Test Report ------ 1/37

MEASUREMENT REPORT of Bluetooth Modem

Applicant: D-Link Corporation

EUT : Bluetooth Modem

Model No. : DFM-562BT

FCC ID : KA2DFM-562B

Report No. : D1815688

Tested by:

Training Research Co., Ltd.

TEL: **886-2-26935155 FAX**: **886-2-26934440** No. 255, Nanyang Street, Shijr, Taipei Hsien 221, Taiwan, R.O.C.

Test Report ----- 2/37

CERTIFICATION

We here by verify that:

The test data, data evaluation, test procedures and equipment configurations shown in this report were made mainly in accordance with the procedures given in ANSI C63.4 (1992) as a reference. All test were conducted by *Training Research Co., Ltd.*, No. 255, Nanyang Street, Shijr, Taipei Hsien 221, Taiwan, R.O.C. Also, we attest to the accuracy of each.

We further submit that the energy emitted by the sample EUT tested as described in the report is **in compliance with** the technical requirements set forth in the FCC Rules Part 15 Subpart C Section 15.247.

Applicant : D-Link Corporation

Applicant address: No. 8, Li-Hsin VII Road, Science Based Industrial Park,

Hsin-Chu, Taiwan, R.O.C.

Product name : D-Link Bluetooth Modem

Model name : DFM-562BT

FCC ID : KA2DFM-562B

Report No. : D1815688

Test Date : May 29, 2003

Prepared by:

Jack Tsai

Approved by:

Frank Tsai

Conditions of issue:

- (1) This test report shall not be reproduced except in full, without written approval of TRC. And the test result contained within this report only relate to the sample submitted for testing.
- (2) This report must not be used by the client to claim product endorsement by NVLAP or any agency of U.S. Government.

★ NVLAP LAB CODE: 200174-0

Tables of Contents

I.	GENERAL	 5
	1.1 Introduction	 5
	1.2 Description of EUT	 5
	1.3 Test method	 5
	1.4 Description of Support Equipment	 6
	1.5 Configuration of System Under Test	 7
	1.6 Test Procedure	 8
	1.7 Location of the Test Site	 8
	1.8 General Test Condition	 8
II.	Section 15.203 : Antenna Requirement	 9
III.	I. Section 15.207: Power Line Conducted Emissions for AC Powered Units	 10
	3.1 Test Condition & Setup	 10
	3.2 List of Test Instruments	 10
	3.4 Test Results of Conducted Emissions	 11
IV.	Section 15.247(a): Technical Description of the EUT	 15
V.	Section 15.247(a)(1): Carrier Frequency Separation	 16
	5.1 Test Condition	 16
	5.2 Test Instruments Configuration	 16
	5.3 List of Test Instruments	 17
	5.4 Test Results	 17
VI.	Section 15.247(a)(1)(ii): Number of Hopping Frequencies	 18
	6.1 Test Condition	 18
	6.2 List of Test Instruments	 18
	6.3 Test Instruments Configuration	 18
	6.4 Test Results	19

VII. Sec	etion 15.247(a)(1)(ii): Time of Occupancy (Dwell time)	20
7.1	Test Condition	20
7.2	List of Test Instruments	20
7.3	Test Instruments Configuration	21
7.4	Test Results	21
VIII. Se	ction 15.247(a)(1)(ii) : 20dB Bandwidth	23
8.1	Test Condition	23
8.2	Test Instruments Configuration	23
8.3	List of Test Instruments	24
8.4	Test Results	24
IX. Sect	ion 15.247(b): Peak Output Power	27
9.1	Test Condition & Setup	27
9.2	List of Test Instruments	27
9.3	Test Results	27
X. Secti	on 15.247(c): Band-edge Compliance	28
	1 Test Condition & Setup	
10.	2 List of Test Instruments.	28
10.	3 Test Instruments Configuration	29
10.	4 Test Results	29
XI.Sect	ion 15.247(c): Spurious Radiated Emissions	32
	1 Test Condition & Setup	
	2 List of Test Instruments.	
11.	3 Test Instruments Configuration.	33
	4 Test Results of Spurious Radiated Emissions	
	Below 1GHz	
	Above 1GHz	35

Test Report ------ 5/37

I. GENERAL

1.1 Introduction

The following measurement report is submitted on behalf of applicant supporting that the *Bluetooth modem* certification in accordance with Part 2 Subpart J and Part 15 Subpart A and C of the Commission's Rules and Regulations.

1.2 Description of EUT

Product Name : D-Link Bluetooth Modem

Model Name : DFM-562BT

Granted FCC ID: KA2DFM-562B

Frequency Range : 2400MHz to 2483.5MHz

Support Channel: 80 Channels

Channel Spacing : 1 MHz

Modulation Skill: GFSK

Power Type : Powered by the AC Adapter

Model No.: MW41-0900800A;

I/P: 120VAC, 60Hz; O/P: 9VAC, 800mA

Power Cable : 193cm long, non-shielded, no ferrite core

Data Cable : 7 feet long, non-shielded, no ferrite core

1.3 Test method

- 1. The notebook PC and test fixture is connected by RS-232 cable then test fixture connected to EUT as setting test mode.
- 2. The Notebook PC and test fixture is moving when test mode set finish. The software provided by the manufacturer, the test is performed under those specific conditions.
- 3. Set different channel being tested and repeat the procedures above.
 - (a) Radiated for intentional test: making EUT to the mode of continuous transmission
 - (b) Conducted test: making EUT to the linking (Rx/Tx) mode with far-end USB dongle.

