

EMC

TEST REPORT

Report No.: 161100355TWN-001

Model No.: RB9500

Issued Date: Dec. 22, 2016

Applicant: Radicom Research Inc.
2148 Bering Drive San Jose, CA, 95131, USA

Test Method/ Standard: 47 CFR FCC Part 15.249 & ANSI C63.10 2013

Test By: Intertek Testing Services Taiwan Ltd.
Hsinchu Laboratory
No. 11, Lane 275, Ko-Nan 1 Street, Chia-Tung Li,
Shiang-Shan District, Hsinchu City, Taiwan

It may be duplicated completely for legal use with the allowance of the applicant. It shall not be reproduced except in full, without the written approval of Intertek Laboratory. The test result(s) in this report only applies to the tested sample(s).

The test report was prepared by:

Candy Liu
Candy Liu/ Assistant

These measurements were taken by:

Eric Fan
Eric Fan/ Engineer

The test report was reviewed by:

Name Jimmy Yang
Title Senior Engineer

Revision History

Report No.	Issue Date	Revision Summary
161100355TWN-001	Dec. 22, 2016	Original report

Table of Contents

Summary of Tests.....	4
1. General information	5
1.1 Identification of the EUT	5
1.2 Additional information about the EUT	6
1.3 Antenna description.....	6
1.4 Peripherals equipment.....	6
2. Test specifications	7
2.1 Test standard.....	7
2.2 Operation mode	7
3. Radiated emission test FCC 15.249 (C).....	8
3.1 Operating environment.....	8
3.2 Test setup & procedure.....	8
3.3 Emission limit	10
3.3.1 Fundamental and harmonics emission limits	10
3.3.2 General radiated emission limits	11
3.4 Radiated spurious emission test data.....	11
3.4.1 Measurement results: frequency range from 9 kHz to 30 MHz.....	11
3.4.2 Measurement results: frequencies equal to or less than 1 GHz	12
3.4.3 Measurement results: frequency above 1GHz	13
3.4.4 Measurement results: Fundamental emission	16
4. Radiated emission on the band edge FCC 15.249(d).....	18
4.1 Operating environment.....	18
4.2 Radiated emission on the band edge test data.....	18
5. Conducted emission test FCC 15.207.....	19
5.1 Operating environment.....	19
5.2 Test setup & procedure.....	19
5.3 Emission limit	19
5.4 Conducted emission data FCC 15.207	20
6. 20dB Bandwidth test.....	22
6.1 Operating environment.....	22
6.2 Test setup & procedure.....	22
6.3 Measured data of modulated bandwidth test results	22
Appendix A: Test equipment list.....	25
Appendix B: Measurement Uncertainty	27

Summary of Tests

Test	Reference	Results
Radiated Emission test	15.249(c), 15.209	Pass
Emission on the Band Edge	15.249(d)	Pass
Conducted Emission of AC Power	15.207	Pass
20dB Bandwidth	15.215(c)	Pass

1. General information

1.1 Identification of the EUT

Product: 2.4G wireless module
Model No.: RB9500
Frequency Range: 2402MHz ~ 2476MHz
Channel Number: 149 Channels
Frequency of Each Channel: 2402MHz+0.5k, k=0~148
Type of Modulation: FSK
Rated Power: DC5 V
Power Cord: N/A
Sample Received: Nov. 18, 2016
Sample condition: Workable
Test Date(s): Nov. 21, 2016 ~ Dec. 19, 2016

Note 1: The test report only allows to be revised within three years from its original issued date unless further standard or the requirement was noticed.

Note 2: When determining the test conclusion, the Measurement Uncertainty of test has been considered.

Note 3: *Except where explicitly agreed in writing, all work and services performed by Intertek is subject to our standard Terms and Conditions which can be obtained at our website: <http://www.intertek-twn.com/terms/> . Intertek's responsibility and liability are limited to the terms and conditions of the agreement.*

This report is made solely on the basis of your instructions and / or information and materials supplied by you and provide no warranty on the tested sample(s) be truly representative of the sample source. The report is not intended to be a recommendation for any particular course of action, you are responsible for acting as you see fit on the basis of the report results. Intertek is under no obligation to refer to or report upon any facts or circumstances which are outside the specific instructions received and accepts no responsibility to any parties whatsoever, following the issue of the report, for any matters arising outside the agreed scope of the works. This report does not discharge or release you from your legal obligations and duties to any other person. You are the only one authorized to permit copying or distribution of this report (and then only in its entirety). Any such third parties to whom this report may be circulated rely on the content of the report solely at their own risk.

1.2 Additional information about the EUT

The EUT is a 2.4G wireless module, and was defined as information technology equipment.

Product SW version :	Rom base, no sw
Product HW version :	RB9500 RA1
Radio SW version :	Rom base, no sw
Radio HW version :	A7105
Test SW Version :	zz_rf_certify_20161026

For more detail features, please refer to user's Manual.

1.3 Antenna description

The EUT uses a permanently connected antenna.

Antenna Gain : 2 dBi
Antenna Type : PCB Antenna
Connector Type : Fixed

1.4 Peripherals equipment

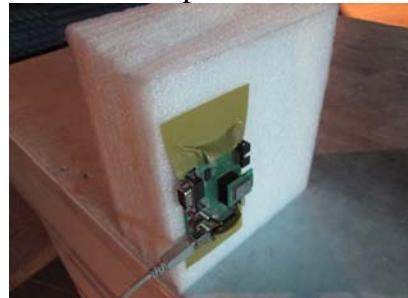
Peripherals	Manufacturer	Product No.	Serial No.	Description of Data Cable
Notebook PC	DELL	Latitude D610	1YWZKIS	Mini USB cable 0.5 meter

2. Test specifications

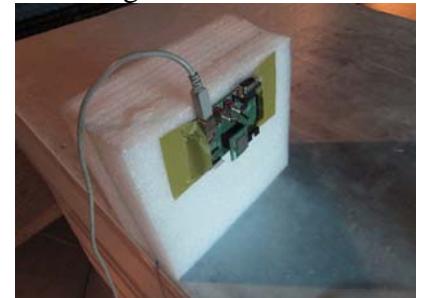
2.1 Test standard

The EUT was performed according to the procedures in FCC Part 15 Subpart C Paragraph 15.249 for non-spread spectrum devices.

