

TEST REPORT

Test report no.: 1-5786_23-01-04-B

Testing laboratory

cetecom advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: https://cetecomadvanced.com
e-mail: mail@cetecomadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in

the accreditation certificate with the registration number:

D-PL-12047-01-00.
ISED Testing Laboratory Recognized Listing Number: DE0001

FCC designation number: DE0002

Applicant

Rosemount Tank Radar AB

Layoutvägen 1

435 33 Mölnlycke / SWEDEN Phone: +46 3 13 37 01 77 Contact: Bodil Tufvesson

e-mail: <u>bodil.tufvesson@emerson.com</u>

Manufacturer

Rosemount Tank Radar AB

Layoutvägen 1

435 33 Mölnlycke / SWEDEN

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS-211 Level Probing Radar Equipment

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: 77-81 GHz Level Probing Radar

 Model name:
 Rosemount 408

 FCC ID:
 K8C408CC

 IC:
 2827A-408CC

Antenna: Integrated lens antenna

Power supply: 5.0 V DC USB IO-Link Master

Temperature range: -40°C to +85°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:		
Thomas Vogler	Meheza Walla		
Lab Manager	Lab Manager		
Padio Labe	Padio Labe		

Table of contents

1	Table	of contents	. 2
2	Gene	ral information	. 3
	2.1 2.2 2.3	Notes and disclaimerApplication details	. 3
3	Test	standard/s	. 4
4	Repo	rting statements of conformity – decision rule	. 5
5	Test	environment	. 6
6	Test i	item	. 6
	6.1 6.2	General description	
7	Desci	ription of the test setup	. 7
	7.1 7.2 7.3 7.4 7.5	Shielded semi anechoic chamber	10 12 12
8	Seque	ence of testing	15
	8.1 8.2 8.3 8.4 8.5	Sequence of testing radiated spurious 9 kHz to 30 MHz	16 17 18
9	Meas	urement uncertainty	20
10	Fa	ar field consideration for measurements above 18 GHz	20
11	Sı	ummary of measurement results	21
12	Sı	ummary of measurement results	22
	12.1 12.2 12.3 12.4 12.5 12.6	Frequency stability and fundamental bandwidth Fundamental emissions Antenna Beamwidth and Side Lobe Gain Unwanted emissions limit Unwanted emission limits (receiver) Spurious emissions conducted < 30 MHz (AC power line)	28 31 33 40
13	Gl	lossary	44
14	Do	ocument history	45

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. cetecom advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of cetecom advanced GmbH.

The testing service provided by cetecom advanced GmbH has been rendered under the current "General Terms and Conditions for cetecom advanced GmbH".

cetecom advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the cetecom advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the cetecom advanced GmbH test report include or imply any product or service warranties from cetecom advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by cetecom advanced GmbH.

All rights and remedies regarding vendor's products and services for which cetecom advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by cetecom advanced GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2023-05-15
Date of receipt of test item: 2023-07-03
Start of test:* 2023-07-10
End of test:* 2023-08-04

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

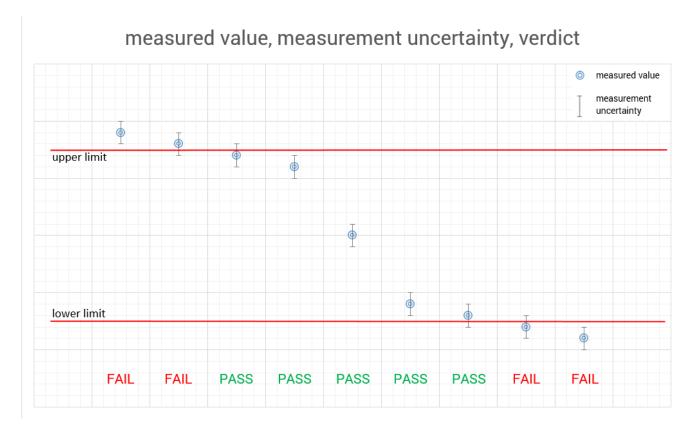
© cetecom advanced GmbH Page 3 of 45

^{*}Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

3 Test standard/s

Test standard	Date	Description
47 CFR Part 15		Title 47 of the Code of Federal Regulations; Chapter I; Part 15 –
		Radio frequency devices
RSS-211	2015-03	Level Probing Radar Equipment
890966 D01 v01r01	2014-09	Measurement Procedure for Level Probing Radars

Reference	Version	Description
ANSI C63.4a-2017 -/-		American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic
		Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10-2020	-/-	American National Standard of Procedures for Compliance
ANSI C03.10-2020	-/-	Testing of Unlicensed Wireless Devices


© cetecom advanced GmbH Page 4 of 45

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

© cetecom advanced GmbH Page 5 of 45

5 Test environment

Temperature	·	T_{nom} T_{max} T_{min}	+22 °C during room temperature tests +50 °C during high temperature tests -20 °C during low temperature tests		
Relative humidity content			55 %		
Barometric pressure	•		not relevant for this kind of testing		
Power supply	:	V_{nom}	5.0 V DC USB IO-Link Master		

6 Test item

6.1 General description

Kind of test item	:	77-81 GHz Level Probing Radar
Model name:	:	Rosemount 408
S/N serial number	:	CTC_CMI #2
Hardware status	:	R2.1 enclosure with PMW board 7000007-772 rev AA (mw part of 408)
Software status	:	408_1A0_build_00205
HMN	:	-/-
PMN	:	Rosemount 408CC Wireless Level Sensor
HVIN	:	408CC
FVIN	:	-/-
Frequency band	:	77 GHz – 81 GHz
Type of modulation	:	FMCW
Number of channels	:	1
Number of transmission		5 per second (depending on IO-Link via USB)
cycles	:	o per second (depending on to Elink via Gob)
Antenna	:	Integrated lens antenna
Power supply	:	5.0 V DC USB IO-Link Master
Temperature range	:	-40°C to +85°C

6.2 Additional information

The TLPR works with a maximum output power < 2 dBm with an antenna gain of 28 dBi.

The maximum EIRP therefore is +30 dBm.

The receiver interferer level is -52.5 dBm as calculated by the manufacturer.

