

Radicom Research, Inc.

Designer's Guide for the

WiFiHU52

(USB WiFi Adapter Series)

WiFiHU52M-a

WiFiHU52M-c

RoHS Compliant

Sep 20, 2024

Table of Contents

Table of Contents	2
List of Tables.....	3
Introduction to the WiFiHU52 to USB Products	4
Features	4
Approvals	5
WiFiHU52 Ratings	6
Physical Description	7
Ordering Information	8
Connecting the WiFiHU52 or WiFiHU52-NE1(-a/-c) to Your System	9
WiFiHU52M(-a/-c) Mechanical Diagram and Pin Define.....	10
WiFiHU52 Regulatory Domain Channels	11
WiFiHU52 USB Quick Start Guide.....	12
1. For Windows 7 system	12
2. For Windows 10 system	14
3. For Windows 11 system.....	17
4. For Linux system	21
WiFiHU52 USB Linux SoftAP Installation.....	23
1. Install DHCP Server	24
2. Install hostapd.....	26
3. IP forwarding setup.....	27
4. Connection test	27
WiFiHU52 Quick Test Guide.....	29
1. For Windows system	29
2. For Linux system	31
FCC, IC, and CE Label Location and Module Model Identification.....	33
Important Regulatory Compliance and User Information	34
End User Information	36
FCC RF Radiation Exposure Statement	37
CE Declaration of Conformity	40
Limited Warranty	41
Contacting Radicom Research	43

List of Tables

Table 1	Ratings table.....	6
Table 2	Physical specification table	7
Table 3	Product information table.....	8

Information furnished by Radicom Research is believed to be accurate and reliable. However Radicom Research assumes no responsibility for its use, or any infringement of patents or other rights of third parties that may result from its use. Radicom Research reserves the right to change circuitry at any time without notice. This document is subject to change without notice.

Introduction to the WiFiHU52 to USB Products

The Radicom Research WiFiHU52 series is a secure WiFi module that easily adds connectivity to virtually any processor-based device. The module is IEEE802.11 b/g/n/ac™ 1T1R WLAN with USB 2.0 interface.

With reliable transmissions, this USB Wireless Ethernet (WLAN) device has extended transmission and receiving ranges with good minimum sensitivity. For legacy compatibility, Direct Sequence Spread Spectrum (DSSS), Complementary Code Keying (CCK) and OFDM baseband processing are included to support all IEEE 802.11a, 802.11b and 802.11g data rates. The compatible coding rate of 1/2, 2/3, 3/4, and 5/6 provides up to 433.3Mbps.

The WiFiHU52 family supports fast receiver Automatic Gain Control (AGC) with synchronous and asynchronous control loops among antennas, antenna diversity functions, and adaptive transmit power control functions to obtain better performance in the analog portions of the transceiver.

The WiFiHU52 series feature Soft AP support. It can turn your Internet connected PC or Laptop into a WiFi Wireless Access Point. So any nearby WiFi devices such as iPhone, iPod, PDA, can connect to the Internet through your sharing.

The WiFiHU52 protects the host with compliance of WPA/WEP/WEP2 security protocols. The module is power efficient.

Features

- Designed to meet IEEE 802.11a/b/g/n/ac compatible WLAN
- Extended temperature available
- Support 2.4GHz and 5Ghz band channels
- Support 802.11ac 1x1, Wave-2 compliant
- Maximum PHY data rate up to 86.7Mbps using 20MHz bandwidth, 200Mbps using 40MHz bandwidth, and 433.3Mbps using 80MHz bandwidth.
- Backward compatible with 802.11a/b/g devices while operating at 802.11n data rates
- Backward compatible with 802.11a/n devices while operating at 802.11ac data rates.
- USB 2.0 hot swappable interface
- Compatible with USB2.0 host controllers
- Fast receiver Automatic Gain Control (AGC)
- WiFi security using WEP, WPA and WPA2

- 2 U.FL TX/RX antenna ports
- Use carry board to support single antenna
- LED output for visual monitoring of link and activity
- Support Windows Win7. Win10. Win11
- Support Linux

Approvals

- FCC/IC/CE certified (pending)
- SAR(pending)
- RoHS 3 Compliant

We have done WiFi-related certification. If the customer uses the Bluetooth part by himself, it may involve violation of local and SIG laws and regulations. Radicom will not be responsible for it and will be excluded from the warranty

WiFiHU52 Ratings

Ratings @ 25° C

Table 1 Ratings table

Parameter	Min	Typical	Max	Units
Operating Temperature	-40	-	85	°C
Relative Humidity (non-condensing)	5	-	95	%
USB Voltage Requirement	4.75	5	5.25	VDC
Power Consumption	395(2.4G/5G)	420(ac)		mW
Current Consumption	79(2.4G/5G)	84(ac)		mA

Physical Description

Table 2 Physical specification table

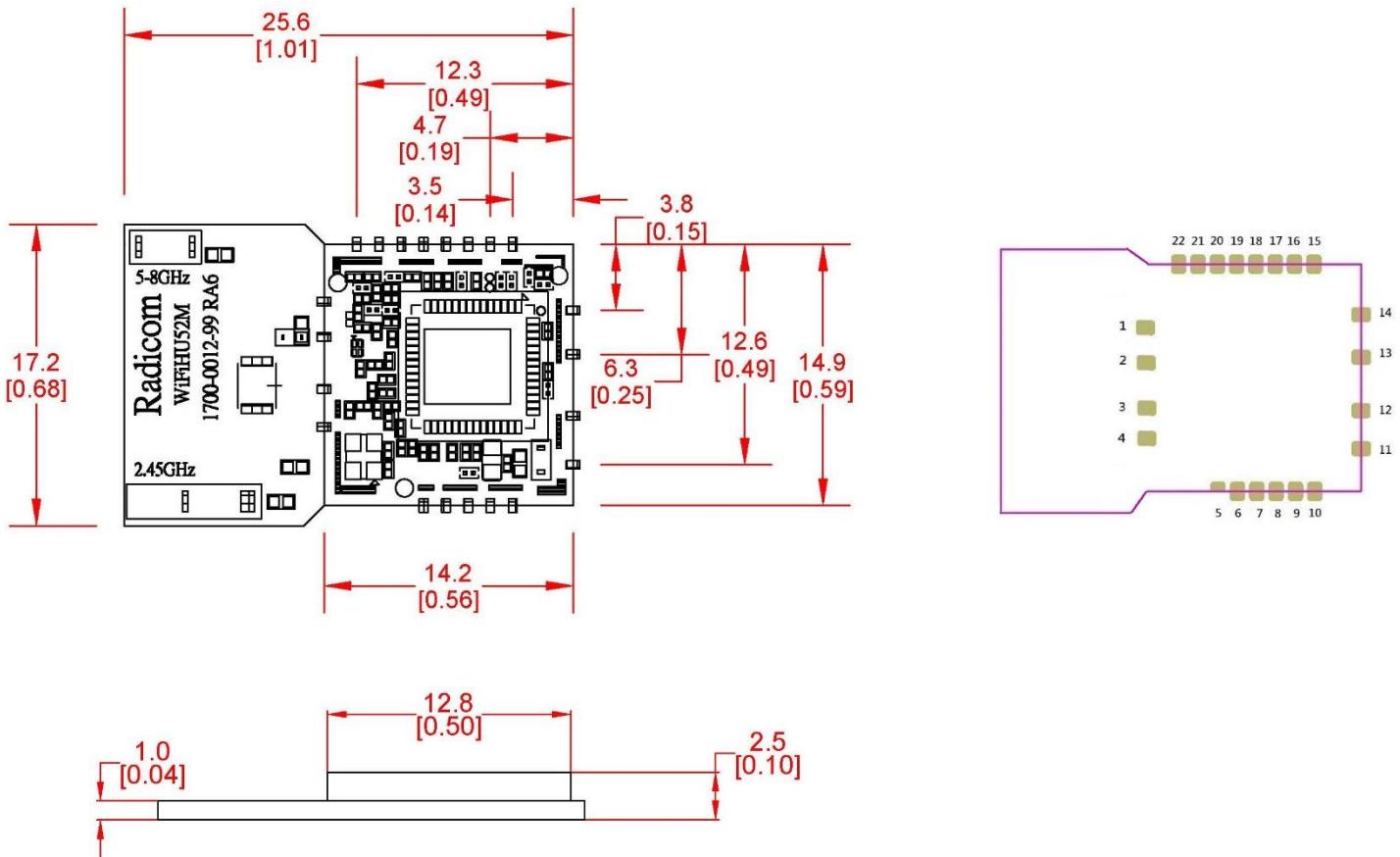
WiFiHU52M-a Module Size & Weight	0.68 " x 1.01 " x 0.10" (17.2 x 25.6 x 2.5 mm) 1.48g
WiFiHU52M-c Module Size & Weight	0.68 " x 1.01 " x 0.10" (17.2 x 25.6 x 2.5 mm) 1.44g

Ordering Information

Table 3 Product information table

Model Number	Description
 WiFiHU52M-a	<p>Module with Ethernet and USB interface.</p> <p>Models:</p> <p>WiFiHU52M-a : WiFi SMD Module with dual on board chip antennas.</p> <p>WiFiHU52M-c : WiFi SMD Module with one U.FL Connectors for attaching antenna cables and 2.4G/5GHz Omni-directional antennas.</p>
 WiFiHU52M-	
 AC6i-RP-SMA	<p>Accessories - 6" U.FL. to RP-SMA female connector antenna cable.</p>
 ATN-RP-SMA	<p>Accessories - Replacement antenna, 2.4GHz 2.6dBi, 5GHz 3.29dBi RP-SMA.</p>

Connecting the WiFiHU52 or WiFiHU52-NE1(-a/-c) to Your System


Prior to connecting the WiFiHU52 to a Windows, the drivers should be installed. The WiFiHU52 Modules are designed for easy connection to any standard USB Port and wireless network. Connect one end of the USB cable into the USB connector on the WiFiHU52-NE1(-a/-c) and the other into any available USB receptacle on your computer. The WiFiHU52-NE1(-a/-c)'s "Hot Swap-able" interface allows you to plug or unplug the module even when the computer is on. If using Windows, load the provided drivers. The WiFiHU52-NE1(-a/-c) is now ready for use.

