

FCC RF EXPOSURE REPORT

FCC ID: KA2IRX1870A1

Project No. : 2007H027

Equipment: AX1800 Mesh Wi-Fi 6 Router

Brand Name : D-Link
Test Model : DIR-X1870

Series Model : N/A

Applicant: D-Link Corporation

Address : 17595 Mt. Herrmann, Fountain Valley, California United State 92708

Manufacturer : D-Link Corporation

Address : 17595 Mt. Herrmann, Fountain Valley, California United State 92708

Date of Receipt : Jul. 16, 2020

Date of Test : Jul. 16, 2020~Aug. 28, 2020

Issued Date : Sep. 10, 2020

Report Version : R01

Test Sample : Engineering Sample No.: SH20200716113-1, SH20200716113-6
Standard(s) : FCC Guidelines for Human Exposure IEEE C95.1 & FCC Part 2.1091

FCC Title 47 Part 2.1091, OET Bulletin 65 Supplement C

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Prepared by: Allen Wei

Approved by: Ryan Wang

ACCREDITED

Certificate # 5123.03

Add: No. 29, Jintang Road, Tangzhen Industry Park, Pudong New Area, Shanghai 201210, China

TEL: +86-021-61765666 Web: www.newbtl.com

REPORT ISSUED HISTORY

Report Version	Description	Issued Date
R00	Original Issue.	Sep. 08, 2020
R01	Revised report to address TCB's comments.	Sep. 10, 2020

1. MPE CALCULATION METHOD

Calculation Method of RF Safety Distance:

$$S = \frac{PG}{4\pi r^2} = \frac{EIRP}{4\pi r^2}$$

where:

S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Table for Filed Antenna

For 2.4G:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	N/A	N/A	Dipole	N/A	5
2	N/A	N/A	Dipole	N/A	5

Note:

(1) Beamforming:

All antennas have the same gain, Directional gain = G_{ANT} + 10 log(N_{ANT}) dBi,

that is Directional gain=5 + 10log(2) dBi =8.01;

So output power limit is 30-8.01+6=27.99, the power density limit is 8-(8.01-6)=5.99.

(2) CDD:

All antennas have the same gain, Directional gain = G_{ANT}+Array Gain,

For power spectral density measurements, $N_{ANT} = 2$, NSS = 1. So Directional gain = G_{ANT} + Array Gain =10log (N_{ANT} / N_{SS}) dB =5+10log(2/1)dBi=8.01. Then, the power density limit is 8-(8.01-6)=5.99.

For power measurements, Array Gain = 0 dB ($N_{ANT} \leq 4$), so the Directional gain=5.

Operating Mode TX Mode	Ant. 1	Ant. 2	Ant. 1 + Ant. 2
802.11b	✓	✓	×
802.11g	✓	✓	×
802.11n(20 MHz)	✓	✓	✓
802.11n(40 MHz)	✓	✓	✓
802.11ax (HE 20 MHz)	✓	✓	✓
802.11ax (HE 40 MHz)	✓	✓	✓

For 5G:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	Note
1	N/A	N/A	Dipole	N/A	5	N/A
2	N/A	N/A	Dipole	N/A	5	N/A

Note:

(1) Beamforming:

All antennas have the same gain, Directional gain = G_{ANT} + 10 $log(N_{ANT})$ dBi,

that is Directional gain=5 + 10log(2) dBi =8.01;

So output power limit is 30-8.01+6=27.99, the UNII-1 power density limit is 17-(8.01-6)=14.99. the UNII-3 power density limit is 30-8.01+6=27.99.

(2) CDD:

All antennas have the same gain, Directional gain = G_{ANT}+Array Gain,

For power spectral density measurements, N_{ANT} =2, NSS = 1. So Directional gain = G_{ANT} + Array Gain =10log (N_{ANT}/N_{SS}) dB =5+10log(2/1)dBi=8.01. Then, the UNII-1 power density limit is 17-(11.02-6)=14.99. the UNII-3 power density limit is 30-8.01+6=27.99

For power measurements, Array Gain = 0 dB ($N_{ANT} \leq 4$), so the Directional gain=5.

Operating Mode TX Mode	Ant. 1	Ant. 2	Ant. 1 + Ant. 2
IEEE 802.11a	✓	✓	×
IEEE 802.11n (HT20)	✓	✓	✓
IEEE 802.11n (HT40)	✓	✓	✓
IEEE 802.11ac (VHT20)	✓	✓	✓
IEEE 802.11ac (VHT40)	✓	✓	✓
IEEE 802.11ac (VHT80)	✓	✓	✓
IEEE 802.11ax (HE20)	✓	✓	✓
IEEE 802.11ax (HE40)	✓	✓	✓
IEEE 802.11ax (HE80)	✓	✓	✓

2. TEST RESULTS

For 2.4GHz:

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
8.01	6.3241	24.50	281.83829	0.2930521	1	Complies

For 5GHz:

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
8.01	6.3241	27.50	562.34133	0.5847157	1	Complies

For the max simultaneous transmission MPE:

2.4G+5G

Power Density (S) (mW/cm²) 2.4GHz		Total	Limit of Power Density (S) (mW/cm²)	Test Result
0.2930521	0.5847157	0.8777678	1	Complies

Note: The calculated distance is 22 cm.
Output power including tune up tolerance.

End of Test Report