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-5786/23-01-01_AnnexA

1-5786/23-01-01_AnnexB

1-5786/23-01-01_AnnexC

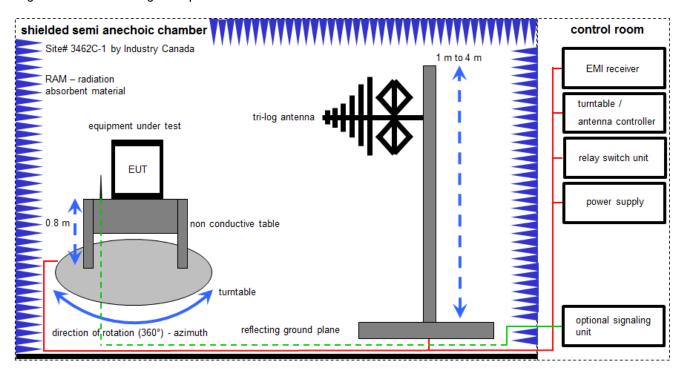
© cetecom advanced GmbH Page 6 of 45

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


k ne	calibration / calibrated not required (k, ev, izw, zw not required)	EK zw	limited calibration cyclical maintenance (external cyclical maintenance)
ev Ve vlkl!	periodic self verification long-term stability recognized Attention: extended calibration interval	izw g	internal cyclical maintenance blocked for accredited testing
NK!	Attention: extended calibration interval Attention: not calibrated	*)	next calibration ordered / currently in progress

© cetecom advanced GmbH Page 7 of 45

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

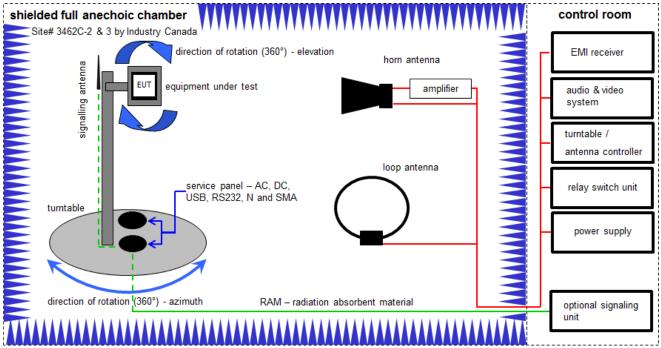
FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \(\mu V/m \))$

© cetecom advanced GmbH Page 8 of 45


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne	-/-	-/-
3	n. a.	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	-/-
4	n. a.	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	09.12.2022	31.12.2023
5	n. a.	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
6	n. a.	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
7	n. a.	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
8	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	01029	300005379	vlKl!	18.08.2021	31.08.2023
9	n. a.	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-

© cetecom advanced GmbH Page 9 of 45

7.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

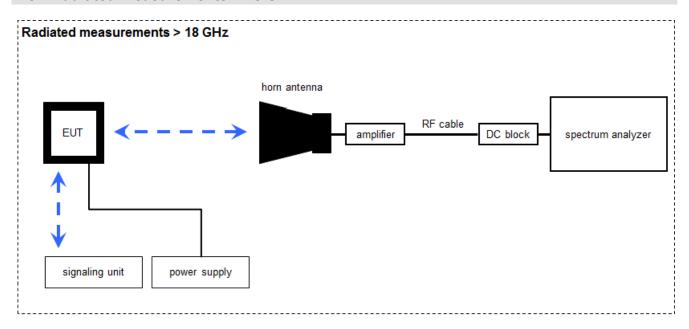
FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

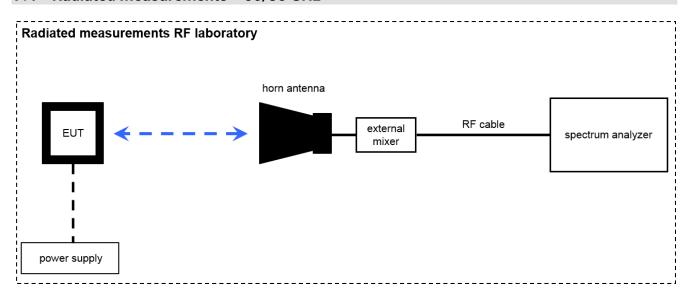
Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \(\mu V/m \))$

© cetecom advanced GmbH Page 10 of 45


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	vlKI!	09.12.2020	08.12.2023
2	n. a.	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKI!	01.07.2021	31.07.2023
3	n. a.	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
4	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	318	300003696	vlKI!	30.09.2021	29.09.2023
5	n. a.	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9709-5289	300000213	vlKI!	26.07.2022	25.07.2024
6	n. a.	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
7	n. a.	Variable isolating transformer	MPL IEC625 Bus Variable isolating transformer	Erfi	91350	300001155	ne	-/-	-/-
8	n. a.	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	07.12.2022	31.12.2023
9	n. a.	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
10	n. a.	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
11	n. a.	Broadband Amplifier 5-13 GHz	CBLU5135235	CERNEX	22010	300004491	ev	-/-	-/-
12	n. a.	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
13	n. a.	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO	_	300004682	ne	-/-	-/-
14	n. a.	PC	ExOne	F+W		300004703	ne	-/-	-/-
15	n. a.	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-


© cetecom advanced GmbH Page 11 of 45

7.3 Radiated measurements > 18 GHz

7.4 Radiated measurements > 50/85 GHz

OP = AV + D - G

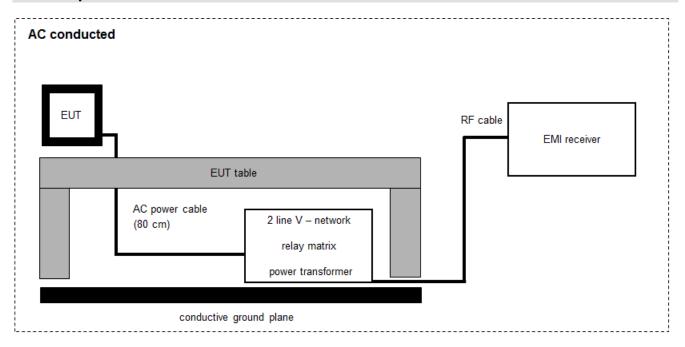
(OP-rad. output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain)

Example calculation:

OP [dBm] = -54.0 [dBm] + 64.0 [dB] - 20.0 [dBi] = -10 [dBm] (100 μ W)

Note: conversion loss of mixer is already included in analyzer value.