If you plan to embed the WiFiHU52 into your system, the initial evaluation consists of the WiFiHU52 USB Module mounted onto a USB hub PCB (WiFiHU52-NE1(-a/-c)). To remove the WiFiHU52 carefully remove it from the two 8 pin headers on the WiFiHU52-NE1(-a/-c) USB interface board. Save this interface board. The WiFiHU52 can always be reinstalled into the WiFiHU52-NE1(-a/-c) USB interface board and connected to any standard USB port to verify or test the module functions.

If you use external antenna, connect one end of Radicom approved antenna to the on board socket.

WiFiHU52M(-a/-c) Mechanical Diagram and Pin Define

TopView: Unit: mm [inch]

Pin Assignment

Pin #	Pin Name	Pin #	Pin Name
1	GND	12	USB_DM
2	RF_0	13	USB_DP
3	RF_1	14	GND
4	GND	15	3DD_SYNC
5	NC	16	WL_DIS
6	NC	17	Reserved pin
7	NC	18	CHIP_EN
8	VIN1.0	19	HOST_WAKE_WL
9	Reserved pin	20	WL_WAKE_HOST
10	Reserved pin	21	WPS
11	VIN3.3	22	LED

WiFiHU52 Regulatory Domain Channels

Country		Channels	
2G	5G	2G	5G
US 2G	US_5G	1~11	36~48,149~165
Worldwide 13	Europe 5G	1~13	36~48
Japan 2G	Japan 5G	1~13,14	36~48
Worldwide 13	Korea 5G	1~13	36~48, 149~165
Worldwide 13	US w/o DFS Channels	1~13	36~48, 149~165
Worldwide 13	India, Mexico	1~13	36~48, 52~64,149~165
Worldwide 13	Venezuela	1~13	36~48, 52~64,149~161
Worldwide 13	China	1~13	149~165
Worldwide 13	Israel	1~13	36~48, 52~64
US 2G	US/Canada	1~11	36~48,149~165
Worldwide 13	Australia, New Zealand	1~13	36~48, 149~165
Worldwide 13	Russia	1~13	36~48, 149~165
Japan 2G	Japan(W52,W53)	1~13,14	36~48, 52~64
US 2G	Taiwan	1~11	149~165
US 2G	Taiwan w/o DFS	1~11	149~165
Global domain	5G_NULL	1~13	NA
Europe 2G	Europe 5G w/o DFS	1~13	36~48
US 2G	US w/o DFS	1~11	36~48, 149~165
US 2G	Taiwan 5G w/o DFS, band4 only	1~11	149~165
Worldwide 13	Australia, New Zealand	Ch1~13	Ch36~48, Ch149~165 (o/w Weather radar)
US 2G	Latin America	1~11	Ch149~161
Worldwide 13	US_5G	1~13	36~48, 149~165

WiFiHU52 USB Quick Start Guide

This chapter is shown how to quick start WiFiHU52 under Windows and Linux system. WiFiHU52 supports WiFi (2.4G, 5G). Under Windows 7, user needs to manual install WiFi driver. Under Linux system, user need to manual install WiFi.

Figure 1 Setup WiFiHU52 test environment

1. For Windows 7 system

Under Windows 7 system, WiFi need to manual install driver. Follow as below steps to install and check driver.

※Note: In this example, Windows version is “Windows 7 Enterprise x32”

1.1 WiFi

Follow as below steps to install driver WiFi of WiFiHU52.

Step 1: Driver: Please contact the manufacturer for driver software.

Step 2: Decompress driver “.zip” file, and execute “Setup.exe” installshield.

Figure 2 Execute “Setup” installshield

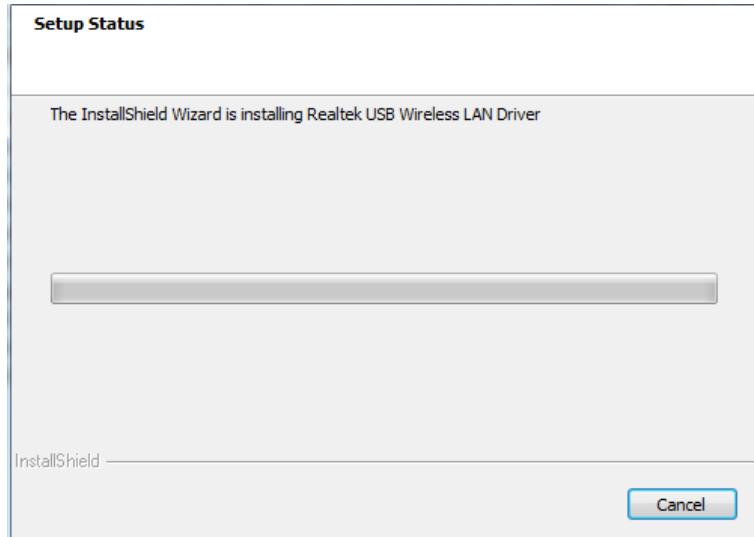


Figure 3 Installing WiFi driver

Step 3: Windows will now install the driver. This may take a few moments. After installing, select “yes, I want to restart my computer later” and click “Finish” button, The PC/NB will reboot.

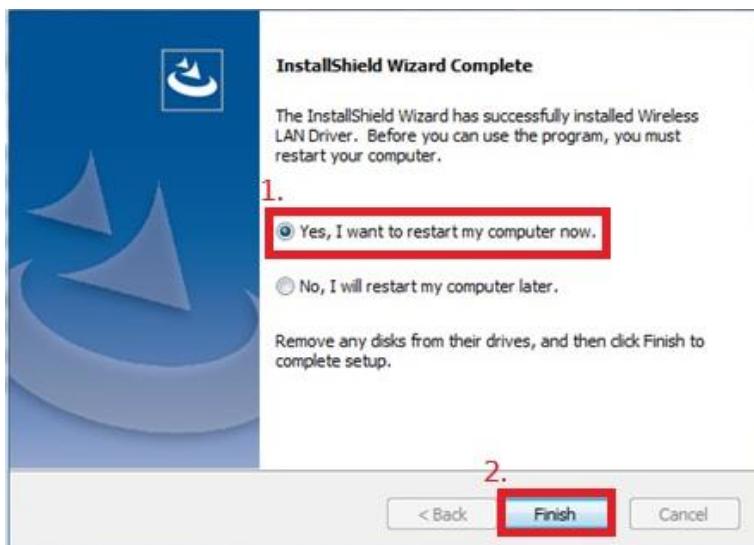


Figure 4 Complete to install WiFi driver

Step 4: Open "Control Panel > Programs > Programs and Features" and check if the driver is installed.

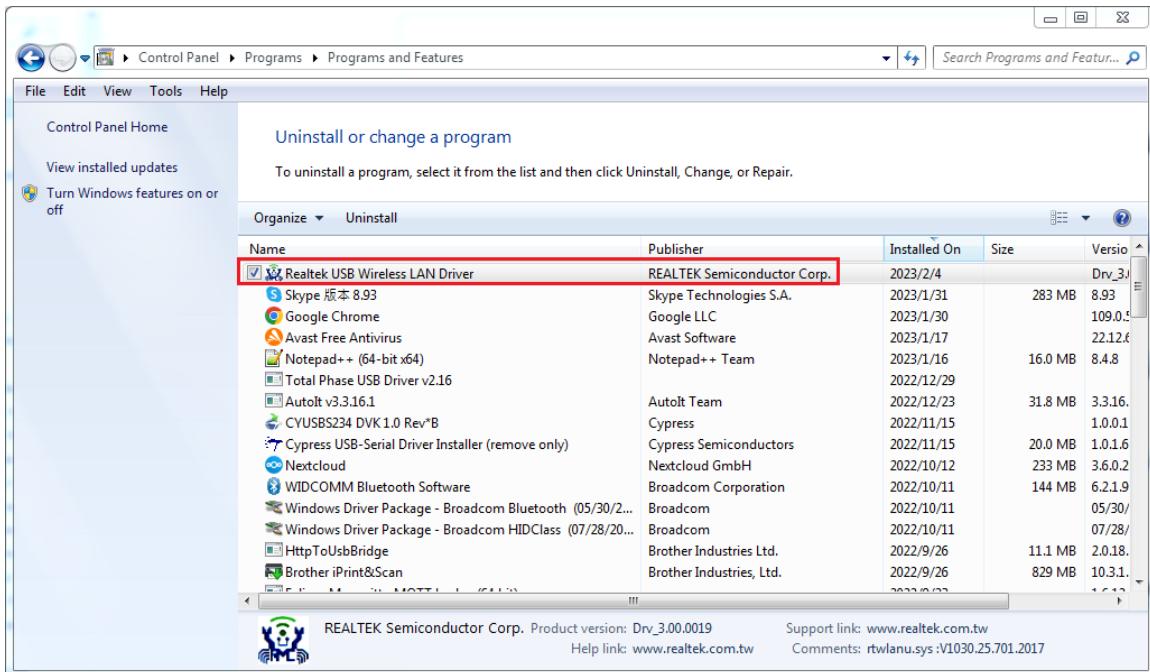


Figure 5 Initialize WiFi driver

Step 5: Open “Control Panel” > “Network and Internet” > “Network Connections” to check WiFiH52 NIC (Network interface card).



Figure 6 WiFiH52 NIC

2. For Windows 10 system

Under Windows 10 system, WiFi driver is built-in from Windows 10. If WiFi driver is not found, please manual install WiFi driver. Follow as below steps to install and check driver.

※Note: In this example, Windows version is “Windows 10 Home Single Language x64”

2.1 WiFi

Follow as below steps to install driver and check WiFi of WiFiH52.

Step 1: Plug-in WiFiH52 USB to PC/NB.

