

Fargo Electronics Inc.

Application
For Certification
RF ID Card Transmitter

(FCC ID: JZ2X001200)

August 23, 2002

All services undertaken are subject to the following general policy: Reports are submitted for exclusive use of the client to whom they are addressed. Their significance is subject to the adequacy and representative character of the samples and to the comprehensiveness of the tests, examinations or surveys made. No quotations from reports or use of Intertek Testing Services name is permitted except as expressly authorized by Intertek Testing Services in writing. The report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government. The NVLAP logo is applicable for testing to IEC/CISPR 22:1993 and FCC-47 CFR part 15 only.

ITS Intertek Testing Services

TABLE OF CONTENTS

1.0	General Description	1
1.1	Related Submittal(s) Grants	1
1.2	Product Description	1
1.3	Test Methodology	1
1.4	Test Facility	1
2.0	System Test Configuration	2
2.1	Justification	2
2.2	EUT Exercising Software	2
2.3	Special Accessories	2
2.4	Equipment Modification	2
2.5	Support Equipment List and Description	2
2.6	Test Configuration Block Diagram	3
3.0	Test Results	4
3.1	Field Strength of Radiated Emissions, FCC 15.225(a), 15.225(b), 15.209	5
3.2	Out of Band Spurious Emissions, FCC 15.225(b), 15.209	8
3.3	Frequency Tolerance, FCC 15.225(c)	10
3.4	Conducted Emissions, FCC 15.207	12
3.5	Test Procedure	15
3.6	Field Strength Calculation	16
4.0	Test Equipment	17
EXHIBIT I		
	Test Set Up Photographs	18
EXHIBIT II		
	FCC ID Label Location	23
EXHIBIT III		
	External Photographs	25
EXHIBIT IV		
	Internal Photographs	28
EXHIBIT V		
	Electrical Schematics and Block Diagram	31
EXHIBIT VI		
	User Manual and Operational Description	32

1.0 GENERAL DESCRIPTION

1.1 Related Submittals Grants

This is single application of the *RF ID Card Transmitter*; for Certification under Part 15 Subpart C. There are no other simultaneous applications.

1.2 Product Description

The *RF ID Card Transmitter* is operating at 13.56 MHz. The intended use of the *RF ID Card Transmitter* is to generate and transmit a RF signal to the ID card printer module.

The *RF ID Card Transmitter* powered at 120 VAC, 60 Hz.

The *RF ID Card Transmitter* antenna is an integrated antenna.

1.3 Test Methodology

Emission measurements were performed according to the procedures in ANSI C63.4-1992. All field strength radiated emissions measurements were performed in the semi-anechoic chamber, and for each scan, the procedure for maximizing emissions in Appendices D and E were followed. All field strength radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Justification Section" of this Application.

1.4 Test Facility

The test site facility used to collect the radiated and conducted measurement data is located at 7250 Hudson Blvd., Suite 100, Oakdale, Minnesota. This test facility has been fully described in a report dated on January 2000 submitted to your office. Please reference the site registration number: 90706, dated May 19, 2000.

2.0 SYSTEM TEST CONFIGURATION

2.1 Justification

N/A

2.2 EUT Exercising Software

USB Spooler Ver. 1.0 software over Windows 2000.

2.3 Special Accessories

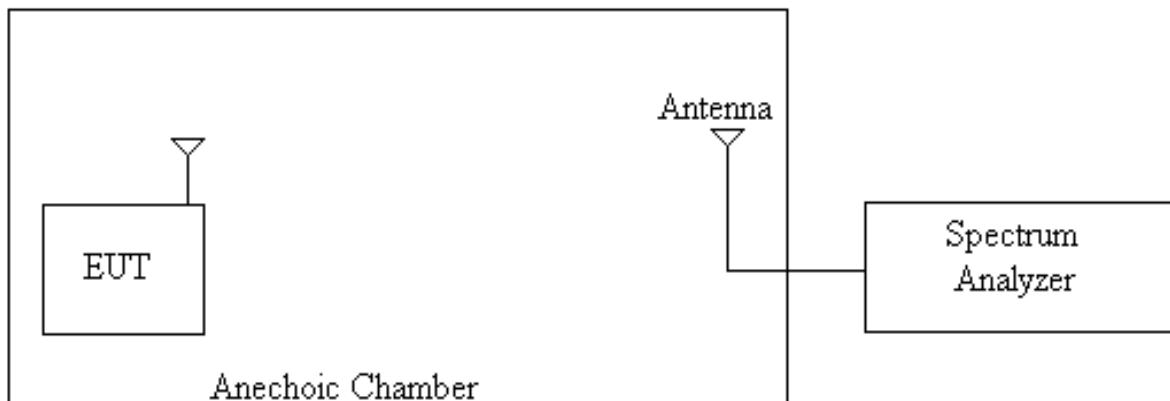
There are no special accessories necessary for compliance of these products.