Test Report ------ 6/37

1.1. Description of Support Equipment

PABX : King Design
Model No. : KD8705-A
Serial No. : GV101101186

Power type : Linear

Power Cord : Non-shielded, 1.8m long, no ferrite bead

Notebook : IBM Think Pad X20

Model No. : 2662-11T

Serial No. : FX-1192200/09

FCC ID : N/A, Doc Approved

檢磁 : 3892B565

Adaptor: IBMModel No.: PA2450USerial No.: 02K6654

FCC ID : N/A, Doc Approved

Power type : I/P: $100 \sim 240 \text{vac}$, $50 \sim 60 \text{ Hz}$, $0.5 \text{A} \sim 1.2 \text{A}$; O/P: 16 Vdc, 4.5 A

Power cord : Non-shielded, 1.80m long, Plastic, with ferrite core

Notebook PC : ASUSTek Computer

Model No. : AB00F

 Serial No.
 : 24NP016361

 FCC ID
 : Doc Approved

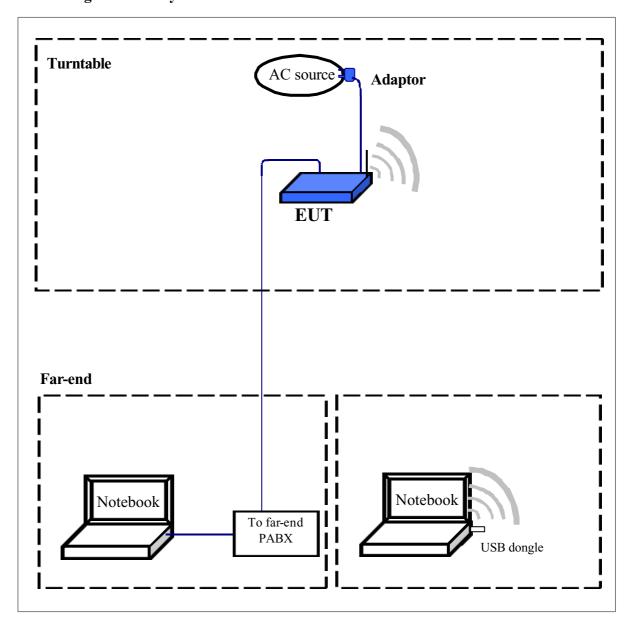
 BSMI
 : 41016012

Power type : $100 \sim 240 \text{VAC}$, 1A 50/60 Hz, Switching

Adaptor : LITE-ON Electronics, Inc.

Model No. : PA-1530-01 Serial No. : 00151184 FCC ID : Doc Approved 檢磁 : 3882B259

Power cable : Non-shielded, 1.72m length, Plastic hood, No ferrite core


(Between power adaptor and AC power source)

Power cable : Shielded, 1.48m length, Plastic hood, with ferrite core

(Between power adaptor and notebook)

Test Report ----- 7/37

1.2. Configuration of System Under Test

The setting up procedure was recorded in 1.3 test method.

Test Report ------ 8/37

1.3. Test Procedure

All measurements contained in this report were performed mainly according to the techniques described in ANSI C63.4 (1992) and the pre-setup was written 1.3 test method, the detail setup was written on each test item.

1.4. Location of the Test Site

The radiated emissions measurements required by the rules were performed on the **three-meter**, **Anechoic Chamber (Registration Number: 93906)** maintained by *Training Research Co., Ltd.* - 255 Nanyang Street, Shijr, Taipei Hsien 221, Taiwan, R.O.C. Complete description and measurement data have been placed on file with the commission. The conducted power line emissions tests and other test items were performed in an anechoic chamber also located at Training Research Co., Ltd.

255 Nanyang Street, Shijr, Taipei Hsien 221, Taiwan, R.O.C., *Training Research Co., Ltd.* is listed by the FCC as a facility available to do measurement work for others on a contract basis.

1.5. General Test Condition

The conditions under which the EUT operates were varied to determine their effect on the equipment's emission characteristics. The final configuration of the test system and the mode of operation used during these tests were chosen as that which produced the highest emission levels. However, only those conditions, which the EUT was considered likely to encounter in normal uses were investigated.

There is a test condition apply in this test item, the test procedure description as <1.3 test method>. Three channels were tested, one in the top (CH0), one in the middle (CH39) and the other in bottom (CH79).

II. Section 15.203: Antenna requirement

The EUT is equipped with an integral antenna, it is permanently installed inside its case. The antenna cannot be removed or modified without any tools from outside in order to prevent the un-authorized modification. This makes that complies with the antenna requirement stated in Sect.15.203.

The antenna specification list as below:

Manufacturer : WANSHIH ELECTRONIC CO., LTD.

Model No. : WFL002
Part No. : SLW0010A

Connector : SMA Plug Reverse
Antenna Type : Dipole Antenna
Antenna Gain : 2.78dBi (Max.)

Coaxial Cable : MIL-C-17 RG-178B/U

III. Section 15.207: Power Line Conducted Emissions for AC Powered Units

3.1 Test Condition & Setup

The power line conducted emission measurements were performed in an anechoic chamber. The EUT was assembled on a wooden table, which is 80 centimeters high, was placed 40 centimeters from the backwall and at least 1 meter from the sidewall.

Power was fed to the EUT from the public utility power grid through a line filter and Line Impedance Stabilization Networks (LISNs). The LISN housing, measuring instrumentation case, ground plane, etc., were electrically bonded together at the same RF potential. The Spectrum analyzer (or EMI receiver) was connected to the AC line through an isolation transformer. The 50-ohm output of the LISN was connected to the spectrum analyzer directly. Conducted emission levels were in the CISPER quasi-peak and average detection mode. The analyzer's 6 dB bandwidth was set to 9 KHz. No post-detector video filter was used.

The spectrum was scanned from 150 KHz to 30 MHz. The physical arrangement of the test system and associated cabling was varied (within the scope of arrangements likely to be encountered in actual use) to determine the effect on the unit's emanations in amplitude and frequency. All spurious emission frequencies were observed. The highest emission amplitudes relative to the appropriate limit were measured and have been recorded in paragraph 2.4.

