

# ENGINEERING TEST REPORT



**SkyWay MAX**  
**Model No.: ODS-3537**  
**FCC ID: KA336WAN2**

Applicant: **Solectek Corporation**  
6370 Nancy Ridge Drive, Suite 109  
San Diego, CA  
USA 92121-3212

*Tested in Accordance With*  
**Federal Communications Commission (FCC)**  
**CFR 47, PARTS 2 and 90 (Subpart Z)**  
**Wireless Broadband Services in the 3650-3700 MHz**

**UltraTech's File No.: SOL-010\_FCC90Z**

This Test report is Issued under the Authority of  
Tri M. Luu, Professional Engineer,  
Vice President of Engineering  
UltraTech Group of Labs

Date: May 07, 2010



Report Prepared by: Dharmajit Solanki

Tested by: Wayne Wu, RFI Technician

Issued Date: May 07, 2010

Test Dates: March 29, 2010

- The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.*
- This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.*

## UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4  
Tel.: (905) 829-1570 Fax.: (905) 829-8050

Website: [www.ultratech-labs.com](http://www.ultratech-labs.com) Email: [vic@ultratech-labs.com](mailto:vic@ultratech-labs.com), [tri.luu@sympatico.ca](mailto:tri.luu@sympatico.ca)



91038



1309



46390-2049



NVLAP Lab Code 200093-0



SL2-IN-E-1119R



Korea KCC-RRL  
CA2049

## TABLE OF CONTENTS

|                                                                                        |           |
|----------------------------------------------------------------------------------------|-----------|
| <b>EXHIBIT 1. INTRODUCTION .....</b>                                                   | <b>2</b>  |
| 1.1. SCOPE.....                                                                        | 2         |
| 1.2. RELATED SUBMITAL(S)/GRANT(S) .....                                                | 3         |
| 1.3. NORMATIVE REFERENCES .....                                                        | 3         |
| <b>EXHIBIT 2. PERFORMANCE ASSESSMENT .....</b>                                         | <b>4</b>  |
| 2.1. CLIENT INFORMATION .....                                                          | 4         |
| 2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION.....                                       | 4         |
| 2.3. EUT'S TECHNICAL SPECIFICATIONS.....                                               | 5         |
| 2.4. LIST OF EUT'S PORTS .....                                                         | 5         |
| 2.5. ANCILLARY EQUIPMENT .....                                                         | 5         |
| 2.6. GENERAL TEST SETUP BLOCK DIAGRAM .....                                            | 6         |
| <b>EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS .....</b>       | <b>7</b>  |
| 3.1. CLIMATE TEST CONDITIONS.....                                                      | 7         |
| 3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS.....                   | 7         |
| <b>EXHIBIT 4. SUMMARY OF TEST RESULTS .....</b>                                        | <b>8</b>  |
| 4.1. LOCATION OF TESTS.....                                                            | 8         |
| 4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS.....                         | 8         |
| 4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES .....               | 8         |
| 4.4. DEVIATION OF STANDARD TEST PROCEDURES .....                                       | 8         |
| <b>EXHIBIT 5. MEASUREMENTS, EXAMINATIONS &amp; TEST DATA FOR EMC EMISSIONS.....</b>    | <b>9</b>  |
| 5.1. TEST PROCEDURES.....                                                              | 9         |
| 5.2. MEASUREMENT UNCERTAINTIES .....                                                   | 9         |
| 5.3. MEASUREMENT EQUIPMENT USED: .....                                                 | 9         |
| 5.4. ESSENTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUFACTURER:.....                 | 9         |
| 5.5. POWER AND ANTENNA LIMITS @ FCC 90.1321 .....                                      | 10        |
| 5.6. RF EXPOSURE REQUIRMENTS @ SEC. 90.1335, 1.1307(B) & 2.1091 .....                  | 14        |
| 5.7. 99% OCCUPIED BANDWIDTH @ FCC 2.1049 .....                                         | 16        |
| 5.8. CONDUCTED BAND-EDGE & SPURIOUS EMISSIONS @ FCC 90.1323.....                       | 18        |
| 5.9. TRANSMITTER SPURIOUS/HARMONIC RADIATED EMISSIONS @ FCC 90.1323.....               | 22        |
| <b>EXHIBIT 6. TEST EQUIPMENT LIST .....</b>                                            | <b>23</b> |
| <b>EXHIBIT 7. MEASUREMENT UNCERTAINTY .....</b>                                        | <b>24</b> |
| 7.1. RADIATED EMISSION MEASUREMENT UNCERTAINTY .....                                   | 24        |
| <b>EXHIBIT 8. MEASUREMENT METHODS .....</b>                                            | <b>25</b> |
| 8.1. MEASURING THE EIRP OF SPURIOUS/HARMONIC EMISSIONS USING SUBSTITUTION METHOD: .... | 25        |

## EXHIBIT 1. INTRODUCTION

### 1.1. SCOPE

|                         |                                                                                                                                                                                                                                                                                                              |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Reference:</b>       | FCC Parts 2 and 90 Subpart Z                                                                                                                                                                                                                                                                                 |
| <b>Title:</b>           | Telecommunication - Code of Federal Regulations, CFR 47, Parts 2 & 90, Subpart Z                                                                                                                                                                                                                             |
| <b>Purpose of Test:</b> | To gain FCC Class II Permissive Change acceptance authorization to extend operating frequency range to 3650-3700 MHz for the radio.                                                                                                                                                                          |
| <b>Test Procedures:</b> | Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 - American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 KHz to 40 GHz. |

**§ 90.1305 Permissible operations:-** Use of the 3650-3700 MHz band must be consistent with the allocations for this band as set forth in Part 2 of the Commission's Rules. All stations operating in this band must employ a contention- based protocol (as defined in § 90.7).

**§ 90.1307 Licensing:-** The 3650-3700 MHz band is licensed on the basis of non-exclusive nationwide licenses. Non- exclusive nationwide licenses will serve as a prerequisite for registering individual fixed and base stations. A licensee cannot operate a fixed or base station before registering it under its license and licensees must delete registrations for unused fixed and base stations.

**§ 90.1309 Regulatory status:-** Licensees are permitted to provide services on a non-common carrier and/or on a common carrier basis. A licensee may render any kind of communications service consistent with the regulatory status in its license and with the Commission's rules applicable to that service.

**§ 90.1311 License term:-** The license term is ten years, beginning on the date of the initial authorization (non-exclusive nationwide license) grant. Registering fixed and base stations will not change the overall renewal period of the license.

**§ 90.1312 Assignment and transfer:-** Licensees may assign or transfer their non-exclusive nationwide licenses, and any fixed or base stations registered under those licenses will remain associated with those licenses.

### § 90.1319 Policies governing the use of the 3650-3700 MHz band:-

- (a) Channels in this band are available on a shared basis only and will not be assigned for the exclusive use of any licensee
- (b) Any base, fixed, or mobile station operating in the band must employ a contention-based protocol.
- (c) Equipment incorporating an unrestricted contention-based protocol (i.e. one capable of avoiding co-frequency interference with devices using all other types of contention-based protocols) may operate throughout the 50 megahertz of this frequency band. Equipment incorporating a restricted contention-based protocol (i.e. one that does not qualify as unrestricted) may operate in, and shall only tune over, the lower 25 megahertz of this frequency band.
- (d) All applicants and licensees shall cooperate in the selection and use of frequencies in the 3650-3700 MHz band in order to minimize the potential for interference and make the most effective use of the authorized facilities. A database identifying the locations of registered stations will be available at <http://wireless.fcc.gov/uls>. Licensees should examine this database before seeking station authorization, and make every effort to ensure that their fixed and base stations operate at a location, and with technical parameters, that will minimize the potential to cause and receive interference. Licensees of stations suffering or causing harmful interference are expected to cooperate and resolve this problem by mutually satisfactory arrangements.