2.4 Equipment Modification

No modifications were installed during the testing.

2.5 Support Equipment List and Description

A30 IBM ThinkPad Laptop PC, s/n 79-GNH59


2.6 Test Setup and Test Configuration Block Diagrams

The EUT was setup as tabletop equipment.

The EUT was powered at 120 VAC, 60 Hz.

The Support Equipment was connected to the EUT to set a transmitting mode. During testing the Support Equipment was disconnected from the EUT.

Field Strength Measurements

3.0 TEST RESULTS

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs, data tables and graphical representations of the emissions are included.

The EUT is intended for operation under the requirements of Part 15 Subpart C. Specific test requirements include the following:

47 CFR 15.225(a)	Field Strength of Fundamental
47 CFR 15.225(b), 15.209	Field Strength of Spurious Emissions
47 CFR 15.225(b), 15.209	Out of Band Spurious Emissions
47 CFR 15.225(c)	Frequency Tolerance
47 CFR 15.207	Conducted Emissions

ITS Intertek Testing Services

3.1 Field Strength of Radiated Emissions, FCC 15.225(a)(b), 15.209

Field Strength of Fundamental and Harmonics Emissions measurements were made with Fundamental frequency at 13.56 MHz. The Harmonics emissions were tested up to 1000MHz.

The Tables ## 3.1.1 and 3.1.2 and Graph 3.1.1 below show the Field Strength of Fundamental Radiation and Harmonics Emissions.

Note: Emission level shown in the Graphs does not include the Antenna, Cable and Pre-amplifier correction factors.

Radiated Emissions at Fundamental and 2-nd Harmonic

Date: 08-19-2002

Company: Fargo Electronics Inc.
Model: RF ID Card Transmitter
Test Engineer: Norman Shpilsher
Special Config. Info: Open Area Test Site, 10m measurement Distance
Standard: FCC Part 15.225 and 15.209
Note: Measurement distance 10m with Loop antenna SAS 200/562B
All measurements were taken using a CISPR Quasi-Peak detector
with RBW 10kHz.

Table # 3.1.1

Frequency MHz	QP Reading dB μ V	Antenna Factor dB/m	Pre-amp. Gain (dB)	Net at 10m. dB μ V/m	Limit at 30m dB μ V/m	Margin dB	Comments
13.560	48.04	9.24	0.00	57.28	80.00	-22.72	Fund.
27.120	34.20	12.49	28.35	18.34	29.50	-11.16	2-nd Harm.

ITS Intertek Testing Services

Spurious Radiated Emissions

Date: 8/14/02

Company: Fargo Electronics Inc.

Model: RF ID Card Transmitter

Test Engineer: Uri Spector

Standard: FCC Part 15.225, 15.209

Test Site: 3m Anechoic Chamber, 3m measurement distance

Note: The table shows the worst case radiated emissions


All measurements were taken using a CISPR Quasi-peak detector

Table # 3.1.2

Frequency MHz	Antenna			Total QP dB μ V/m	QP Limit dB μ V/m	Margin dB	Comments
	Polarity	Hts(cm)	Factor(dB1/m)				
162.72	H	187	11.8	34.0	44.0	-10.0	
176.29	H	205	11.1	32.3	44.0	-11.7	
203.40	H	135	11.6	41.6	44.0	-2.4	
216.96	H	139	12.4	38.2	46.0	-7.8	
230.52	H	113	13.2	38.8	46.0	-7.2	
257.64	H	100	14.6	40.5	46.0	-5.5	
336.07	H	100	16.8	36.6	46.0	-9.4	
426.09	H	161	19.0	40.5	46.0	-5.5	
432.09	H	186	19.2	40.0	46.0	-6.0	
488.16	H	161	20.2	40.5	46.0	-5.5	

ITS Intertek Testing Services

Graph # 3.1.1

3.2 Out of Band Spurious Emissions, FCC 15.225(b), 15.209

Out-of-band measurements were made for frequencies:

- 15.553MHz
- 15.567MHz.