There is a test condition apply in this test item, the test procedure description as <1.3 test method>. Three channels were tested, one in the top (CH0), one in the middle (CH39) and the other in bottom (CH79).

3.2 List of Test Instruments

				Calibration	Date
Instrument Name	Model No.	Brand	Serial No.	Last time	Next time
EMI Receiver	8546A	H P	3520A00242	06/28/02	06/28/03
RF Filter Section	85460A	H P	3448A00217	06/28/02	06/28/03
LISN (EUT)	LISN-01	TRC	9912-03,04	06/04/02	06/04/03
LISN (Support E.)	LISN-01	TRC	9912-05	07/15/02	07/15/03
Auto Switch Box	ASB-01	TRC	9904-01	11/20/02	11/20/03
(< 30MHz)					

The level of confidence of 95%, the uncertainty of measurement of conducted emission is \pm 2.02 dB.

Test Report ------ 11/37

3.3 Test Results of Conducted Emissions

The following table shows a summary of the highest emissions of power line conducted emissions on the LIVE and NETURAL conductors of the EUT power cord.

Test Conditions: Temperature: 25.0 °C Humidity: 73.0 % RH

Table 1 Test mode: Channel 0

Po	wer Conne	FC	CC Class	В			
Conductor	Frequency	Peak	QP	Average	QP-limit	AVG-limit	Margin
	(KHz)	$(dB\mu V)$	(dBµV)	(dBµV)	$(dB\mu V)$	(dBµV)	(dB)
	203.000	48.20			64.49	54.49	-6.29
	352.000	38.29			60.23	50.23	-11.94
	405.000	39.24			58.71	48.71	-9.47
Line 1	504.000	34.53			56.00	46.00	-11.47
	2636.000	31.25			56.00	46.00	-14.75
	7890.000	24.64			60.00	50.00	-25.36
	205.000	49.15			64.43	54.43	-5.28
	355.000	38.24			60.14	50.14	-11.90
	405.000	38.22			58.71	48.71	-10.49
Line 2	509.000	35.26			56.00	46.00	-10.74
	2636.000	33.07			56.00	46.00	-12.93
	7890.000	26.53			60.00	50.00	-23.47

NOTE:

- (1) Margin = Peak Amplitude Limit, *The reading amplitudes are all under limit.*
- (2) A "+" sign in the margin column means the emission is OVER the Class B Limit and "-" sign of means UNDER the Class B limit

Test Report ------ 12/37

Table 2 Test mode: Channel 39

Po	wer Conne	FC	CC Class	В			
Conductor	Frequency	Peak	QP	Average	QP-limit	AVG-limit	Margin
	(KHz)	(dBµV)	(dBµV)	(dBµV)	$(dB\mu V)$	(dBµV)	(dB)
	203.000	49.05			64.49	54.49	-5.44
	380.000	40.04			59.43	49.43	-9.39
Line 1	456.000	36.38			57.26	47.26	-10.88
	504.000	34.94			56.00	46.00	-11.06
	2636.000	31.32			56.00	46.00	-14.68
	7890.000	25.00			60.00	50.00	-25.00
	203.000	48.54			64.49	54.49	-5.95
	359.000	39.49			60.03	50.03	-10.54
Line 2	409.000	39.30			58.60	48.60	-9.30
	504.000	34.98			56.00	46.00	-11.02
	2610.000	33.12			56.00	46.00	-12.88
	7890.000	27.02			60.00	50.00	-22.98

^{*}The reading amplitudes are all under limit.

Test Report ------ 13/37

Table 3 Test mode: Channel 79

Po	wer Conne	FC	CC Class	В			
Conductor	Frequency	Peak	QP	Average	QP-limit	AVG-limit	Margin
	(KHz)	$(dB\mu V)$	(dBµV)	(dBµV)	$(dB\mu V)$	(dBµV)	(dB)
	208.000	47.80			64.34	54.34	-6.54
	373.000	39.07			59.63	49.63	-10.56
Line 1	413.000	38.51			58.49	48.49	-9.98
	456.000	37.38			57.26	47.26	-9.88
	2636.000	31.37	-		56.00	46.00	-14.63
	7890.000	24.81			60.00	50.00	-25.19
	203.000	49.83			64.49	54.49	-4.66
	380.000	39.85			59.43	49.43	-9.58
Line 2	456.000	37.71			57.26	47.26	-9.55
	509.000	33.07			56.00	46.00	-12.93
	2636.000	33.19			56.00	46.00	-12.81
	7890.000	26.67			60.00	50.00	-23.33

^{*}The reading amplitudes are all under limit.

Test Report ------ 14/37

Table 4 Test mode: Standby mode

Po	wer Conne	FC	CC Class	В			
Conductor	Frequency	Peak	QP	Average	QP-limit	AVG-limit	Margin
	(KHz)	$(dB\mu V)$	(dBµV)	(dBµV)	$(dB\mu V)$	(dBµV)	(dB)
	206.000	49.64			64.40	54.40	-4.76
	405.000	39.03			58.71	48.71	-9.68
Line 1	456.000	37.55			57.26	47.26	-9.71
	504.000	34.34			56.00	46.00	-11.66
	2636.000	31.30			56.00	46.00	-14.70
	7890.000	24.32			60.00	50.00	-25.68
	205.000	49.54			64.43	54.43	-4.89
	373.000	39.28			59.63	49.63	-10.35
Line 2	409.000	39.56			58.60	48.60	-9.04
	509.000	34.54			56.00	46.00	-11.46
	2636.000	33.33			56.00	46.00	-12.67
	7890.000	27.07			60.00	50.00	-22.93

^{*}The reading amplitudes are all under limit.

