

Specific Absorption Rate (SAR) Test Report

for

Dialogue Technology Corp.

on the

FLYBOOK

Report No. : FA6O2516-2-2-03

Trade Name : DIALOGUE Model Name : V5W1BBHA

FCC ID : JYV-V5W1BBHA

Date of Testing : Feb. 14 and Mar. 17, 2007

Date of Report : Mar. 30, 2007 Date of Review : Mar. 30, 2007

- The test results refer exclusively to the presented test model / sample only.
- Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.
- Report Version: Rev. 04

SPORTON International Inc.

6F, No.106, Sec. 1, Hsin Tai Wu Rd., Hsi Chih, Taipei Hsien, Taiwan, R.O.C.

Table of Contents

		ent of Compliance	
2. A	dmini	stration Data	
	2.1	Testing Laboratory	2
	2.2	Detail of Applicant	
	2.3	Detail of Manufacturer	2
	2.4	Application Detail	2
3. S	cope.		;
	3.1	Description of Device Under Test (DUT)	;
	3.2	Product Photo	4
	3.3	Applied Standards:	
	3.4	Device Category and SAR Limits	(
	3.5	Test Conditions	
		3.5.1 Ambient Condition:	
		3.5.2 Test Configuration:	
4. S	pecifi	c Absorption Rate (SAR)	
	4.1	Introduction	
	4.2	SAR Definition	
5. S	AR M	easurement Setup	
	5.1	DASY4 E-Field Probe System	
		5.1.1 ET3DV6 E-Field Probe Specification	
		5.1.2 ET3DV6 & EX3DV3 E-Field Probe Calibration	
	5.2	DATA Acquisition Electronics (DAE)	
	5.3	Robot	
	5.4	Measurement Server	
	5.5	SAM Twin Phantom	
	5.6	Data Storage and Evaluation	
		5.6.1 Data Storage	
		5.6.2 Data Evaluation	
	5.7	Test Equipment List	
6. T		Simulating Liquids	
		ainty Assessment	
		easurement Evaluation	
	8.1	Purpose of System Performance check	. 24
	8.2	System Setup	2
	8.3	Validation Results	
9. D		otion for DUT Testing Position	
		surement Procedures	
. • .	10.1	Spatial Peak SAR Evaluation	
	-	Scan Procedures	
		SAR Averaged Methods	
11.		Test Results	
	11.1	Notebook Bottom Touch with Main Antenna	
		Notebook Bottom Touch with Aux. Antenna	
12		TOTAL DOLLOT TOTAL THE THE TOTAL THE TOTAL THE TOTAL THE THE THE TOTAL THE THE TOTAL THE THE THE TOTAL THE THE THE TOTAL THE THE THE TOTAL THE	

Appendix A – System Performance Check Data

Appendix B – SAR Measurement Data Appendix C – Calibration Data

Tel: 886-2-2696-2468 Fax: 886-2-2696-2255

1. Statement of Compliance

The Specific Absorption Rate (SAR) maximum result found during testing for the **Dialogue Technology Corp. FLYBOOK V5W1BBHA on the 2.4GHz band and 5GHz band body SAR** are as follows (with expanded uncertainty 20.6% for 2.4GHz band and 25.9% for 5GHz band):

2400 ~ 2483.5 MHz Body SAR (W/kg)	5150 ~ 5250 MHz <band i=""> Body SAR (W/kg)</band>	5725 ~ 5825 MHz <band iii=""> Body SAR (W/kg)</band>
0.01	0.109	0.143

The co-location of WLAN and Bluetooth were also checked. It is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1999 and had been tested in accordance with the measurement methods and procedures specified in OET Bulletin 65 Supplement C (Edition 01-01).

Approved by

Dr. Daniel Lee EMC/SAR Director

2. Administration Data

2.1 Testing Laboratory

Company Name : Sporton International Inc. **Department :** Antenna Design/SAR

Address: No.52, Hwa-Ya 1st RD., Hwa Ya Technology Park, Kwei-Shan Hsiang, TaoYuan

Hsien, Taiwan, R.O.C.

Telephone Number: 886-3-327-3456 **Fax Number:** 886-3-327-0973

2.2 Detail of Applicant

Company Name : Dialogue Technology Corp.

Address: 10F, No. 196, Sec. 2, Jungshing Rd., Shindian City, Taipei 231, Taiwan, R.O.C.

2.3 <u>Detail of Manufacturer</u>

Company Name : Dialogue Technology Corp.

Address: 10F, No. 196, Sec. 2, Jungshing Rd., Shindian City, Taipei 231, Taiwan, R.O.C.

2.4 Application Detail

Date of reception of application:Oct. 25, 2006Start of test:Feb. 14, 2007End of test:Mar. 17, 2007

3. Scope

3.1 <u>Description of Device Under Test (DUT)</u>

DUT Type :	FLYBOOK
Model Name :	V5W1BBHA
FCC ID:	JYV-V5W1BBHA
Type of Modulation :	802.11a : OFDM 802.11b : DSSS 802.11g : OFDM
Frequency Range :	802.11a : 5150 ~ 5250 MHz <band i=""> / 5725 ~ 5825 MHz <band iii=""> 802.11b/g : 2400 ~ 2483.5 MHz</band></band>
Maximum Output Power to Antenna :	802.11a: 16.93 dBm <band i=""> / 18.09 dBm <band iii=""> 802.11b: 18.12 dBm 802.11g: 19.55 dBm</band></band>
Antenna Type :	PIFA Antenna
Antenna Connector :	I-PEX
DUT Stage :	Production Unit
Application Type :	Certificate

3.2 Product Photo

3.3 Applied Standards:

The Specific Absorption Rate (SAR) testing specification, method and procedure for this FLYBOOK is in accordance with the following standards:

47 CFR Part 2 (2.1093), IEEE C95.1-1999, IEEE C95.3-2002, IEEE P1528 -2003, and OET Bulletin 65 Supplement C (Edition 01-01)

3.4 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user.

Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

3.5 Test Conditions

3.5.1 <u>Ambient Condition:</u>

Item	802.11b/g	802.11a <band i=""></band>	802.11a <band iii=""></band>		
Ambient Temperature (°C)	20 ~ 24				
Tissue simulating liquid temperature (°C)	21.3 21.4 21.4				
Humidity (%)	< 60%				

3.5.2 <u>Test Configuration:</u>

The data rates for SAR testing are 11Mbps for 802.11b, 6Mbps for 802.11g and 6 Mbps for 802.11a. Engineering testing software installed on the EUT can provide continuous transmitting RF signal. This RF signal utilized in SAR measurement has almost 100% duty cycle and its crest factor is 1.

4. Specific Absorption Rate (SAR)

4.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The FCC recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

4.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density.