Output frequencies of the EUT was 13.560MHz

The Table # 3-2-1and Graph ## 3-2-1 show the Out of Band Spurious Emissions.

Note: Emission level shown in the Graphs does not include the Antenna and Cable correction factors.

Out of Band Spurious Emissions

Date: 08-19-2002

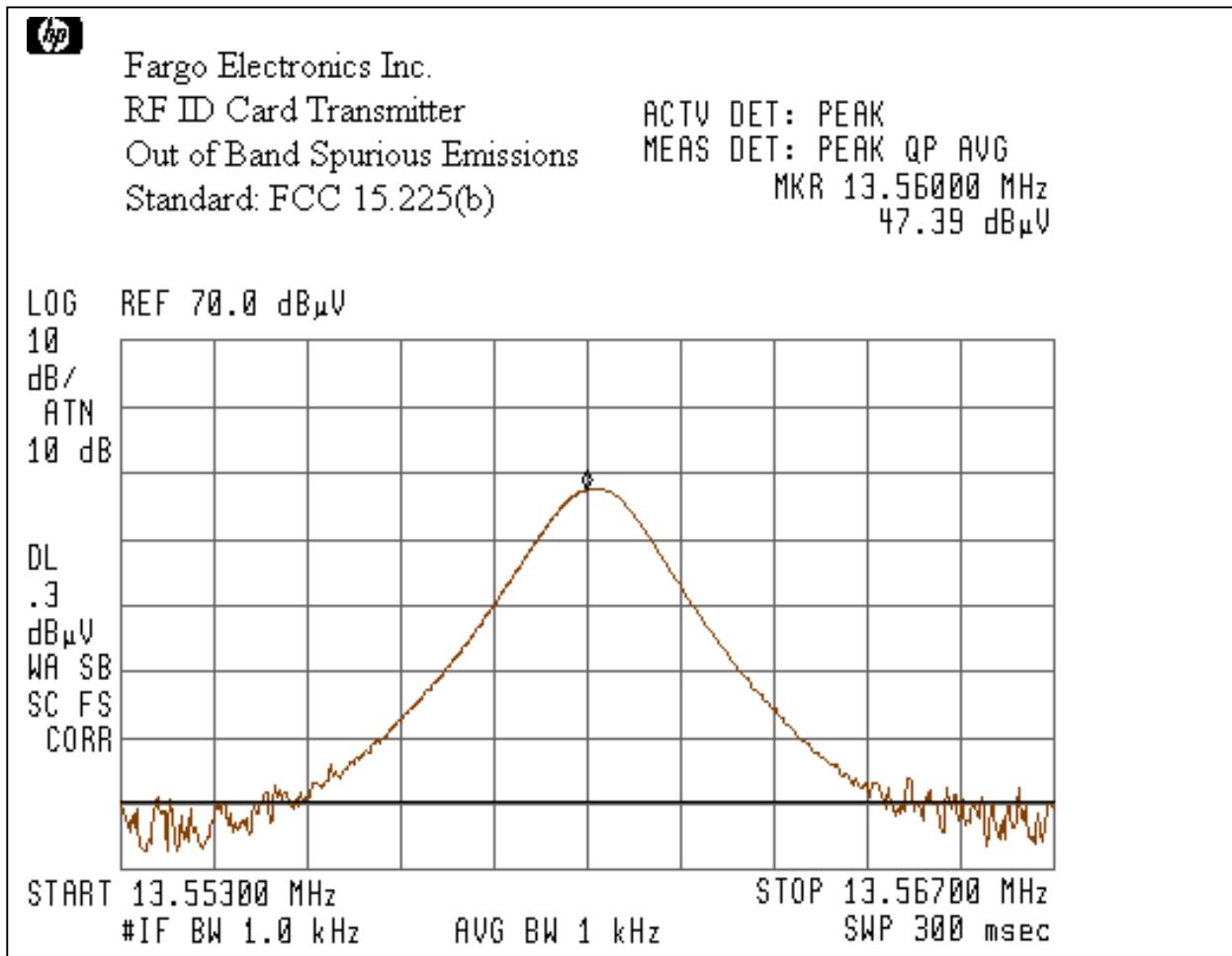

Company: Fargo Electronics Inc.
Model: RF ID Card Transmitter
Test Engineer: Norman Shpilsher
Special Config. Info: Open Area Test Site, 10m measurement Distance
Standard: FCC Part 15.225 and 15.209
Note: Measurement distance 10m with Loop antenna SAS 200/562B
 All measurements were taken using a Peak detector
 with RBW 1kHz.