The test of radiated measurements according to FCC Part15 Section 15.33(a) had been conducted and the field strength of this frequency band were all meet limit requirement, thus we evaluate the EUT pass the specified test.


2.2 Operation mode

TX-MODE is based on “specific command” and the program can select different frequency and modulation.

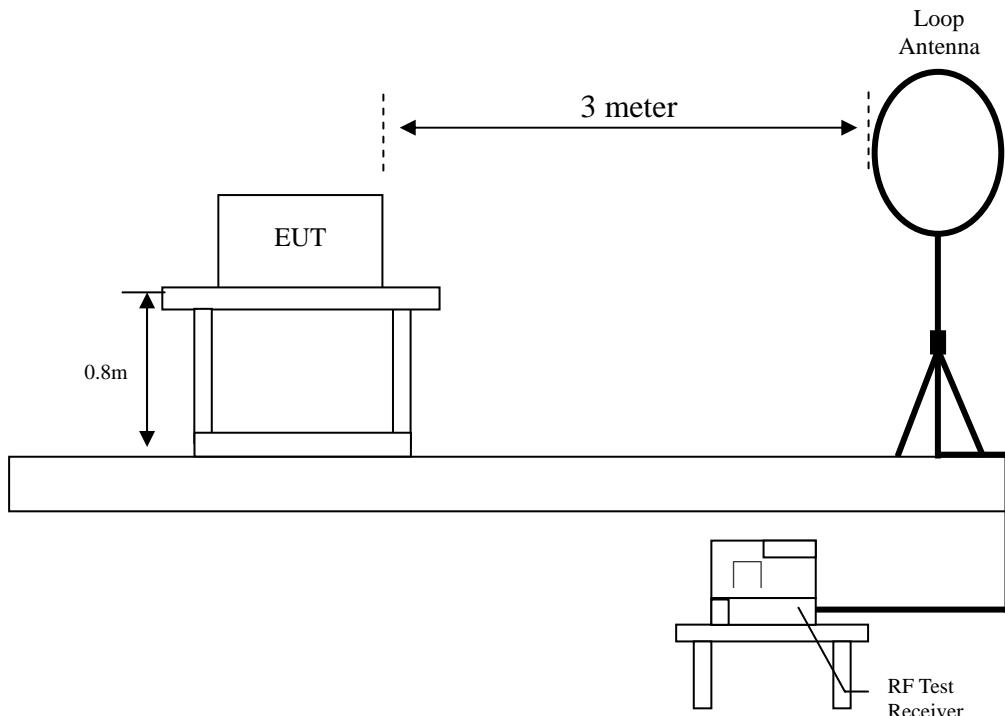

The signal is maximized through rotation and placement in the three orthogonal axes.

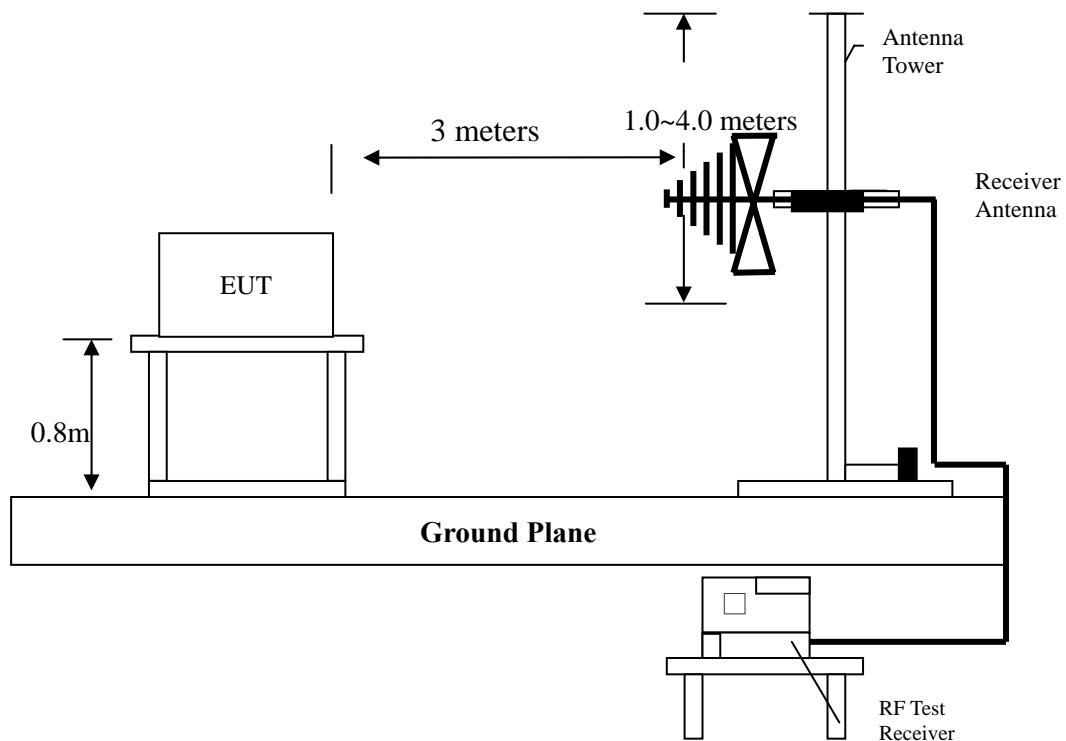
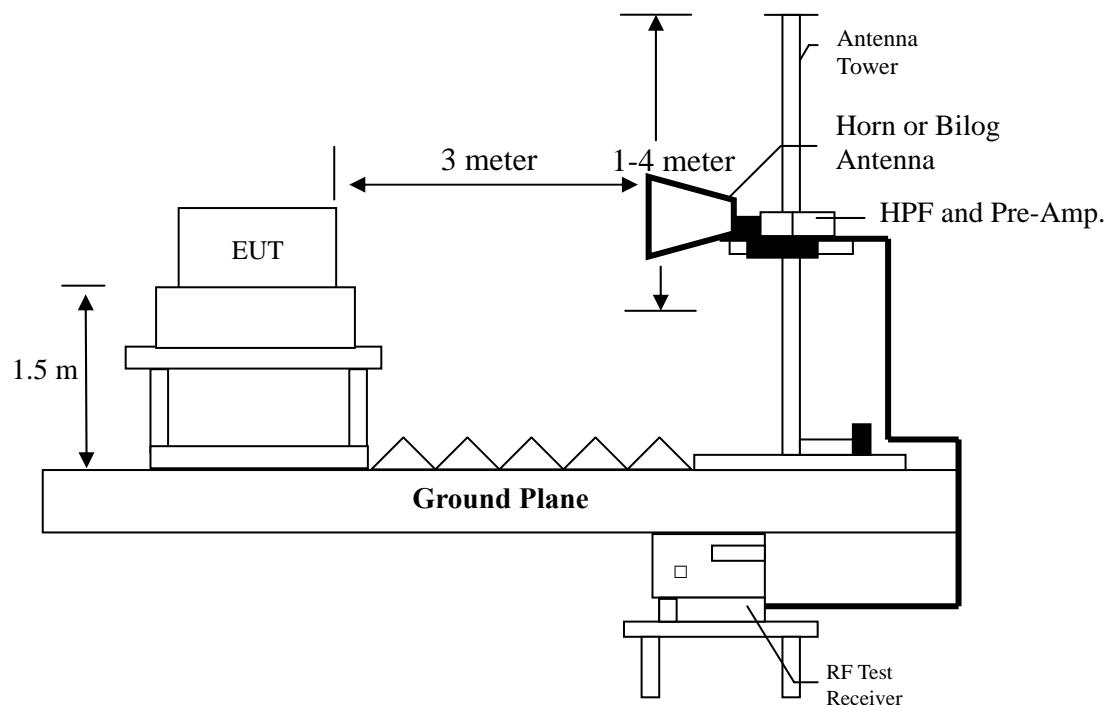
X axis

