or bodies that may be found on that sample.
- 9. This report shall not be reproduced wholly or in parts and no reference shall be made by the Client to TÜV SÜD PSB or to the report or results furnished by TÜV SÜD PSB in any advertisements or sales promotion.
- 10. Unless otherwise stated, the tests were carried out in TÜV SÜD PSB Pte Ltd, No.1 Science Park Drive Singapore 118221.

March 2010

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

Rear View

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

Right View

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

Bottom View

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

EUT Top Housing Internal View 1

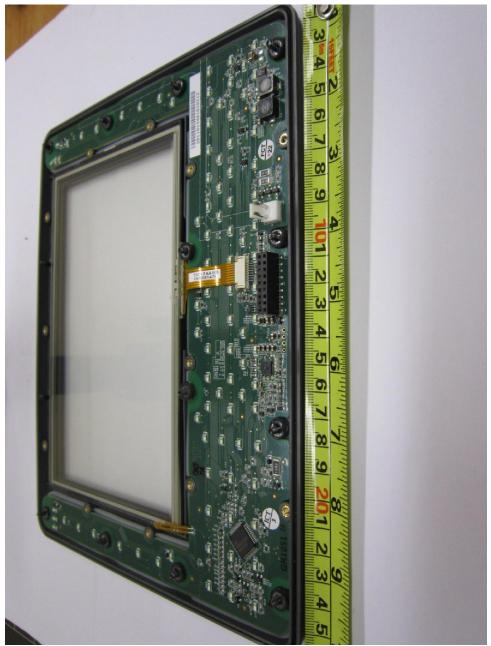
EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