## 1.2. RELATED SUBMITAL(S)/GRANT(S)

None

## 1.3. NORMATIVE REFERENCES

| Publication            | Year | Title                                                                                                                                                               |
|------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FCC CFR Parts 2 and 90 | 2009 | Code of Federal Regulations – Telecommunication                                                                                                                     |
| ANSI C63.4             | 2003 | American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 KHz to 40 GHz |
| CISPR 16-1-1           | 2006 | Specification for Radio Disturbance and Immunity measuring apparatus and methods                                                                                    |
| TIA/EIA 603, Edition C | 2004 | Land Mobile FM or PM Communications Equipment Measurement and Performance Standards                                                                                 |

## EXHIBIT 2. PERFORMANCE ASSESSMENT

### 2.1. CLIENT INFORMATION

| APPLICANT              |                                                                                                     |
|------------------------|-----------------------------------------------------------------------------------------------------|
| <b>Name:</b>           | Solectek Corporation                                                                                |
| <b>Address:</b>        | 6370 Nancy Ridge Drive, Suite 109<br>San Diego, CA<br>USA 92121-3212                                |
| <b>Contact Person:</b> | Mr. David Gell<br>Phone #: 858-642-2720<br>Fax #: 858-457-2681<br>Email Address: dgell@solectek.com |

| MANUFACTURER           |                                                                                                     |
|------------------------|-----------------------------------------------------------------------------------------------------|
| <b>Name:</b>           | Solectek Corporation                                                                                |
| <b>Address:</b>        | 6370 Nancy Ridge Drive, Suite 109<br>San Diego, CA<br>USA 92121-3212                                |
| <b>Contact Person:</b> | Mr. David Gell<br>Phone #: 858-642-2720<br>Fax #: 858-457-2681<br>Email Address: dgell@solectek.com |

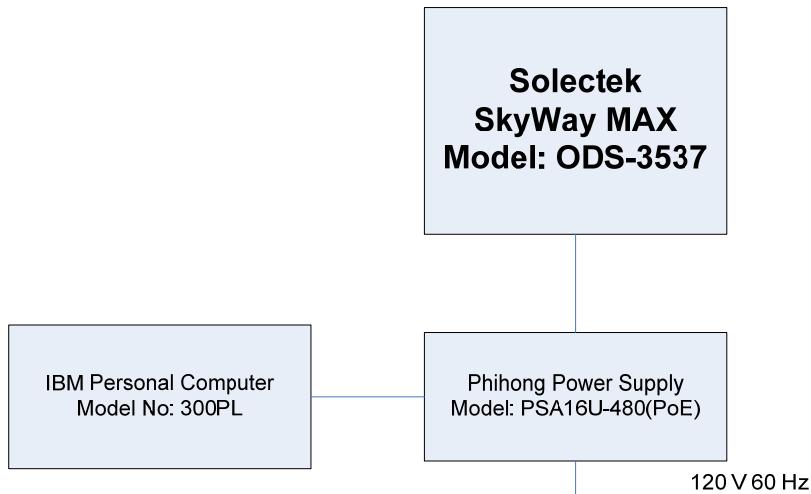
### 2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

|                                             |                                                                                                     |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------|
| <b>Brand Name:</b>                          | Solectek Corporation                                                                                |
| <b>Product Name:</b>                        | SkyWay MAX                                                                                          |
| <b>Model Name or Number:</b>                | ODS-3537                                                                                            |
| <b>Serial Number:</b>                       | 1080901167                                                                                          |
| <b>Type of Equipment:</b>                   | Non-broadcast Radio Communication Equipment                                                         |
| <b>Power Supply:</b>                        | 120 V, 60 Hz using Phihong Power Supply Model PSA16U-480(PoE),<br>Input 100-240Vac, Output: 48 Vdc. |
| <b>Transmitting/Receiving Antenna Type:</b> | Integral                                                                                            |

## 2.3. EUT'S TECHNICAL SPECIFICATIONS

| TRANSMITTER                            |                                                                                                        |
|----------------------------------------|--------------------------------------------------------------------------------------------------------|
| <b>Equipment Type:</b>                 | Fixed base station                                                                                     |
| <b>Intended Operating Environment:</b> | Commercial, Light Industry & Heavy Industry                                                            |
| <b>Power Supply Requirement:</b>       | 120 V, 60 Hz using Phihong Power Supply Model PSA16U-480(PoE), Input 100-240Vac, Output: 48 Vdc.       |
| <b>RF Output Power Rating:</b>         | 31.17dBm or 1.31 Watts ( total Peak EIRP)                                                              |
| <b>Operating Frequency Range:</b>      | 3650-3700MHz                                                                                           |
| <b>RF Output Impedance:</b>            | 50 Ohms                                                                                                |
| <b>Channel Spacing:</b>                | 7 MHz                                                                                                  |
| <b>Occupied Bandwidth (99%):</b>       | 6.39 MHz                                                                                               |
| <b>Modulation:</b>                     | Auto-select BPSK, QPSK, 16QAM, 64QAM                                                                   |
| <b>Emission Designation*:</b>          | 6M39DXW                                                                                                |
| <b>Antenna Connector Type:</b>         | Integral                                                                                               |
| <b>Antenna Description:</b>            | Manufacturer: MTI<br>Type: Patch Array<br>Model: Custom<br>Frequency Range:3.3-3.8 GHz<br>Gain: 15 dBi |


## 2.4. LIST OF EUT'S PORTS

| Port Number | EUT's Port Description | Number of Identical Ports | Connector Type | Cable Type (Shielded/Non-shielded) |
|-------------|------------------------|---------------------------|----------------|------------------------------------|
| 1           | RF Port                | 1                         | N-type         | Shield Coax                        |
| 2           | Power/Ethernet Port    | 1                         | RJ45           | Shielded Cat5                      |

## 2.5. ANCILLARY EQUIPMENT

| Index Number | Ancillary Equipment   | Parts Number/ Model Number | Serial Number |
|--------------|-----------------------|----------------------------|---------------|
| 1            | IBM Personal Computer | 300PL                      | 78-YWAHF      |

## 2.6. GENERAL TEST SETUP BLOCK DIAGRAM



## EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

### 3.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

|                            |                                                                                                     |
|----------------------------|-----------------------------------------------------------------------------------------------------|
| <b>Temperature:</b>        | 22°C                                                                                                |
| <b>Humidity:</b>           | 50%                                                                                                 |
| <b>Pressure:</b>           | 102 kPa                                                                                             |
| <b>Power input source:</b> | 120 V, 60 Hz using Phihong Power Supply Model PSA16U-480(PoE),<br>Input 100-240Vac, Output: 48 Vdc. |