). The equation description is as below:

$$\mathbf{SAR} = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$\mathbf{SAR} = C \frac{\delta T}{\delta t}$$

, where C is the specific head capacity, δT is the temperature rise and δt the exposure duration,

or related to the electrical field in the tissue by

$$\mathbf{SAR} = \frac{\sigma |E|^2}{\rho}$$

, where $\,$ is the conductivity of the tissue, $\,$ is the mass density of the tissue and E is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

5. SAR Measurement Setup

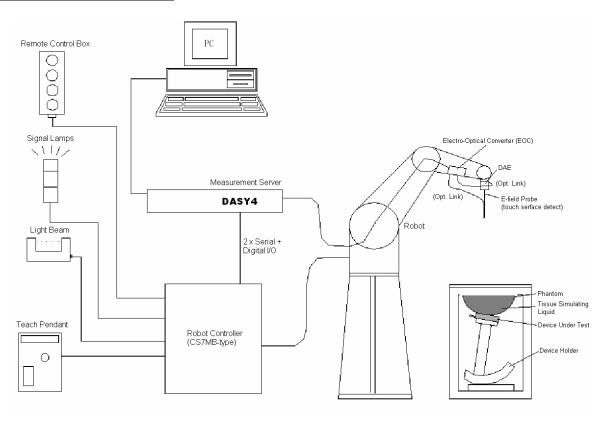


Fig. 5.1 DASY4 system

The DASY4 system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter (ECO) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- ➤ A computer operating Windows XP
- DASY4 software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- ➤ The SAM twin phantom
- ➤ A device holder
- > Tissue simulating liquid
- > Dipole for evaluating the proper functioning of the system

Some of the components are described in details in the following sub-sections.

5.1 DASY4 E-Field Probe System

The SAR measurement is conducted with the dosimetric probe ET3DV6 and ET3DV6 (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

5.1.1 ET3DV6 E-Field Probe Specification

<ET3DV6 Probe>

Construction Symmetrical design with triangular core

Built-in optical fiber for surface detection

system

Built-in shielding against static charges PEEK enclosure material (resistant to

organic solvents)

Calibration Simulating tissue at frequencies of

900MHz, 1.8GHz and 2.45GHz for brain

and muscle (accuracy ±8%)

Frequency 10 MHz to > 3 GHz

Directivity $\pm 0.2 \text{ dB}$ in brain tissue (rotation around

probe axis)

 \pm 0.4 dB in brain tissue (rotation perpendicular to probe axis)

Dynamic Range $5 \mu \text{ W/g to} > 100 \text{mW/g}$; Linearity: $\pm 0.2 \text{dB}$ **Surface Detection** $\pm 0.2 \text{ mm}$ repeatability in air and clear

 $\pm\,0.2$ mm repeatability in air and clear liquids on reflecting surface

Dimensions Overall length: 330mm

Tip length: 16mm Body diameter: 12mm

Tip diameter: 6.8mm

Distance from probe tip to dipole centers:

2.7mm

Application General dosimetry up to 3GHz

Compliance tests for mobile phones and

Wireless LAN

Fast automatic scanning in arbitrary

phantoms

Fig. 5.2 Probe setup on robot

<EX3DV3 Probe>

Construction Symmetrical design with triangular core

Built-in shielding against static charges

PEEK enclosure material (resistant to

organic solvents)

Calibration Basic Broad Band Calibration in air:

10-3000 MHz Conversion Factors (CF) for HSL 900 and HSL 1800 Additional CF for other liquids and frequencies upon request

Frequency 10 MHz to > 6 GHz; Linearity: $\pm 0.2 \text{ dB}$

(30 MHz to 3 GHz)

Directivity $\pm 0.3 \text{ dB}$ in HSL (rotation around probe

axis)

± 0.5 dB in tissue material (rotation normal

to probe axis)

Dynamic Range $10 \mu \text{W/g to} > 100 \text{ mW/g}$; Linearity: ± 0.2

dB (noise: typically $< 1 \mu W/g$)

Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 2.5 mm (Body: 12 mm)
Typical distance from probe tip to dipole

centers: 1 mm

Application High precision dosimetric measurements in

any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

Fig. 5.2 EX3DV3 E-field Probe

5.1.2 <u>ET3DV6 & EX3DV3 E-Field Probe Calibration</u>

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data are as below:

<EX3DV3 Probe>

Sensitivity	X axis: 0.6	55 μV	Y axi	s : 0.675 μV	Z axis : 0.598 μV
Diode compression point	X axis : 97	X axis : 97 mV Y ax		xis : 97 mV	Z axis : 97 mV
	Frequency (MHz)	X axis		Y axis	Z axis
Conversion factor	5100~5300	4.3	5	4.35	4.35
(Body)	5400~5600	4.02		4.02	4.02
	5700~5900	5700~5900 4.09		4.09	4.09
	Frequency (MHz)	Alp	ha	Depth	
Boundary effect	5100~5300	0.4	7	1.25	
(Body)	5400~5600	0.4	6	1.14	
	5700~5900	0.5	2	0.92	

<ET3DV6 Probe>

13D 10 11000					
Sensitivity	X axis : 1.73 μV		Y axis : 1.67 μV		Z axis : 1.70 μV
Diode compression point	X axis : 95 mV		Y axis: 101 mV		Z axis : 93 mV
Conversion factor	Frequency (MHz)	X axis		Y axis	Z axis
(Body)	2350~2550	4.11		4.11	4.11
Boundary effect	Frequency (MHz)	Alp	ha	Depth	
(Body)	2350~2550	0.0	50	1.70	

NOTE: The probe parameters have been calibrated by the SPEAG.

5.2 <u>DATA Acquisition Electronics (DAE)</u>

The data acquisition electronics (DAE4) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

5.3 Robot

The DASY4 system uses the high precision robots RX90BL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASYS system, the CS7MB robot controller version from Stäubli is used. The RX robot series have many features that are important for our application:

- ➤ High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- > Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- ► 6-axis controller

5.4 Measurement Server

The DASY4 measurement server is based on a PC/104 CPU board with 166 MHz CPU 32 MB chipset and 64 MB RAM.

Communication with the DAE4 electronic box the 16-bit AD-converter system for optical detection and digital I/O interface.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

5.5 SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- Right head
- > Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters.