Table # 3.2.1

Frequency MHz	QP Reading dB μ V	Antenna Factor dB/m	Pre-amp. Gain (dB)	Net at 10m. dB μ V/m	Limit at 30m dB μ V/m	Margin dB	Comments
13.553	0.70	9.25	0.00	9.95	29.50	-19.55	
13.567	0.70	9.22	0.00	9.92	29.50	-19.58	

ITS Intertek Testing Services

Graph # 3-2-1

3.3 Frequency Tolerance, FCC 15.225(c)

Frequency Stability with variation of ambient temperature was measured from -20 degrees C to +50 degrees C at frequency 13.56 MHz and rated power input 120VAC/60Hz.

Frequency Stability with variation of primary supply voltage was measured at 85% (102V) and 115% (138V) of rated AC Power Supply input voltage of 120V at frequency 13.56 MHz.

Table below shows the frequency stability vs. temperature ambient and supply voltage.

Frequency Stability**Date:**

08-19-2002

Company: Fargo Electronics Inc.**Model:** RF ID Card Transmitter**Special Info:** Environmental Chamber (Frequency Stability testing)**Test Engineer:** Norman Shpilsher**Standard:** FCC 15.225(c)**Table # 3-3-1**

Temperature Degree C	Output Frequency MHz	Frequency Stability Hz	Freq. Tolerance + / - 0.01% Hz	Test Result
-20	13.56	81	1356	Pass
-10	13.56	65	1356	Pass
0	13.56	50	1356	Pass
10	13.56	21	1356	Pass
20	13.56	0	1356	Pass
30	13.56	10	1356	Pass
40	13.56	21	1356	Pass
50	13.56	40	1356	Pass
55	13.56	45	1356	Pass
Input Power AC Voltage V	Output Frequency MHz	Frequency Stability Hz	Freq. Tolerance + / - 0.01% Hz	Test Result
102	13.56	0.0	1356	Pass
110	13.56	0.0	1356	Pass
120	13.56	0.0	1356	Pass
130	13.56	0.0	1356	Pass
138	13.56	0.0	1356	Pass

3.4 Conducted Emissions, FCC 15.207

Conducted Emissions testing was performed in frequency range from 150kHz to 30MHz. Emissions at the Transmitter operating frequency of 13.566MHz were excluded from the test result.

The Table # 3-4-1and Graph # 3-4-1 shows the Conducted Emissions.