Step 2: Right click “Windows start menu”, and click “Device Manager”

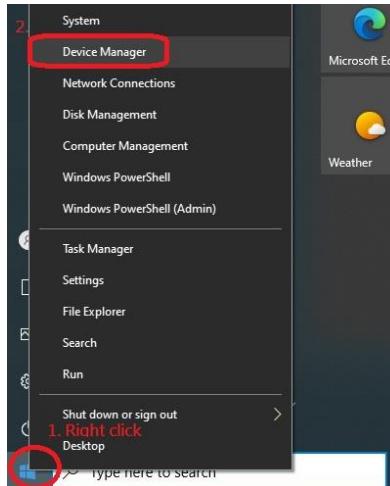


Figure 7 Device Manager

Step 3: Check WiFi driver. If WiFi driver is “unknow” state, please follow as below **step 3.1 to step 3.3** to manual install driver.

Figure 8 Check WiFi device

Step 3.1: Please contact the manufacturer for driver software.

Step 3.2: Decompress driver “.zip” file, and administrator execute “Setup.exe” installshield.

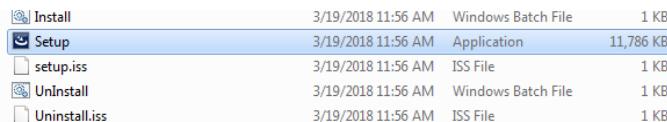
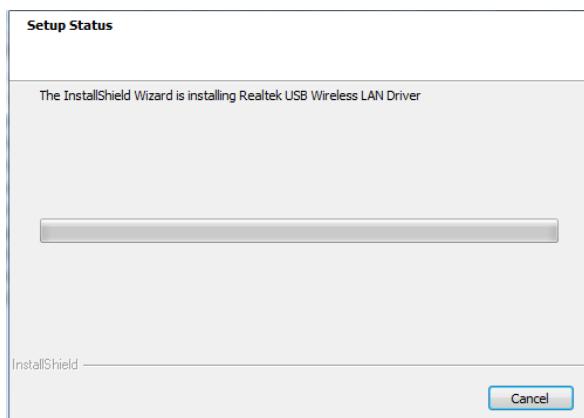
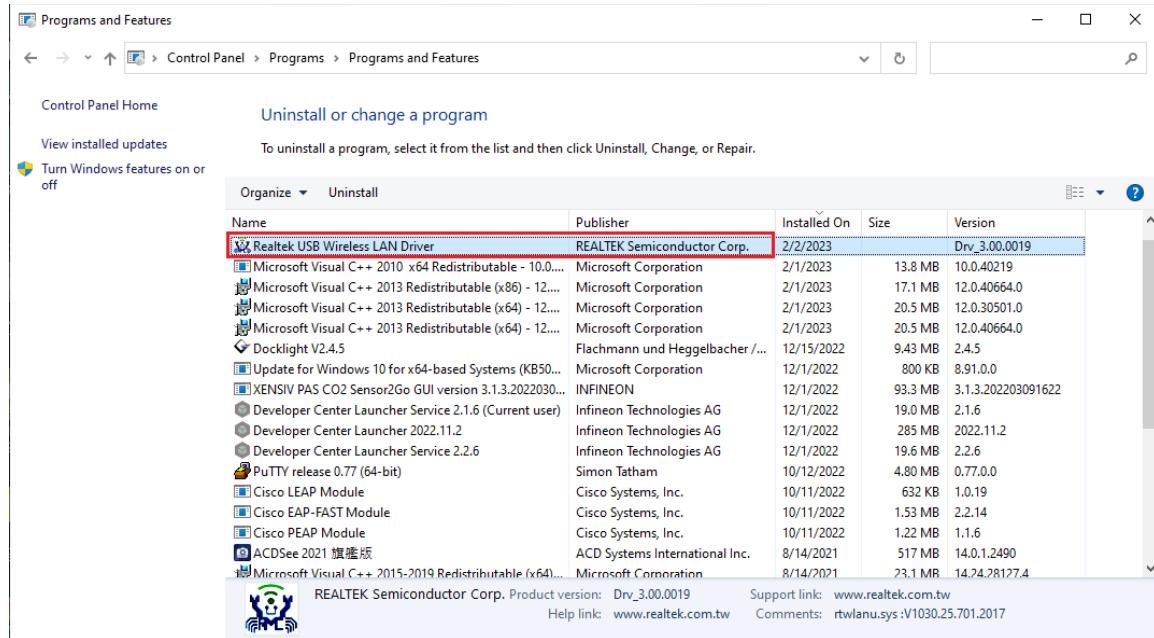


Figure 9 Execute “Setup” installshield




Figure 10 Installing WiFi driver

Step 3.3: Windows will now install the driver. This may take a few moments. After installing, select “yes, I want to restart my computer later” and click “Finish” button, The PC/NB will reboot.

Figure 11 Complete to install WiFi driver

Step 3.4: Open "Control Panel > Programs > Programs and Features" and check if the driver is installed.

Step 4: Right click "Windows start menu", and click "Network Connections". Then click "Change adapter options"

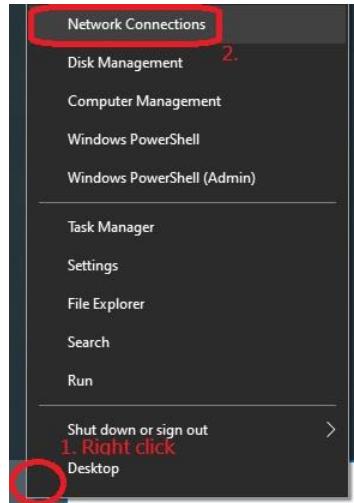


Figure 12 Network connections

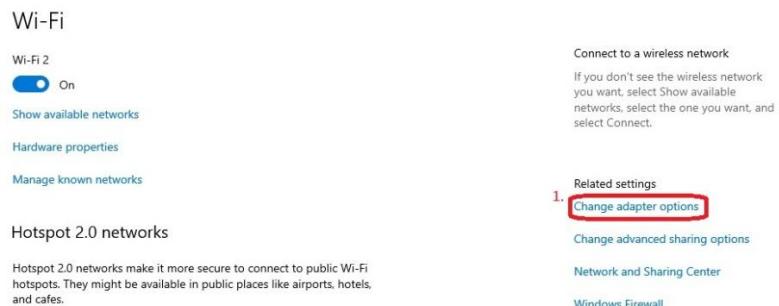


Figure 13 Change adapter options

Step 5: Check WiFi NIC of WiFiHU52.

Figure 14 Check WiFi NIC

3. For Windows 11 system

Under Windows 11 system, WiFi is built-in from Windows 11. Follow as below steps to check driver.

※Note: In this example, Windows version is “Windows 11 pro”

3.1 WiFi

Follow as below steps to check WiFi driver of WiFiHU52.

WiFiHU52 Designer’s Guide (RRD2Z50-220122001-A04-G1b)

Step 1: Plug-in WiFiHU52 USB to PC/NB.

Step 2: Right click “**Windows start menu**”, and click “**Device Manager**”

Figure 15 Device Manager

Step 3: Check WiFi driver.

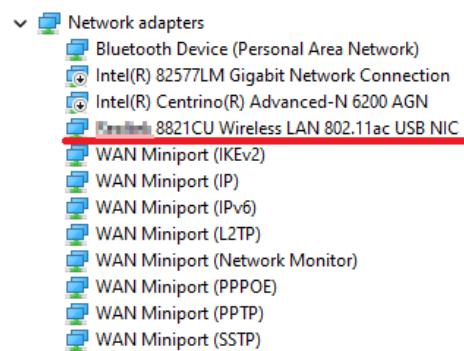


Figure 16 Check WiFi device

Step 4: Right click “**Windows start menu**”, and click “**Network Connections**”.



Figure 17 Network connections

Step 5: Click “**Network & internet**”

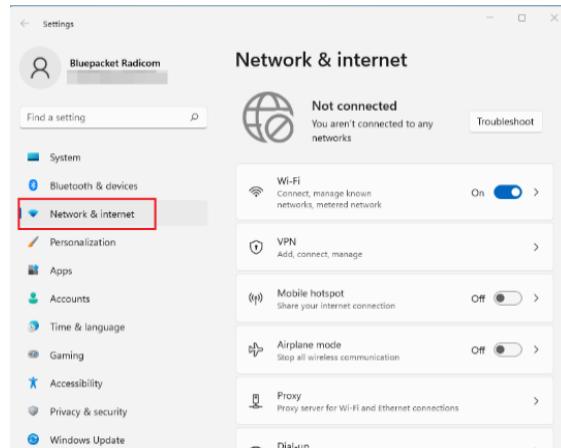


Figure 18 Network & internet

Step 6: Click “**Advanced network settings**”

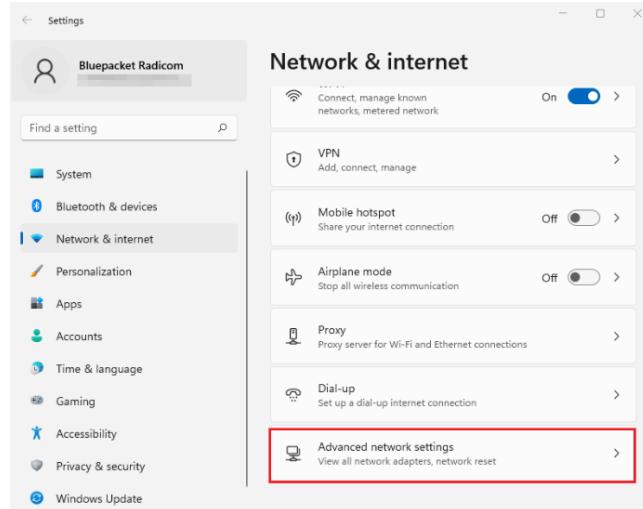


Figure 19 Advanced network settings

Step 7: Click “More network adapter options”