### 3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS

|                                  |                                                                                                        |
|----------------------------------|--------------------------------------------------------------------------------------------------------|
| <b>Operating Modes:</b>          | The transmitter was operated in a burst mode with the carrier modulated as specified in the Test Data. |
| <b>Special Test Software:</b>    | Solectek test set-up software used to setup frequency, power level and channel spacing.                |
| <b>Transmitter Test Antenna:</b> | The EUT is tested with the transmitter antenna port terminated to a 50 Ohms RF Load.                   |

| <b>Transmitter Test Signals</b>                |                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Frequency Band(s):</b>                      | Highest frequency of the extended band that the transmitter covers: <ul style="list-style-type: none"><li>▪ 3675 - 3700 MHz</li><li>▪ 3695.5 MHz</li></ul>                                                                                                                                      |
| <b>Transmitter Wanted Output Test Signals:</b> | <ul style="list-style-type: none"><li>▪ RF Power Output (measured maximum output power):</li><li>▪ Normal Test Modulation</li><li>▪ Modulating signal source:</li><li>▪ 31.07 dBm or 1.29 Watts ( total Peak EIRP)</li><li>▪ Auto-select BPSK, QPSK, 16QAM, 64 QAM</li><li>▪ Internal</li></ul> |

## EXHIBIT 4. SUMMARY OF TEST RESULTS

### 4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC File No.: 31040/SIT 1300B3) and Industry Canada office (Industry Canada File No.: IC2049A-3). Last Date of Site Calibration: May 1, 2011

### 4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

| FCC PARAGRAPH                                       | TEST REQUIREMENTS                                      | APPLICABILITY<br>(Yes/No) |
|-----------------------------------------------------|--------------------------------------------------------|---------------------------|
| <b>90.203(O)</b>                                    | Contention Based Protocol Declaration                  | Yes                       |
| <b>90.1321</b>                                      | Power and Antenna Limits                               | Yes                       |
| <b>90.1355, 1.1307, 1.1310, 2.1091 &amp; 2.1093</b> | RF Exposure Limit                                      | Yes                       |
| <b>2.1049</b>                                       | 99% Occupied Bandwidth                                 | Yes                       |
| <b>2.1055</b>                                       | Frequency Stability                                    | Yes                       |
| <b>90.1323</b>                                      | Conducted Emission Limits and Band-edge emissions      | Yes                       |
| <b>90.1323</b>                                      | Emission Limits - Field Strength of Spurious Emissions | Yes                       |

**SkyWay MAX, Model No.: ODS-3537**, by **Solectek Corporation** has also been tested and found to comply with **FCC Part 15, Subpart B - Radio Receivers and Class A Digital Device**. The engineering test report has been documented and kept in file and it is available anytime upon FCC request.

### 4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None

### 4.4. DEVIATION OF STANDARD TEST PROCEDURES

None

---

#### ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4  
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: [vic@ultratech-labs.com](mailto:vic@ultratech-labs.com), Website: <http://www.ultratech-labs.com>

File #: SOL-010\_FCC90Z  
May 07, 2010

- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

## EXHIBIT 5. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

### 5.1. TEST PROCEDURES

This section contains test results only. Details of test methods and procedures can be found in Exhibit 8 of this report

### 5.2. MEASUREMENT UNCERTAINTIES

The measurement uncertainties stated were calculated in accordance with requirements of UKAS Document NIS 81 with a confidence level of 95%. Please refer to Exhibit 7 for Measurement Uncertainties.

### 5.3. MEASUREMENT EQUIPMENT USED:

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C63.4 and CISPR 16-1-1

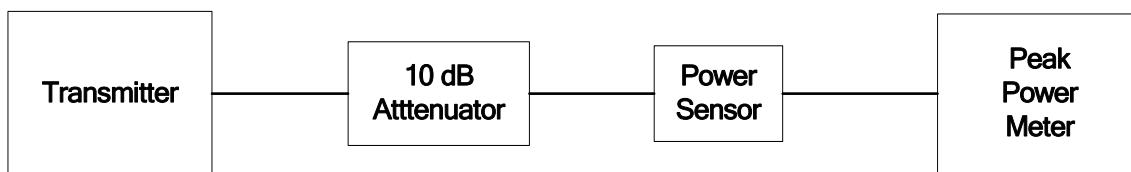
### 5.4. ESSENTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUFACTURER:

The essential function of the EUT is to correctly communicate data to and from radios over RF link.

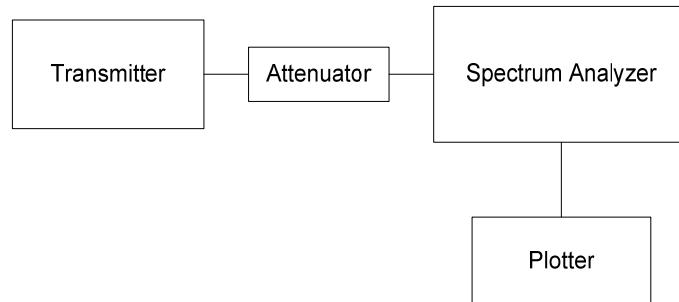
## 5.5. POWER AND ANTENNA LIMITS @ FCC 90.1321

### 5.5.1. Limits

#### § 90.1321 Power and antenna limits:


- (a) Base and fixed stations are limited to 25 watts/25 MHz equivalent isotropically radiated power (EIRP). In any event, the peak EIRP power density shall not exceed 1 Watt in any one megahertz slice of spectrum.
- (b) In addition to the provisions in paragraph (a) of this section, transmitters operating in the 3650–3700 MHz band that emit multiple directional beams, simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers provided the emissions comply with the following:
  - (1) Different information must be transmitted to each receiver.
  - (2) If the transmitter employs an antenna system that emits multiple directional beams but does not emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device, *i.e.*, the sum of the power supplied to all antennas, antenna elements, staves, etc. and summed across all carriers or frequency channels, shall not exceed the limit specified in paragraph (a) of this section, as applicable. The directional antenna gain shall be computed as follows:
    - (i) The directional gain, in dBi, shall be calculated as the sum of  $10 \log$  (number of array elements or staves) plus the directional gain, in dBi, of the individual element or stave having the highest gain.
    - (ii) A lower value for the directional gain than that calculated in paragraph (b)(2)(i) of this section will be accepted if sufficient evidence is presented, *e.g.*, due to shading of the array or coherence loss in the beam-forming.
  - (3) If a transmitter employs an antenna that operates simultaneously on multiple directional beams using the same or different frequency channels and if transmitted beams overlap, the power shall be reduced to ensure that the aggregate power from the overlapping beams does not exceed the limit specified in paragraph (b)(2) of this section. In addition, the aggregate power transmitted simultaneously on all beams shall not exceed the limit specified in paragraph (b)(2) of this section by more than 8 dB.
- (4) Transmitters that emit a single directional beam shall operate under the provisions of paragraph (b)(2) of this section.
- (c) Mobile and portable stations are limited to 1 watt/25 MHz EIRP. In any event, the peak EIRP density shall not exceed 40 milliwatts in any one-megahertz slice of spectrum.

### 5.5.2. Method of Measurements


- The total conducted power was measured using the Peak Power meter
- The peak conducted power density in 1 MHz was measured using an EMI receiver (spectrum analyzer) with  $RBW = 1 \text{ MHz}$ ,  $VBW \geq RBW$ .