ITS Intertek Testing Services

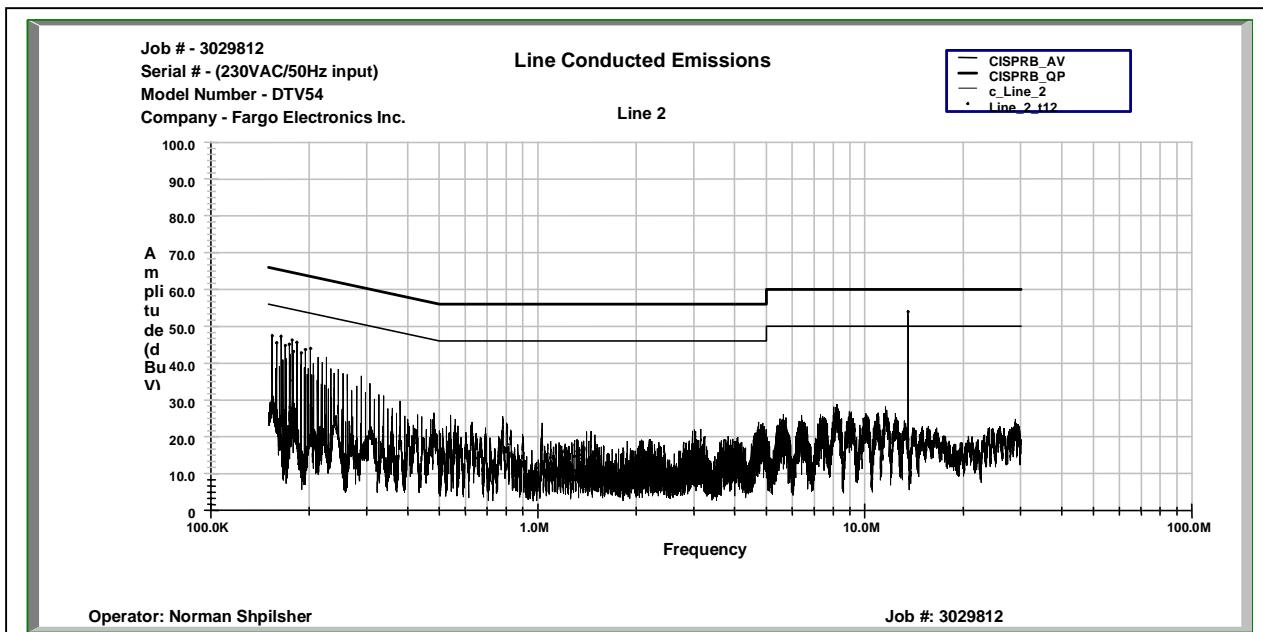
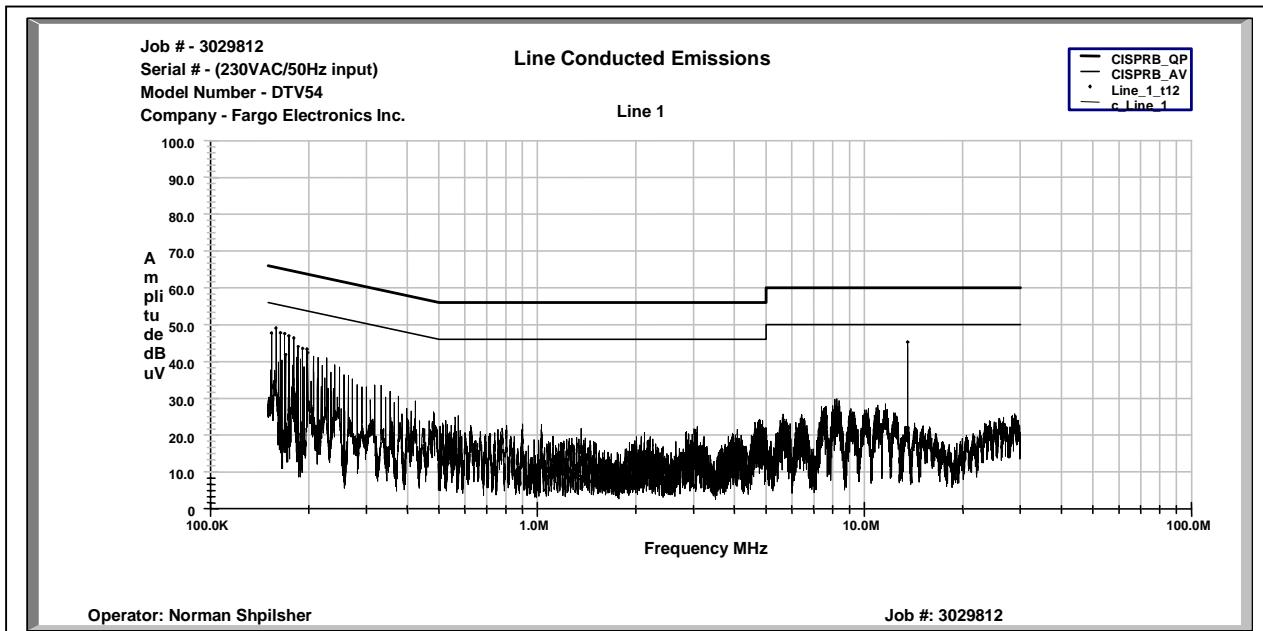
TILE Instrument Control System EMI Measurement Software

Conducted Emissions **Date:** 08-16-2002

Company: Fargo Electronics Inc.
Model: RF ID card Transmitter
Test Engineer: Norman Shpilsher
Special Config. Info: The Emissions at the Transmitter operating Frequency of 13.56MHz was excluded from the Table
Standard: FCC Part 15.207
Note: The table shows the worst case conducted emissions
All measurements were taken using a Peak detector