© cetecom advanced GmbH Page 12 of 45


Equipment table (radiated measurements in test lab):

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n.a.	Horn Antenna 18.0-40.0 GHz	LHAF180	Microw.Devel	39180-103-021	300001747	vIKI!	17.01.2022	31.01.2024
2	n. a.	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda		300000486	vlKI!	17.01.2022	31.01.2024
3	n. a.	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	82-16	300000510	vlKI!	17.01.2022	31.01.2024
4	n.a.	Std. Gain Horn Antenna 33.0-50.1 GHz	2324-20	Flann	57	400000683	ne	-/-	-/-
5	n. a.	Std. Gain Horn Antenna 49.9-75.8 GHz	2524-20	Flann	*	300001983	ne	-/-	-/-
6	n. a.	Std. Gain Horn Antenna 60-90 GHz	COR 60_90	Thomson CSF		300000814	ev	-/-	-/-
7	n. a.	Std. Gain Horn Antenna 73.8-112 GHz	2724-20	Flann	*	300001988	ne	-/-	-/-
8	n.a.	Std. Gain Horn Antenna 92.3-140 GHz	2824-20	Flann		300001993	ne	-/-	-/-
9	n. a.	Std. Gain Horn Antenna 114-173 GHz	2924-20	Flann	*	300001999	ne	-/-	-/-
10	n. a.	Std. Gain Horn Antenna 145-220 GHz	3024-20	Flann	*	300002000	ne	-/-	-/-
11	n. a.	Broadband LNA 18-50 GHz	CBL18503070PN	CERNEX	25240	300004948	ev	09.03.2022	08.03.2024
12	n. a.	Harmonic Mixer 3-Port, 50-75 GHz	FS-Z75	Rohde & Schwarz	101578	300005788	k	07.07.2022	31.07.2023
13	n. a.	Harmonic Mixer 3-Port, 60-90 GHz	FS-Z90	Rohde & Schwarz	102152	300006202	k	21.07.2022	31.07.2023
14	n. a.	Harmonic Mixer 3-Port, 75-110 GHz	FS-Z110	Rohde & Schwarz	101411	300004959	k	07.07.2022	31.07.2023
15	n.a.	Harmonic Mixer 3-port, 90-140 GHz	FS-Z140	Rohde & Schwarz	101119	300005581	k	20.07.2022	31.07.2023
16	n.a.	Harmonic Mixer 3-port, 110-170 GHz	FS-Z170	Rohde & Schwarz	100014	300004156	k	20.07.2022	31.07.2023
17	n. a.	Harmonic Mixer 3-Port, 140-220 GHz	SAM-220	Radiometer Physics GmbH	200001	300004157	k	01.07.2022	31.07.2023
18	n.a.	Spectrum Analyzer 2 Hz - 85 GHz	FSW85	R&S	101333	300005568	k	21.07.2022	31.07.2023
19	n. a.	Temperature Test Chamber	VT4002	Heraeus Voetsch	521/83761	300002326	ev	12.05.2022	31.05.2024
20	n.a.	Std. Gain Horn Antenna 50-75 GHz	COR 50_75	Thomson CSF		300000813	ev	-/-	-/-

© cetecom advanced GmbH Page 13 of 45

7.5 AC power-line conducted emissions

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:

FS $[dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 <math>\mu V/m$)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	-/-	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	892475/017	300002209	vIKI!	14.12.2021	31.12.2023
2	-/-	RF-Filter-section	85420E	HP	3427A00162	300002214	NK!	-/-	-/-
3	-/-	EMI Test Receiver	ESCI 3	R&S	101240	300004427	k	14.12.2022	31.12.2023
4	-/-	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	-/-	-/-

© cetecom advanced GmbH Page 14 of 45

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© cetecom advanced GmbH Page 15 of 45

^{*)} Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© cetecom advanced GmbH Page 16 of 45

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© cetecom advanced GmbH Page 17 of 45

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© cetecom advanced GmbH Page 18 of 45

8.5 Sequence of testing radiated spurious above 50/85 GHz with external mixers

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate for far field (e.g. 0.25 m).
- The EUT is set into operation.

Premeasurement

- The test antenna with external mixer is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.
- Caution is taken to reduce the possible overloading of the external mixer.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- As external mixers may generate false images care is taken to ensure that any emission measured by the spectrum analyzer does indeed originate in the EUT. Signal identification feature of spectrum analyzer is used to eliminate false mixer images (i.e., it is not the fundamental emission or a harmonic falling precisely at the measured frequency).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© cetecom advanced GmbH Page 19 of 45

Measurement uncertainty

Test case	Uncertainty
Equivalent isotropically radiated power (e.i.r.p.)	Conducted value ± 1 dB Radiated value ± 3 dB
Permitted range of operating frequencies	± 100 kHz
Conducted unwanted emissions in the spurious domain (up to 40 GHz)	± 1 dB
Radiated unwanted emissions in the spurious domain (up to 40 GHz)	± 3 dB
Conducted unwanted emissions in the spurious domain (40 to 50 GHz)	± 4 dB
Radiated unwanted emissions in the spurious domain (40 to 50 GHz)	± 4 dB
Conducted unwanted emissions in the spurious domain (50 to 300 GHz)	± 5 dB
Radiated unwanted emissions in the spurious domain (50 to 300 GHz)	± 5 dB
DC and low frequency voltages	± 3 %
Temperature	±1°C
Humidity	± 3 %

Far field consideration for measurements above 18 GHz

Far field distance calculation:

 $D_{ff} = 2 \times D^2/\lambda$

with

Far field distance D_{ff} Antenna dimension D

λ wavelength

Spurious emission measurements:

Antenna frequency range in GHz	Highest measured frequency in GHz	D in cm	λ in cm	D _{ff} in cm
18-26	26	3.4	1.15	20.04
26-40	40	2.2	0.75	12.91
40-50	50	2.77	0.60	25.58
50-75	75	1.85	0.40	17.11
75-110	110	1.24	0.27	11.28
90-140	140	1.02	0.22	9.72
110-170	170	0.85	0.18	8.19
140-220	220	0.68	0.14	6.78
220-325	325	0.43	0.09	4.01
325-500	500	0.26	0.06	2.22

© cetecom advanced GmbH Page 20 of 45

11 Summary of measurement results

×	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC identifier	Description	verdict	date	Remark
RF-Testing	47 CFR Part 15 / RSS-211	see below	2025-07-01	-/-