### 5.5.3. Test Arrangement

#### 5.5.3.1. Test Setup for Total Peak Conducted Power Measurements



#### 5.5.3.2. Test Setup for Peak Conducted Power Density Measurements



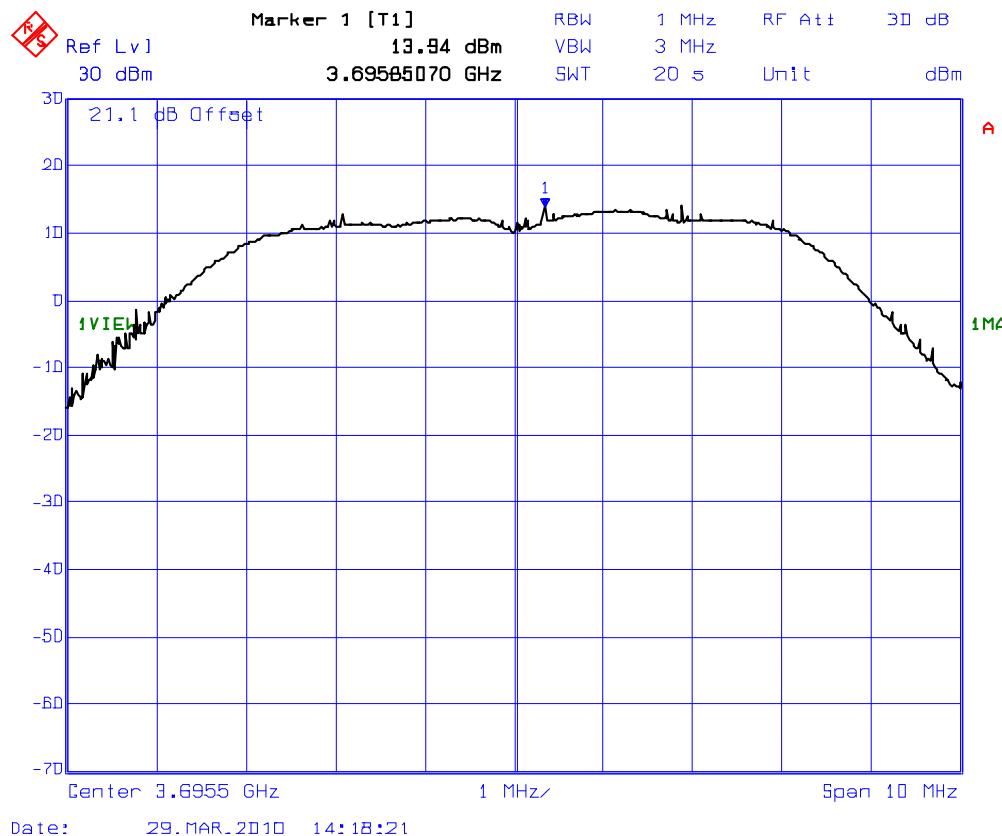
## 5.5.4. Test Data

### Notes:

- (1) Pre-scan show similar results for different modes of modulations (BPSK, QPSK, 16QAM and 64QAM); therefore, test results for 64QAM will be used to represent for all.
- (2) The following tables show the power levels with respect to antenna system assembly to achieve the maximum EIRP or EIRP density. For actual settings of power levels with respect to actual antennas used, please refer to the User's Manual.

### 5.5.4.1. Maximum Total Peak EIRP Power wrt to 15dBi Gain Integral Antenna

| Fundamental Frequency<br>(MHz) | Measured Peak Conducted Power<br>(dBm) | Antenna System Assembly Gain Range<br>(Ant Gain-Cable Loss)<br>(dBi) | Calculated Maximum Total Peak EIRP<br>(dBm) | Maximum Allowable Total Peak EIRP for fixed station use<br>(dBm) |
|--------------------------------|----------------------------------------|----------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------|
| 3695.50                        | 16.09                                  | 15.0                                                                 | 31.09                                       | 38.45                                                            |


### 5.5.4.2. Maximum Peak EIRP Power Density wrt to 15dBi Gain Integral Antenna

| Fundamental Frequency<br>(MHz) | Measured Peak EIRP Density in 1 MHz BW<br>(dBm/MHz) | Antenna System Assembly Gain Range<br>(Ant Gain-Cable Loss)<br>(dBi), See Note (3) | Calculated Maximum Peak EIRP Density in 1 MHz BW<br>(dBm/MHz) | FCC Peak EIRP Density in 1 MHz BW Limits<br>(dBm/MHz) |
|--------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|
| 3695.50                        | 13.94                                               | 15.0                                                                               | 28.94                                                         | 30.0                                                  |

### Notes:

- (1) The rf output power will be varied depending on the antenna system assembly gain employed to ensure that the total peak EIRP less than 30 dBm.
- (2) Refer to Plot # 1 for details of measurements, with the maximum power settings.

Plot # 1: Peak Conducted Power Density Measurement wrt. 15 dBi Gain Integral Antenna  
Center Freq.: 3695.50 MHz, Ch Spacing: 7 MHz, Modulation: 64QAM



## 5.6. RF EXPOSURE REQUIREMENTS @ SEC. 90.1335, 1.1307(B) & 2.1091

### 5.6.1. Limits

- FCC 1.1310:-** The criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in 1.1307(b).

**LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)**

| Frequency Range (MHz)                                          | Electric Field Strength (V/m) | Magnetic Field Strength (A/m) | Power Density (mW/cm <sup>2</sup> ) | Average Time (minutes) |
|----------------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------------|------------------------|
| <b>(A) Limits for Occupational/Control Exposures</b>           |                               |                               |                                     |                        |
| 1500-100,000                                                   | ...                           | ...                           | 5                                   | 6                      |
| <b>(B) Limits for General Population/Uncontrolled Exposure</b> |                               |                               |                                     |                        |
| 1500-100,000                                                   | ...                           | ...                           | 1.0                                 | 30                     |

F = Frequency in MHz

### 5.6.2. Method of Measurements

Refer to FCC @ 1.1307, 1.1310, 2.1091 and 2.1093

- In order to demonstrate compliance with MPE requirements (see Section 2.1091), the following information is typically needed:
  - (1) Calculation that estimates the minimum separation distance (20 cm or more) between an antenna and persons required to satisfy power density limits defined for free space.
  - (2) Antenna installation and device operating instructions for installers (professional/unskilled users), and the parties responsible for ensuring compliance with the RF exposure requirement
  - (3) Any caution statements and/or warning labels that are necessary in order to comply with the exposure limits
  - (4) Any other RF exposure related issues that may affect MPE compliance

#### Calculation Method of RF Safety Distance:

$$S = PG/4\pi r^2 = EIRP/4\pi r^2$$

Where: P: power input to the antenna in mW

EIRP: Equivalent (effective) isotropic radiated power.

S: power density mW/cm<sup>2</sup>

G: numeric gain of antenna relative to isotropic radiator

r: distance to centre of radiation in cm

FCC radio frequency exposure limits may be exceeded at distances closer than r cm from the antenna of this device

$$r = \sqrt{PG/4\pi S}$$

FCC radio frequency exposure limits may not be exceeded at distances closer than r cm from the antenna of this device.