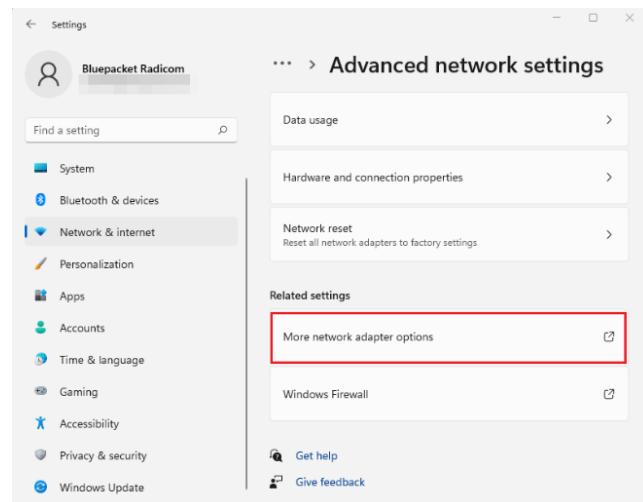


Figure 20 More network adapter options

Step 8: Check WiFi NIC of WiFiHU52

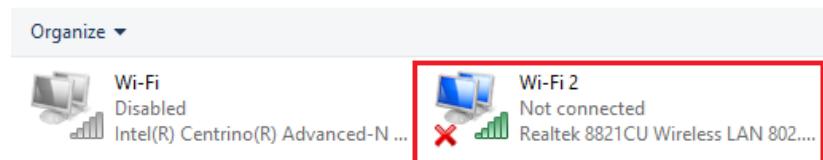
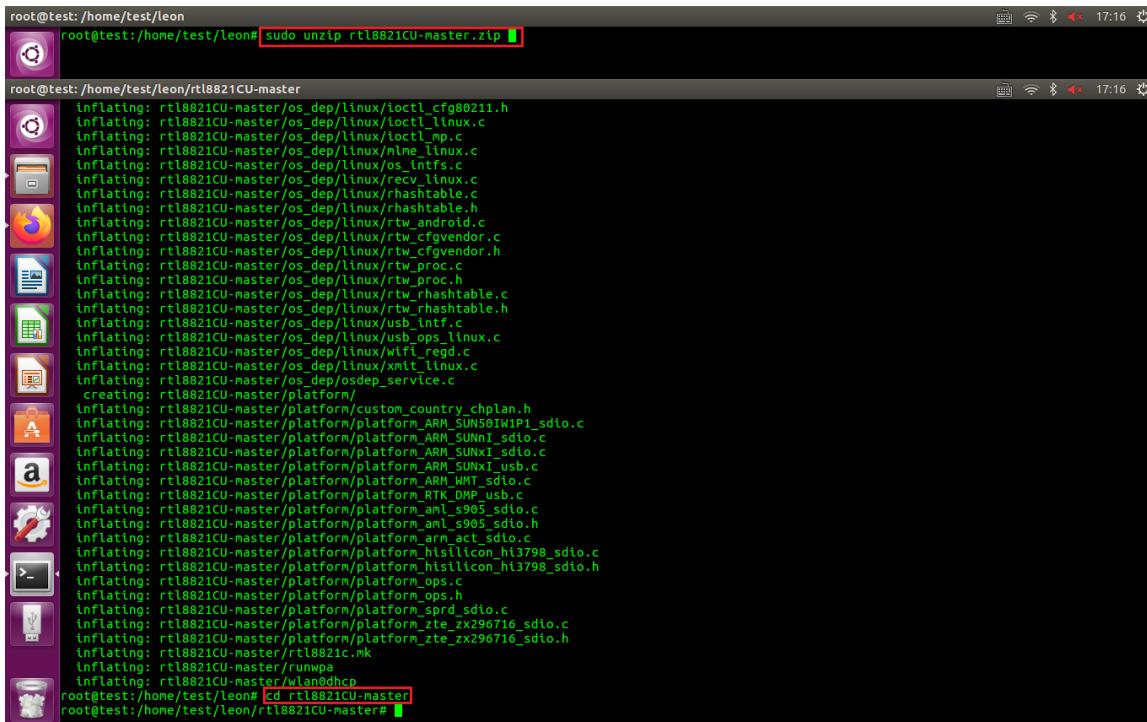


Figure 21 Check WiFi NIC

4. For Linux system

Under Linux system, WiFi needs to manual install driver.


※Note: In this example, Linux version is “Ubuntu 16.04 x64 (kernel 4.15.0-142-generic)”

4.1 WiFi

Follow as below steps to install and check driver WiFi of WiFiHU52.

Step 1: Open a terminal, type “**sudo apt-get update**” to update Ubuntu, and type “**sudo apt-get install dkms git**” to install “**dkms**” and “**git**”.

Step 2: Type “**sudo unzip rtl8821CU-master.zip**” to unzip the file, and type “**cd ./rtl8821CU-master**” to enter to rtl8821CU folder.


```
root@test:/home/test/leon# sudo unzip rtl8821CU-master.zip
Inflating: rtl8821CU-master/os_dep/linux/iocctl_cfg80211.h
Inflating: rtl8821CU-master/os_dep/linux/iocctl_llinux.c
Inflating: rtl8821CU-master/os_dep/linux/iocctl_mp.c
Inflating: rtl8821CU-master/os_dep/linux/mmte_llinux.c
Inflating: rtl8821CU-master/os_dep/linux/os_intfs.c
Inflating: rtl8821CU-master/os_dep/linux/recv_llinux.c
Inflating: rtl8821CU-master/os_dep/linux/rhashtable.c
Inflating: rtl8821CU-master/os_dep/linux/rhashtable.h
Inflating: rtl8821CU-master/os_dep/linux/rtw_android.c
Inflating: rtl8821CU-master/os_dep/linux/rtw_cfgvendor.c
Inflating: rtl8821CU-master/os_dep/linux/rtw_cfgvendor.h
Inflating: rtl8821CU-master/os_dep/linux/rtw_proc.c
Inflating: rtl8821CU-master/os_dep/linux/rtw_proc.h
Inflating: rtl8821CU-master/os_dep/linux/rtw_rhashtable.c
Inflating: rtl8821CU-master/os_dep/linux/rtw_rhashtable.h
Inflating: rtl8821CU-master/os_dep/linux/usb_llintf.c
Inflating: rtl8821CU-master/os_dep/linux/usb_ops_llinux.c
Inflating: rtl8821CU-master/os_dep/linux/wifi_regc.c
Inflating: rtl8821CU-master/os_dep/linux/xmit_llinux.c
Inflating: rtl8821CU-master/os_dep/osdep_service.c
creating: rtl8821CU-master/platform/
Inflating: rtl8821CU-master/platform/custom_country_chplan.h
Inflating: rtl8821CU-master/platform/platform_ARM_SUN50IW1P1_sdio.c
Inflating: rtl8821CU-master/platform/platform_ARM_SUNXI_sdio.c
Inflating: rtl8821CU-master/platform/platform_ARM_SUNXI_usb.c
Inflating: rtl8821CU-master/platform/platform_ARM_WMT_sdio.c
Inflating: rtl8821CU-master/platform/platform_RTK_DMP_usb.c
Inflating: rtl8821CU-master/platform/platform_aml_s905_sdio.c
Inflating: rtl8821CU-master/platform/platform_aml_s905_sdio.h
Inflating: rtl8821CU-master/platform/platform_arm_act_sdio.c
Inflating: rtl8821CU-master/platform/platform_hisilicon_hi3798_sdio.c
Inflating: rtl8821CU-master/platform/platform_llops.c
Inflating: rtl8821CU-master/platform/platform_llops.h
Inflating: rtl8821CU-master/platform/platform_spred_sdio.c
Inflating: rtl8821CU-master/platform/platform_zte_zx296716_sdio.c
Inflating: rtl8821CU-master/platform/platform_zte_zx296716_sdio.h
Inflating: rtl8821CU-master/rtl8821c.mk
Inflating: rtl8821CU-master/rumwpa
Inflating: rtl8821CU-master/wlan0dhcp
root@test:/home/test/leon# cd rtl8821CU-master
root@test:/home/test/leon# rtl8821CU-master#
```

Figure 22 Unzip WiFiHU52 driver

Step 3: Type “**sudo ./dkms-install.sh**” to install driver.”

```

root@leon-HP-EliteBook-8440p:/home/leon/8821/rtl8821CU# ./dkms-install.sh
About to run dkms install steps...

Creating symlink /var/lib/dkms/rtl8821CU/5.4.1/source ->
/usr/src/rtl8821CU-5.4.1

DKMS: add completed.

Kernel preparation unnecessary for this kernel. Skipping...

Building module:
cleaning build area...
'make' KVER=4.15.0-142-generic.....
cleaning build area.....
DKMS: build completed.

8821cu:
Running module version sanity check.
- Original module
  - No original module exists within this kernel
- Installation
  - Installing to /lib/modules/4.15.0-142-generic/updates/dkms/
depmod.....
DKMS: install completed.
Finished running dkms install steps.
root@leon-HP-EliteBook-8440p:/home/leon/8821/rtl8821CU# []

```

Figure 23 Install script

Step 4: Plug-in WiFiHU52 USB to PC/NB, and Type “**lsmod |grep 8821cu**” to check WiFiHU52 driver to be mounted.

```

root@leon-HP-EliteBook-8440p:/home/leon/8821/rtl8821CU# lsmod |grep 8821cu
8821cu           2195456  0
cfg80211          634880  4 iwlwifi,8821cu,iwlwifi,mac80211
root@leon-HP-EliteBook-8440p:/home/leon/8821/rtl8821CU# []