Test Specification Clause	Test Case	Temperature Conditions	Power Source Voltages	С	NC	NA	NP	Results (max.)
§15.215(c)	Frequency stability	Nominal Extreme	Nominal Extreme	\boxtimes				complies
§15.256(f) RSS-211, 2.4	Fundamental bandwidth	Nominal	Nominal					complies
§15.256(g) RSS-211,5.2b	Fundamental emissions limits	Nominal	Nominal					complies
§15.256(h) RSS-211,5.1d	Unwanted emissions limit	Nominal	Nominal					complies
§15.256(i)(B) RSS-211,5.2a	Antenna beamwidth	Nominal	Nominal					complies
§15.256(j) RSS-211,5.2c	Antenna side lobe gain	Nominal	Nominal	\boxtimes				complies
§15.256(k) RSS-Gen, 7.1	Emissions from digital circuitry	Nominal	Nominal	\boxtimes				complies
§15.107/207 RSS-Gen, 8.8	Conducted limits	Nominal	Nominal	\boxtimes				complies

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

© cetecom advanced GmbH Page 21 of 45

12 Summary of measurement results

12.1 Frequency stability and fundamental bandwidth

Description:

§15.215(c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

§15.256(f) The fundamental bandwidth of an LPR emission is defined as the width of the signal between two points, one below and one above the center frequency, outside of which all emissions are attenuated by at least 10 dB relative to the maximum transmitter output power when measured in an equivalent resolution bandwidth.

Measurement:

 f_C is the point in the radiation where the power is at maximum. The frequency points where the power falls 10 dB below the f_C level and above f_C level are designated as f_L and f_H respectively. The operating frequency range (i.e. the frequency band of operation) is defined as $f_H - f_L$.

Measurement parameters:

Resolution bandwidth: 1 MHz
Video bandwidth: ≥1 MHz
Detector: Pos-Peak
Trace: Max hold

Limits:

As specified in Section 15.215(c), the bandwidth of the fundamental emission must be contained within the frequency band over the temperature range -20 to +50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage. Frequency stability is to be measured according to Section 2.1055 at the highest and lowest frequency of operation and with the modulation that produces the widest emission bandwidth.

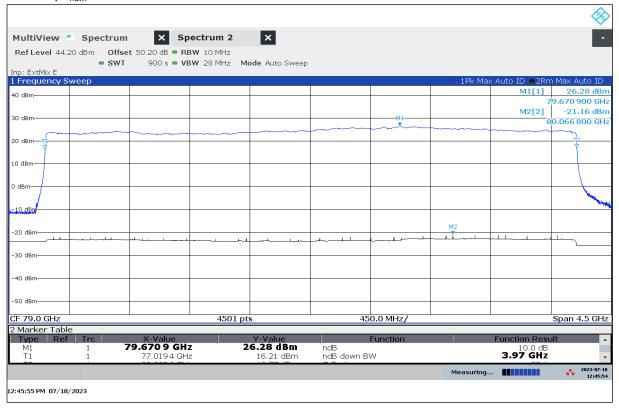
§15.256(f)(1) The minimum fundamental emission bandwidth shall be 50 MHz for LPR operation under the provisions of this section.

§15.256(f)(2) LPR devices operating under this section must confine their fundamental emission bandwidth within the 5.925-7.250 GHz, 24.05-29.00 GHz, and 75-85 GHz bands under all conditions of operation.

Same requirements for fundamental emission bandwidth are given in RSS-211, 2.4 and 5.1.a)

© cetecom advanced GmbH Page 22 of 45

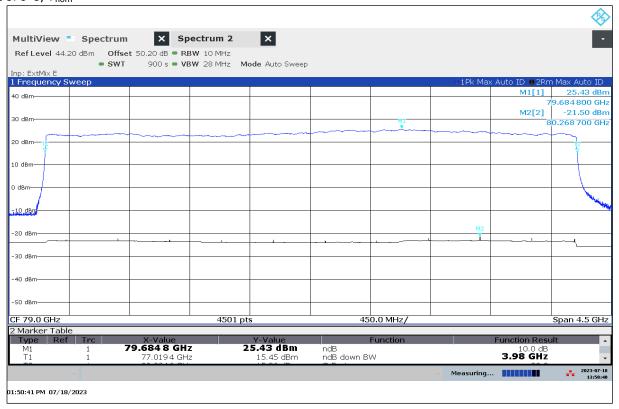
Results:


Test Conditions	Transmitter F	10 dB bandwidth (GHz)	
	f _L	f _H	
-20 °C / V _{nom}	77.019 400	80.989 400	3.97
-10 °C / V _{nom}	77.019 400	80.989 400	3.97
0 °C / V _{nom}	77.019 400	80.999 400	3.98
10 °C / V _{nom}	77.019 400	80.989 400	3.97
20 °C / V _{min} - V _{max}	77.017 400	80.987 400	3.97
30 °C / V _{nom}	77.018 400	80.988 400	3.97
40 °C / V _{nom}	77.017 400	80.987 400	3.97
50 °C / V _{nom}	77.018 400	80.988 400	3.97