### 5.6.3. Test Data

#### Antennas Gain Range specified by Manufacturer: 15 dBi

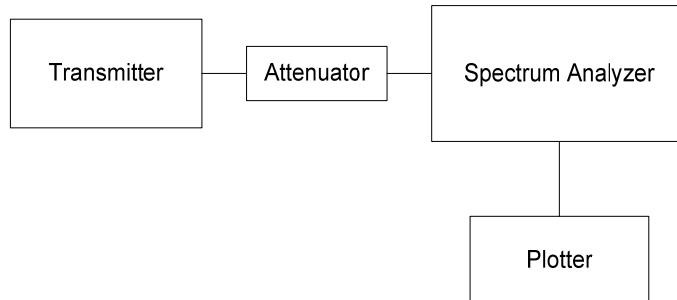
| Frequency<br>(MHz) | Channel Spacing<br>(MHz) | Maximum<br>Total Peak EIRP Power<br>(Watts) | Laboratory's Recommended Minimum<br>RF Safety Distance $r$<br>(cm) |
|--------------------|--------------------------|---------------------------------------------|--------------------------------------------------------------------|
| 3695.50            | 7.0                      | 1.29                                        | 10.2                                                               |

**Note 1:** RF EXPOSURE DISTANCE LIMITS:  $r = (PG/4\pi S)^{1/2} = (EIRP/4\pi S)^{1/2}$   
 $S = 1.0 \text{ mW/cm}^2$

$$\begin{aligned} r &= (PG/4\pi S)^{1/2} = (EIRP/4\pi S)^{1/2} \\ &= (1290/(4 \times 3.14 \times 1))^{1/2} \\ &= 10.13 \text{ cm} \end{aligned}$$

| Evaluation of RF Exposure Compliance Requirements                                                                                                                                          |                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| RF Exposure Requirements                                                                                                                                                                   | Compliance with FCC Rules                                                                      |
| Minimum calculated separation distance between antenna and persons required: 12.4 cm                                                                                                       | Manufacturer' instruction for separation distance between antenna and persons required: 20 cm. |
| Antenna installation and device operating instructions for installers (professional/unskilled users), and the parties responsible for ensuring compliance with the RF exposure requirement | Professional Installation only                                                                 |
| Caution statements and/or warning labels that are necessary in order to comply with the exposure limits                                                                                    | Please refer 'Regulatory Information' of the User Manual.                                      |

## 5.7. 99% OCCUPIED BANDWIDTH @ FCC 2.1049


### 5.7.1. Limits

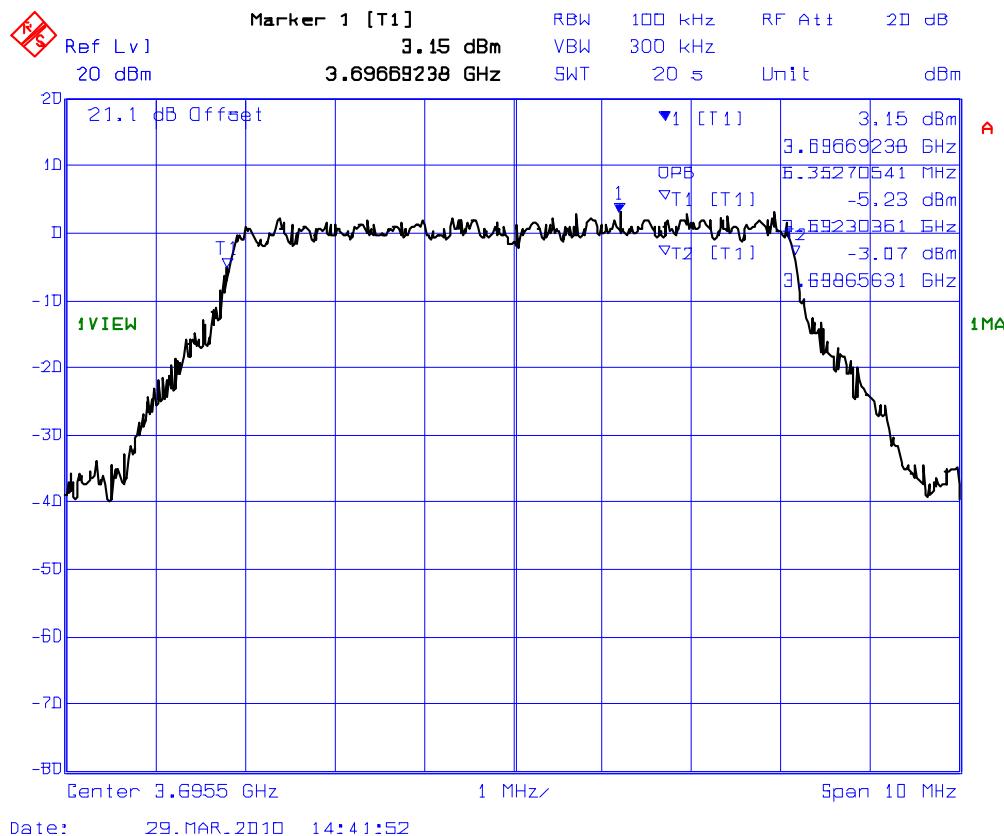
Not Specified.

### 5.7.2. Method of Measurements

The 99% occupied bandwidth is measured using EMI receiver (spectrum analyzer) with RBW = 1% of 99% OBW, VBW >= RBW.

### 5.7.3. Test Arrangement




### 5.7.4. Test Data

**Remark:** Since the 99% OBW were pre-scanned and found to be the same with all different modulations, the final 99% OBW measurements with 64QAM

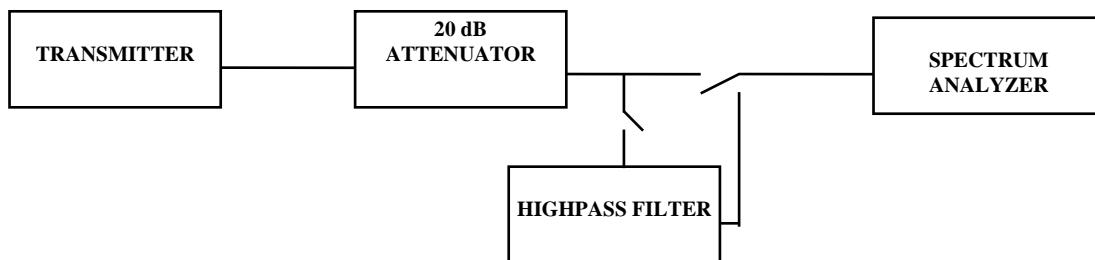
| Transmitter Channel | Fundamental Frequency (MHz) | Channel Spacing (MHz) | 99% Occupied Bandwidth (MHz) |
|---------------------|-----------------------------|-----------------------|------------------------------|
| Highest             | 3695.50                     | 7.0                   | 6.35                         |

Please refer to Plot # 2 for details of measurement.