On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

The phantom can be used with the following tissue simulating liquids:

- *Water-sugar based liquid
- *Glycol based liquids



Fig. 5.3 Top view of twin phantom

Fig. 5.4 Bottom view of twin phantom

5.6 Data Storage and Evaluation

5.6.1 Data Storage

The DASY4 software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension .DA4. The postprocessing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a loseless media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

5.6.2 <u>Data Evaluation</u>

The DASY4 postprocessing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Norm_i, a_{i0} a_{i1} , a_{i2}

- Conversion factor ConvF_i - Diode compression point dcp_i - Frequency f

Device parameters: - Frequency f
- Crest factor cf

Media parameters: - Conductivity

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel

can be given as:

$$Vi = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with

 V_i = compensated signal of channel i (i = x, y, z)

 U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

 $dcp_i = diode\ compression\ point\ (DASY\ parameter)$

From the compensated input signals, the primary field data for each channel can be evaluated:

E-field probes : $E_i = \sqrt{\frac{V_i}{Norm_iConvF}}$

H-field probes: $H_i = \sqrt{V_i} \frac{a_{i0+} a_{i1} f + a_{i2} f^2}{f}$

with

 V_i = compensated signal of channel i (i = x, y, z)

 $Norm_i$ = sensor sensitivity of channel i (i = x, y, z)

 μ V/(V/m)2 for E-field Probes

ConvF = sensitivity enhancement in solution

 a_{ii} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 E_i = electric field strength of channel *i* in V/m

 H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_{x}^{2} + E_{y}^{2} + E_{z}^{2}}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with

SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

= conductivity in [mho/m] or [Siemens/m]

= equivalent tissue density in g/cm³

* Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m H_{tot} = total magnetic field strength in A/m

5.7 Test Equipment List

Manufacture	Name of Equipment	Trme/Madel	Serial Number	Calibration		
Manufacture	Name of Equipment	Type/Model	Seriai Number	Last Cal.	Due Date	
SPEAG	Dosimetric E-Filed Probe	ET3DV6	1788	Sep 19, 2006	Sep. 19, 2007	
SPEAG	Dosimetric E-Filed Probe	EX3DV3	3514	Feb. 17, 2006	Feb. 17, 2008	
SPEAG	2450MHz System Validation Kit	D2450V2	736	Jul. 12, 2005	Jul. 12, 2007	
SPEAG	5GHz System Validation Kit	D5GHzV2	1006	Feb. 10, 2006	Feb. 10, 2008	
SPEAG	Data Acquisition Electronics	DAE3	577	Nov. 21, 2006	Nov. 21, 2007	
SPEAG	Device Holder	N/A	N/A	NCR	NCR	
SPEAG	Phantom	QD 000 P40 C	TP-1150	NCR	NCR	
SPEAG	Robot	Staubli RX90BL	F03/5W15A1/A/01	NCR	NCR	
SPEAG	Software	DASY4 V4.7 Build 53	N/A	NCR	NCR	
SPEAG	Software	SEMCAD V1.8 Build 172	N/A	NCR	NCR	
SPEAG	Measurement Server	SE UMS 001 BA	1021	NCR	NCR	
Agilent	ENA Series Network Analyzer	E5071B	MY42403579	Mar. 16, 2006	Mar. 16, 2007	
Agilent	ENA Series Network Analyzer	E5071C	MY46100746	Feb. 21, 2007	Feb. 21, 2008	
Agilent	Dielectric Probe Kit	85070D	US01440205	NCR	NCR	
Agilent	Dual Directional Coupler	778D	50422	NCR	NCR	
Agilent	Power Amplifier	8449B	3008A01917	NCR	NCR	
Agilent	Power Meter	E4416A	GB41292344	Feb. 08, 2007	Feb. 08, 2008	
Agilent	Power Sensor	E9327A	US40441548	Feb. 08, 2007	Feb. 08, 2008	
Agilent	Signal Generator	E8247C	MY43320596	Mar. 01, 2006	Mar. 01, 2008	
R&S	Radio Communication Tester	CMU200	105513	Jul. 25, 2006	Jul. 25, 2007	

Table 5.1 Test Equipment List

6. Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY4, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. The liquid height from the bottom of the phantom body is 15.2 centimeters.

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85070D Dielectric Probe Kit and an Agilent Network Analyzer.

Toblo 6 1	charge the	magguring	roculte for	mucala	cimul	ating	lianid
Table 0.1	shows the	measuring	resums for	muscie	SIIIIuI	aung	nquiu.

Bands	Frequency(MHz)	Permittivity (r)	Conductivity ()	Measurement date
	2412	52.5	1.90	
2400 ~ 2483.5 MHz	2437	52.4	1.94	Feb. 14, 2007
	2462	52.4	1.96	
5150 5250 MHz	5180	48.5	5.19	
5150 ~ 5250 MHz <band i=""></band>	5260	48.5	5.19	Mar. 17, 2007
CDallu 1>	5300	48.5	5.19	
5705 5005 MII-	5745	47.8	5.76	
5725 ~ 5825 MHz <band iii=""></band>	5785	47.7	5.88	Mar. 17, 2007
< Dana III>	5825	47.7	5.88	

Table 6.2

The measuring data are consistent with $_{r} = 52.7 \pm 5\%$ and $_{r} = 1.95 \pm 5\%$ for 2400~2483.5, $_{r} = 49.0 \pm 5\%$ and $_{r} = 5.30 \pm 5\%$ for 5150~5250 and $_{r} = 48.2 \pm 5\%$ and $_{r} = 6.00 \pm 5\%$ for 5725~5825.

Fig. 6.1

7. <u>Uncertainty Assessment</u>

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 7.1

Uncertainty Distributions	Normal	Rectangular	Triangular	U-shape
Multiplying factor ^(a)	1/k (b)	1/ 3	1/ 6	1/ 2

⁽a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity

Table 7.1

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY4 uncertainty Budget is showed in Table 7.2 and Table 7.3.

⁽b) is the coverage factor

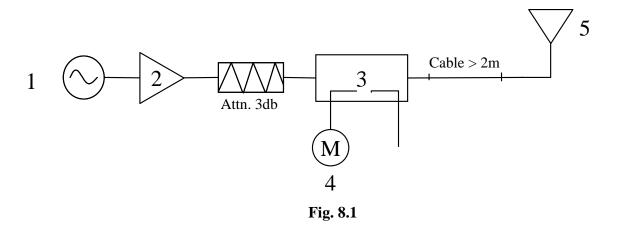
Error Description	Uncertainty Value ± %	Probability Distribution	Divisor	Ci 1g	Standard Unc. (1-g)	vi or V <i>eff</i>
Measurement System		1			1	l .
Probe Calibration	± 4.8	Normal	1	1	±4.8	
Axial Isotropy	± 4.7	Rectangular	√3	0.7	±1.9	
Hemispherical Isotropy	± 9.6	Rectangular	√3	0.7	±3.9	
Boundary Effect	± 1.0	Rectangular	√3	1	±0.6	
Linearity	± 4.7	Rectangular	√3	1	±2.7	
System Detection Limit	± 1.0	Rectangular	√3	1	±0.6	
Readout Electronics	± 1.0	Normal	1	1	±1.0	
Response Time	± 0.8	Rectangular	√3	1	± 0.5	
Integration time	± 2.6	Rectangular	√3	1	± 1.5	
RF Ambient Conditions	± 3.0	Rectangular	√3	1	±1.7	
Probe Positioner Mech. Tolerance	± 0.4	Rectangular	√3	1	±0.2	
Probe Positioning with respect to Phantom Shell	± 2.9	Rectangular	√3	1	±1.7	
Extrapolation and Interpolation Algorithms for Max. SAR Evaluation	± 1.0	Rectangular	√3	1	±0.6	
Test sample Related						
Test sample Positioning	±2.9	Normal	1	1	±2.9	145
Device Holder Uncertainty	±3.6	Normal	1	1	±3.6	5
Output Power Variation-SAR drift measurement	±5.0	Rectangular	√3	1	±2.9	
Phantom and Setup						
Phantom uncertainty(Including shar and thickness tolerances)	±4.0	Rectangular	√3	1	±2.3	
Liquid Conductivity Target tolerance	±5.0	Rectangular	√3	0.64	±1.8	
Liquid Conductivity measurement uncertainty	±2.5	Normal	1	0.64	±1.6	
Liquid Permittivity Target tolerance	±5.0	Rectangular	√3	0.6	±1.7	
Liquid Permittivity measurement uncertainty	±2.5	Normal	1	0.6	±1.5	
Combined standard uncertainty					±10.3	330
Coverage Factor for 95 %		<u>K=2</u>				
Expanded uncertainty (Coverage factor = 2)			Normal (k=2) 27		±20.6	