IV. Section 15.247 (a): Technical description of the EUT

Based on the Section 2.1, Frequency Hopping Spectrum System is a spread spectrum system in which the carrier has been modulated by a high speed spreading code and an information data stream with its known hopping algorithm and avoidance method. The high speed code sequence dominates the "modulating function" and is the direct cause of the wide spreading of the transmitted signal. In the operational description demonstrates the operation principles of the base-band processor employed by the EUT, shows that which is a complete FHSS base-band processor and meets the definition of the Frequency Hopping Spectrum System.

Test Report ----- 16/37

V. Section 15.247(a)(1): Carrier Frequency Separation

5.1 Test Condition

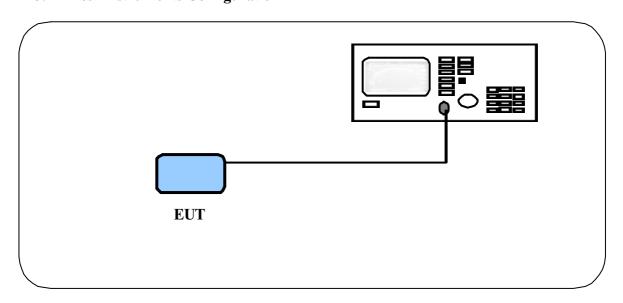
The EUT must have its hopping function enabled. Use the following spectrum analyzer setting

Span = wide enough to capture the peaks of two adjacent channels

Resolution (or IF) bandwidth (RBW) ≥ 1% of the span

Video (or Average) Bandwidth (VBW) ≥ RBW

Sweep = Auto


Detector Function = peak

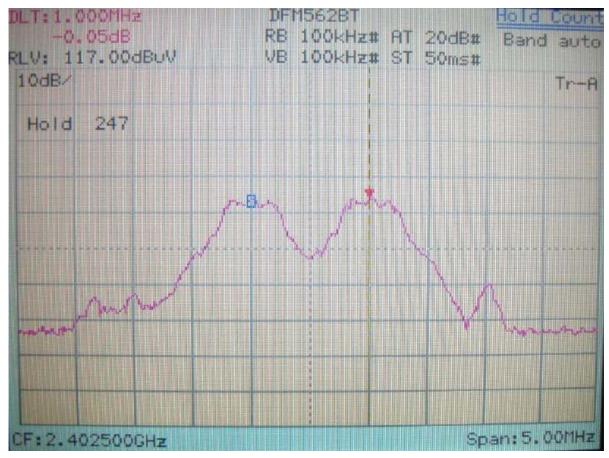
Trace = max hold

Setting up procedure is written on 1.3 test method.

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channel. The limit is specified in one of the subparagraphs of this section. Submit this plot.

5.2 Test Instruments Configuration

Test Configuration of carrier frequency separation


Test Report ----- 17/37

5.3 List of Test Instruments

Instrument Name	Model No.	Brand	Serial No.	Last time	Next time
Spectrum Analyzer	MS2665C	ANRITSU	6200175476	09/11/02	09/11/03

5.4 Test Results

Channel Separation: 1MHz.

Test Report ----- 18/37

VI. Section 15.247(a)(1)(ii) Number of Hopping Frequencies

6.1 Test Condition

The EUT must have its Hopping function enabled. Use the following spectrum analyzer setting:

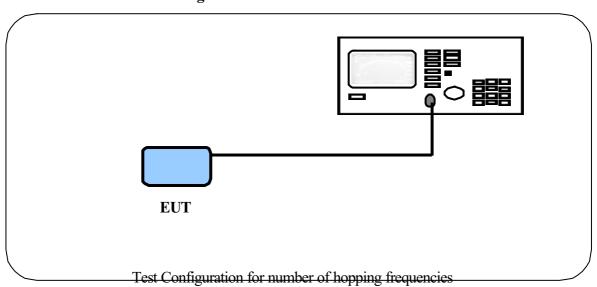
Span = the frequency band of operation

RBW \geq 1% of the span

 $VBW \ge RBW$

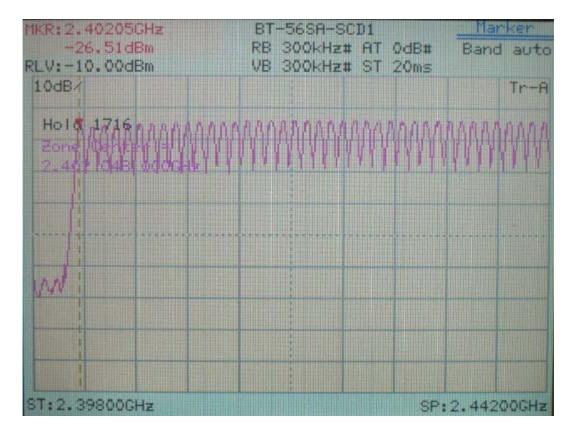
Sweep = auto

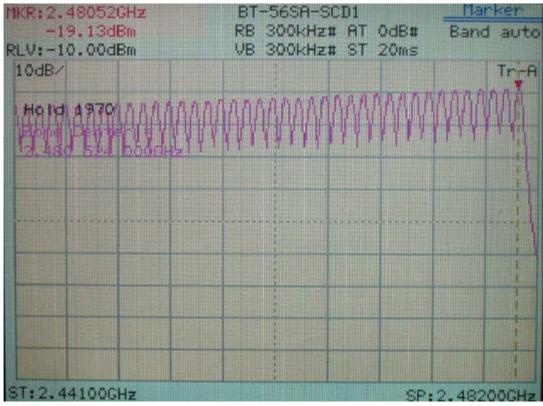
Detector function = peak


Trace = max hold

Allow the trace to stabilize. It may prove necessary to break the span up to sections. In order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this section. Submit this plots.