EUT Top Housing Internal View 2

EUT PHOTOGRAPHS / DIAGRAMS

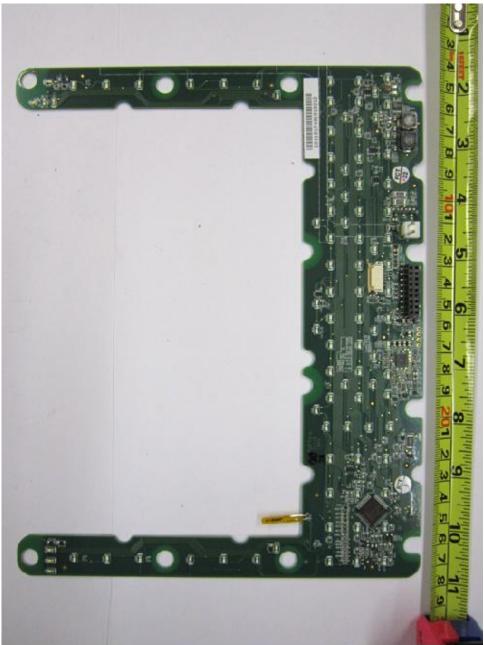
ANNEX A



EUT Top Housing Internal View 3

EUT PHOTOGRAPHS / DIAGRAMS

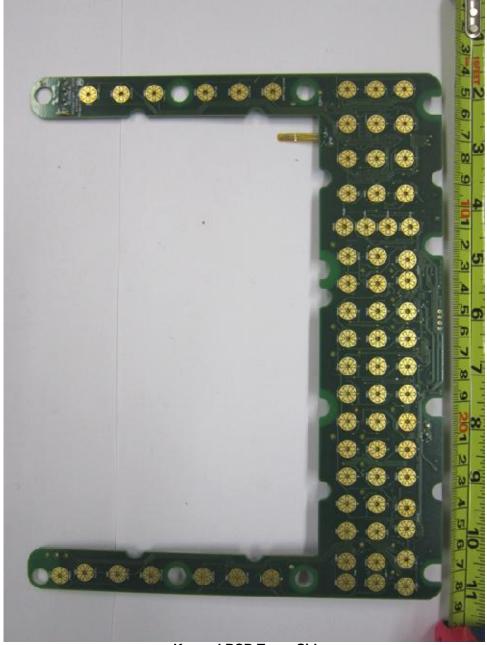
ANNEX A



Keypad Internal View

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A



Keypad PCB Component Side

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

Keypad PCB Trace Side

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

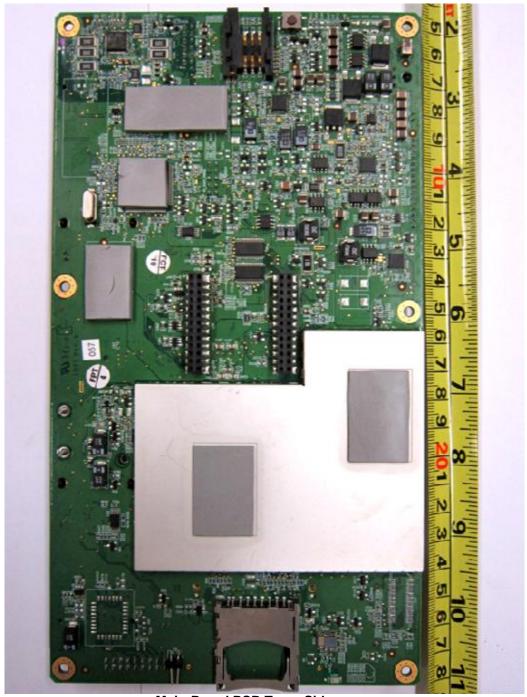
EUT Bottom Housing Internal View 1

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

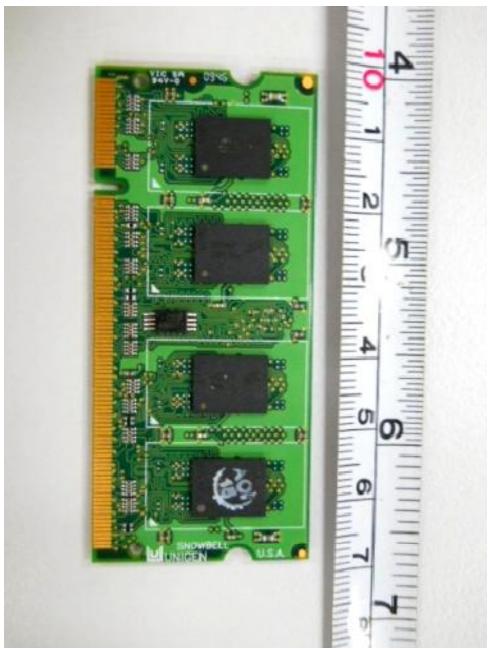
EUT Bottom Housing Internal View 2

EUT PHOTOGRAPHS / DIAGRAMS


ANNEX A

EUT PHOTOGRAPHS / DIAGRAMS

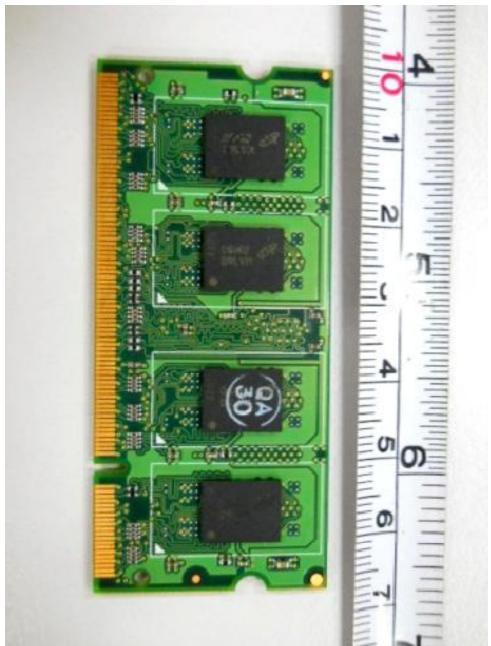