```

Figure 24 Check WiFiHU52 driver

Step 5: Plug-in WiFiHU52 USB to PC/NB, and Type “**ifconfig**” to check WiFiHU52 WiFi NIC.

```

root@leon-HP-EliteBook-8440p:/home/leon# ifconfig
enp0s25  Link encap:Ethernet HWaddr 00:0c:29:75:00:00
          UP BROADCAST MULTICAST MTU:1500 Metric:1
          RX packets:0 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
          Interrupt:20 Memory:d4700000-d4720000

lo      Link encap:Local Loopback
          inet addr:127.0.0.1 Mask:255.0.0.0
          inet6 addr: ::1/128 Scope:Host
          UP LOOPBACK RUNNING MTU:65536 Metric:1
          RX packets:1690 errors:0 dropped:0 overruns:0 frame:0
          TX packets:1690 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:162044 (162.0 KB) TX bytes:162044 (162.0 KB)

wlo1    Link encap:Ethernet HWaddr 00:0c:29:75:00:01
          inet addr:192.168.1.104 Bcast:192.168.1.255 Mask:255.255.255.0
          inet6 addr: fe80::0e0c:3422%wlo1/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
          RX packets:191127 errors:0 dropped:0 overruns:0 frame:0
          TX packets:15850 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:50528554 (50.5 MB) TX bytes:2448316 (2.4 MB)

wlxd48a3b6c7568 Link encap:Ethernet HWaddr 00:0c:29:75:00:02
          UP BROADCAST MULTICAST MTU:1500 Metric:1
          RX packets:0 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

```

Figure 25 Check WiFiHU52 WiFi NIC

WiFiHU52 USB Linux SoftAP Installation

This section is for installing the WiFiHU52 to operate in SoftAP modem in Linux Ubuntu. **Please first refer to P.21 (WiFiHU52 Quick Start Guide, For Linux system) to install driver.**

This section is for installing the WiFiHU52 to operate in SoftAP modem in Ubuntu 16.04 with Kernel version 4.15.0. SoftAP setup environment to be following Figure 26. Follow as below steps to install SoftAP modem.

※Note-1: In this example, Linux version is “Ubuntu 16.04 x64 (kernel 4.15.0-142-generic)”
※Note-2: WiFiHU52 only supports Linux SoftAP.

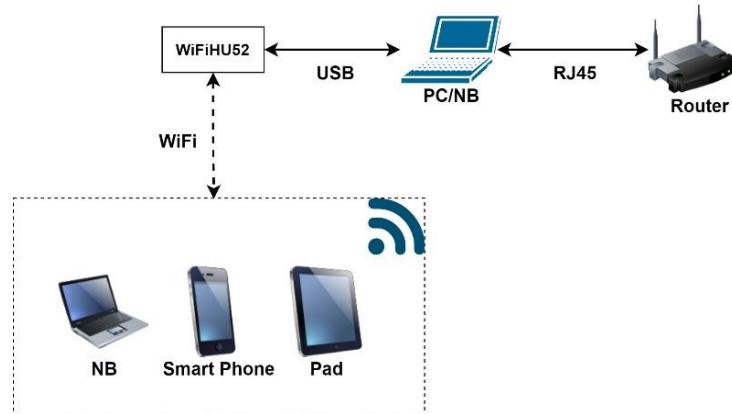


Figure 26 SoftAP setup environment

SoftAP setup flowchart is following Figure 27

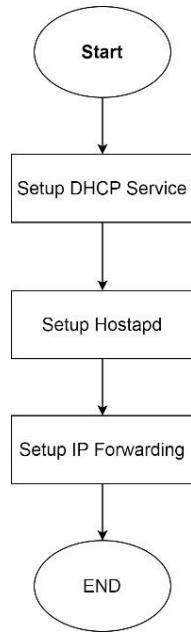


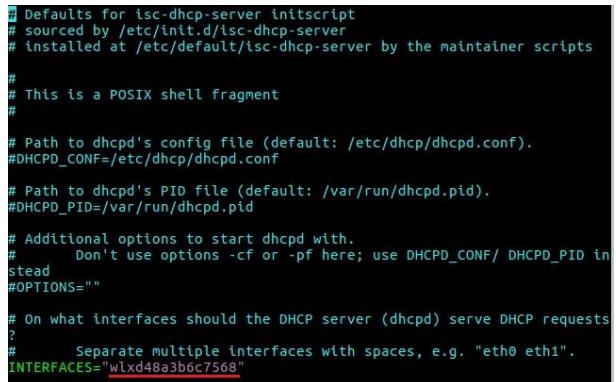
Figure 27 SoftAP setup flowchart

1. Install DCHP Server

Follow as below steps to install DHCP service.

Step 1: Type “**apt-get install isc-dhcp-server**” to install dhcp server.

Step 2: Type “**vim /etc/default/isc-dhcp-server**” to edit WiFiHU52 NIC name. (Type “**ifconfig**” to check WiFiHU52 NIC name)


```
root@leon-HP-EliteBook-8440p:/home/leon/softAP/hostap/hostapd# ifconfig
enp0s25  Link encap:Ethernet HWaddr 00:0c:29:1b:01:00
          UP BROADCAST MULTICAST MTU:1500 Metric:1
          RX packets:0 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
          Interrupt:20 Memory:d4700000-d4720000

lo    Link encap:Local Loopback
      inet addr:127.0.0.1 Mask:255.0.0.0
      inet6 addr: ::1/128 Scope:Host
        UP LOOPBACK RUNNING MTU:65536 Metric:1
        RX packets:492 errors:0 dropped:0 overruns:0 frame:0
        TX packets:492 errors:0 dropped:0 overruns:0 carrier:0
        collisions:0 txqueuelen:1000
        RX bytes:36066 (36.0 KB) TX bytes:36066 (36.0 KB)

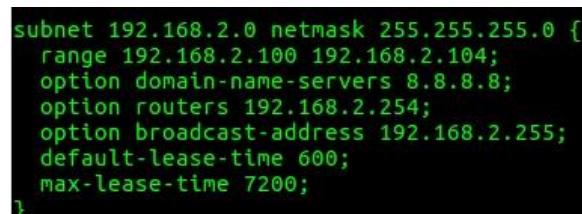
wlo1   Link encap:Ethernet HWaddr 00:0c:29:1b:01:00
      inet addr:192.168.1.139 Bcast:192.168.1.255 Mask:255.255.255.0
      inet6 addr: fe80::6c29:1bff:fe01:0/64 Scope:Link
        UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
        RX packets:10407 errors:0 dropped:0 overruns:0 frame:0
        TX packets:581 errors:0 dropped:0 overruns:0 carrier:0
        collisions:0 txqueuelen:1000
        RX bytes:2480315 (2.4 MB) TX bytes:75659 (75.6 KB)

wxld48a3b6c7568 Link encap:Ethernet HWaddr 00:0c:29:1b:01:00
          UP BROADCAST MULTICAST MTU:1500 Metric:1
          RX packets:0 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
```

Figure 28 Check WiFiHU52 NIC name


```
Defaults for isc-dhcp-server initscript
# sourced by /etc/init.d/isc-dhcp-server
# installed at /etc/default/isc-dhcp-server by the maintainer scripts

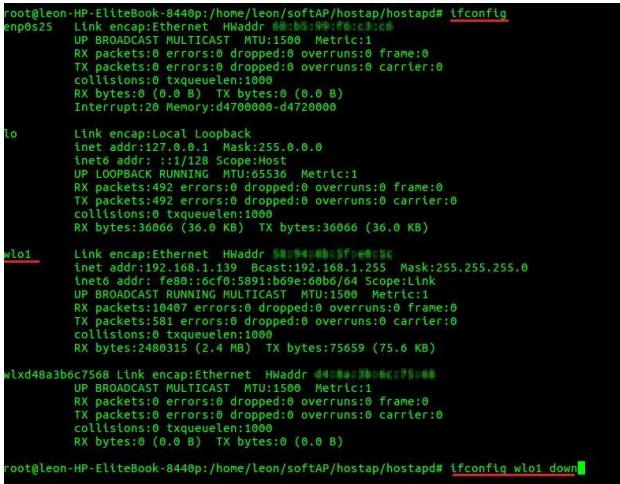
#
# This is a POSIX shell fragment
#
# Path to dhcpcd's config file (default: /etc/dhcp/dhcpcd.conf).
#DHCPD_CONF=/etc/dhcp/dhcpcd.conf


# Path to dhcpcd's PID file (default: /var/run/dhcpcd.pid).
#DHCPD_PID=/var/run/dhcpcd.pid

# Additional options to start dhcpcd with.
#       Don't use options -cf or -pf here; use DHCPD_CONF/ DHCPD_PID instead
#OPTIONS=""

# On what interfaces should the DHCP server (dhcpcd) serve DHCP requests
#
#       Separate multiple interfaces with spaces, e.g. "eth0 eth1".
INTERFACES="wxld48a3b6c7568"
```

Figure 29 isc-dhcp-server


Step 3: Type “**vim /etc/dhcp/dhcpcd.conf**” to add config in the end of file. Edit content is following Figure 30.


```
subnet 192.168.2.0 netmask 255.255.255.0 {
  range 192.168.2.100 192.168.2.104;
  option domain-name-servers 8.8.8.8;
  option routers 192.168.2.254;
  option broadcast-address 192.168.2.255;
  default-lease-time 600;
  max-lease-time 7200;
}
```