Table 7.2 Uncertainty Budget of DASY for 2.4GHz Band

Error Description	Uncertainty Value	Probability Distribution	Divisor	Ci (1g)	Standard Unc. (1g)	Vi or V _{eff}
Measurement System						
Probe Calibration	±6.8 %	Normal	1	1	±6.8 %	
Axial Isotropy	±4.7 %	Rectangular	$\sqrt{3}$	0.7	±1.9 %	
Hemispherical Isotropy	±9.6 %	Rectangular	$\sqrt{3}$	0.7	±3.9 %	
Boundary Effect	±2.0 %	Rectangular	√3	1	±1.2 %	
Linearity	±4.7 %	Rectangular	√3	1	±2.7 %	
System Detection Limit	±1.0 %	Rectangular	√3	1	±0.6 %	
Readout Electronics	±0.3 %	Normal	1	1	±0.3 %	
Response Time	±0.8 %	Rectangular	√3	1	± 0.5 %	
Integration Time	±2.6 %	Rectangular	√3	1	± 1.5 %	
RF Ambient Noise	±3.0 %	Rectangular	√3	1	±1.7 %	
RF Ambient Reflections	±3.0 %	Rectangular	$\sqrt{3}$	1	±1.7 %	
Probe Positioner	±0.8 %	Rectangular	$\sqrt{3}$	1	±0.5 %	
Probe Positioning	±9.9 %	Rectangular	$\sqrt{3}$	1	±5.7 %	
Max. SAR Eval.	±4.0 %	Rectangular	$\sqrt{3}$	1	±2.3 %	
Test Sample Related						
Device Positioning	±2.9 %	Normal	1	1	±2.9 %	145
Device Holder	±3.6 %	Normal	1	1	±3.6 %	5
Power Drift	±5.0 %	Rectangular	√3	1	±2.9 %	
Phantom and Setup						
Phantom Uncertainty	±4.0 %	Rectangular	$\sqrt{3}$	1	±2.3 %	
Liquid Conductivity (target)	±5.0 %	Rectangular	$\sqrt{3}$	0.64	±1.8 %	
Liquid Conductivity (meas.)	±2.5 %	Normal	1	0.64	±1.6 %	
Liquid Permittivity (target)	±5.0 %	Rectangular	√3	0.6	±1.7 %	
Liquid Permittivity (meas.)	±2.5 %	Normal	1	0.6	±1.5 %	
Combined Std. Uncertainty					±12.9 %	330
Expanded STD Uncertainty					±25.9 %	

Table 7.3 Uncertainty Budget of DASY4 for 5GHz Band

8. SAR Measurement Evaluation


Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

8.1 Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

8.2 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator at frequency 2450 MHz, 5200 MHz and 5800 Mhz. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

- 1. Signal Generator
- 2. Amplifier
- 3. Directional Coupler
- 4. Power Meter
- 5. 2450 MHz and 5200 MHz and 5800 MHz Dipole

The output power on dipole port must be calibrated to 100 mW (20 dBm) before dipole is connected.

Fig 8.2 Dipole Setup

8.3 <u>Validation Results</u>

Comparing to the original SAR value provided by Speag, the validation data should within its specification of 10 %. Table 8.1 shows the target SAR and measured SAR after normalized to 1W input power.

		Target (W/kg)	Measurement data (W/kg)	Variation	Measurement date	
802.11b/g (2450 MHz)	SAR (1g)	52.8	53.2	0.8 %	Feb. 14, 2007	
	SAR (10g)	24.5	24.6	0.4 %		
802.11a Band I (5200 MHz)	SAR (1g)	73.7	71	-3.7 %	Mar. 17, 2007	
	SAR (10g)	20.6	19.9	-3.4 %		
802.11a Band III (5800 MHz)	SAR (1g)	69.8	69	-1.1 %	Mor 17 2007	
	SAR (10g)	19.7	18.9	-4.1 %	Mar. 17, 2007	

Table 8.1

The table above indicates the system performance check can meet the variation criterion.

9. Description for DUT Testing Position

This DUT was tested in the position "Notebook Bottom Touch" shown in Fig. 9.1. The DUT faces to the phantom with 0 mm separation distance.

Fig. 9.1 Notebook Bottom Touch

10. Measurement Procedures

The measurement procedures are as follows:

- ➤ Using engineering software to transmit RF power continuously (continuous Tx) in the low channel
- Placing the DUT in the positions described in the last section
- > Setting scan area, grid size and other setting on the DASY4 software
- > Taking data for the low channel
- Repeat the previous steps for the middle and high channels.

According to the IEEE P1528 draft standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- Power reference measurement
- Area scan
- Zoom scan
- Power reference measurement

10.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1528-2003 standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY4 software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

Base on the Draft: SCC-34, SC-2, WG-2-Computational Dosimetry, P1528/D1.2 (Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques), a new algorithm has been implemented. The spatial-peak SAR can be computed over any required mass.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the postprocessing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

Test Report No : FA6O2516-2-2-03

- extraction of the measured data (grid and values) from the Zoom Scan
- calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- generation of a high-resolution mesh within the measured volume
- interpolation of all measured values form the measurement grid to the high-resolution grid
- extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- calculation of the averaged SAR within masses of 1g and 10g

10.2 Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures 5x5x7 points with step size 8, 8 and 5 mm. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 1 g.