ANNEX A



Main-Board PCB Trace Side

EUT PHOTOGRAPHS / DIAGRAMS

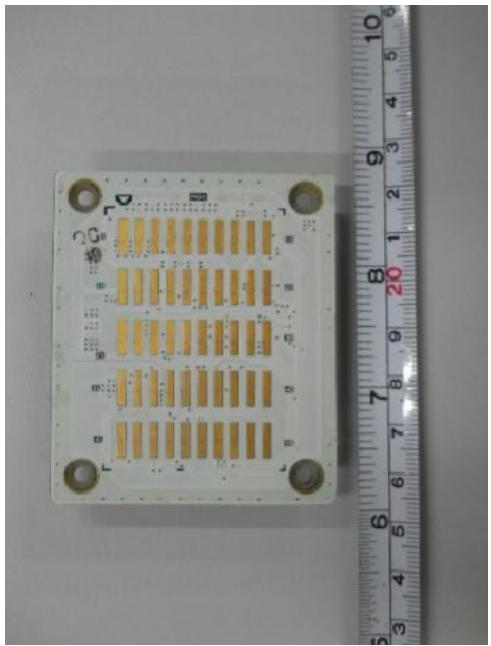
ANNEX A



DDR2-SODIMM PCB Component Side

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A



DDR2-SODIMM PCB Trace Side

EUT PHOTOGRAPHS / DIAGRAMS

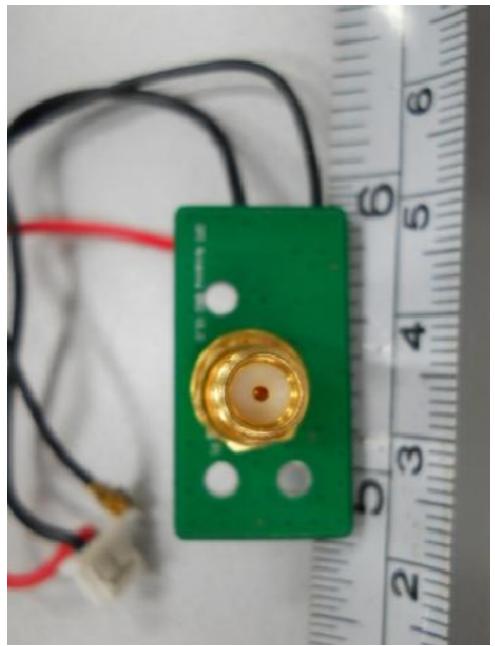
ANNEX A

Docking Interface PCB Component Side

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

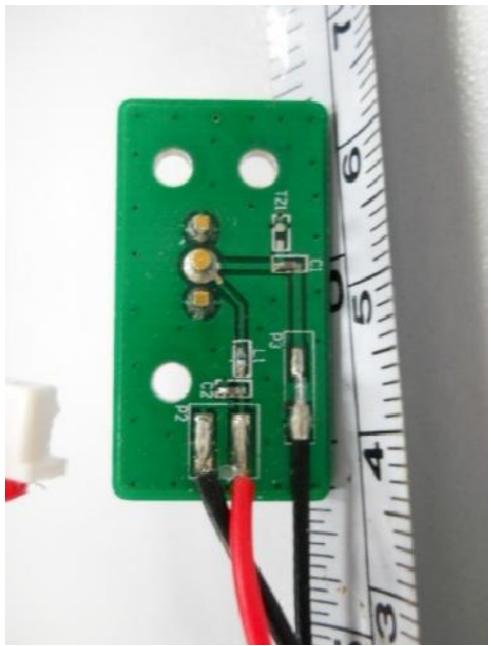
EUT PHOTOGRAPHS


Docking Interface PCB Trace Side

Page 38 of 55

EUT PHOTOGRAPHS / DIAGRAMS

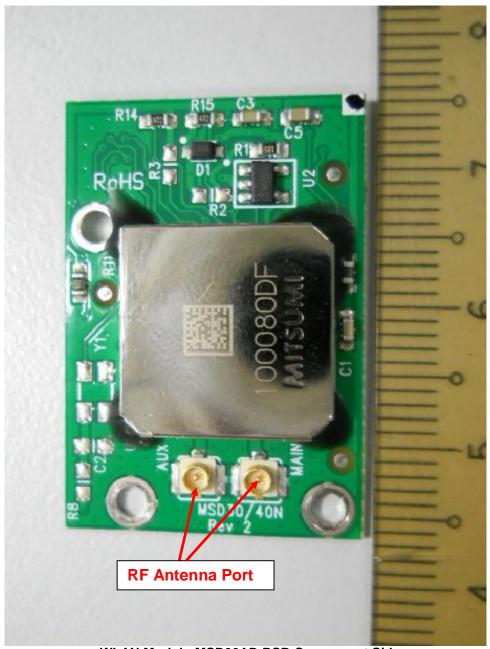
ANNEX A



GPS Power-3.3V PCB Component Side

EUT PHOTOGRAPHS / DIAGRAMS

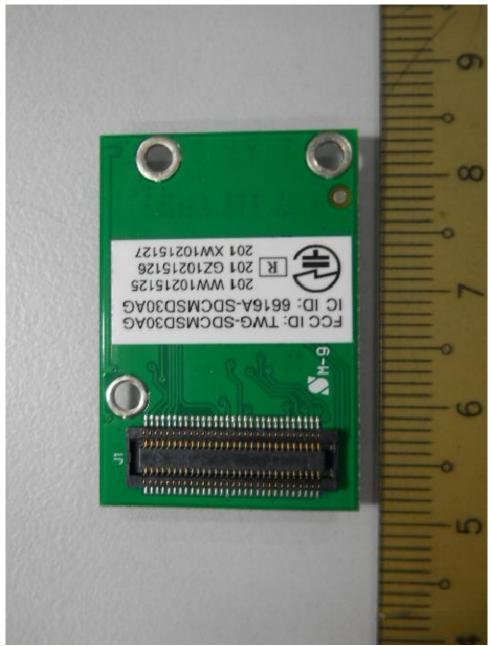
ANNEX A



GPS Power-3.3V PCB Trace Side