Figure 30 dhcpcd.conf

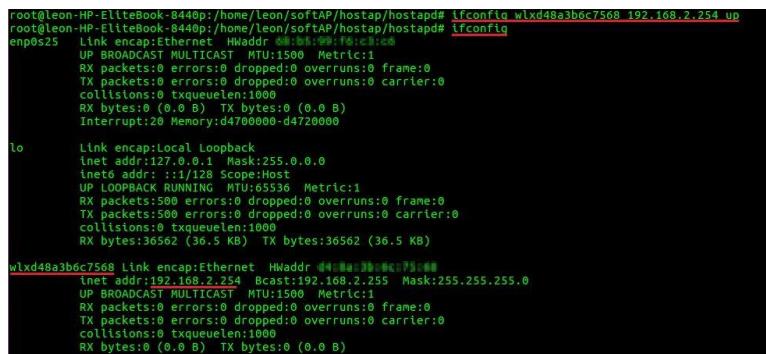
Step 4: Type “**ifconfig**” to check others WiFi NIC. If there are others WiFi NIC turn on, please turn off them. (Command format of close: “**ifconfig <WiFi NIC name> down**”)


```

root@leon-HP-EliteBook-8440p:/home/leon/softAP/hostap/hostapd# ifconfig
enp0s25  Link encap:Ethernet HWaddr 00:0c:99:ff:cc:cc
          UP BROADCAST MULTICAST MTU:1500 Metric:1
          RX packets:0 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
          Interrupt:20 Memory:d4700000-d4720000

lo    Link encap:Local Loopback
      inet addr:127.0.0.1 Mask:255.0.0.0
      inet6 addr: ::1/128 Scope:Host
         UP LOOPBACK RUNNING MTU:65536 Metric:1
         RX packets:402 errors:0 dropped:0 overruns:0 frame:0
         TX packets:402 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:1000
         RX bytes:36066 (36.0 KB) TX bytes:36066 (36.0 KB)

wlo1   Link encap:Ethernet HWaddr 00:0c:99:ff:cc:cc
          inet addr:192.168.1.139 Bcast:192.168.1.255 Mask:255.255.255.0
          inet6 addr: fe80::0c0:99ff:fecc:cc%wlo1/64 Scope:Link
             UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
             RX packets:10407 errors:0 dropped:0 overruns:0 frame:0
             TX packets:581 errors:0 dropped:0 overruns:0 carrier:0
             collisions:0 txqueuelen:1000
             RX bytes:2480315 (2.4 MB) TX bytes:75659 (75.6 KB)


wlx48a3b6c7568 Link encap:Ethernet HWaddr 00:0c:99:ff:cc:cc
          UP BROADCAST MULTICAST MTU:1500 Metric:1
          RX packets:0 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

root@leon-HP-EliteBook-8440p:/home/leon/softAP/hostap/hostapd# ifconfig wlo1 down

```

Figure 31 Turn off others WiFi NIC

Step 5: Type “**ifconfig <WiFiHU52 NIC name> 192.168.2.254 up**” to setup WiFiHU52 NIC.


```

root@leon-HP-EliteBook-8440p:/home/leon/softAP/hostap/hostapd# ifconfig wlx48a3b6c7568 192.168.2.254 up
root@leon-HP-EliteBook-8440p:/home/leon/softAP/hostap/hostapd# ifconfig
enp0s25  Link encap:Ethernet HWaddr 00:0c:99:ff:cc:cc
          UP BROADCAST MULTICAST MTU:1500 Metric:1
          RX packets:0 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
          Interrupt:20 Memory:d4700000-d4720000

lo    Link encap:Local Loopback
      inet addr:127.0.0.1 Mask:255.0.0.0
      inet6 addr: ::1/128 Scope:Host
         UP LOOPBACK RUNNING MTU:65536 Metric:1
         RX packets:500 errors:0 dropped:0 overruns:0 frame:0
         TX packets:500 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:1000
         RX bytes:36562 (36.5 KB) TX bytes:36562 (36.5 KB)


wlx48a3b6c7568 Link encap:Ethernet HWaddr 00:0c:99:ff:cc:cc
          inet addr:192.168.2.254 Bcast:192.168.2.255 Mask:255.255.255.0
             UP BROADCAST MULTICAST MTU:1500 Metric:1
             RX packets:0 errors:0 dropped:0 overruns:0 frame:0
             TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
             collisions:0 txqueuelen:1000
             RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

```

Figure 32 Turn on WiFiHU52 NIC

Step 6: Type “**dhcpd**” to turn on DHCP service.

(If command happens “**Can't open /var/lib/dhcp/dhcpd.leases for append**” error message, please type “**chmod 777 /var/lib/dhcp/dhcpd.leases**” to change dhcp.leases permission, then type “**dhcpd**” again)


```

root@leon-HP-EliteBook-8440p:/home/leon/softAP/hostap/hostapd# dhcpd
Internet Systems Consortium DHCP Server 4.3.3
Copyright 2004-2015 Internet Systems Consortium.
All rights reserved.
For info, please visit https://www.isc.org/software/dhcp/
Config file: /etc/dhcp/dhcpd.conf
Database file: /var/lib/dhcp/dhcpd.leases
PID file: /var/run/dhcpd.pid
lease 10.5.5.26: no subnet.
Can't open /var/lib/dhcp/dhcpd.leases for append.

If you think you have received this message due to a bug rather
than a configuration issue please read the section on submitting
bugs on either our web page at www.isc.org or in the README file
before submitting a bug. These pages explain the proper
process and the information we find helpful for debugging..

exiting.

```

Figure 33 dhcpd error message

```

root@Leon-HP-EliteBook-8440p:/home/leon/softAP/hostap/hostapd# dhcpcd
Internet Systems Consortium DHCP Server 4.3.3
Copyright 2004-2015 Internet Systems Consortium.
All rights reserved.
For info, please visit https://www.isc.org/software/dhcp/
Config file: /etc/dhcp/dhcpd.conf
Database file: /var/lib/dhcp/dhcpd.leases
PID file: /var/run/dhcpd.pid
Wrote 1 leases to leases file.
Listening on LPF/wlx48a3b6c7568/d4:8a:3b:6c:75:68/192.168.2.0/24
Sending on  LPF/wlx48a3b6c7568/d4:8a:3b:6c:75:68/192.168.2.0/24
No subnet declaration for enp0s25 (192.168.1.166).
** Ignoring requests on enp0s25.  If this is not what
   you want, please write a subnet declaration
   in your dhcpd.conf file for the network segment
   to which interface enp0s25 is attached.  **
Sending on  Socket/fallback/fallback-net

```

Figure 34 dhcpcd successful message

2. Install hostapd

Step 1: Open a terminal, type “**git clone git://w1.fi/srv/git/hostap.git**” to download hostapd software package.

Step 2: Type “**cd hostap/hostapd/**” to enter to hostapd folder, and type “**cp defconfig .config**” to copy a config file.

Step 3: Type “**vim .config**” to edit .config file, and remark “**#CONFIG_DRIVER_NL80211=y**” as below Figure 35.

```

# Driver interface for drivers using the nl80211 kernel interface
CONFIG_DRIVER_NL80211=y

```

Figure 35 .config

Step 4: Type “**apt-get install libssl-dev**”, “**apt-get install libnl-3-dev**” and “**apt-get install libnl-genl-3-dev**” to install library.

Step 5: Type “**make**” and “**make install**” to install hostapd.

Step 6: Type “**cp hostapd.conf hostapd-minimal.conf**” to copy a config file, and type “**vim hostapd-minimal.conf**” to add config in the end of file. Edit content is following Figure 36.

```

interface=wlx48a3b6c7568 WiFiH52 NIC Name
driver=nl80211
ssid=WiFiH52_AP AP SSID
hw_mode=g
channel=1
macaddr_acl=0
auth_algs=1

ignore_broadcast_ssid=0
wpa=3
wpa_passphrase=12345678 WiFi Password
wpa_key_mgmt=WPA-PSK
wpa_pairwise=TKIP
rsn_pairwise=CCMP

```

Figure 36 hostapd-minimal.conf

Step 7: Type “**hostapd hostapd-minimal.conf**” to turn on SoftAP.

WiFiH52 Designer’s Guide (RRD2Z50-220122001-A04-G1b)

3. IP forwarding setup

Follow as below steps to setup IP forwarding.

Step 1: Check Ethernet NIC connects to an internet accessible AP router.

Step 2: Type “**echo 1 > /proc/sys/net/ipv4/ip_forward**” to set value of ip forward.

Step 3: Type “**ifconfig**” to check Ethernet NIC.

```
root@leon-HP-EliteBook-8440p:/home/leon# ifconfig
enp0s25  Link encap:Ethernet  HWaddr 00:0c:99:10:c1:cd
          inet addr:192.168.1.166  Bcast:192.168.1.255  Mask:255.255.255.0
          inet6 addr: fe80::3e3a:ff7f:caa:508d/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:28704 errors:0 dropped:0 overruns:0 frame:0
          TX packets:1897 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:3562903 (3.5 MB)  TX bytes:298644 (298.6 KB)
          Interrupt:20 Memory:d4700000-d4720000
```

Figure 37 Check Ethernet

Step 4: Type “**iptables -t nat -A POSTROUTING -o enp0s25 -j MASQUERADE**” to setup iptables rule. (iptables command format: “**iptables -t nat -A POSTROUTING -o <Ethernet NIC name> -j MASQUERADE**”)

Step 5: Now, use a WiFi device to connect to SoftAP, and test Internet by “**ping 8.8.8.8**”.

4. Connection test

Follow as below steps to test SoftAP connection by Android smart phone.

Step 1: Use smart phone to connect SoftAP.

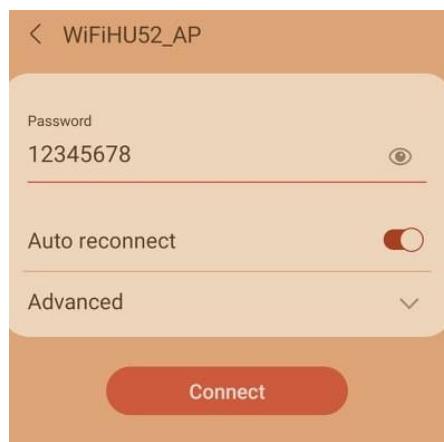


Figure 38 Connect to SoftAP

Step 2: Install their-party “**Ping**” application.

Figure 39 Install Ping application

Step 3: Execute “**ping 8.8.8.8**” by “**Ping**” application.

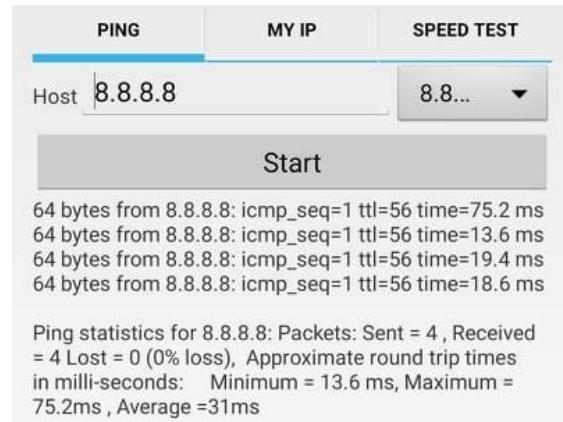


Figure 40 Ping test

WiFiHU52 Quick Test Guide

This chapter is shown how to quick test WiFi of WiFiHU52 under different system. These examples will test WiFi under Windows and Linux system. **Please first refer to P.12 (WiFiHU52 Quick Start Guide) to install driver.**

1. For Windows system

For WiFi, this example will be shown how to connect to AP router and check Internet network.