10.3 SAR Averaged Methods

In DASY4, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

11. SAR Test Results

11.1 Notebook Bottom Touch with Main Antenna

Mode	Chan.	Freq (MHz)	Modulation type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
802.11b	1	2412(Low)	CCK	18.02	0.159	0.00719	1.6	Pass
	6	2437(Mid)	CCK	17.96	-0.149	0.01	1.6	Pass
	11	2462(High)	CCK	18.12	-0.159	0.00763	1.6	Pass
802.11b with BT On	6	2437(Mid)	CCK	17.96	0.067	0.00716	1.6	Pass
802.11g	1	2412(Low)	OFDM	16.75	-	-	-	-
	6	2437(Mid)	OFDM	19.55	-0.054	0.00834	1.6	Pass
	11	2462(High)	OFDM	18.28	-	=	-	-
802.11a <band i=""></band>	36	5180(Low)	OFDM	16.41	0.161	0.105	1.6	Pass
	40	5200(Mid)	OFDM	16.90	-0.123	0.109	1.6	Pass
	48	5240(High)	OFDM	16.93	-0.167	0.103	1.6	Pass
802.11a <band i=""> with BT On</band>	40	5200(Mid)	OFDM	16.90	0.173	0.097	1.6	Pass
802.11a <band iii=""></band>	149	5745(Low)	OFDM	18.03	-	-	-	-
	157	5785(Mid)	OFDM	18.09	0.183	0.112	1.6	Pass
	165	5825(High)	OFDM	17.95	-	-	-	-

11.2 Notebook Bottom Touch with Aux. Antenna

Mode	Chan.	Freq (MHz)	Modulation type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
802.11b	1	2412(Low)	CCK	18.02	-	-	_	-
	6	2437(Mid)	CCK	17.96	-0.105	0.00926	1.6	Pass
	11	2462(High)	CCK	18.12	-	=	-	-
802.11g	1	2412(Low)	OFDM	16.75	-	=	-	-
	6	2437(Mid)	OFDM	19.55	-	=	-	-
	11	2462(High)	OFDM	18.28	-	=	-	-
802.11a <band i=""></band>	36	5180(Low)	OFDM	16.41	-	-	-	-
	40	5200(Mid)	OFDM	16.90	0.173	0.097	1.6	Pass
	48	5240(High)	OFDM	16.93	-	=	-	-
802.11a <band iii=""></band>	149	5745(Low)	OFDM	18.03	0.146	0.1	1.6	Pass
	157	5785(Mid)	OFDM	18.09	0.092	0.143	1.6	Pass
	165	5825(High)	OFDM	17.95	0.172	0.124	1.6	Pass
802.11a <band iii=""> with BT On</band>		5785(Mid)	OFDM	18.09	0.122	0.128	1.6	Pass

Test Engineer : John Tsai and Neil Chen

12. References

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] IEEE Std. P1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", April 21,2003.
- [3] Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01), "Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to RF Emissions", June 2001
- [4] IEEE Std. C95.3-2002, "IEEE Recommended Practice for the Meaurement of Potentially Hazardous Electromagnetic Fields-RF and Microwave", 2002
- [5] IEEE Std. C95.1-1999, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", 1999
- [6] Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of Noth Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148
- [7] DAYS4 System Handbook

Appendix A - System Performance Check Data

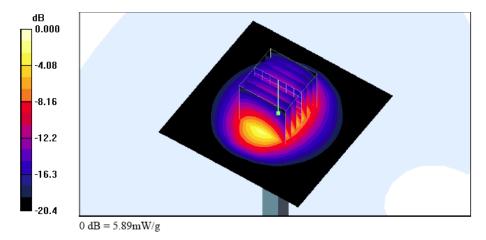
Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 2/14/2007 7:51:26 AM

System Check_Body_2450MHz_20070214

DUT: Dipole 2450 MHz

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2450 MHz; $\sigma = 1.95$ mho/m; $\varepsilon_r = 52.4$; $\rho = 1000$ kg/m³


Ambient Temperature: 22.9 °C; Liquid Temperature: 21.3 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.11, 4.11, 4.11); Calibrated: 9/19/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2006
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.5 V/m; Power Drift = -0.013 dB Peak SAR (extrapolated) = 12.5 W/kg SAR(1 g) = 5.32 mW/g; SAR(10 g) = 2.46 mW/g

SAR(1 g) = 5.32 mW/g; SAR(10 g) = 2.46 mW/gMaximum value of SAR (measured) = 5.89 mW/g

Date/Time: 3/17/2007 10:46:15 PM Test Laboratory: Sporton International Inc. SAR Testing Lab

System Check_Body_5200MHz_20070317

DUT: Dipole 5GHz

Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium: MSL_5G Medium parameters used: f = 5200 MHz; $\sigma = 5.19$ mho/m; $\epsilon_r = 48.5$; $\rho = 1000$ kg/m³

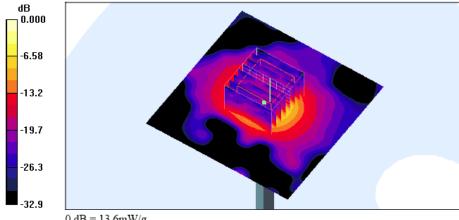
Ambient Temperature : 23.1 °C; Liquid Temperature : 21.4 °C

DASY4 Configuration:

- Probe: EX3DV3 SN3514; ConvF(4.31, 4.31, 4.31); Calibrated: 2/21/2007
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2006
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin=100mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 14.5 mW/g


Pin=100mW/Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 58.2 V/m; Power Drift = -0.019 dB

Peak SAR (extrapolated) = 27.5 W/kg

SAR(1 g) = 7.1 mW/g; SAR(10 g) = 1.99 mW/g

Maximum value of SAR (measured) = 13.6 mW/g

0 dB = 13.6 mW/g

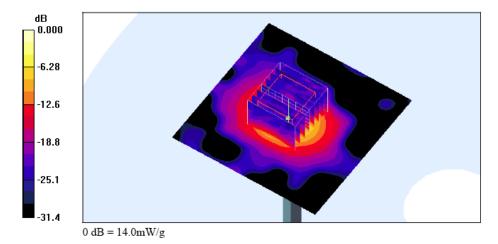
Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 3/17/2007 10:13:12 PM

System Check_Body_5800MHz_20070317

DUT: Dipole 5GHz

Communication System: 802.11a; Frequency: 5800 MHz; Duty Cycle: 1:1

Medium: MSL_5G Medium parameters used: f = 5800 MHz; $\sigma = 5.88$ mho/m; $\varepsilon_r = 47.7$; $\rho = 1000$ kg/m³


Ambient Temperature: 23.1 °C; Liquid Temperature: 21.4 °C

DASY4 Configuration:

- Probe: EX3DV3 SN3514; ConvF(4.16, 4.16, 4.16); Calibrated: 2/21/2007
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2006
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin=100mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 14.7 mW/g

Pin=100mW/Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm Reference Value = 50.6 V/m; Power Drift = -0.019 dB
Peak SAR (extrapolated) = 33.9 W/kg
SAR(1 g) = 6.9 mW/g; SAR(10 g) = 1.89 mW/g
Maximum value of SAR (measured) = 14.0 mW/g