Y axis

Z axis

After verifying three axes, we found the maximum electromagnetic field was occurred at X axis. The final test data was executed under this configuration.


3. Radiated emission test FCC 15.249 (C)



3.1 Operating environment

Temperature: 25 °C
Relative Humidity: 50 %
Atmospheric Pressure: 1008 hPa
Test date: Nov. 30, 2016 ~ Dec. 19, 2016

3.2 Test setup & procedure

Radiated emission from 9 kHz to 30 MHz uses Loop Antenna:

Radiated emission from 30 MHz to 1 GHz uses Bilog Antenna:**Radiated emission above 1 GHz uses Horn Antenna:**

Radiated emissions were invested cover the frequency range from 30MHz to 1000MHz using a receiver RBW of 120kHz record QP reading, and the frequency over 1GHz using a spectrum analyzer RBW of 1MHz and 3MHz VBW record Peak and Average reading (15.209 paragraph) on the report.

The EUT for testing is arranged on a turntable. If some peripherals apply to the EUT, the peripherals will be connected to EUT and the whole system. During the test, all cables were arranged to produce worst-case emissions. The signal is maximized through rotation. The height of antenna and polarization is changing constantly for exploring for maximum signal level. The height of antenna can be up to 4 meters and down to 1 meter.

The measurement for radiated emission will be done at the distance of three meters unless the signal level is too low to measure at that distance. In the case of the reading under noise floor, a pre-amplifier is used and/or the test is conducted at a closer distance. And then all readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance.

3.3 Emission limit

3.3.1 Fundamental and harmonics emission limits

Frequency (MHz)	Field Strength of Fundamental		Field Strength of Harmonics	
	(mV/m@3m)	(dBuV/m@3m)	(uV/m@3m)	(dBuV/m@3m)
2400-2483.5	50	94	500	54

3.3.2 General radiated emission limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

Frequency MHz	15.209 Limits (dB μ V/m@3m)
30-88	40
88-216	43.5
216-960	46
Above 960	54

Remark:

1. In the above table, the tighter limit applies at the band edges.
2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system

3.4 Radiated spurious emission test data

3.4.1 Measurement results: frequency range from 9 kHz to 30 MHz

The test was performed on EUT under continuously transmitting mode. Low, Middle, High Channel were verified. The worst case occurred at TX Low Channel.

EUT: RB9500

Worst case: Tx at Low Channel

Polarity (circle)	Frequency (MHz)	Detection value	Factor (dB/m)	Reading (dB μ V)	Value (dB μ V/m)	Limit @ 3m (dB μ V/m)	Tolerance (dB)
Plane	0.01	QP	20.97	55.67	76.64	127.60	-50.96
Plane	0.03	QP	20.86	51.32	72.18	118.06	-45.88
Plane	0.04	QP	20.85	45.37	66.21	115.56	-49.35
Plane	0.07	QP	20.81	34.58	55.39	110.70	-55.31
Plane	0.09	QP	20.78	30.90	51.68	108.52	-56.84
Plane	2.18	QP	21.39	13.03	34.42	69.54	-35.12
Plane	8.39	QP	22.27	8.72	30.99	69.54	-38.55
Plane	24.27	QP	22.19	6.95	29.14	69.54	-40.40

Remark: Corr. Factor = Antenna Factor + Cable Loss - PreAmplifier Gain

3.4.2 Measurement results: frequencies equal to or less than 1 GHz

The test was performed on EUT under continuously transmitting mode. Low, Middle, High Channel were verified. The worst case occurred at TX Low Channel.