6.2 List of Test Instruments


Instrument Name	Model No.	Brand	Serial No.	Last time	Next time
Spectrum Analyzer	MS2665C	ANRITSU	6200175476	09/11/02	09/11/03


6.3 Test Instruments Configuration

Test Report ----- 19/37

6.4 Test Results

Test Report ----- 20/37

VII. Section 15.247(a)(1)(ii) Time of Occupancy (Dwell Time)

7.1 Test Condition

The EUT must have its hopping function enabled. Use the following spectrum analyzer setting:

Span = zero span, centered on a hopping channel

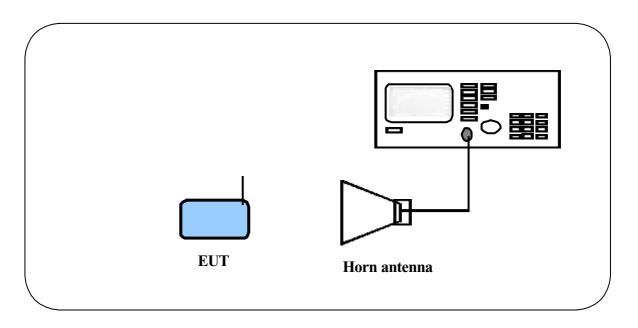
RBW = 1M

 $VBW \ge RBW$

Sweep = as necessary to capture the entire dwell time per hopping channel

Detector function = peak

Trace = max hold


If possible, use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this section. Submit this plot(s). An oscilloscope may be used instead of a spectrum analyzer.

7.2 List of Test Instruments

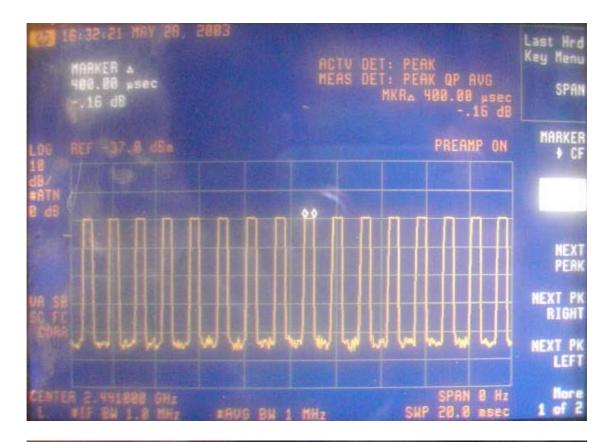
Instrument Name	Model No	Brand	Serial No.	Last time	Next time
EMI Receiver	8546A	НР	3520A00242	10/18/02	10/18/03
RF Filter Section	85460A	H P	3448A00217	10/18/02	10/18/03
Switch/Control Unit	3488A	H P	N/A	11/22/02	11/22/03
(> 30MHz)					
Auto Switch Box	ASB-01	TRC	9904-01	11/22/02	11/22/03
(> 30MHz)					
Spectrum Analyzer	8564E	ΗP	US36433002	08/13/02	08/13/03
Microwave Preamplifier	83051A	ΗP	3232A00347	08/13/02	08/13/03
Horn Antenna	3115	EMCO	9704 - 5178	08/15/02	08/15/03

Test Report ------ 21/37

7.3 Test Instruments Configuration

7.4 Test Results

1. Pulse width of one slot measurement:


Results: $700 \, \mu \, \mathrm{sec}$


2. Dwell time measurement

Results: The average time of occupancy is less than 0.4 second within a 30 second period.

3. as following page.

Test Report ------ 22/37

Test Report ----- 23/37

VIII. Section 15.247(a)(1)(ii) 20dB Bandwidth

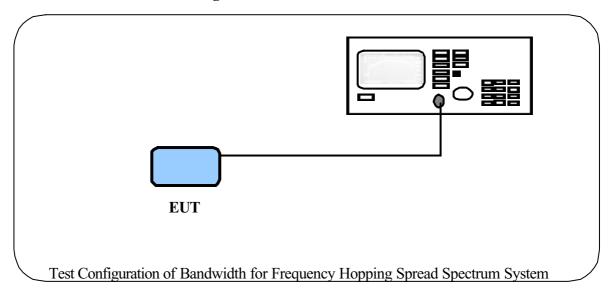
8.1 Test Condition

Use the following spectrum analyzer setting:

Span = the frequency band of operation

RBW \geq 1% of the span

 $VBW \ge RBW$


Sweep = auto

Detector function = peak

Trace = max hold

The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of emission. Use the marker-delta function to measure 20dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20dB bandwidth of the emission. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this section. Submit this plot(s).

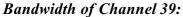
8.2 Test Instruments Configuration

Test Report ----- 24/37

8.3 List of Test Instruments

Instrument Name	Model No.	Brand	Serial No.	Last time	Next time
Spectrum Analyzer	MS2665C	ANRITSU	6200175476	09/11/02	09/11/03

8.4 Test Results

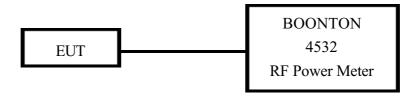

Channel	Bandwidth
Channel 0	892 kHz
Channel 39	960 kHz
Channel 79	904 kHz

Note: The data in the above table are summarizing the following attachment spectrum analyzer.

Test Report ----- 25/37

Bandwidth of Channel 0:

Test Report ------ 26/37


Bandwidth of Channel 79:

Test Report ------ 27/37

IX. Section 15.247(b) Peak Output Power

9.1 Test Condition & Setup

- 1. The output of the transmitter is connected to the BOONTON RF Power Meter.
- 2. The calibration is performed before every test. The values of the output power of the EUT will shown in the dBm directly are the transmitter output peak power. Recording as follows.