Appendix B - SAR Measurement Data

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 2/14/2007 9:04:51 AM

Body_802.11b Ch6_NB Bottom Touch_20070214_Main Ant

DUT: 6O2516

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.94$ mho/m; $\epsilon_r = 52.4$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.7 °C; Liquid Temperature: 21.3 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.11, 4.11, 4.11); Calibrated: 9/19/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2006
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Ch6/Area Scan (61x181x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.014 mW/g

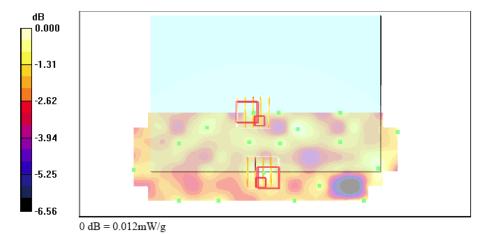
Ch6/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.09 V/m; Power Drift = -0.149 dB

Peak SAR (extrapolated) = 0.029 W/kg

SAR(1 g) = 0.010 mW/g; SAR(10 g) = 0.00943 mW/g

Maximum value of SAR (measured) = 0.014 mW/g


Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.09 V/m; Power Drift = -0.149 dB

Peak SAR (extrapolated) = 0.013 W/kg

SAR(1 g) = 0.00978 mW/g; SAR(10 g) = 0.00852 mW/g

Maximum value of SAR (measured) = 0.012 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 2/14/2007 10:18:43 AM

Body_802.11b Ch6_NB Bottom Touch_20070214_Aux Ant

DUT: 6O2516

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.94$ mho/m; $\epsilon_r = 52.4$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4 °C; Liquid Temperature: 21.3 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.11, 4.11, 4.11); Calibrated: 9/19/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2006
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Ch6/Area Scan (61x181x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.010 mW/g

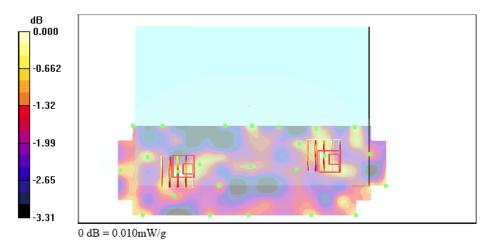
Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.95 V/m; Power Drift = -0.105 dB

Peak SAR (extrapolated) = 0.011 W/kg

SAR(1 g) = 0.00926 mW/g; SAR(10 g) = 0.00813 mW/g

Maximum value of SAR (measured) = 0.011 mW/g


Ch6/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.95 V/m; Power Drift = -0.105 dB

Peak SAR (extrapolated) = 0.010 W/kg

SAR(1 g) = 0.00855 mW/g; SAR(10 g) = 0.00782 mW/g

Maximum value of SAR (measured) = 0.010 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 2/14/2007 10:51:15 AM

Body_802.11g Ch6_NB Bottom Touch_20070214_Main Ant

DUT: 6O2516

Communication System: 802.11g; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.94$ mho/m; $\epsilon_r = 52.4$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C; Liquid Temperature: 21.3 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.11, 4.11, 4.11); Calibrated: 9/19/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2006
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Ch6/Area Scan (61x181x1): Measurement grid: dx=15mm, dy=15mm

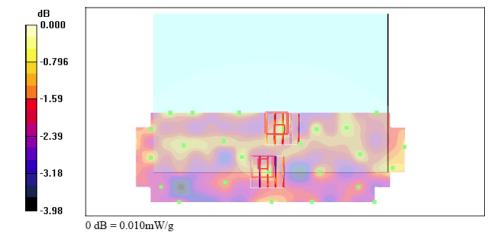
Maximum value of SAR (interpolated) = 0.009 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.75 V/m; Power Drift = -0.054 dB

Peak SAR (extrapolated) = 0.010 W/kg

SAR(1 g) = 0.00834 mW/g; SAR(10 g) = 0.00744 mW/g


Maximum value of SAR (measured) = 0.010 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.75 V/m; Power Drift = -0.054 dB

Peak SAR (extrapolated) = 0.010 W/kg

SAR(1 g) = 0.00751 mW/g; SAR(10 g) = 0.0065 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 2/14/2007 12:20:55 PM

Body_802.11b Ch6_NB Bottom Touch_20070214_Main Ant_Bluetooth On

DUT: 6O2516

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.94$ mho/m; $\epsilon_r = 52.4$; $\rho = 1000$ kg/m³

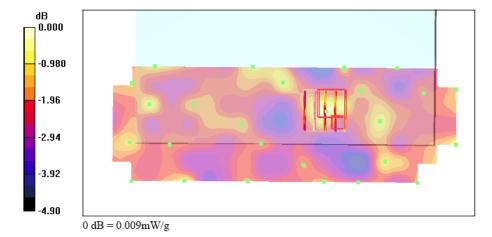
Ambient Temperature: 22.2 °C; Liquid Temperature: 21.3 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.11, 4.11, 4.11); Calibrated: 9/19/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2006
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Ch6/Area Scan (61x181x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.008 mW/g


Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.57 V/m; Power Drift = 0.067 dB

Peak SAR (extrapolated) = 0.009 W/kg

SAR(1 g) = 0.00716 mW/g; SAR(10 g) = 0.00623 mW/g

Maximum value of SAR (measured) = 0.009 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 3/17/2007 11:18:41 PM

Body_802.11a Ch40_NB Bottom Touch_20070317_Main Ant

DUT: 6O2516

Communication System: 802.11a; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium: MSL_5G Medium parameters used: f = 5200 MHz; $\sigma = 5.19$ mho/m; $\varepsilon_r = 48.5$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.5 °C; Liquid Temperature: 21.4 °C

DASY4 Configuration:

- Probe: EX3DV3 SN3514; ConvF(4.31, 4.31, 4.31); Calibrated: 2/21/2007
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2006
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Ch40/Area Scan (201x301x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.121 mW/g

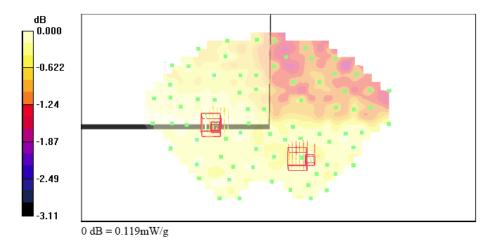
Ch40/Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 6.03 V/m; Power Drift = -0.123 dB

Peak SAR (extrapolated) = 0.121 W/kg

SAR(1 g) = 0.109 mW/g; SAR(10 g) = 0.103 mW/g

Maximum value of SAR (measured) = 0.121 mW/g


Ch40/Zoom Scan (8x8x8)/Cube 1: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 6.03 V/m; Power Drift = -0.123 dB

Peak SAR (extrapolated) = 0.119 W/kg

SAR(1 g) = 0.102 mW/g; SAR(10 g) = 0.095 mW/g

Maximum value of SAR (measured) = 0.119 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 3/18/2007 12:41:17 AM