EUT: RB9500

Worst case: Tx at Low Channel

Antenna Polarized (V/H)	Freq. (MHz)	Receiver Detector	Corr. Factor (dB/m)	Reading (dBuV)	Corrected Level (dBuV/m)	Limit @ 3 m (dBuV/m)	Margin (dB)
V	35.82	QP	15.88	17.40	33.28	40.00	-6.72
V	163.86	QP	16.28	11.09	27.37	43.50	-16.13
V	210.42	QP	14.63	10.76	25.39	43.50	-18.11
V	383.08	QP	19.51	13.43	32.94	46.00	-13.06
V	571.26	QP	23.55	12.06	35.61	46.00	-10.39
V	670.20	QP	25.12	13.62	38.74	46.00	-7.26
H	53.28	QP	16.80	11.89	28.69	40.00	-11.31
H	192.96	QP	13.94	17.99	31.93	43.50	-11.57
H	352.04	QP	18.79	13.00	31.79	46.00	-14.21
H	367.56	QP	19.15	15.11	34.26	46.00	-11.74
H	383.08	QP	19.51	15.18	34.69	46.00	-11.31
H	759.44	QP	26.69	12.67	39.36	46.00	-6.64

Remark:

1. Corr. Factor = Antenna Factor + Cable Loss
2. Corrected Level = Reading + Corr. Factor

3.4.3 Measurement results: frequency above 1GHz

EUT : RB9500

Test Condition : Tx at Low channel

Frequency (MHz)	Spectrum Analyzer Detector	Ant. Pol. (H/V)	Preamp. Gain (dB)	Correction Factor (dB/m)	Reading (dB μ V)	Corrected Reading (dB μ V/m)	Limit @ 3 m (dB μ V/m)	Margin (dB)
4804	PK	V	40.13	-0.10	69.04	68.94	74.00	-5.06
4804	AV	V	40.13	-0.10	48.45	48.35	54.00	-5.65
7206	PK	V	38.11	8.10	63.06	71.16	74.00	-2.84
7206	AV	V	38.11	8.10	43.23	51.33	54.00	-2.67
9608	PK	V	38.13	11.38	44.99	56.37	74.00	-17.63
9608	AV	V	38.13	11.38	27.81	39.19	54.00	-14.81
12010	PK	V	38.82	13.18	45.64	58.82	74.00	-15.18
12010	AV	V	38.82	13.18	26.38	39.56	54.00	-14.44
4804	PK	H	40.13	-0.10	68.32	68.22	74.00	-5.78
4804	AV	H	40.13	-0.10	48.27	48.17	54.00	-5.83
7206	PK	H	38.11	8.10	55.55	63.65	74.00	-10.35
7206	AV	H	38.11	8.10	35.23	43.33	54.00	-10.67
9608	PK	H	38.13	11.38	44.87	56.25	74.00	-17.75
9608	AV	H	38.13	11.38	27.81	39.19	54.00	-14.81
12010	PK	H	38.82	13.18	44.96	58.14	74.00	-15.86
12010	AV	H	38.82	13.18	27.44	40.62	54.00	-13.38

Remark:

1. Correction Factor = Antenna Factor + Cable Loss + Power Amplifier
2. Corrected Level = Reading + Correction Factor
3. The frequency measured ranges from 1 GHz to 25 GHz. The data value listed above which is higher than the system noise floor.

EUT : RB9500
Test Condition : Tx at Middle channel

Frequency (MHz)	Spectrum Analyzer Detector	Ant. Pol. (H/V)	Preamp. Gain (dB)	Correction Factor (dB/m)	Reading (dB μ V)	Corrected Reading (dB μ V/m)	Limit @ 3 m (dB μ V/m)	Margin (dB)
4878	PK	V	40.00	0.14	69.06	69.20	74.00	-4.80
4878	AV	V	40.00	0.14	49.46	49.60	54.00	-4.40
7317	PK	V	38.01	8.44	65.33	73.77	74.00	-0.23
7317	AV	V	38.01	8.44	44.11	52.55	54.00	-1.45
9756	PK	V	38.34	11.23	42.71	53.94	74.00	-20.06
9756	AV	V	38.34	11.23	27.03	38.26	54.00	-15.74
12195	PK	V	38.67	13.18	48.29	61.47	74.00	-12.53
12195	AV	V	38.67	13.18	28.74	41.92	54.00	-12.08
4878	PK	H	40.00	0.14	67.77	67.91	74.00	-6.09
4878	AV	H	40.00	0.14	47.74	47.88	54.00	-6.12
7317	PK	H	38.01	8.44	58.36	66.80	74.00	-7.20
7317	AV	H	38.01	8.44	38.06	46.50	54.00	-7.50
9756	PK	H	38.34	11.23	42.43	53.66	74.00	-20.34
12195	PK	H	38.67	13.18	45.67	58.85	74.00	-15.15
12195	AV	H	38.67	13.18	26.94	40.12	54.00	-13.88

Remark:

1. Correction Factor = Antenna Factor + Cable Loss + Power Amplifier
2. Corrected Level = Reading + Correction Factor
3. The frequency measured ranges from 1 GHz to 25 GHz. The data value listed above which is higher than the system noise floor.