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A



WLAN Module-MSD30AD PCB Component Side

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

WLAN MODULE-MSD30AD PCB Trace Side

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

WWAN Module PCB Component Side

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

WWAN Module PCB Trace Side

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

EUT PHOTOGRAPHS

Bluetooth-Module PCB Component Side

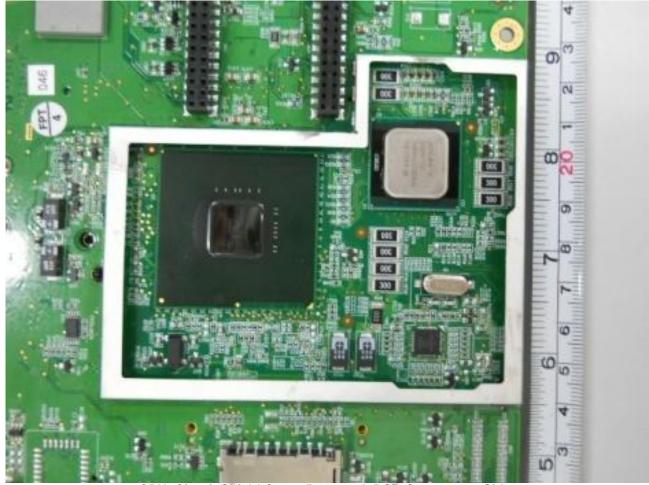
LXE Inc

Vehicle Mount Terminal [Model : VM1 C]

[FCC ID : KDZLXE-VM1]

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A



Bluetooth-Module PCB Component Side

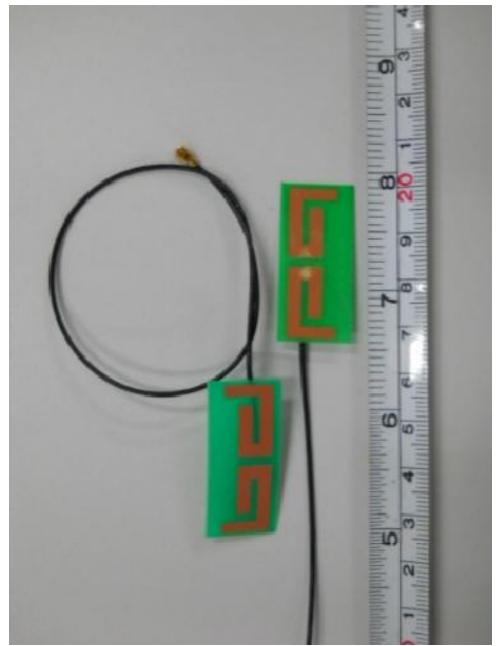
EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