Voltage variation does not affect the radiated signal

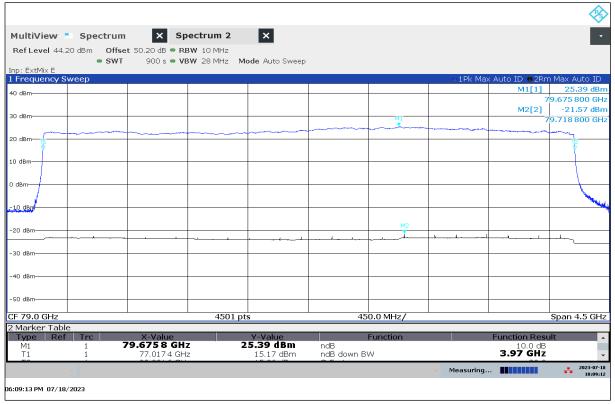
© cetecom advanced GmbH Page 23 of 45

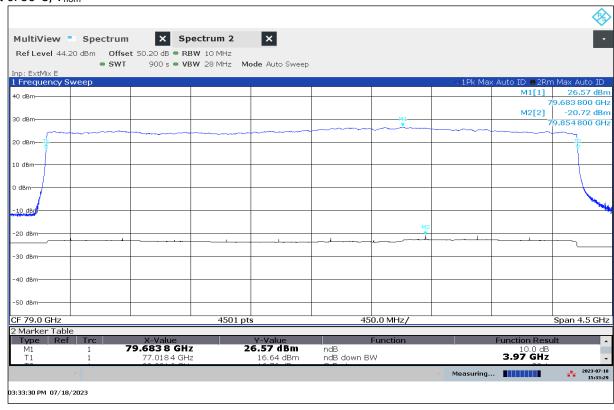
Plot 1: - 20°C, V_{nom}


Plot 2: - 10°C, V_{nom}

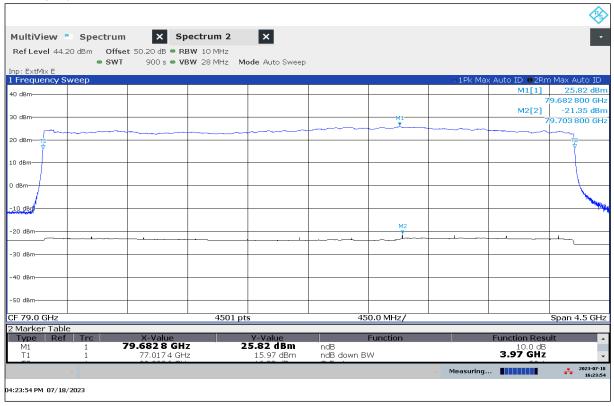
© cetecom advanced GmbH Page 24 of 45

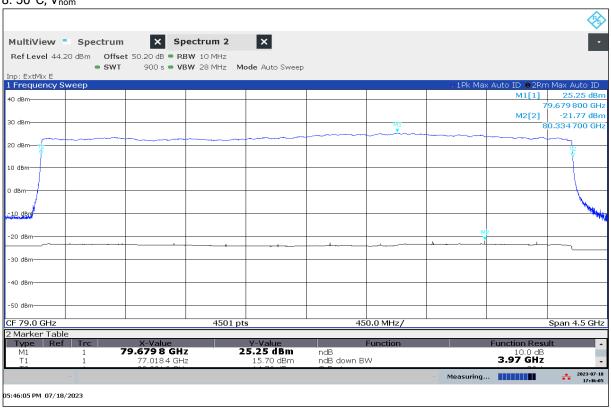
Plot 3: 0°C, V_{nom}


Plot 4: 10°C, V_{nom}


© cetecom advanced GmbH Page 25 of 45

Plot 5: 20°C, V_{min-max}


Plot 6: 30°C, V_{nom}


© cetecom advanced GmbH Page 26 of 45

Plot 7: 40°C, V_{nom}

Plot 8: 50°C, V_{nom}

© cetecom advanced GmbH Page 27 of 45

12.2 Fundamental emissions

Description:

RSS-211, 5.2 (b)

§15.256(f)

The fundamental bandwidth of an LPR emission is defined as the width of the signal between two points, one below and one above the center frequency, outside of which all emissions are attenuated by at least 10 dB relative to the maximum transmitter output power when measured in an equivalent resolution bandwidth.

- (1) The minimum fundamental emission bandwidth shall be 50 MHz for LPR operation under the provisions of this section.
- (2) LPR devices operating under this section must confine their fundamental emission bandwidth within the 5.925-7.250 GHz, 24.05-29.00 GHz, and 75-85 GHz bands under all conditions of operation.

§15.256(g) Fundamental emissions limits.

- (1) All emission limits provided in this section are expressed in terms of Equivalent Isotropic Radiated Power (EIRP).
- (2) The EIRP level is to be determined from the maximum measured power within a specified bandwidth.
- (i) The EIRP in 1 MHz is computed from the maximum power level measured within any 1 MHz bandwidth using a power averaging detector;
- (ii) The EIRP in 50 MHz is computed from the maximum power level measured with a peak detector in a 50-MHz bandwidth centered on the frequency at which the maximum average power level is realized and this 50 MHz bandwidth must be contained within the authorized operating bandwidth. For a RBW less than 50 MHz, the peak EIRP limit (in dBm) is reduced by 20 log(RBW/50) dB where RBW is the resolution bandwidth in megahertz. The RBW shall not be lower than 1 MHz or greater than 50 MHz. The video bandwidth of the measurement instrument shall not be less than the RBW. If the RBW is greater than 3 MHz, the application for certification filed shall contain a detailed description of the test procedure, calibration of the test setup, and the instrumentation employed in the testing.
- (3) The EIRP limits for LPR operations in the bands authorized by this rule section are provided in Table below. The emission limits in Table below are based on boresight measurements (i.e., measurements performed within the main beam of an LPR antenna).

Limits:

Frequency range	Average emission limit	Peak emission limit
(GHz)	(EIRP in dBm / 1 MHz)	(EIRP in dBm / 50 MHz)
75.00 to 85.00	-3	+34 dBm

Same requirements are given in RSS-211, 5.2 (b)

Note:

- 1. The minimum bandwidth at the -10 dB point is 50 MHz.
- 2. All emission limits defined herein are based on boresight measurements (i.e., measurements performed within the main beam of an LPR antenna).

© cetecom advanced GmbH Page 28 of 45

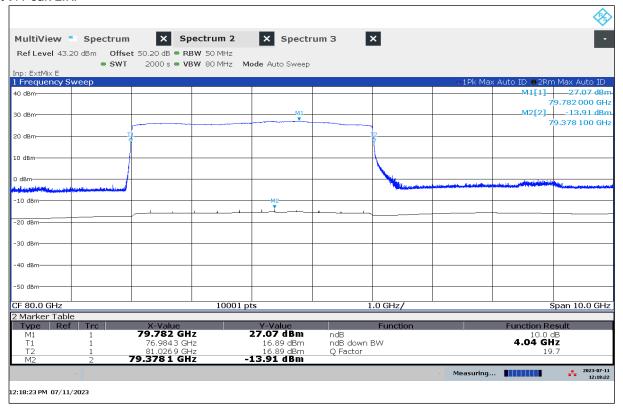
Measurement parameters:

