DAE 3 SN: 579 DATE: 15.08.2003

3. Common mode sensitivity

DASY measurement parameters:

Auto Zero Time: 3 sec,

Measuring time:

3 sec

High/Low Range

in μV	Common mode Input Voltage	High Range Reading	Low Range Reading
Channel X	200mV	5.15	5.17
	- 200mV	-4.35	-4.88
Channel Y	200mV	9.00	8.70
to accompany to the control of the c	- 200mV	-10.57	-10.21
Channel Z	200mV	8.93	8.00
	- 200mV	-10.74	-10.51

4. Channel separation

DASY measurement parameters:

Auto Zero Time:

3 sec,

Measuring time:

3 sec

3 sec

High Range

in μV	Input Voltage	Channel X	Channel Y	Channel Z
Channel X	200mV	-	0.87	-0.39
Channel Y	200mV	0.80	€ =	2.29
Channel Z	200mV	-2.73	-0.30	-

5. AD-Converter Values with inputs shorted

in LSB	Low Range	High Range
Channel X	16102	16311
Channel Y	16055	16139
Channel Z	15811	15833

6. Input Offset Measurement

DASY measurement parameters:

Auto Zero Time: 3 sec,

Measuring time:

Number of measurements:

100, Low Range

Input $10M\Omega$

in μV	Average	min. Offset	max. Offset	Std. Deviation
Channel X	0.25	-1.75	1.20	0.43
Channel Y	-1.47	-2.17	0.46	0.35
Channel Z	-1.64	-2.78	0.28	0.45

DAE 3 SN: 579 DATE: 15.08.2003

6. Input Offset Measurement (cont'd) Input shorted

in μV	Average	min. Offset	max. Offset	Std. Deviation
Channel X	-0.02	-0.85	0.97	0.27
Channel Y	-0.69	-2.12	0.97	0.35
Channel Z	-0.96	-2.39	0.43	0.35

7. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

8. Input Resistance

In MOhm	Calibrating	Measuring
Channel X	0.2001	199.9
Channel Y	0.1999	203.3
Channel Z	0.2000	200.4

9. Low Battery Alarm Voltage

in V	Alarm Level	
Supply (+ Vcc)	7.72	
Supply (- Vcc)	7.55	

10. Power Consumption

in mA	Switched off	Stand by	Transmitting
Supply (+ Vcc)	0.00	8.71	14.4
Supply (- Vcc)	-0.01	-8.03	-9.20

D4: 2450MHZ SYSTEM VALIDATION DIPOLE

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Auden > Chunghwa Telecom

CALIBRATION	SERTIFICAT	E	
Object(s)	D2450V2 - SN:	737	
Calibration procedure(s)	QA CAL-05.v2 Calibration proc	edure for dipole validation kits	
Calibration date:	August 27, 2003	3	
Condition of the calibrated item	In Tolerance (ad	ocording to the specific calibratio	n document)
This calibration statement docume 17025 international standard.	nts traceability of M&TE us	sed in the calibration procedures and conformity o	f the procedures with the ISO/IEC
All calibrations have been conducted	ed in the closed laboratory	facility: environment temperature 22 +/- 2 degree	s Celsius and humidity < 75%.
Calibration Equipment used (M&TE	Ecritical for calibration)		
Model Type	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
RF generator R&S SML-03	100698	27-Mar-2002 (R&S, No. 20-92389)	In house check: Mar-05
Power sensor HP 8481A	MY41092317	18-Oct-02 (Agilent, No. 20021018)	Oct-04
Power sensor HP 8481A	US37292783	30-Oct-02 (METAS, No. 252-0236)	Oct-03
Power meter EPM E442	GB37480704	30-Oct-02 (METAS, No. 252-0236)	Oct-03
Network Analyzer HP 8753E	US37390585	18-Oct-01 (Agilent, No. 24BR1033101)	In house check: Oct 03
	Name	Function	Signature
Calibrated by:	Judith Mueller	Technician	Mindle
			/
Approved by:	Katja Pokovic	Laboratory Director	Policic Uty
			Date issued: August 28, 2003

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for

Calibration Laboratory of Schmid & Partner Engineering AG is completed.

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

DASY

Dipole Validation Kit

Type: D2450V2

Serial: 737

Manufactured:

August 26, 2003

Calibrated:

August 27, 2003

1. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with head simulating solution of the following electrical parameters at 2450 MHz:

Relative Dielectricity 38.2 $\pm 5\%$ Conductivity 1.89 mho/m $\pm 5\%$

The DASY4 System with a dosimetric E-field probe ES3DV2 (SN:3013, Conversion factor 4.8 at 2450 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. Lossless spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $250 \text{mW} \pm 3 \%$. The results are normalized to 1W input power.

2. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ES3DV2 SN:3013 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm³ (1 g) of tissue: 55.2 mW/g \pm 16.8 % (k=2)¹

averaged over 10 cm³ (10 g) of tissue: **24.8 mW/g** \pm 16.2 % (k=2)¹

¹ validation uncertainty

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:

1.162 ns (one direction)

Transmission factor:

0.983

(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 2450 MHz:

 $Re{Z} = 52.5 \Omega$

Im $\{Z\} = 5.4 \Omega$

Return Loss at 2450 MHz

-24.8 dB

4. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with **body simulating solution** of the following electrical parameters at 2450 MHz:

Relative Dielectricity

50.8

± 5%

Conductivity

2.03 mho/m $\pm 5\%$

The DASY4 System with a dosimetric E-field probe ES3DV2 (SN:3013, Conversion factor 4.2 at 2450 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. Lossless spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $250 \text{mW} \pm 3 \%$. The results are normalized to 1W input power.