Body_802.11a Ch40_NB Bottom Touch_20070317_Aux Ant

DUT: 6O2516

Communication System: 802.11a; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium: MSL_5G Medium parameters used: f = 5200 MHz; $\sigma = 5.19$ mho/m; $\epsilon_r = 48.5$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.2 °C; Liquid Temperature: 21.4 °C

DASY4 Configuration:

- Probe: EX3DV3 SN3514; ConvF(4.31, 4.31, 4.31); Calibrated: 2/21/2007
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2006
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Ch40/Area Scan (201x301x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.097 mW/g

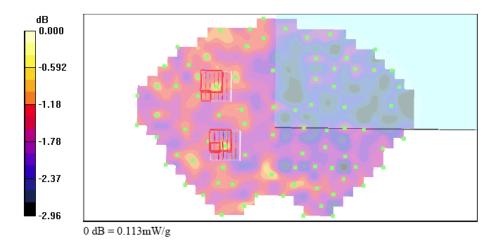
Ch40/Zoom Scan (8x8x8)/Cube 1: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 3.97 V/m; Power Drift = 0.173 dB

Peak SAR (extrapolated) = 0.121 W/kg

SAR(1 g) = 0.097 mW/g; SAR(10 g) = 0.091 mW/g

Maximum value of SAR (measured) = 0.121 mW/g


Ch40/Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 3.97 V/m; Power Drift = 0.173 dB

Peak SAR (extrapolated) = 0.151 W/kg

SAR(1 g) = 0.095 mW/g; SAR(10 g) = 0.087 mW/g

Maximum value of SAR (measured) = 0.113 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 3/18/2007 7:52:59 AM

Body_802.11a Ch157_NB Bottom Touch_20070317_Main Ant

DUT: 6O2516

Communication System: 802.11a; Frequency: 5785 MHz; Duty Cycle: 1:1

Medium: MSL_5G Medium parameters used: f = 5785 MHz; $\sigma = 5.88$ mho/m; $\varepsilon_{e} = 47.7$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.1 °C; Liquid Temperature: 21.4 °C

DASY4 Configuration:

- Probe: EX3DV3 SN3514; ConvF(4.16, 4.16, 4.16); Calibrated: 2/21/2007
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2006
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Ch157/Area Scan (201x301x1): Measurement grid: dx=10mm, dy=10mm

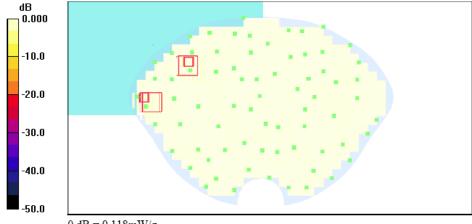
Maximum value of SAR (interpolated) = 0.107 mW/g

Ch157/Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 3.90 V/m; Power Drift = 0.183 dB

Peak SAR (extrapolated) = 0.120 W/kg

SAR(1 g) = 0.112 mW/g; SAR(10 g) = 0.106 mW/g


Maximum value of SAR (measured) = 0.120 mW/g

Ch157/Zoom Scan (8x8x8)/Cube 1: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 3.90 V/m; Power Drift = 0.183 dB

Peak SAR (extrapolated) = 0.131 W/kg

SAR(1 g) = 0.107 mW/g; SAR(10 g) = 0.102 mW/gMaximum value of SAR (measured) = 0.118 mW/g

 $0~dB=0.118 \mathbf{mW/g}$

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 3/18/2007 9:19:31 AM

Body_802.11a Ch157_NB Bottom Touch_20070317_Aux Ant

DUT: 6O2516

Communication System: 802.11a; Frequency: 5785 MHz; Duty Cycle: 1:1

Medium: MSL_5G Medium parameters used: f = 5785 MHz; $\sigma = 5.88$ mho/m; $\varepsilon_{\star} = 47.7$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.1 °C; Liquid Temperature: 21.4 °C

DASY4 Configuration:

- Probe: EX3DV3 SN3514; ConvF(4.16, 4.16, 4.16); Calibrated: 2/21/2007
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2006
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Ch157/Area Scan (201x301x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.101 mW/g

Ch157/Zoom Scan (8x8x8)/Cube 1: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 4.02 V/m; Power Drift = 0.092 dB

Peak SAR (extrapolated) = 0.400 W/kg

SAR(1 g) = 0.143 mW/g; SAR(10 g) = n.a.

Maximum value of SAR (measured) = 0.130 mW/g

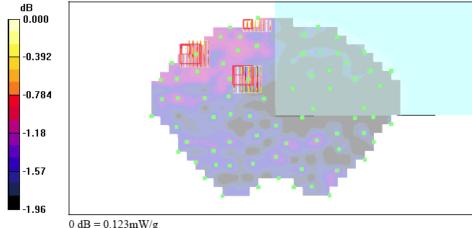
Ch157/Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 4.02 V/m; Power Drift = 0.092 dB

Peak SAR (extrapolated) = 0.124 W/kg

SAR(1 g) = 0.114 mW/g; SAR(10 g) = 0.107 mW/g

Maximum value of SAR (measured) = 0.124 mW/g


Ch157/Zoom Scan (8x8x8)/Cube 2: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 4.02 V/m; Power Drift = 0.092 dB

Peak SAR (extrapolated) = 0.123 W/kg

SAR(1 g) = 0.114 mW/g; SAR(10 g) = 0.107 mW/g

Maximum value of SAR (measured) = 0.123 mW/g

0 dB = 0.123 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 3/18/2007 5:24:51 PM

Body_802.11a Ch157_NB Bottom Touch_20070317_Aux Ant_Bluetooth On

DUT: 6O2516

Communication System: 802.11a; Frequency: 5785 MHz; Duty Cycle: 1:1

Medium: MSL_5G Medium parameters used: f = 5785 MHz; $\sigma = 5.88$ mho/m; $\varepsilon_r = 47.7$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.0 °C; Liquid Temperature: 21.5 °C

DASY4 Configuration:

- Probe: EX3DV3 SN3514; ConvF(4.16, 4.16, 4.16); Calibrated: 2/21/2007
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2006
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Ch157/Area Scan (201x301x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.117 mW/g

Ch157/Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 4.16 V/m; Power Drift = 0.122 dB

Peak SAR (extrapolated) = 0.139 W/kg SAR(1 g) = 0.128 mW/g; SAR(10 g) = 0.121 mW/g

Maximum value of SAR (measured) = 0.139 mW/g

Ch157/Zoom Scan (8x8x8)/Cube 1: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 4.16 V/m; Power Drift = 0.122 dB

Peak SAR (extrapolated) = 0.141 W/kg

SAR(1 g) = 0.128 mW/g; SAR(10 g) = n.a.