1.1 Test WiFi under Windows 7, Windows 10 and Windows 11

Follow as below steps to test WiFi of WiFiHU52. The test environment is following Figure 41.

Figure 41 Test WiFi environment

※Note: In this example, Windows version is “Windows 7 Enterprise x32”

Step 1: Plug-in WiFiHU52 USB to PC/NB, then connect to an internet accessible AP router.

Figure 42 Connect to AP router

Figure 43 WiFi interface state

Step 2: Press “**Windows key**” + “**R**” to open search box, and type “**cmd**” in search box to open command line window.

Figure 44 Windows key

Step 3: Type “**ping 8.8.8.8**” to test connection.

A screenshot of a Windows Command Prompt window titled "Administrator: C:\Windows\system32\cmd.exe". The window shows the output of a "ping 8.8.8.8" command. The text output is as follows:
Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.
C:\Users\Administrator>ping 8.8.8.8
Pinging 8.8.8.8 with 32 bytes of data:
Reply from 8.8.8.8: bytes=32 time=235ms TTL=116
Reply from 8.8.8.8: bytes=32 time=43ms TTL=116
Reply from 8.8.8.8: bytes=32 time=41ms TTL=116
Reply from 8.8.8.8: bytes=32 time=60ms TTL=116
Ping statistics for 8.8.8.8:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 41ms, Maximum = 235ms, Average = 94ms
C:\Users\Administrator>

Figure 45 Ping test

2. For Linux system

For WiFi, this example will be shown how to connect to AP router and check Internet network.

2.1 Test WiFi under Ubuntu 16.04

Follow as below steps to test WiFi of WiFiHU52. The test environment is following Figure 46.

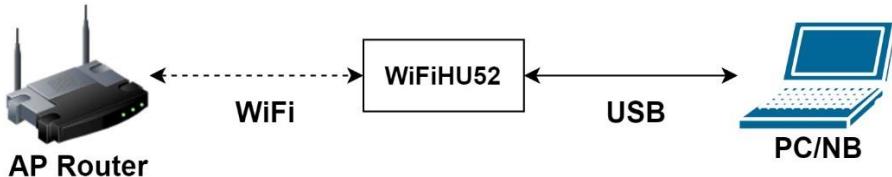


Figure 46 Test WiFi environment under Ubuntu 16.04 Linux

※Note: In this example, Linux version is “Ubuntu 16.04 x64 (kernel 4.15.0-142-generic)”

Step 1: Plug-in WiFiHU52 USB to PC/NB.

Step 2: Open a terminal, type “**ifconfig**” to check WiFi NIC. If there are others WiFi NIC, please type “**ifconfig <WiFi NIC name> down**” to close others. (For this sample, command is “**ifconfig wlo1 down**”)

```
root@leon-HP-EliteBook-8440p:/home/leon# ifconfig
enp0s25  Link encap:Ethernet HWaddr 00:0c:29:7d:7d:00
          UP BROADCAST MULTICAST MTU:1500 Metric:1
          RX packets:0 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
          Interrupt:20 Memory:d4700000-d4720000

lo      Link encap:Local Loopback
          inet addr: 127.0.0.1 Mask:255.0.0.0
          inet6 addr: ::1/128 Scope:Host
          UP LOOPBACK RUNNING MTU:65536 Metric:1
          RX packets:1690 errors:0 dropped:0 overruns:0 frame:0
          TX packets:1690 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:162044 (162.0 KB) TX bytes:162044 (162.0 KB)

wlo1    Link encap:Ethernet HWaddr 00:0c:29:7d:7d:00
          inet6 addr: fe80::e0c6:3422:3029:6961/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
          RX packets:191127 errors:0 dropped:0 overruns:0 frame:0
          TX packets:15850 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:50528554 (50.5 MB) TX bytes:2448316 (2.4 MB)

wlxd48a3b6c7568 Link encap:Ethernet HWaddr 00:0c:29:7d:7d:00
          UP BROADCAST MULTICAST MTU:1500 Metric:1
          RX packets:0 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

root@leon-HP-EliteBook-8440p:/home/leon# ifconfig wlo1 down
```

Figure 47 Close others WiFi NIC

Step 3: Click “System Settings” icon, and click “Network”.

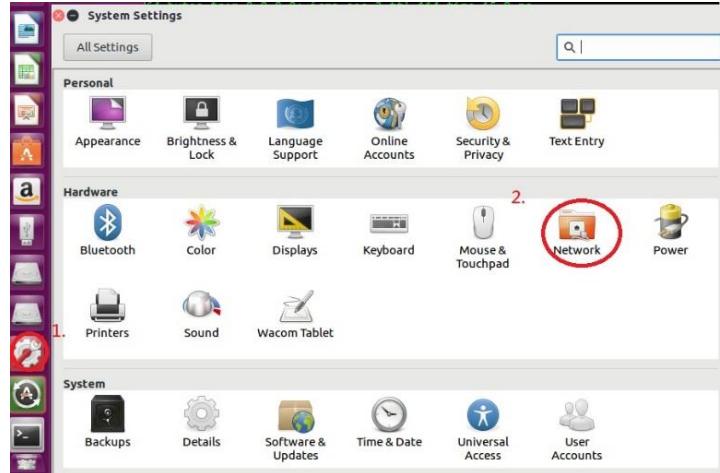
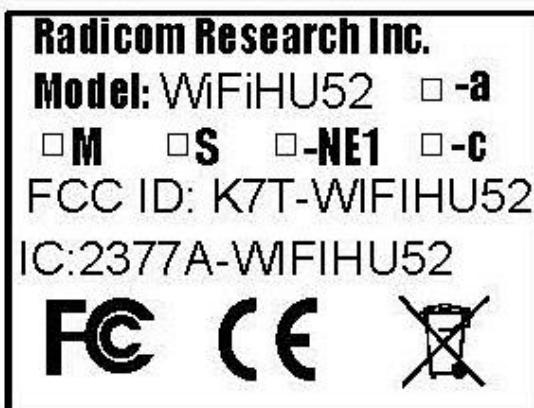


Figure 48 System settings

Step 4: Click “Wireless” and select AP router. Then type password, and click “connect”

Figure 49 WiFi connection setting


Step 5: Type “ping 8.8.8.8” to test connection.

```
root@leon-HP-EliteBook-8440p:/home/leon# ping 8.8.8.8
PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=114 time=18.5 ms
64 bytes from 8.8.8.8: icmp_seq=2 ttl=114 time=15.9 ms
64 bytes from 8.8.8.8: icmp_seq=3 ttl=114 time=11.7 ms
64 bytes from 8.8.8.8: icmp_seq=4 ttl=114 time=18.2 ms
64 bytes from 8.8.8.8: icmp_seq=5 ttl=114 time=17.5 ms
64 bytes from 8.8.8.8: icmp_seq=6 ttl=114 time=12.9 ms
^C
--- 8.8.8.8 ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time 5008ms
rtt min/avg/max/mdev = 11.764/15.838/18.548/2.622 ms
root@leon-HP-EliteBook-8440p:/home/leon#
```

Figure 50 Test internet

FCC, IC, and CE Label Location and Module Model Identification

The WiFiHU52 module family is FCC Part 15 and IC (Industry Canada) certified. The WiFiHU52 is also CE marked. The modules are labeled with the WiFiHU52 module model number and FCC Part 15 ID, IC registration number and CE mark. The label can be found on top of the metal shielding on the WiFiHU52 Module.

Important Regulatory Compliance and User Information

The final product with the modules installed needs to be tested for FCC Part 15, IC (Industry Canada) and CE EMI/RFI compliance. Radicom certification documentation will help streamline the final product approval process. Contact Radicom for more information. To maintain compliance in the finished product, carefully follow guidelines in this section.

This device is intended only for OEM integrators under the following conditions:

- 1) The antenna must be installed such that 20 cm is maintained between the antenna and users. For laptop installations, the antenna must be installed to ensure that the proper spacing is maintained in the event the users places the device in their lap during use.
- 2) The transmitter module may not be co-located with any other transmitter or antenna. As long as the two conditions above are met, further transmitter testing will not be required. However, the OEM integrator is still responsible for testing their end product for any additional compliance requirements required with the module installed (for example, digital device emissions, PC peripheral requirements, etc).

IMPORTANT NOTE: In the event that these conditions can not be met (for example certain laptop configurations or co-location with another transmitter), then the FCC authorization is no longer considered valid and the FCC ID can not be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC authorization.

Host (End Product) Labeling Requirements

To maintain compliance, the end product hosting the WiFiHU52 module must be properly labeled to identify that this module is installed. This transmitter module is authorized only when used in devices where the antenna is installed such that 20 cm is maintained between the antenna and users. The final end product must have a label located in a visible area

The label shall be securely affixed to a permanently attached part of the device, in a location where it is visible or easily accessible to the user, and shall not be readily detachable. The label shall be sufficiently durable to remain fully legible and intact on the device in all normal conditions of use throughout the device's expected lifetime. These requirements may be met either by a separate label or nameplate permanently attached to the device or by permanently imprinting or impressing the label directly onto the device. The label text shall be legible without the aid of magnification, but is not required to be larger than 8-point font size.

End User Information

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. End users must follow the specific operating instructions for satisfying RF Exposure compliance. The end user should NOT be provided any instructions on how to remove or install the device. The user's manual for end users must include the following information in a prominent location.