9.2 List of Test Instruments

Instrument Name	Model No.	Brand	Serial No.
RF Power Meter	4532	BOONTON	117501

9.3 Test Result

Formula:

Signal generator + |Cable loss| = Output peak power

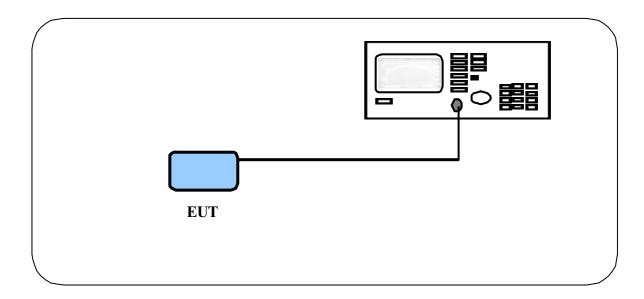
Channel	Signal Generator	Cable Loss	Output pe	ak power
	dBm	dBm	dBm	mW
СН 0	-2.56	0.70	-1.86	0.652
СН 39	-1.39	0.70	-0.69	0.854
CH 79	-3.33	0.70	-2.63	0.003

Test Report ----- 28/37

X. Section 15.247(c) Band-edge Compliance

10.1 Test Condition

If any 100 kHz bandwidth outside these frequency bands, the radio frequency power that is produced by the modulation products of the spreading sequence, the information sequence and the carrier frequency shall be either at least 20 dB below that in any 100 kHz bandwidth within the band that contains the highest level of the desired power or shall not exceed the general levels specified id § 15.209(a),

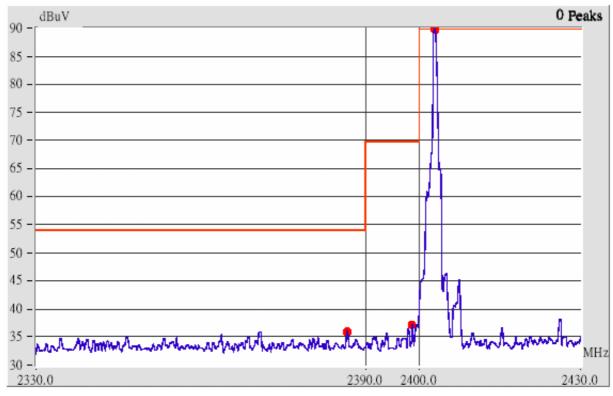

We perform this section by the *radiated manner*, the RBW is set to 100kHz and VBW>RBW. We'd made the observation *up to 10th harmonics and the criterion is all the harmonic/spurious emissions must be 20dB below the highest emission level measured*. If the emissions fall in the restricted bands stated in the Part15.205(a) must also *comply with the radiated emission limits specified in Part15.209(a)*. (Peak mode: RBW=VBW=1MHz, Average mode: RBW=1MHz; VBW=10Hz)

10.2 List of Test Instruments

Instrument Name	Model No.	Brand	Serial No.	Last time	Next time
Spectrum Analyzer	MS2665C	ANRITSU	6200175476	09/11/02	09/11/03
RF Filter Section	85460A	H P	3448A00217	10/18/02	10/18/03
Horn Antenna	3115	EMCO	9704 - 5178	08/15/02	08/15/03

Test Report ------ 29/37

10.3 Test Instruments Configuration



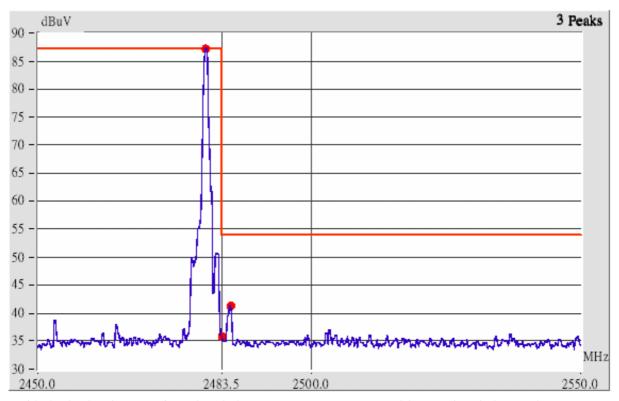
10.4 Test Result of the Bandedge

The following pages show our observations referring to the channel 0 and 79 respectively.

Test Report ----- 30/37

Channel 0

This is the hard copy of our bandedge measurement generated by our bandedge testing program. The plot shown above is the bandedge of channel 1.


1. The lobe left by the fundamental side is already 20dB below the highest emission level.

2. The emissions recorded in the restricted band is do comply with the Part 15.209(a) – as below.

	Raa	liated Em	ission		Corrected		FCC Class B		
Frequency	Ant.	Ant. H.	Table	Factors	Amplitude (dΒμV/m)		Limit (dBµV/m)		Margin
(MHz)	Р.	<i>(m)</i>	(°)	(dB)	Peak	Average	Peak	Ave.	(dB)
2362.63	Hor	1.00	158	3.04	36.33		74.00	53.96	-17.63
2389.99	Hor	1.00	20	3.13	33.80		74.00	53.96	-20.16
2370.04	Ver	1.00	46	3.07	39.65		74.00	53.96	-14.31
2386.55	Ver	1.00	109	3.12	39.84		74.00	53.96	-14.12
2389.99	Ver	1.00	162	3.13	34.11		74.00	53.96	-19.85

Test Report ----- 31/37

Channel 79

This is the hard copy of our bandedge measurement generated by our bandedge testing program. The plot shown above is the bandedge of channel 1.