Resolution bandwidth: 1 MHz Video bandwidth: ≥1 MHz

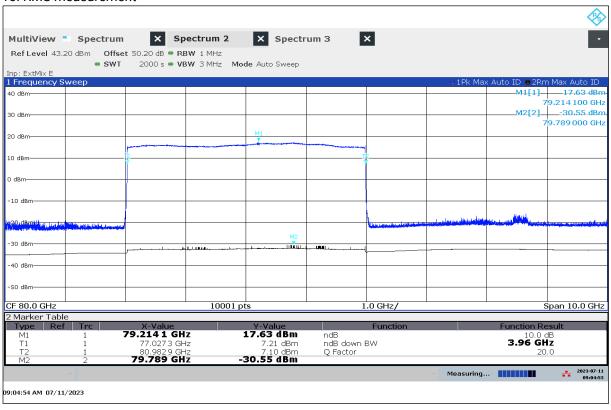
Span: depends on DUT

Detector: Pos-Peak Trace: Max hold

Results:


Mode	Equivalent isotropically radiated power (EIRP)		
Wiode	Average EIRP in dBm/1MHz	Peak EIRP in dBm/50MHz	
Normal	-30.55	27.07	

N10dB Bandwidth = 3.96 GHz


© cetecom advanced GmbH Page 29 of 45

Plot 9: Peak EIRP

Plot 10: RMS measurement

© cetecom advanced GmbH Page 30 of 45

12.3 Antenna Beamwidth and Side Lobe Gain

Description:

§15.256(i) (B) RSS-211 5.2 (a)

LPR devices operating under the provisions of this section within the 75-85 GHz band must use an antenna with a -3 dB beamwidth no greater than 8 degrees.

§15.256(j) RSS-211 5.2 (c)

LPR devices must limit the antenna side lobe gain relative to the main beam gain for off-axis angles from the main beam of greater than 60° for the levels provided in Table below.

Frequency band (GHz)	Antenna Side Lobe Gain Limit relative to Main Beam Gain [dB]
5.65 - 8.50	-22
24.05 - 29.00z	-27
75 – 85	-38

Results:

Antenna type	Maximum gain	Maximum 3 dB beam width	Maximum side lobe level > 60°
40 mm convex lens	28 dBi	8	-38 dBc

Note: Refer to manufacturer's documentation "Document ID: CTO-MI-0010 dated 2023-07-14" for details.

© cetecom advanced GmbH Page 31 of 45

 Document owner
 Document type
 Info class
 Created

 PM/Memo
 I
 2023-07-14

 Authors
 Document ID
 Version
 Page

 EEM-AJ Anders Jirskog/Ji
 CTP-MI-0010
 1
 6(7)

3.2 The antenna diagram for LPR

The 408 antenna is a planoconvex hyperbolic PE lens antenna illuminated by a small horn. A lossy cone is used to reduce side-lobes.

Simulations showed that the antenna reaches both the 8° HPBW and -38 dBc for angles >60° requirements (see figure 2 below).

The directivity of this antenna is 28 dBi @79 GHz.

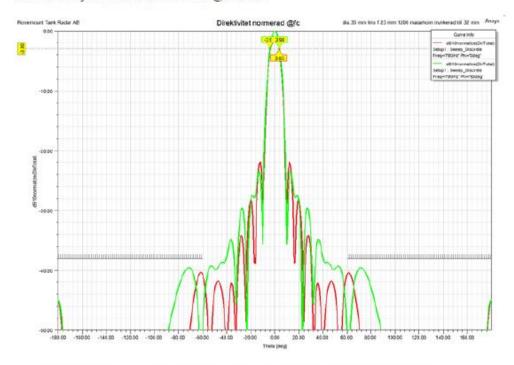


Figure 2 Directivity diagram for 408 antenna. 3 dB lobe width < 8° and SLL<-38 dBc at angles >+- 60°.

© cetecom advanced GmbH Page 32 of 45

12.4 Unwanted emissions limit

Description:

§15.256(h)

Unwanted emissions from LPR devices shall not exceed the general emission limit in §15.209 of this chapter.

Measurement parameters:

Resolution bandwidth: 120 kHz / 1 MHz

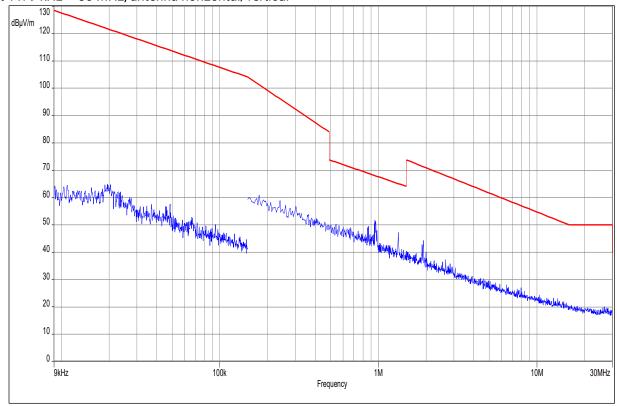
Video bandwidth: ≥ resolution bandwidth

Detector: Quasi Peak / Average (RMS)

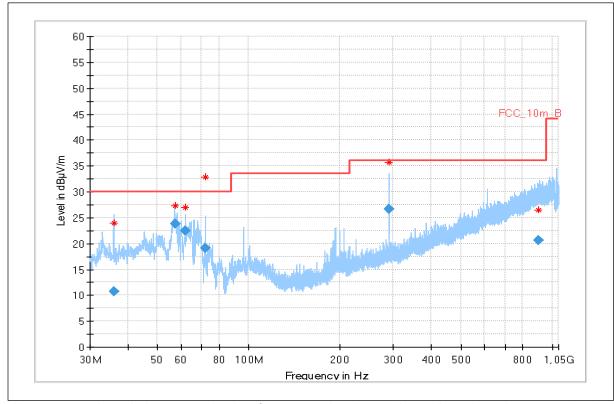
Trace: Max hold

Limits:

	FCC §15.209 / RSS-Gen					
Fi	Field strength of the harmonics and spurious.					
Frequency (MHz) Field strength (µV/m) Measurement distance						
0.009 - 0.490	2400/F(kHz)	300				
0.490 - 1.705	24000/F(kHz)	30				
1.705 – 30	30 (29.5 dBμV/m)	30				
30 – 88	100 (40 dBμV/m)	3				
88 – 216	150 (43.5 dBμV/m)	3				
216 - 960	200 (46 dBμV/m)	3				
>960	500 (54 dBμV/m)	3				