EUT : RB9500

Test Condition : Tx at High channel

Frequency (MHz)	Spectrum Analyzer Detector	Ant. Pol. (H/V)	Preamp. Gain (dB)	Correction Factor (dB/m)	Reading (dB μ V)	Corrected Reading (dB μ V/m)	Limit @ 3 m (dB μ V/m)	Margin (dB)
4952	PK	V	39.86	0.39	70.60	70.99	74.00	-3.01
4952	AV	V	39.86	0.39	50.28	50.67	54.00	-3.33
7428	PK	V	37.92	8.79	63.25	72.04	74.00	-1.96
7428	AV	V	37.92	8.79	43.50	52.29	54.00	-1.71
9904	PK	V	38.55	11.08	41.11	52.19	74.00	-21.81
12380	PK	V	38.51	13.18	49.93	63.11	74.00	-10.89
12380	AV	V	38.51	13.18	29.91	43.09	54.00	-10.91
4952	PK	H	39.86	0.39	65.45	65.84	74.00	-8.16
4952	AV	H	39.86	0.39	45.31	45.70	54.00	-8.30
7428	PK	H	37.92	8.79	55.43	64.22	74.00	-9.78
7428	AV	H	37.92	8.79	35.55	44.34	54.00	-9.66
9904	PK	H	38.55	11.08	42.60	53.68	74.00	-20.32
12380	PK	H	38.51	13.18	46.57	59.75	74.00	-14.25
12380	AV	H	38.51	13.18	26.89	40.07	54.00	-13.93

Remark:

1. Correction Factor = Antenna Factor + Cable Loss + Power Amplifier
2. Corrected Level = Reading + Correction Factor
3. The frequency measured ranges from 1 GHz to 25 GHz. The data value listed above which is higher than the system noise floor.

3.4.4 Measurement results: Fundamental emission

EUT : RB9500

Test Condition : Tx at Low channel

Frequency (MHz)	Spectrum Analyzer Detector	Antenna Polarized (H/V)	Correction Factor (dB/m)	Reading (dBuV)	Corrected Level (dBuV/m)	Limit @ 3 m (dBuV/m)	Margin (dB)
2402	PK	V	33.37	63.69	97.06	114	-16.94
2402	AV	V	33.37	58.18	91.55	94	-2.45
2402	PK	H	33.37	61.62	94.99	114	-19.01
2402	AV	H	33.37	56.49	89.86	94	-4.14

Remark:

1. Correction Factor = Antenna Factor + Cable Loss
2. Corrected Level = Reading + Correction Factor
3. The frequency measured ranges from 1 GHz to 25 GHz. The data value listed above which is higher than the system noise floor.

EUT : RB9500

Test Condition : Tx at Middle channel

Frequency (MHz)	Spectrum Analyzer Detector	Antenna Polarized (H/V)	Correction Factor (dB/m)	Reading (dBuV)	Corrected Level (dBuV/m)	Limit @ 3 m (dBuV/m)	Margin (dB)
2439	PK	V	33.48	64.70	98.18	114	-15.82
2439	AV	V	33.48	58.67	92.15	94	-1.85
2439	PK	H	33.48	59.99	93.47	114	-20.53

Remark:

1. Correction Factor = Antenna Factor + Cable Loss
2. Corrected Level = Reading + Correction Factor
3. The frequency measured ranges from 1 GHz to 25 GHz. The data value listed above which is higher than the system noise floor.

EUT : RB9500

Test Condition : Tx at High channel

Frequency (MHz)	Spectrum Analyzer Detector	Antenna Polarized (H/V)	Correction Factor (dB/m)	Reading (dBuV)	Corrected Level (dBuV/m)	Limit @ 3 m (dBuV/m)	Margin (dB)
2476	PK	V	33.59	64.76	98.35	114	-15.65
2476	AV	V	33.59	58.61	92.20	94	-1.80
2476	PK	H	33.59	59.75	93.34	114	-20.66

Remark:

1. Correction Factor = Antenna Factor + Cable Loss
2. Corrected Level = Reading + Correction Factor
3. The frequency measured ranges from 1 GHz to 25 GHz. The data value listed above which is higher than the system noise floor.

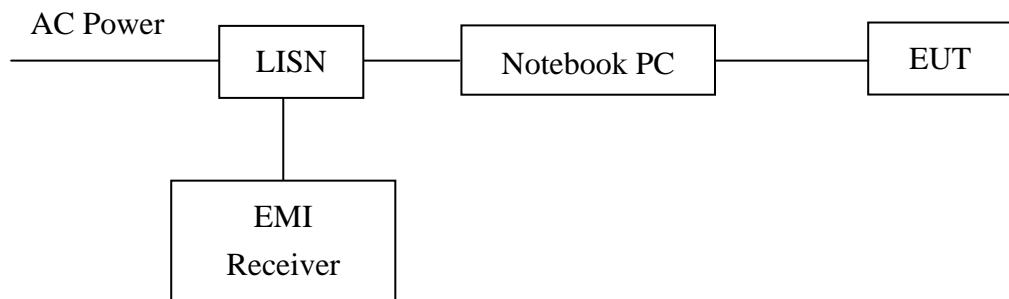
4. Radiated emission on the band edge FCC 15.249(d)**4.1 Operating environment**

Temperature: 25 °C
Relative Humidity: 50 %
Atmospheric Pressure: 1008 hPa
Test date: Nov. 30, 2016

4.2 Radiated emission on the band edge test data

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental (2402~2476MHz) or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

Frequency (MHz)	Spectrum Analyzer	Ant. Pol.	Correction Factor (dB/m)	Reading (dB μ V)	Corrected Reading (dB μ V/m)	Limit @ 3 m (dB μ V/m)	Margin (dB)	Restricted band (MHz)
2376.56	PK	H	33.79	27.68	61.47	74	-12.53	2310~2390
2390.00	AV	H	33.85	17.20	51.05	54	-2.95	
2492.04	PK	H	34.34	28.83	63.17	74	-10.83	2483.5~2500
2483.50	AV	H	34.30	16.29	50.59	54	-3.41	


Remark: Correction Factor = Antenna Factor + Cable Loss

5. Conducted emission test FCC 15.207

5.1 Operating environment

Temperature: 25 °C
Relative Humidity: 50 %
Atmospheric Pressure: 1008 hPa
Test date: Nov. 30, 2016~ Dec. 19, 2016

5.2 Test setup & procedure

The EUT are connected to the main power through a line impedance stabilization network (LISN). This provides a 50 ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination.

Both sides (Line and Neutral) of AC line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4/2003 on conducted measurement.

The bandwidth of the field strength meter (R & S Test Receiver ESCI 30) is set at 9kHz.

The EUT configuration please refer to the “Conducted set-up photo.pdf”.