**Plot # 2: 99% Occupied Bandwidth**  
**Center Freq.: 3695.50 MHz, Ch Spacing: 7 MHz, Modulation: 64QAM**



## 5.8. CONDUCTED BAND-EDGE & SPURIOUS EMISSIONS @ FCC 90.1323

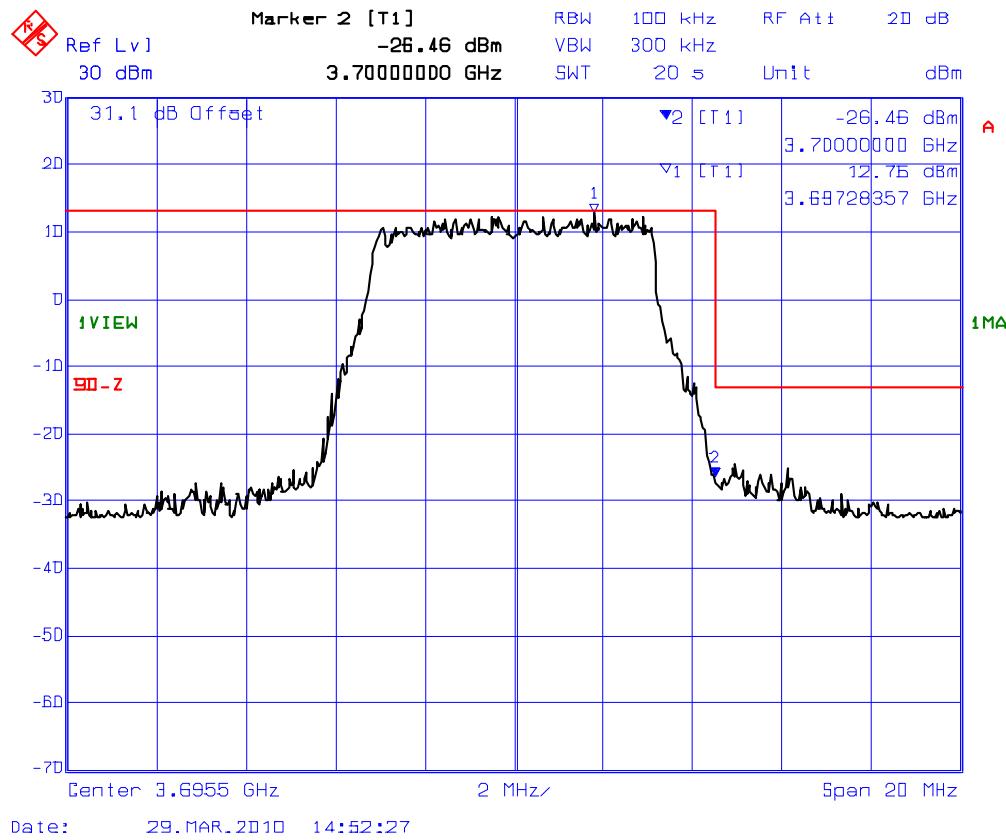

### 5.8.1. Limits @ 90.1323

- (a) The power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least  $43 + 10 \log (P)$  dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or less, but at least one percent of the emission bandwidth of the fundamental emission of the transmitter, provided the measured energy is integrated over a 1 MHz bandwidth.
- (b) When an emission outside of the authorized bandwidth causes harmful interference, the Commission may, at its discretion, require greater attenuation than specified in this section.

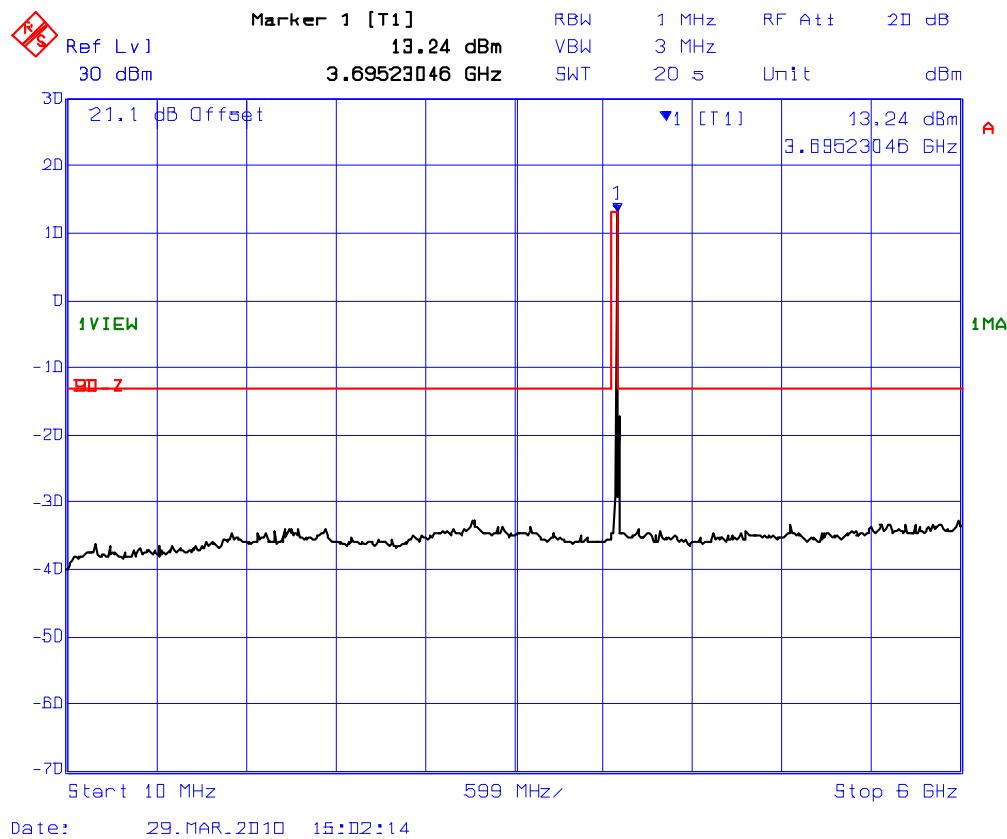
### 5.8.2. Method of Measurements

With transmitter modulation characteristics described in Out-of-Band Emissions measurements @ 2.1049 and the transmitter was operated in full rated power, the transmitter spurious and harmonic emissions were scanned. The spurious and harmonic emissions were measured with the EMI Receiver controls set as RBW = 1 MHz, VBW  $\geq$  RBW and SWEEP TIME = AUTO).

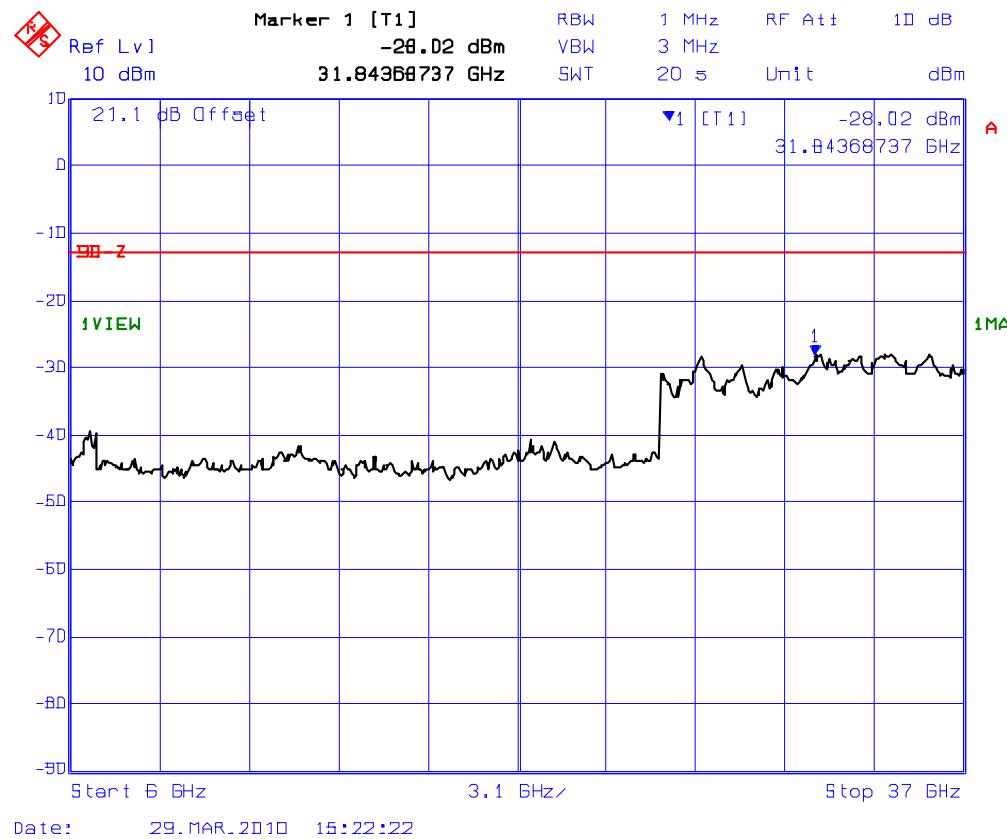
### 5.8.3. Test Arrangement




## 5.8.4. Plots


**Remark:** The transmitter setting with maximum conducted rf output and 64QAM was selected to test for final since it was found their characteristics are the same with different modulations.