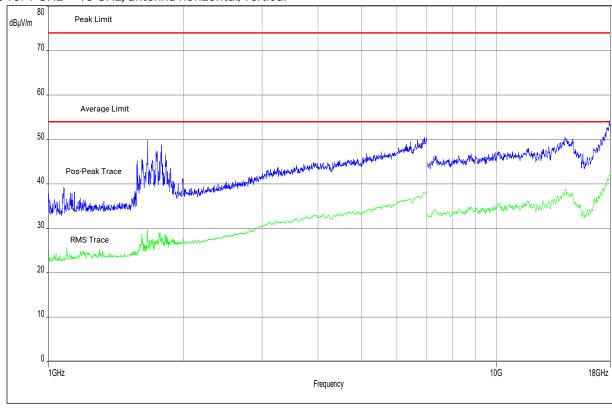

Measurement results:

Frequency in [GHz]	Detector	Bandwidth [MHz]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]
38	Peak	1	58.2	74	15.8
38	AVG	1	29.6	54	24.4

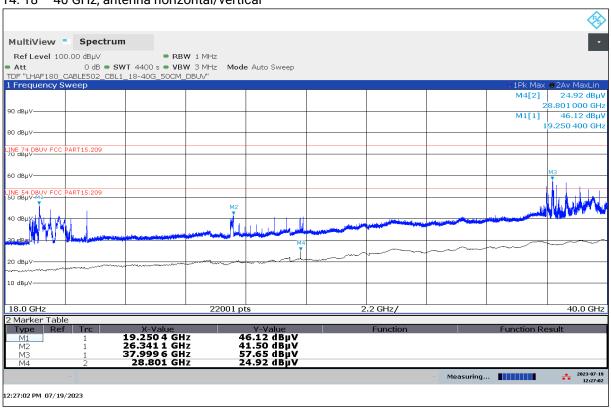

© cetecom advanced GmbH Page 33 of 45

Plot 11: 9 kHz - 30 MHz, antenna horizontal/vertical

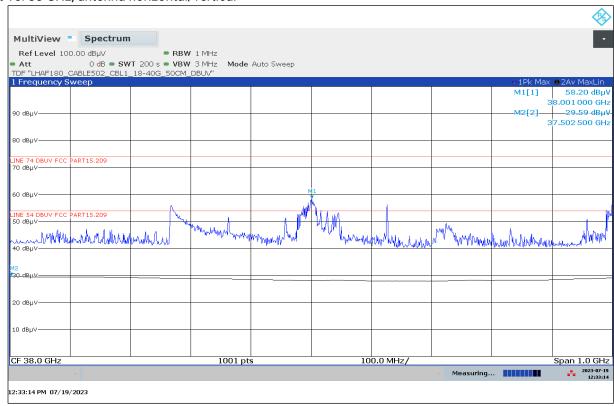
Plot 12: 30 MHz - 1 GHz, antenna horizontal/vertical

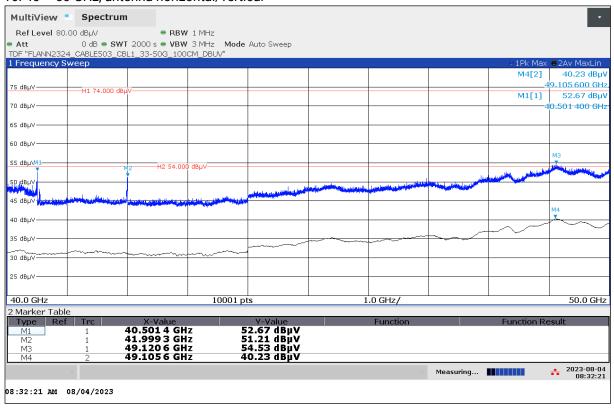


Red stars are with peak detector and only informative. Blue diamonds are the right and quasi-peak values.


© cetecom advanced GmbH Page 34 of 45

Plot 13: 1 GHz - 18 GHz, antenna horizontal/vertical

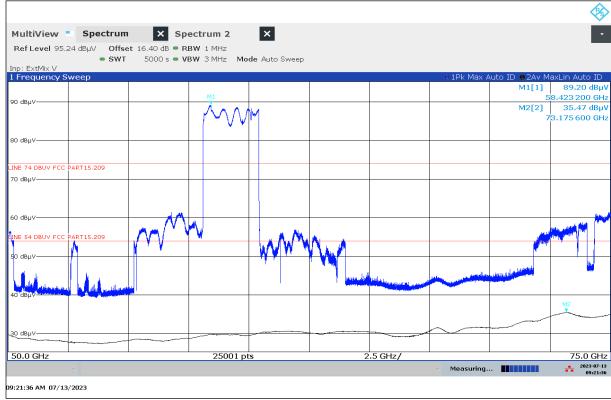

Plot 14: 18 - 40 GHz, antenna horizontal/vertical


© cetecom advanced GmbH Page 35 of 45

Plot 15: 38 GHz, antenna horizontal/vertical

Plot 16: 40 - 50 GHz, antenna horizontal/vertical

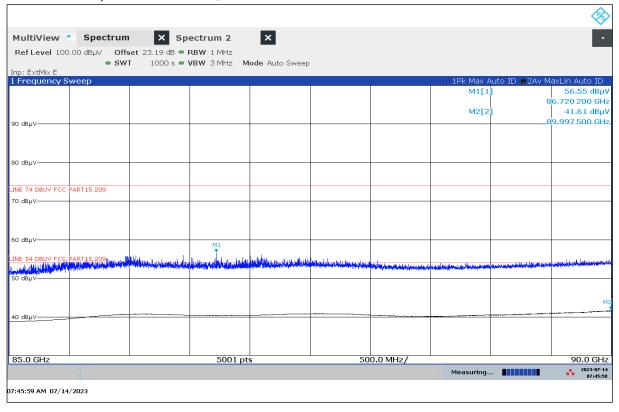
© cetecom advanced GmbH Page 36 of 45



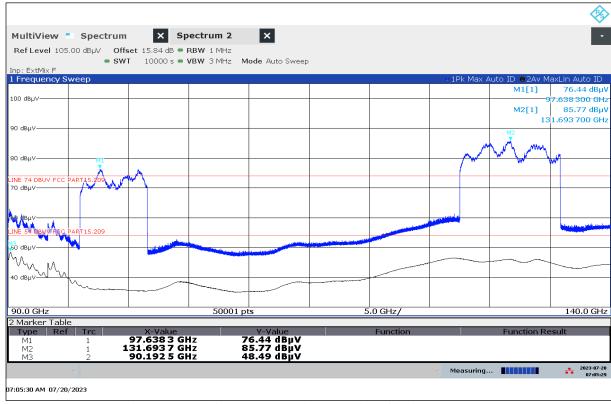
Plot 17: 50 - 75 GHz, antenna horizontal/vertical, Peak Markers

Markers M1, M2, M3, M4 show mixer products produced by harmonic mixer.