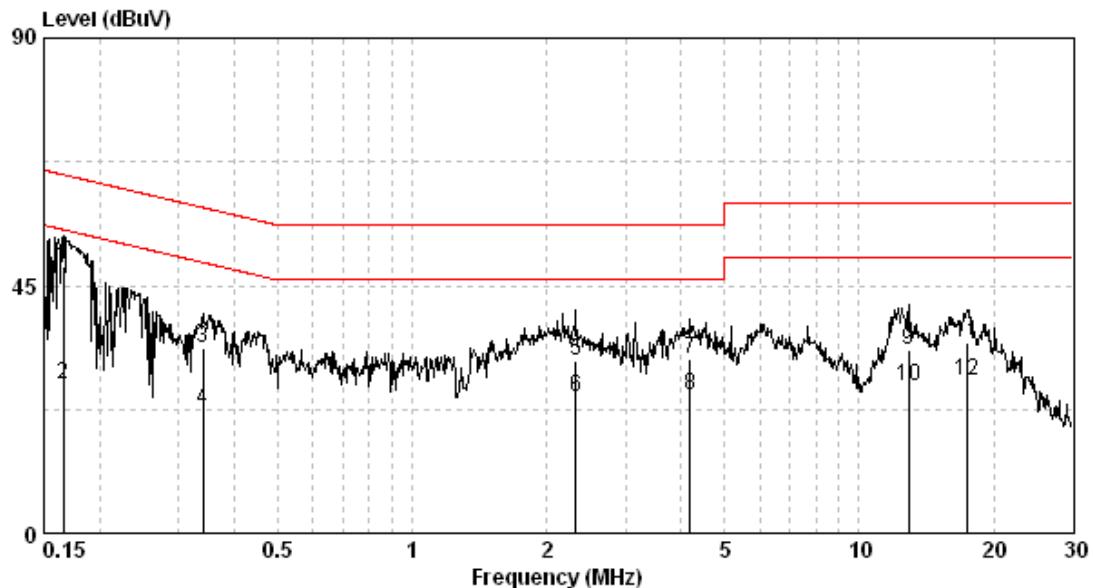
5.3 Emission limit

Freq. (MHz)	Conducted Limit (dBuV)	
	Q.P.	Ave.
0.15~0.50	66 – 56*	56 – 46*
0.50~5.00	56	46
5.00~30.0	60	50

*Decreases with the logarithm of the frequency.

5.4 Conducted emission data FCC 15.207

Phase: Live Line

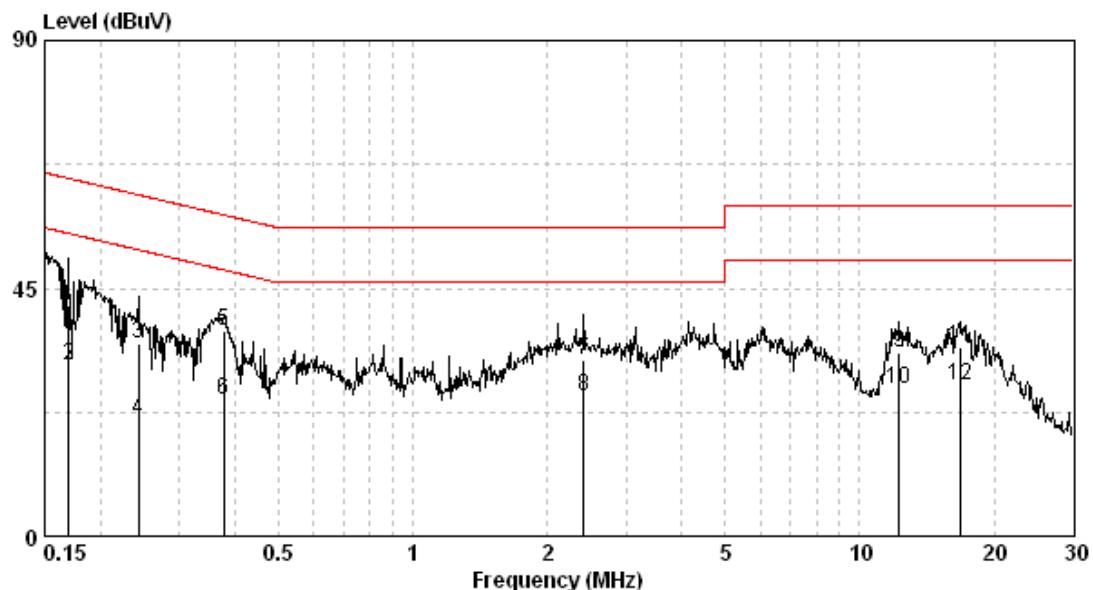

Model No.: RB9500

Test Condition: Normal mode

Frequency (MHz)	Corr. Factor (dB)	Level Q _p (dBuV)	Limit Q _p (dBuV)	Level A _v (dBuV)	Limit A _v (dBuV)	Margin Q _p (dB)	Margin A _v (dB)
0.166	9.74	48.55	65.16	27.15	55.16	-16.61	-28.01
0.341	9.76	33.63	59.18	22.47	49.18	-25.55	-26.71
2.321	9.90	31.17	56.00	24.67	46.00	-24.83	-21.33
4.180	9.92	31.73	56.00	24.94	46.00	-24.27	-21.06
12.920	10.00	33.34	60.00	26.73	50.00	-26.66	-23.27
17.475	10.01	34.48	60.00	27.70	50.00	-25.52	-22.30

Remark:

1. Correction Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
2. Margin (dB) = Level (dBuV) – Limit (dBuV)



Phase: Neutral Line
Model No.: RB9500
Test Condition: Normal mode

Frequency (MHz)	Corr. Factor (dB)	Level Q _p (dBuV)	Limit Q _p (dBuV)	Level Av (dBuV)	Limit Av (dBuV)	Margin Q _p (dB)	Margin Av (dB)
0.169	9.74	42.03	64.99	31.00	54.99	-22.96	-23.99
0.243	9.75	34.80	62.00	21.03	52.00	-27.20	-30.97
0.377	9.77	37.31	58.34	24.71	48.34	-21.04	-23.64
2.409	9.90	31.84	56.00	25.43	46.00	-24.16	-20.57
12.253	10.03	33.33	60.00	26.78	50.00	-26.67	-23.22
16.750	10.06	34.16	60.00	27.35	50.00	-25.84	-22.65

Remark:

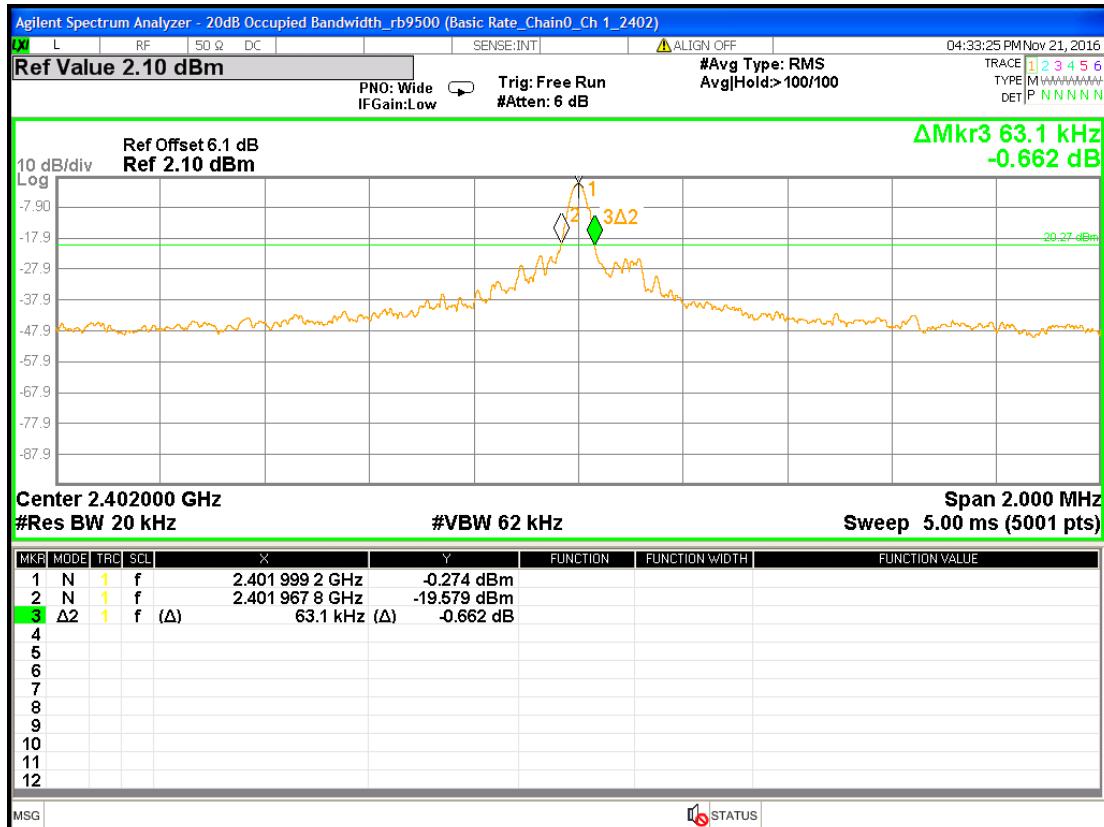
1. Correction Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
2. Margin (dB) = Level (dBuV) – Limit (dBuV)

6. 20dB Bandwidth test

6.1 Operating environment

Temperature: 25 °C
Relative Humidity: 50 %
Atmospheric Pressure: 1008 hPa
Test date: Nov. 21, 2016,