- **Conducted Band-edge Emissions: conforms, please refer to Plots # 3 for details of measurements.**
- **Conducted Spurious Emissions: conforms, please refer to Plots # 4(a) & (b) for details of measurements from 30 MHz to 37 GHz.**


**Plot # 3: Conducted Band-edge Emissions (Upper Band Edge)**  
 Center Freq.: 3695.50 MHz, Power Setting: 7dBm, Ch. Spacing: 7 MHz



**Plot # 4(a): Transmitter Conducted Spurious Emissions**  
**Center Freq.: 3695.50 MHz, Power Setting: 7dBm, Ch. Spacing: 7 MHz**  
**Modulation: 64QAM**



**Plot # 4(b): Transmitter Conducted Spurious Emissions**  
**Center Freq.: 3695.50 MHz, Power Setting: 7dBm, Ch. Spacing: 7 MHz**  
**Modulation: 64QAM**



## 5.9. TRANSMITTER SPURIOUS/HARMONIC RADIATED EMISSIONS @ FCC 90.1323

### 5.9.1. Limits @ 90.1323

- (a) The power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least  $43 + 10 \log (P)$  dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or less, but at least one percent of the emission bandwidth of the fundamental emission of the transmitter, provided the measured energy is integrated over a 1 MHz bandwidth.
- (b) When an emission outside of the authorized bandwidth causes harmful interference, the commission may, at its discretion, require greater attenuation than specified in this section.

### 5.9.2. Method of Measurements

The spurious/harmonic ERP measurements are using substitution method specified in Exhibit 7, § 7.1 of this report and its value in dBc is calculated as follows:

1. If the transmitter's antenna is an integral part of the EUT, the ERP is measured using substitution method.
2. If the transmitter's antenna is non-integral and diverse, the lowest ERP of the carrier with 0 dBi antenna gain is used for calculation of the spurious/harmonic emissions in dBc:
3. Lowest ERP of the carrier = EIRP - 2.15 dB =  $P_c + G - 2.15$  dB = xxx dBm (conducted) + 0 dBi - 2.15 dB
4. Spurious /harmonic emissions levels expressed in dBc (dB below carrier) are as follows:

$$\text{ERP of spurious/harmonic (dBc)} = \text{ERP of carrier (dBm)} - \text{ERP of spurious/harmonic emission (dBm)}$$

### 5.9.3. Test Data

#### 5.9.3.1. Highest Frequency (3695.5 MHz)

| Fundamental Frequency: | 3695.5 MHz                                                      |                        |                            |                                           |             |             |
|------------------------|-----------------------------------------------------------------|------------------------|----------------------------|-------------------------------------------|-------------|-------------|
| Channel Bandwidth:     | 7 MHz                                                           |                        |                            |                                           |             |             |
| Modulation:            | 64QAM                                                           |                        |                            |                                           |             |             |
| RF Output Power:       | 16.09 dBm (total conducted Peak Power) wrt power setting: 7 dBm |                        |                            |                                           |             |             |
| Test Frequency Range:  | 30 MHz – 37 GHz                                                 |                        |                            |                                           |             |             |
| Frequency (MHz)        | E-Field (dB $\mu$ V/m)                                          | EMI Detector (Peak/QP) | Antenna Polarization (H/V) | ERP measured by Substitution Method (dBm) | Limit (dBm) | Margin (dB) |
| 30 – 37000             | Note 1                                                          | Peak                   | V                          | --                                        | -13         | < -43       |
| 30 – 37000             | Note 1                                                          | Peak                   | H                          | --                                        | -13         | < -43       |

Note 1- All radiated emissions in 30 MHz to 37 GHz are more than 30 dB below the limit.

## EXHIBIT 6. TEST EQUIPMENT LIST

| Test Instruments         | Manufacturer    | Model No.  | Serial No. | Frequency Range                    | Calibration Due Date |
|--------------------------|-----------------|------------|------------|------------------------------------|----------------------|
| Spectrum Analyzer        | Rohde & Schwarz | FSEK30     | 834157/005 | 20 Hz – 40 GHz with external mixer | June 05, 2010        |
| EMI-Test Receiver        | Rohde & Schwarz | ESU40      | 100037     | 20 Hz – 40 GHz Build in amplifier  | February 17, 2010    |
| Pre-Amplifier            | Hewlett Packard | 8449B      | 3008A00769 | 1 – 26.5 GHz                       | June 01, 2010        |
| Biconilog Antenna        | EMCO            | 3142       | 1005       | 26 MHz – 2000 MHz                  | April 18. 2010       |
| Horn Antenna             | EMCO            | 3115       | 5061       | 1 – 18 GHz                         | September 21, 2010   |
| Peak Power Meter         | Hewlett Packard | 8900D      | 2131A01044 | 0.1 - 18 GHz                       | May 19, 2010         |
| Power Sensor             | Hewlett Packard | 84811A     | 2551A01484 | 0.1 - 18 GHz                       | May 19, 2010         |
| High Pass Filter         | BSC             | MH 3113    | 2          | Cut off 5.8 GHz                    | N/A*                 |
| Dual Directional Coupler | Hewlett Packard | 11692D     | 1212A03520 | 2-18 GHz                           | N/A*                 |
| Power Divider            | Mini Circuit    | ZFSC-2-10G | 15542      | 2-10 GHz                           | N/A*                 |
| Attenuator (70dB)        | Hewlett Packard | 8495B      | 2551A10452 | DC – 18 GHz 10dB step              | N/A*                 |
| Attenuator (11dB)        | Hewlett Packard | 8494B      | 2812A16244 | DC - 18 GHz 1 dB step              | N/A*                 |