CPU Circuit Shield Cover Removed PCB Component Side

EUT PHOTOGRAPHS / DIAGRAMS

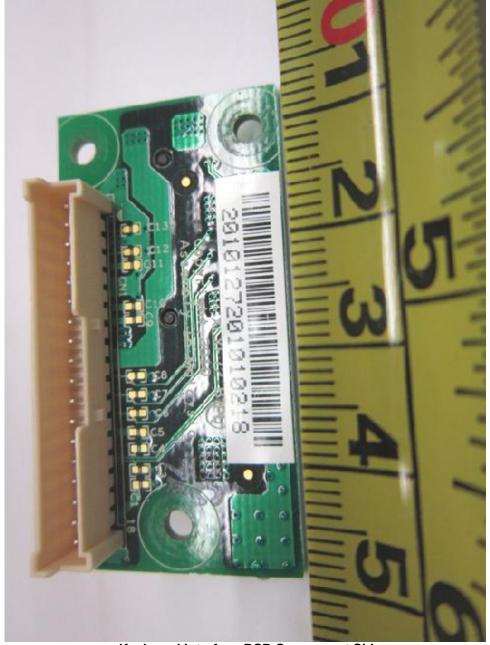
ANNEX A



Memory DDR2-SDIO Shield Cover Removed Module PCB Component Side

EUT PHOTOGRAPHS / DIAGRAMS

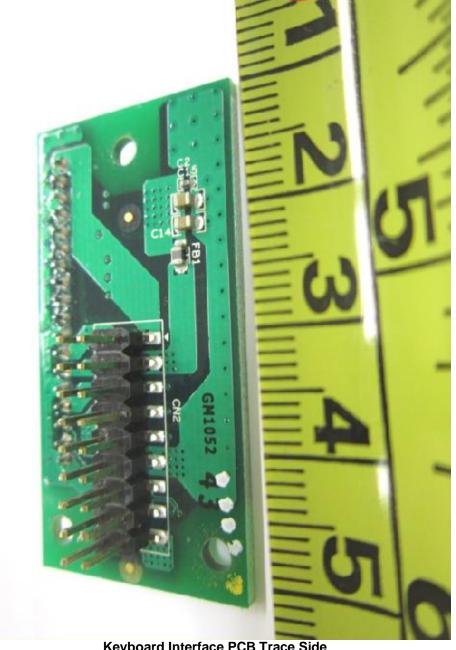
ANNEX A



Internal WLAN Antennas-PCB Module PCB Component Side

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A



Keyboard Interface PCB Component Side

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

Keyboard Interface PCB Trace Side

FCC LABEL & POSITION

ANNEX B

LXE Inc

Vehicle Mount Terminal [Model : VM1 C]

[FCC ID : KDZLXE-VM1]

FCC LABEL & POSITION

ANNEX B

Labelling requirements per Section 2.925 & 15.19

The label shown will be permanently affixed at a conspicuous location on the device and be readily visible to the user at the time of purchase.

wifi module

LXE INC.

125 Technology Parkway, Norcross, GA 30092

Thor 年载电解
Model No 强锐: VM1 W
Input 输入: == 7 -12V 7.5.A (MAX)
FCC ID: KDZLXE-VM1
Contains
FCC ID: TWG-SDCPE15N
IC: 6616A-SDCPE15N

FC C €1177 ①

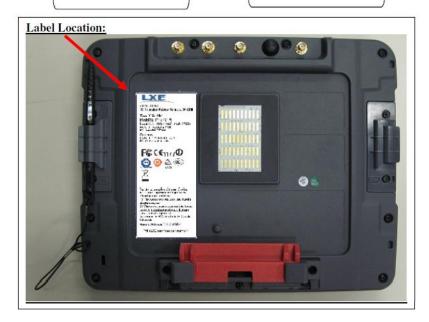
The device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:
(1) This device may not cause any harmful interference, and
(2) This device may not cause any harmful interference, and
(2) This device may not cause any harmful interference, and

cause undesired operation. See manual for FCC and Industry Canada

P/N: (LXE purchase part number)

Made in Malaysia 马来西亚制造

(1) Windows OS with PE15N


MSD30AG wifi module

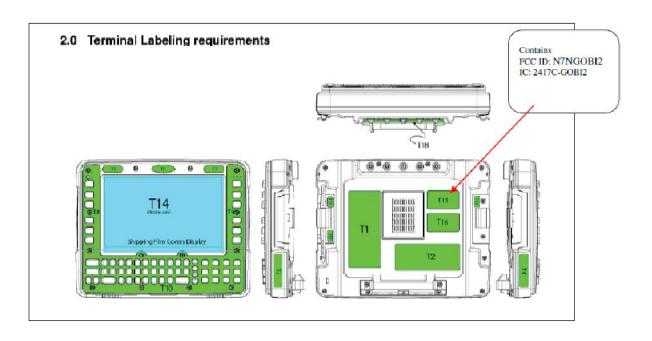
LXE

| William LXE INC. | 125 Technology Parkway, Norcross, GA 30092

Thor 华 敬电脑 Model No 理号: VM1 C | Input 输入: ITT 7-12V 7.5A (MAX) FCC ID: KDZLXE-VM1 | CC: 1995B-LXE-VM1 | CC: 1995B-LXE-VM1 | Contains | FCC ID: TWG-SDCMSD30AG | IC: 6616A-SDCMSD30AG |

(2) Windows CE with

FCC LABEL & POSITION


ANNEX B

Labelling requirements per Section 2.925 & 15.19

The label shown will be permanently affixed at a conspicuous location on the device and be readily visible to the user at the time of purchase.

- (1) Size; 50mm X30mm
- (2) Specification: Printed Polyester, Maximum surface temperature specified, or 40 degree C if not specified.
- (3) Location T15,

USER MANUAL TECHINCAL DESCRIPTION BLOCK & CIRCUIT DIAGRAM

ANNEX C

ANNEX C

USER MANUAL TECHNICAL DESCRIPTION BLOCK & CIRCUIT DIAGRAMS

(Please refer to manufacturer for details)