3. The lobe left by the fundamental side is already 20dB below the highest emission level.

4. The emissions recorded in the restricted band is do comply with the Part 15.209(a) – as below.

	Rad	liated Em	ission		Corrected		FCC Class B		
Frequency	Ant.	Ant. H.	Table	Factors	Amplitude (dBμV/m)		Limit (d	Margin	
(MHz)	Р.	(m)	(°)	(dB)	Peak	Average	Peak	Ave.	(dB)
2483.50	Hor	1.00	392	3.45	35.44		74.00	53.96	-18.52
2497.71	Hor	1.00	150	3.49	37.51		74.00	53.96	-16.45
2500.02	Hor	1.00	112	3.50	35.74		74.00	53.96	-18.22
2512.20	Hor	1.00	58	3.52	37.14		74.00	53.96	-16.82
2483.50	Ver	1.00	146	3.45	49.61		74.00	53.96	-4.35
2481.41	Ver	1.00	225	3.45	44.69		74.00	53.96	-9.27

XI. Section 15.247(c) Spurious Radiated Emissions

11.1 Test Condition and Setup

We'd performed the test by the *radiated emission* skill: The EUT was placed in an anechoic chamber, and set the EUT transmitting continuously and scanned at 3-meter distance to determine its emission characteristics. The physical arrangement of the EUT was varied (within the scope of arrangements likely to be encountered in actual use) to determine the effect on the unit's emanations in amplitude, directivity, and frequency. The exact system configuration, which produced the highest emissions was noted so it could be reproduced later during the final tests. For the measurement above 1GHz, according to the guidance we'd set the spectrum analyzer's 6dB bandwidth RBW to 1MHz.

This was done to ensure that the final measurements would demonstrate the worst-case interference potential of the EUT.

Final radiation measurements were made on a three-meter, anechoic chamber. The EUT system was placed on a nonconductive turntable, which is 0.8 meters height, top surface 1.0×1.5 meter.

The spectrum was examined from 30 MHz to 1000 MHz using an Hewlett Packard 85460A EMI Receiver, M.E. whole range Bi-log antenna (Model No.: VULB9160) is used to measure frequency from 30 MHz to 1GHz. The final test is used the HP 85460A spectrum and 8564E spectrum was examined from 1GHz to 25GHz using an Hewlett Packard Spectrum Analyzer, EMCO/CMT Horn Antenna (Model 3115 / RA42-K-F-4B-C) for 1G - 25GHz.

At each frequency, the EUT was rotated 360 degrees, and the antenna was raised and lowered from one to four meters to find the maximum emission levels. Measurements were taken using both horizontal and vertical antenna polarization.

Appropriate preamplifiers were used for improving sensitivity and precautions were taken to avoid overloading or desensitizing the spectrum analyzer. There are two spectrum analyzers use on this testing, HP 85460A for frequency 30MHz to 1000MHz, and 8564E for frequency 1GHz to 25GHz. No post-detector video filters were used in the test. The spectrum analyzer's 6dB bandwidth was set to 120KHz (spectrum was examined from 30 MHz to 1000 MHz), the spectrum analyzer's 6 dB bandwidth was set to 1 MHz (spectrum was examined from 1GHz to 25GHz) and the analyzer was operated in the maximum hold mode. There is a test condition applies in this test item, the test procedure description as the following:

Three channels were tested, one in the top (CH0), one in the middle (CH39) and the other in bottom (CH79). The setting up procedure is recorded on <1.3 test method >

Test Report ----- 33/37

With the transmitter operating from a AC source and using the internal of EUT, radiates spurious emissions falling within the restricted bands of 15.209 were measured at operating frequencies corresponding to upper, middle and bottom channels in the $2400 \sim 2483.5$ MHz band.

The actual field intensity in decibels referenced to 1 microvolt per meter ($dB\mu V/m$) is determined by algebraically adding the measured reading in $dB\mu V$, the antenna factor (dB), and cable loss (dB) at the appropriate frequency. Since the EUT was set to transmit continuously, no *duty cycle* is present.

For frequency between 30MHz to 1000MHz

FIa $(dBuV/m) = FIr (dB\mu V) + Correction Factors$

FIa: Actual Field Intensity

FIr : Reading of the Field Intensity

Correction Factors = Antenna Factor + Cable Loss - Amplifier Gain

For frequency between 1GHz to 25GHz

FIa $(dB\mu V/m) = FIr (dB\mu V) + Correction Factor$

FIa: Actual Field Intensity

FIr : Reading of the Field Intensity

Correction Factors = Antenna Factor + Cable Loss – Amplifier Gain

11.2 List of Test Instruments

Instrument Name	Model No.	Brand	Serial No.	Last time	Next time
EMI Receiver	8546A	H P	3520A00242	06/28/02	06/28/03
RF Filter Section	85460A	H P	3448A00217	06/28/02	06/28/03
Bi-log Antenna	VULB9160	M. E.	3064	07/08/02	07/08/03
Switch/Control Unit	3488A	HP	N/A	11/20/02	11/20/03
(>30MHz)					
Auto Switch Box	ASB-01	TRC	9904-01	11/20/02	11/20/03
(>30MHz)					
Spectrum Analyzer	8564E	HP	US36433002	08/01/02	08/01/03
Microwave Preamplifier	83051A	HP	3232A00347	08/01/02	08/01/03
Horn Antenna	3115	EMCO	9704 - 5178	08/01/02	08/01/03
Horn Antenna	RA42-K-F-4B-C	CMT	961505-003	02/01/03	02/01/04
Anechoic Chamber (cable cali	brated together)			05/20/03	05/20/04

The level of confidence of 95%, the uncertainty of measurement of radiated emission is \pm 3.44dB.

Test Report ----- 34/37

11.3 Test Result of Spurious Radiated Emissions

EUT's transmit only

The highest peak values of radiated emissions form the EUT at various antenna heights, antenna polarizations, EUT orientation, etc. are recorded on the following.