\* Self check and validation before testing

## EXHIBIT 7. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 and NIS 81 (1994)

### 7.1. RADIATED EMISSION MEASUREMENT UNCERTAINTY

| CONTRIBUTION<br>(Radiated Emissions)                                                                                                     | PROBABILITY<br>DISTRIBUTION | UNCERTAINTY ( $\pm$ dB) |               |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------|---------------|
|                                                                                                                                          |                             | 3 m                     | 10 m          |
| Antenna Factor Calibration                                                                                                               | Normal (k=2)                | $\pm 1.0$               | $\pm 1.0$     |
| Cable Loss Calibration                                                                                                                   | Normal (k=2)                | $\pm 0.3$               | $\pm 0.5$     |
| EMI Receiver specification                                                                                                               | Rectangular                 | $\pm 1.5$               | $\pm 1.5$     |
| Antenna Directivity                                                                                                                      | Rectangular                 | +0.5                    | +0.5          |
| Antenna factor variation with height                                                                                                     | Rectangular                 | $\pm 2.0$               | $\pm 0.5$     |
| Antenna phase center variation                                                                                                           | Rectangular                 | 0.0                     | $\pm 0.2$     |
| Antenna factor frequency interpolation                                                                                                   | Rectangular                 | $\pm 0.25$              | $\pm 0.25$    |
| Measurement distance variation                                                                                                           | Rectangular                 | $\pm 0.6$               | $\pm 0.4$     |
| Site imperfections                                                                                                                       | Rectangular                 | $\pm 2.0$               | $\pm 2.0$     |
| Mismatch: Receiver VRC $\Gamma_1 = 0.2$<br>Antenna VRC $\Gamma_R = 0.67(Bi)$ 0.3 (Lp)<br>Uncertainty limits $20\log(1+\Gamma_1\Gamma_R)$ | U-Shaped                    | +1.1<br>-1.25           | $\pm 0.5$     |
| System repeatability                                                                                                                     | Std. Deviation              | $\pm 0.5$               | $\pm 0.5$     |
| Repeatability of EUT                                                                                                                     |                             | -                       | -             |
| Combined standard uncertainty                                                                                                            | Normal                      | +2.19 / -2.21           | +1.74 / -1.72 |
| Expanded uncertainty U                                                                                                                   | Normal (k=2)                | +4.38 / -4.42           | +3.48 / -3.44 |

Calculation for maximum uncertainty when 3m biconical antenna including a factor of k=2 is used:

$$U = 2u_c(y) = 2x(+2.19) = +4.38 \text{ dB} \quad \text{And} \quad U = 2u_c(y) = 2x(-2.21) = -4.42 \text{ dB}$$

## EXHIBIT 8. MEASUREMENT METHODS

### 8.1. MEASURING THE EIRP OF SPURIOUS/HARMONIC EMISSIONS USING SUBSTITUTION METHOD:

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring EIRP) as follows:

|                   |                            |
|-------------------|----------------------------|
| Center Frequency: | equal to the signal source |
| Resolution BW:    | 10 kHz                     |
| Video BW:         | same                       |
| Detector Mode:    | positive                   |
| Average:          | off                        |
| Span:             | 3 x the signal bandwidth   |

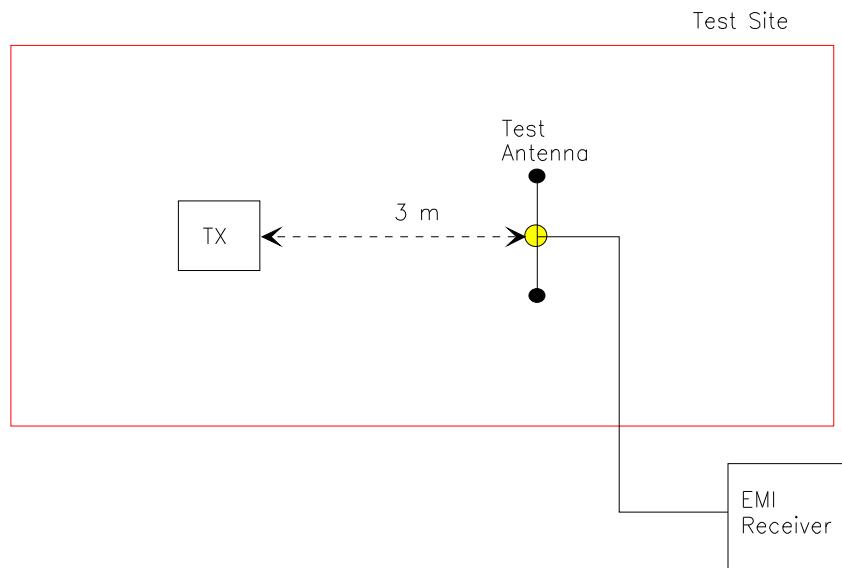
(b) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor  
 $E \text{ (dBuV/m)} = \text{Reading (dBuV)} + \text{Total Correction Factor (dB/m)}$

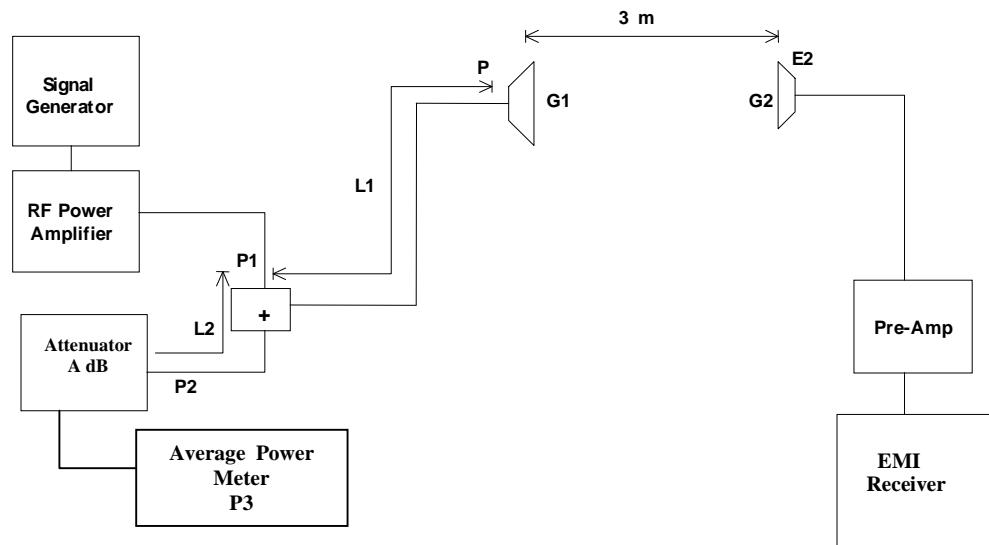
(c) Select the frequency and E-field levels obtained in the Section 7.2.1 for ERP/EIRP measurements.  
(d) Substitute the EUT by a signal generator and one of the following transmitting antenna (substitution antenna):  
◆ DIPOLE antenna for frequency from 30-1000 MHz or  
◆ HORN antenna for frequency above 1 GHz }.  
(e) Mount the transmitting antenna at 1.5 meter high from the ground plane.  
(f) Use one of the following antenna as a receiving antenna:  
◆ DIPOLE antenna for frequency from 30-1000 MHz or  
◆ HORN antenna for frequency above 1 GHz }.  
(g) If the DIPOLE antenna is used, tune it's elements to the frequency as specified in the calibration manual.  
(h) Adjust both transmitting and receiving antenna in a VERTICAL polarization.  
(i) Tune the EMI Receivers to the test frequency.  
(j) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.  
(k) The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was received.  
(l) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.  
(m) Adjust input signal to the substitution antenna until an equal or a known related level to that detected from the transmitter was obtained in the test receiver.  
(n) Record the power level read from the Average Power Meter and calculate the ERP/EIRP as follows:

$$P = P1 - L1 = (P2 + L2) - L1 = P3 + A + L2 - L1$$

$$EIRP = P + G1 = P3 + L2 - L1 + A + G1$$


$$ERP = EIRP - 2.15 \text{ dB}$$

Total Correction factor in EMI Receiver # 2 = L2 - L1 + G1


Where: P: Actual RF Power fed into the substitution antenna port after corrected.  
P1: Power output from the signal generator  
P2: Power measured at attenuator A input  
P3: Power reading on the Average Power Meter  
EIRP: EIRP after correction  
ERP: ERP after correction

(o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o)  
(p) Repeat step (d) to (o) for different test frequency  
(q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.  
(r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port. Correct the antenna gain if necessary.:

**Figure 1**



**Figure 2**