Table # 3.4.1

Line 1



Frequency MHz	Peak Reading dB _u V	Class B QP Limits dB _u V	Margin dB
0.151	47.0	65.9	-18.9
0.159	47.6	65.5	-17.9
0.168	45.6	65.1	-19.5
0.201	43.4	63.5	-20.1
10.454	29.3	60.0	-30.7
29.578	29.0	60.0	-31.0

Line 2

Frequency MHz	Peak Reading dB _u V	Class B QP Limits dB _u V	Margin dB
0.151	47.1	65.9	-18.8
0.163	43.1	65.3	-22.2
0.168	44.4	65.1	-20.7
0.172	43.0	64.9	-21.9
12.627	28.9	60.0	-31.1
29.663	28.8	60.0	-31.2

ITS Intertek Testing Services

Graph #3.4.1

3.5 Test Procedure

Field Strength Measurements

The EUT was placed on a non-conductive table 0.8m above the ground plane inside the Anechoic Chamber. The table was centered on a motorized turntable, which allows 360-degree rotation. The measurement antenna was positioned at 3m distance. The Bicono-Log antenna was used in frequency range from 30MHz to 1GHz. The radiated emissions were maximized by configuring the EUT, by rotating the EUT, by changing antenna polarization, and by changing antenna height from 1 to 4m. Method of the direct Field Strength Calculation is shown in Section 3.4.

Frequency Tolerance

The EUT was placed in an environmental test chamber and powered such that control element received normal voltage and the transmitter provided maximum RF output. The Chamber was programmed to cool from room temperature to minus 20 degrees C and then step in 10-degree increments to plus 55 degrees C. For Frequency Stability testing with variation of primary supply voltage the EUT power supply was powered at rated supply voltage at 120VAC/60Hz and then at 102VAC/60Hz and 138VAC/60Hz

Conducted Emissions

For conducted emissions testing, the equipment is moved to an insulating platform over the ground plane, and the EUT is powered from a LISN. Both sides of the AC line are measured and the results are compared to the applicable limits. Measurements are taken using CISPR quasi-peak and average detectors when the peak readings approach or exceed the average limit. Only quasi-peak readings are taken when the emissions from the EUT meet the average limit as measured with the quasi-peak detector.

3.6 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured emissions reading on the EMI Receiver.

The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

Where: FS = Field Strength in dB(μ V/m)

RA = Receiver Amplitude in dB(μ V)

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB(m^{-1})

AG = Amplifier Gain in dB

Assume a receiver reading of 48.1 dB(μ V) is obtained. The antenna factor of 7.4 dB(m^{-1}) and cable factor of 1.6 dB is added and amplifier gain of 16.0 dB is subtracted giving field strength of 41.1 dB(μ V/m).

$$RA = 48.1 \text{ dB}(\mu\text{V})$$

$$AF = 7.4 \text{ dB}(m^{-1})$$

$$CF = 1.6 \text{ dB}$$

$$AG = 16.0 \text{ dB}$$

$$FS = RF + AF + CF - AG$$

$$FS = 48.1 + 7.4 + 1.6 - 16.0$$

$$FS = 41.1 \text{ dB}(\mu\text{V}/\text{m})$$

In the tables the Cable correction factors are included to the Antenna Factors.

Tested by:

Norman Shpilsher
EMC Project Engineer
Intertek Testing Services NA, Inc.

Signature

Norman Shpilsher

Signature

Date: August 23, 2002

ITS Intertek Testing Services

4.0 TEST EQUIPMENT

Receivers/Spectrum Analyzers

DESCRIPTION	SERIAL NO.	LAST CAL	CAL DUE	USED
HP85462A Receiver RF Section	3549A00306	11/01	11/02	X
HP85460A RF Filter Section	3448A00276	11/01	11/02	X

Antennas

DESCRIPTION	SERIAL NO.	LAST CAL	CAL DUE	USED
Schaffner-Chase Bicono-Log Antenna	2468	11/01	11/02	X
Schaffner-Chase Bicono-Log Antenna	2630	05/02	05/03	
EMCO Horn Antenna 3115	9507-4513	09/01	09/02	

Artificial Mains Networks/Absorbing Clamps

DESCRIPTION	SERIAL NO.	LAST CAL	CAL DUE	USED
FCC LISN-2	316	01/02	01/03	X
FCC-LISN-50-25-2	2014	04/02	04/03	