Plot 18: 50 - 75 GHz, antenna horizontal/vertical, Average Markers

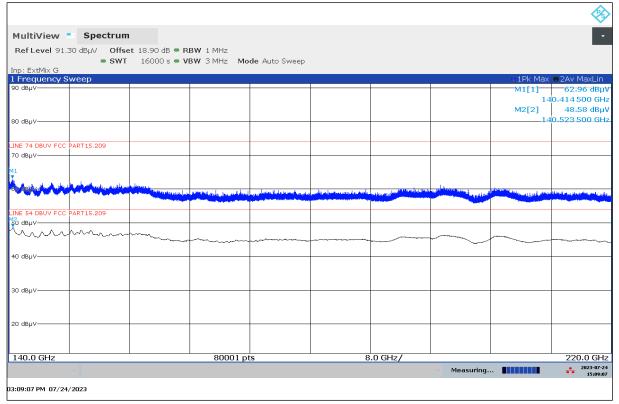


Marker M1 shows mixer products produced by harmonic mixer.


© cetecom advanced GmbH Page 37 of 45

Plot 19: 85 - 90 GHz, antenna horizontal/vertical

Plot 20: 90 - 140 GHz, antenna horizontal/vertical



Markers M1, M2 show mixer products produced by harmonic mixer.

© cetecom advanced GmbH Page 38 of 45

Plot 21: 140 - 220 GHz, antenna horizontal/vertical

© cetecom advanced GmbH Page 39 of 45

12.5 Unwanted emission limits (receiver)

Description:

§15.109

(a) Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values shown in table below.

Measurement:

Measurement parameter			
Detector:	Quasi Peak / Average (RMS)		
Sweep time:	Auto		
Resolution bandwidth:	100 kHz / 1 MHz		
Video bandwidth:	> RBW		
Trace-Mode:	Max-Hold		

Limits:

FCC §15.109				
Field strength of the harmonics and spurious.				
Frequency (MHz)	Frequency (MHz) Field strength (µV/m)			
30 – 88	100 (40 dBμV/m)	3		
88 – 216	150 (43.5 dBµV/m)	3		
216 – 960	200 (46 dBμV/m)	3		
>960	500 (54 dBμV/m)	3		

Results: See 12.1 Unwanted emissions limit (transmitter).

© cetecom advanced GmbH Page 40 of 45

12.6 Spurious emissions conducted < 30 MHz (AC power line)

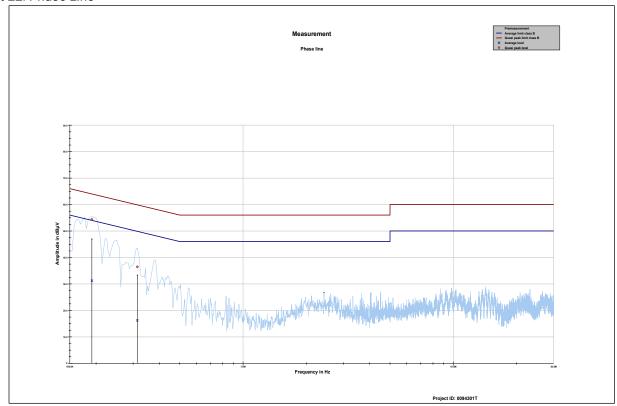
Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

Measurement:

Measurement parameter				
Detector:	Peak - Quasi Peak / Average			
Sweep time:	Auto			
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz			
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz			
Span:	9 kHz to 30 MHz			
Trace-Mode:	Max Hold			

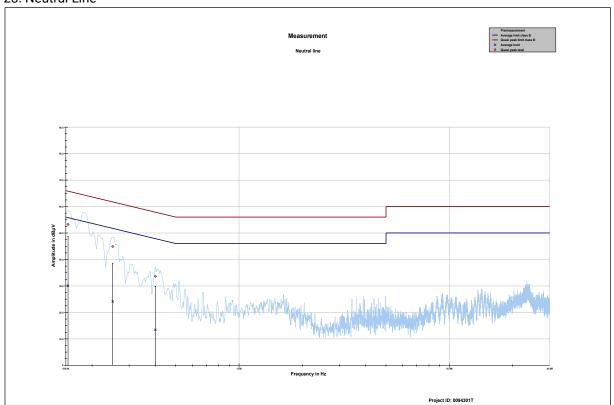
Limits:


FCC	IC				
CFR Part 15.107 / 15.207(a)		RSS-Gen 8.8		3	
Conducted Spurious Emissions < 30 MHz					
Frequency (MHz)	Quasi-Peak (dBµV/m)		Avera	ge (dBµV/m)	
0.15 - 0.5	79 (Class A) 66 to 56* (Class B)			(Class A) 46* (Class B)	
0.5 - 5	73 (Class A) 56 (Class B)			(Class A) (Class B)	
5 - 30.0	73 (Class A) 60 (Class B)			(Class A) (Class B)	

^{*}Decreases with the logarithm of the frequency

© cetecom advanced GmbH Page 41 of 45

Plot 22: Phase Line



Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.191044	54.35	9.64	63.991	31.23	23.59	54.827
0.314175	36.46	23.40	59.859	16.21	35.10	51.309

© cetecom advanced GmbH Page 42 of 45

Plot 23: Neutral Line

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin Average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.153731	53.26	12.54	65.796	30.06	25.83	55.893
0.250744	44.93	16.80	61.732	24.11	29.01	53.122
0.399994	33.64	24.22	57.854	13.39	35.47	48.857

© cetecom advanced GmbH Page 43 of 45

13 Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
ОС	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
ООВ	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz

© cetecom advanced GmbH Page 44 of 45

14 Document history

Version	Applied changes	Date of release
-/-	Initial release - DRAFT	2023-08-04
-/-	Initial release	2025-01-29
В	Chapter 12.3 added, editorial changes, PMN adjusted	2025-07-01

© cetecom advanced GmbH Page 45 of 45