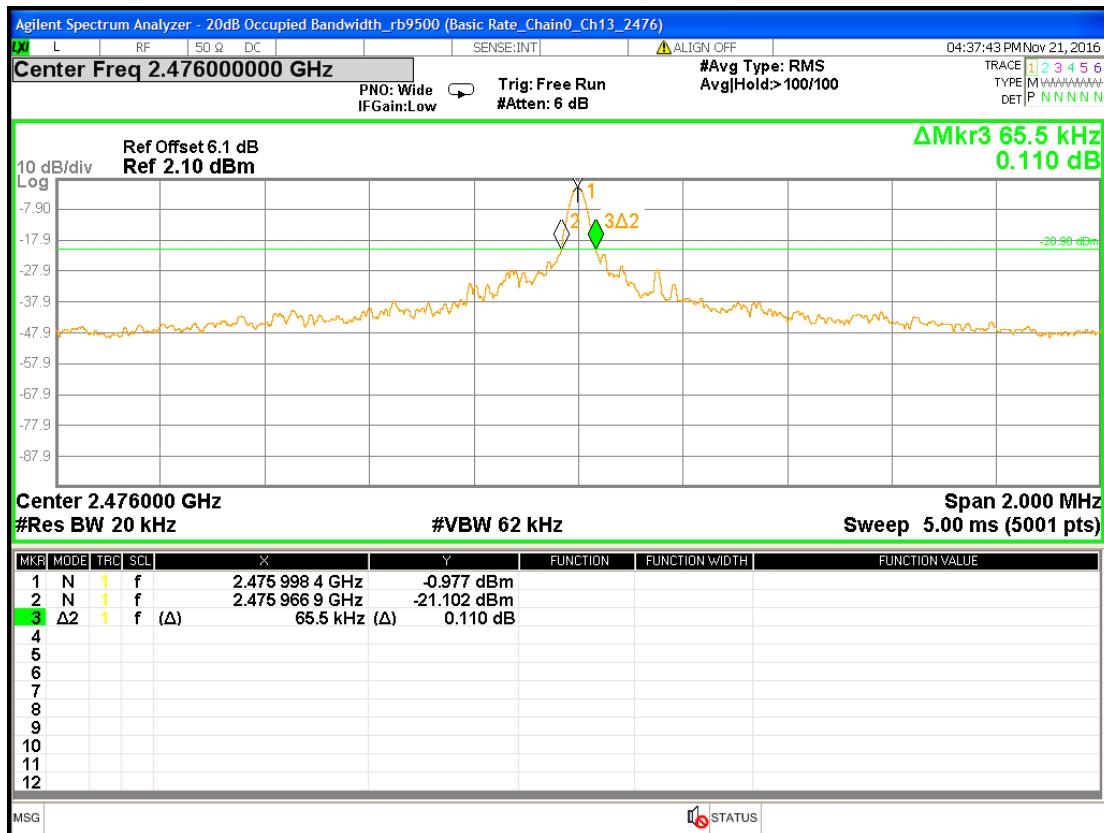
6.2 Test setup & procedure


- Step 1: The 20dB bandwidth was measured using a 50 ohm spectrum analyzer
- Step 2: The span range for the SA display shall be between two times and five times the OBW.
- Step 3: The nominal IF filter bandwidth (3 dB RBW) should be approximately 1 % to 5 % of the OBW, unless otherwise specified, depending on the applicable requirement.
- Step 4: The test was performed at 3 channels (lowest, middle and highest channel). The maximum 20dB modulation bandwidth is in the following Table.

6.3 Measured data of modulated bandwidth test results

Mode	Channel	Frequency (MHz)	20dB Bandwidth(MHz)
2.4G	Low	2402	0.0631
	Middle	2439	0.0634
	High	2476	0.0655

Please see the plot below.


20dB Occupied Bandwidth @ 2.4G mode 2402MHz

20dB Occupied Bandwidth @ 2.4G mode 2439MHz

20dB Occupied Bandwidth @ 2.4G mode 78 2476MHz

Appendix A: Test equipment list

Equipment	Brand	Model No.	Serial No.	Calibration Date	Next Calibration Date
ESCI EMI Test Receiver	Rohde & Schwarz	ESCI	100018	2016/11/30	2017/11/29
Spectrum Analyzer	Rohde & Schwarz	FSP30	100137	2016/08/16	2017/08/15
Horn Antenna (1-18G)	SHWARZBECK	BBHA 9120 D	9120D-456	2014/08/29	2017/08/27
Horn Antenna (14-42G)	SHWARZBECK	BBHA 9170	BBHA9170159	2014/09/16	2017/09/14
Broadband Antenna	SHWARZBECK	VULB 9168	9168-172	2016/03/22	2017/03/21
Pre-Amplifier	EMC Co.	EMC12635SE	980205	2016/10/08	2017/10/07
Pre-Amplifier	MITEQ	JS4-26004000--27-8A	828825	2016/09/12	2017/09/11
Power Meter	Anritsu	ML2495A	0844001	2016/11/09	2017/11/08
Power Sensor	Anritsu	MA2411B	0738452	2016/11/09	2017/11/08
Signal Analyzer	Agilent	N9030A	MY51380492	2016/09/13	2017/09/12
966-2(A) Cable 9kHz~26.5GHz	SUHNER	SMA / EX 100	N/A	2016/05/05	2017/05/04
966-2(B) Cable 9kHz~26.5GHz	SUHNER	SUCOFLEX 104P	CB0005	2016/05/04	2017/05/03
RF Cable 9kHz~26.5GHz	SUHNER	SUCOFLEX 102	CB0006	2016/05/05	2017/05/04
966-2_3m Semi-Anechoic Chamber	966_2	CEM-966_2	N/A	2016/02/24	2017/02/22
High Pass Filter	Reactel	7HS-3G/18G-S 11	N/A	2016/06/03	2017/06/02
Active Loop Antenna	SCHWARZBEC K MESS-ELEKTR ONIC	FMZB1519	1519-067	2016/03/03	2017/03/02
Attenuator	PASTERNACK	N/A	PA7001-20	2016/05/06	2017/05/05
Attenuator	EMCI	N/A	AT-N0619	2016/05/06	2017/05/05

Equipment	Brand	Model No.	Serial No.	Calibration Date	Next Calibration Date
EMI Receiver	R&S	ESCI	100059	2016/11/21	2017/11/20
Two-Line V-Network	R&S	ENV216	101159	2016/06/02	2017/06/01
Artificial Mains Network (LISN)	SCHAFFNER	MN2050D	1586	2016/05/25	2017/05/24
CON-1 Shielded Room	N/A	N/A	N/A	NCR	NCR
CON-1 Cable	SUHNER	SUCOFLEX-10 4	26438414	2016/05/05	2017/05/04
Test software	Audix	e3	4.2004-1-12k	NCR	NCR

Note: No Calibration Required (NCR).

Appendix B: Measurement Uncertainty

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of $k=2$.

Item	Uncertainty
Vertically polarized radiated disturbances from 30MHz~1GHz in a semi-anechoic chamber at a distance of 3m	5.14 dB
Horizontally polarized radiated disturbances from 30MHz~1GHz in a semi-anechoic chamber at a distance of 3m	5.22 dB
Vertically polarized Radiated disturbances from 1GHz~18GHz in a semi-anechoic chamber at a distance of 3m	3.64 dB
Horizontally polarized Radiated disturbances from 1GHz~18GHz in a semi-anechoic chamber at a distance of 3m	3.64 dB
Vertically polarized Radiated disturbances from 18GHz~40GHz in a semi-anechoic chamber at a distance of 3m	2.7 dB
Horizontally polarized Radiated disturbances from 18GHz~40GHz in a semi-anechoic chamber at a distance of 3m	2.7 dB
Radiated disturbances from 9kHz~30MHz in a semi-anechoic chamber at a distance of 3m	3.53 dB
Emission on the Band Edge Test	3.64 dB
20dB Bandwidth	0.85 dB
AC Power Line Conducted Emission	2.47 dB