FCC RF Radiation Exposure Statement

IMPORTANT NOTE: To comply with the FCC RF exposure compliance requirements, the antenna used on this transmitter must be installed to provide a separation of at least 20 cm from all persons and must not be co-located or operating in conjunction with any antenna or transmitter. This device contains a low power transmitter. When this device is operational, use only with the supplied, or recommended antenna. Unauthorized antenna, modification, or attachments could damage the transmitter and may violate FCC regulations. Changes or modifications not expressly approved by the manufacturer or party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement

This device complies with Part 15 of the FCC Rules. Operation is subject to the following conditions:

- (1) *This device may not cause harmful interference*
- (2) *This device must accept any interference received, including interference that may cause undesired operation.*

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation.

This equipment generates and radiates radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. There is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one of the following measures:

- *Reorient or relocate the receiving antenna.*
- *Increase the separation between the equipment and receiver.*
- *Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.*
- *Consult the dealer or an experienced radio/TV technician for assistance.*

IC (Industry Canada) Statement:

"This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device" 5150-5250 MHz, indoor use only

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

5150-5250 MHz, utilisation en intérieur uniquement

Europe – RED Compliance Statement:

Hereby, Radicom Research Inc. declares that this equipment complies with the essential requirements and other relevant provisions of DIRECTIVE 2014/53/EU OF THE EUROPEAN PARLIAMENT AND THE COUNCIL of April 16, 2014 on radio equipment and telecommunication terminal Equipment and the mutual recognition of their conformity (RED).

FCC:
RF exposure warning

This equipment must be installed and operated in accordance with provided instructions and the antenna(s) used for this transmitter must be installed to provide a separation distance of at least 20 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter. End-users and installers must be provided with antenna installation instructions and transmitter operating conditions for satisfying RF exposure compliance. The final end product must be labeled in a visible area with the following: "Contains FCC ID: K7T-WIFIHU52 and "Contains IC: 2377A-WIFIHU52 "

OEM Integration Instructions :

This module is stand-alone modular complies with CFR 47 FCC PART 15 SUBPART C & PART 15 SUBPART E of the FCC Rules

The modular used Chip antennas or dipole antenna by IPEX connector not applicable the design for trace antenna.

This device is intended only for OEM integrators under the following conditions :

The module can be used to installation in other host. must not be co-located or operating in conjunction with any other antenna or transmitter. If RF exposure statement and use conditions are not provided, then the host product manufacture is required to take responsibility of the module through a change in FCC ID (new application). The module shall be only used with the

integral antenna(s) that has been originally tested and certified with this module.

As long as 3 conditions above are met, further transmitter test will not be required.

However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirement such as Part 15 B. with this module installed (for example, digital device emission, PC peripheral requirements, etc.)

Information on test modes and additional testing requirements

Host manufacturer which install this modular with modular approval should perform the test of radiated emission and spurious emission according to FCC part 15 :15.212 requirement, only if the test result comply with FCC part 15.212 requirement, then the host can be sold legally. When testing host product, the host manufacture should follow FCC KDB Publication 996369 D01 Module Integration Guide for testing the host products. The host manufacturer may operate their product during the measurements.

This series of modules has passed FCC part 15:15.212

IC:

Radio Frequency (RF) Exposure Information

The radiated output power of the Wireless Device is below the Industry Canada (IC) radio frequency exposure limits. The Wireless Device should be used in such a manner such that the potential for human contact during normal operation is minimized.

This device has also been evaluated and shown compliant with the IC RF Exposure limits under mobile exposure conditions. (antennas are greater than 20cm from a person's body).

Informations concernant l'exposition aux fréquences radio (RF)

La puissance de sortie émise par l'appareil de sans fil est inférieure à la limite d'exposition aux fréquences radio d'Industry Canada (IC). Utilisez l'appareil de sans fil de façon à minimiser les contacts humains lors du fonctionnement normal.

Ce périphérique a également été évalué et démontré conforme aux limites d'exposition aux RF d'IC dans des conditions d'exposition à des appareils mobiles (antennes sont supérieures à 20 cm à partir du corps d'une personne).

This radio transmitter IC: 2377A-WIFIHU52 has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device.

Le présent émetteur radio [identifier le dispositif par son numéro de certification d'ISDE] a été approuvé par Innovation, Sciences et Développement économique Canada pour fonctionner avec les types d'antenne énumérés ci-dessous et ayant un gain admissible maximal. Les types d'antenne non inclus dans cette liste, et dont le gain est supérieur au gain maximal indiqué pour tout type figurant sur la liste, sont strictement interdits pour l'exploitation de l'émetteur.

No.	Manufacturer	Part No.	Antenna Type	Peak Gain	
1	BRITO TECHNOLOGY	DB1DI-2AB(C)	Dipole	2.4~2.5GHz 4.9~5.8GHz	2.6dBi 3.29dBi
2	OneWave Electronic	WAN3216F245W36	Chip	2.4~2.5GHz	2.71dBi
3	OneWave Electronic	WAN3216FU58H05	Chip	5GHz	3.42dBi

CE Declaration of Conformity

For the following equipment:

Radicom Research, Inc WiFi Serial Modules
Model(s): WiFiHU52

are here with confirmed to comply with the requirements set out in the Council (European parliament) Directive on the Approximation of the Laws of the Member States relating to Electromagnetic Compatibility of Radio and Telecom device (1999/5/CE). For the evaluation regarding this Directive, the following standards were applied:

*ETSI EN300 328 V2.2.2
ETSI EN301 893 V2.1.1
ETSI 301 489-1 V2.2.3
ETSI 301 489-17 V3.2.4
EN/IEC 62311(2020)
EN IEC 62368-1(2020)*

This equipment is marked with the **CE** and can be used throughout the European community.

France – 2.4GHz for Metropolitan France:

In all Metropolitan departments, wireless LAN frequencies can be used under the following conditions, either for public or private use:

Indoor use: maximum power (EIRP*) of 100 mW for the entire 2400-2483.5 MHz frequency band

Outdoor use: maximum power (EIRP*) of 100 mW for the 2400-2454 MHz band and with maximum power (EIRP*) of 10 mW for the 2454-2483 MHz band

This device is restricted to indoor use due to its operation in the 5.15 to 5.25 GHZ frequency range.

To ensure compliance with local regulations, be sure to select the country in which the end product is used.

Caution: Exposure to Radio Frequency Radiation.

To comply with RF exposure compliance requirements, for mobile configurations, a separation distance of at least 20 cm must be maintained between the antenna of this device and all persons.

Limited Warranty

Warranty Coverage and Duration

Radicom Research, Inc. (“RRI”) warrants to the original purchaser its RRI-manufactured products (“Product”) against defects in material and workmanship under normal use and service for a period of one year from the date of delivery. During the applicable warranty period, at no charge, RRI will, at its option, either repair, replace or refund the purchase price of this Product, provided it is returned in accordance with the terms of this warranty to RRI. Repair, at the option of RRI, may include the replacement of parts, boards or other components with functionally equivalent reconditioned or new parts, boards or other components. Replaced parts, boards or other components are warranted for the balance of the original applicable warranty period. All replaced items shall become the property of RRI.

RRI MAKES NO GUARANTEE OR WARRANTY THAT THE PRODUCT WILL PREVENT OCCURRENCES, OR THE CONSEQUENCES THEREOF, WHICH THE PRODUCT IS DESIGNED TO DETECT.

This expressed limited warranty is extended by RRI to the original end-user purchaser only, and is not assignable or transferable to any other party. This is the complete warranty for the Product manufactured by RRI, and RRI assumes no obligation or liability for additions or modifications to this warranty. In no case does RRI warrant the installation, maintenance or service of the Product. RRI is not responsible in any way for any ancillary equipment not furnished by RRI that is attached to or used in connection with the Product, or for operation of the Product with any ancillary equipment and all such equipment is expressly excluded from this warranty. Because of wide variations in topographical and atmospheric conditions, which may require availability of repeater stations or of particular radio frequencies, RRI assumes no liability for range, coverage or suitability of the Product for any particular application. Buyer acknowledges that RRI does not know a particular purpose for which buyer wants the Product, and that buyer is not relying on RRI’s skill and judgment to select or furnish suitable goods.

What this Warranty does NOT Cover:

- (a) Defects or damage resulting from use of the Product in other than its normal and customary manner.
- (b) Defects or damage from misuse, accident or neglect.
- (c) Defects or damage from improper testing, operation, maintenance, installation, alteration, modification or adjustment.
- (d) Disassembly or repair of the Product in such a manner as to adversely affect performance or prevent adequate inspection and testing to verify any warranty claim.
- (e) Any Product that has had its serial number or date code removed or made illegible.

How to Receive Warranty Service:

To obtain warranty service, contact RRI by phone (408) 383 9006 for RMA

WiFiHU52 Designer’s Guide (RRD2Z50-220122001-A04-G1b)

Department and RMA (Return Merchandise Authorization) number. Deliver or send the Product, transportation and insurance prepaid to RRI, with the RMA number clearly marked on the outside of the package.

General Provision

This warranty sets forth the full extent of RRI's responsibilities regarding the Product. Repair, replacement or refund of the purchase price, at RRI's option, is the exclusive remedy. **THIS WARRANTY IS GIVEN IN LIEU OF ALL OTHER EXPRESSED WARRANTIES. ANY APPLICABLE IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTY OF MERCHANTABILITY, ARE LIMITED TO THE DURATION OF THIS LIMITED WARRANTY. TO THE FULLEST EXTENT PERMITTED BY LAW, RRI DISCLAIMS ANY LIABILITY FOR DAMAGES IN EXCESS OF THE PURCHASE PRICE OF THE PRODUCT, FOR ANY LOSS OF USE, LOSS OF TIME, INCONVENIENCE, COMMERCIAL LOSS, LOST PROFITS OR SAVING OR OTHER INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE OR FAILURE OF SUCH PRODUCT.**

Contacting Radicom Research

If more information or technical support is needed, please contact us:

671 E Brokaw Road

San Jose, CA. 95112 USA

Telephone: (408) 383 9006

Fax: (408) 383 9007

<http://www.radi.com/>