Test Conditions: Temperature: 25.4 ° C Humidity: 51.5 % RH

Table 5 30MHz to 1GHz [Antenna polarity Horizontal]

	Radiat Emissi			Correction Factors	Corrected Amplitude	FCC Class B (3 m)	
Frequency (MHz)	Amplitude (dBµV)	Ant. H. (m)	Table (°)	(dB)	(dBµV/m)	Limit (dBµV/m)	Margin (dB)
395.14	40.83	1.00	261	0.27	41.10	46.00	-4.90
565.32	29.46	1.00	312	7.43	36.89	46.00	-9.11
620.93	31.33	1.00	290	9.36	40.69	46.00	-5.31
677.38	28.07	1.00	171	11.08	39.15	46.00	-6.85
733.83	28.65	1.00	158	12.41	41.06	46.00	-4.94
790.28	26.73	1.00	84	13.54	40.27	46.00	-5.73

Table 6 30MHz to 1GHz [Antenna polarity Vertical]

	Radiat Emissi			Correction Factors	Corrected Amplitude	FCC Class B (3 m)	
Frequency (MHz)	Amplitude (dBµV)	Ant. H. (m)	Table (°)	(dB)	(dBµV/m)	Limit (dBµV/m)	Margin (dB)
141.12	34.48	1.00	320	-1.89	32.59	43.50	-10.91
395.13	36.12	1.00	131	0.26	36.38	46.00	-9.62
508.03	29.73	1.00	30	4.93	34.66	46.00	-11.34
564.48	31.48	1.00	145	7.40	38.88	46.00	-7.12
678.08	24.36	1.00	160	11.10	35.46	46.00	-10.54
734.46	23.55	1.00	325	12.43	35.98	46.00	-10.02

Note:

- 1. Margin = Amplitude limit, if margin is minus means under limit.
- 2. Corrected Amplitude = Reading Amplitude + Correction Factors
- 3. Correction factor = Antenna factor + (Cable Loss Amplitude gain)

Report No.: D1815688, FCC Part 15

Test Report ----- 35/37

Table 7 Channel 0, 1GHz to 25GHz [Antenna polarity Horizontal]

	Radiat Emissi			Corrected Amplitude		FCC Class B (3m)			
Frequency	Ant, H.	Table	Correction	(dBµV/m)		Limit (dBµV/m)		Margin	
(MHz)	(m)	(°)	Factors (dB)	Peak	Average	Peak	Ave.	(dB)	
4812.25	1.00	331	-24.29	41.37		74.00	53.96	-12.59	
5809.12	1.00	162	-20.34	44.21		74.00	53.96	-9.75	
7023.50	1.00	108	-16.70	43.75		74.00	53.96	-10.21	

Table 8 Channel 0, 1GHz to 25GHz [Antenna polarity Vertical]

	Corrected Amplitude		FCC Class B (3m)						
Frequency	Ant. H.	Table	Correction (dBµV/m)		V/m)	Limit (d	Margin		
(MHz)	(m)	(°)	Factors (dB)	Peak Average		Peak	Ave.	(dB)	
4815.87	1.00	295	-24.27	42.86		74.00	53.96	-11.10	
7204.75	1.00	105	-18.00	43.43		74.00	53.96	-10.53	

Note:

- 1. Margin = Corrected Limit.
- 2. The EUT utilizes a *permanently attached antenna*. In addition the spurious RF radiated emissions levels do comply with the *20dBc limit* both at its bandedges and other spurious emissions.
- 3. As stated in Section 15.35(b), for any frequencies above 1000MHz, radiated limits shown are based upon the use of measurement instrumentation employing an average detector function. As the results of our test, the peak amplitudes are already below the FCC limit. Thus the average amplitudes of the rest are omitted.

Test Report ----- 36/37

Table 9 Channel 39, 1GHz to 25GHz [Antenna polarity Horizontal]

	Corrected Amplitude		FCC Class B (3m)					
Frequency	Ant. H.	Table	Correction	(dBµV/m) Peak Average		Limit (d	BμV/m)	Margin
(MHz)	(m)	(°)	Factors (dB)			Peak	Ave.	(dB)
4892.00	1.00	85	-23.84	42.20		74.00	53.96	-11.76
5356.00	1.00	158	-22.34	44.28		74.00	53.96	-9.68

Table 10 Channel 39, 1GHz to 25GHz [Antenna polarity Vertical]

	Radiated Emission					FCC Class B (3m)			
Frequency	Ant. H.	Table	Correction	(dBµV/m)		Limit (dBµV/m)		Margin	
(MHz)	(m)	(°)	Factors (dB)	Peak	Average	Peak	Ave.	(dB)	
4645.50	1.00	85	-24.51	42.07		74.00	53.96	-11.89	
4888.37	1.00	169	-23.86	43.30		74.00	53.96	-10.66	
7360.62	1.00	113	-17.24	43.76		74.00	53.96	-10.20	

Test Report ----- 37/37

Table 11 Channel 79, 1GHz to 25GHz [Antenna polarity Horizontal]

Radiated Emission				Corrected Amplitude		FCC Class B (3m)		
Frequency	Ant. H.	Table	Correction Factors (dB)	$(dB\mu V/m)$		Limit (dBµV/m)		Margin
(MHz)				Peak	Average	Peak	Ave.	(dB)
4968.12	1.00	98	-23.64	42.79		74.00	53.96	-11.17
7454.87	1.00	167	-17.02	43.15		74.00	53.96	-10.81
9919.87	1.00	256	-15.35	46.53		74.00	53.96	-7.43

Table 12 Channel 79, 1GHz to 25GHz [Antenna polarity Vertical]

Radiated Emission				Corrected Amplitude		FCC Class B (3m)		
Frequency	Ant. H.	Table	Correction Factors (dB)	$(dB\mu V/m)$		Limit (dBµV/m)		Margin
(MHz)				Peak	Average	Peak	Ave.	(dB)
4968.12	1.00	307	-23.64	46.73		74.00	53.96	-7.23
7447.62	1.00	65	-17.00	42.58		74.00	53.96	-11.38