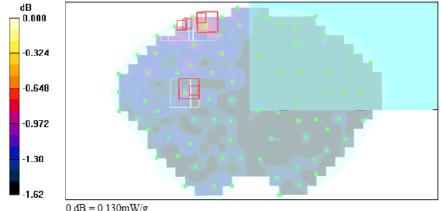
Maximum value of SAR (measured) = 0.141 mW/g

Ch157/Zoom Scan (8x8x8)/Cube 2: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 4.16 V/m; Power Drift = 0.122 dB

Peak SAR (extrapolated) = 0.141 W/kg

SAR(1 g) = 0.127 mW/g; SAR(10 g) = n.a.


Maximum value of SAR (measured) = 0.141 mW/g

Ch157/Zoom Scan (8x8x8)/Cube 3: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 4.16 V/m; Power Drift = 0.122 dB

Peak SAR (extrapolated) = 0.130 W/kg

SAR(1 g) = 0.118 mW/g; SAR(10 g) = 0.113 mW/g Maximum value of SAR (measured) = 0.130 mW/g

0 dB = 0.130 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 2/14/2007 12:20:55 PM

Body_802.11b Ch6_NB Bottom Touch_20070214_Main Ant_Bluetooth On_2D

DUT: 6O2516

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

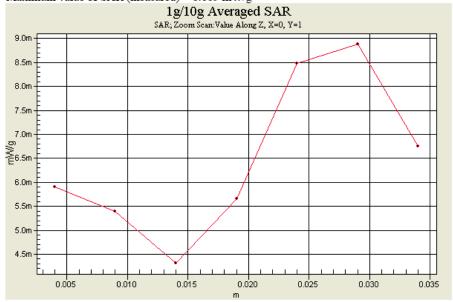
Medium: MSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.94$ mho/m; $\varepsilon_r = 52.4$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.2 °C; Liquid Temperature: 21.3 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.11, 4.11, 4.11); Calibrated: 9/19/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2006
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Ch6/Area Scan (61x181x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.008 mW/g


Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.57 V/m; Power Drift = 0.067 dB

Peak SAR (extrapolated) = 0.009 W/kg

SAR(1 g) = 0.00716 mW/g; SAR(10 g) = 0.00623 mW/g

Maximum value of SAR (measured) = 0.009 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 3/17/2007 11:18:41 PM

Body_802.11a Ch40_NB Bottom Touch_20070317_Main Ant_2D

DUT: 6O2516

Communication System: 802.11a; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium: MSL_5G Medium parameters used: f = 5200 MHz; $\sigma = 5.19 \text{ mho/m}$; $\epsilon_r = 48.5$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.5 °C; Liquid Temperature : 21.4 °C

DASY4 Configuration:

- Probe: EX3DV3 SN3514; ConvF(4.31, 4.31, 4.31); Calibrated: 2/21/2007
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2006
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Ch40/Area Scan (201x301x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.121 mW/g

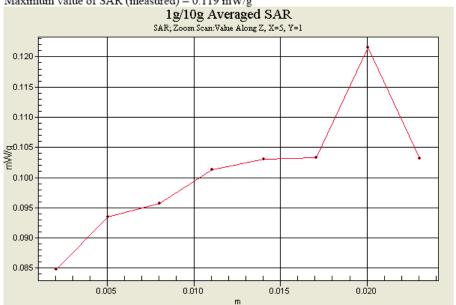
Ch40/Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 6.03 V/m; Power Drift = -0.123 dB

Peak SAR (extrapolated) = 0.121 W/kg

SAR(1 g) = 0.109 mW/g; SAR(10 g) = 0.103 mW/g

Maximum value of SAR (measured) = 0.121 mW/g


Ch40/Zoom Scan (8x8x8)/Cube 1: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 6.03 V/m; Power Drift = -0.123 dB

Peak SAR (extrapolated) = 0.119 W/kg

SAR(1 g) = 0.102 mW/g; SAR(10 g) = 0.095 mW/g

Maximum value of SAR (measured) = 0.119 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 3/18/2007 9:19:31 AM

Body_802.11a Ch157_NB Bottom Touch_20070317_Aux Ant_2D

DUT: 6O2516

Communication System: 802.11a; Frequency: 5785 MHz; Duty Cycle: 1:1

Medium: MSL_5G Medium parameters used: f = 5785 MHz; $\sigma = 5.88$ mho/m; $\epsilon_r = 47.7$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.1 °C; Liquid Temperature: 21.4 °C

DASY4 Configuration:

- Probe: EX3DV3 SN3514; ConvF(4.16, 4.16, 4.16); Calibrated: 2/21/2007
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2006
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Ch157/Area Scan (201x301x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.101 mW/g

Ch157/Zoom Scan (8x8x8)/Cube 1: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 4.02 V/m; Power Drift = 0.092 dB

Peak SAR (extrapolated) = 0.400 W/kgSAR(1 g) = 0.143 mW/g; SAR(10 g) = n.a. Maximum value of SAR (measured) = 0.130 mW/g

Waximum value of SAIC (incastred) = 0.150 in W/g

Ch157/Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 4.02 V/m; Power Drift = 0.092 dB

Peak SAR (extrapolated) = 0.124 W/kg

SAR(1 g) = 0.114 mW/g; SAR(10 g) = 0.107 mW/g

Maximum value of SAR (measured) = 0.124 mW/g

Ch157/Zoom Scan (8x8x8)/Cube 2: Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 4.02 V/m; Power Drift = 0.092 dB

Peak SAR (extrapolated) = 0.123 W/kg

SAR(1 g) = 0.114 mW/g; SAR(10 g) = 0.107 mW/g

Maximum value of SAR (measured) = 0.123 mW/g

Appendix C – Calibration Data

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Sporton (Auden)

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

S

C

S

Certificate No: D2450V2-736_Jul05

CALIBRATION CERTIFICATE Object D2450V2 - SN: 736 QA CAL-05.v6 Calibration procedure(s) Calibration procedure for dipole validation kits July 12, 2005 Calibration date Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE chitical for calibration) Cai Date (Calibrated by, Certificate No.) Primary Standards ID# Scheduled Calibration Power meter EPM E442 GB37480704 12-Oct-04 (METAS, No. 251-00412) Oct-05 Power sensor HP 8481A US37292783 12-Oct-04 (METAS, No. 251-00412) Oct-05 Reference 20 dB Attenuator SN: 5085 (20g) 10-Aug-04 (METAS, No 251-00402) Aug-05 Reference 10 dB Attenuator SN: 5047.2 (10r) 10-Aug-04 (METAS, No 251-00402) Aug-05 Reference Probe ES3DV2 SN 3025 29-Oct-04 (SPEAG, No. ES3-3025_Oct04) Oct-05 DAE4 SN 601 07-Jan-05 (SPEAG, No. DAE4-601_Jan05) Jan-06 Check Date (in house) Scheduled Check Secondary Standards MY41092317 18-Oct-02 (SPEAG, in house check Oct-03) In house check: Oct-05 Power sensor HP 8481A RF generator R&S SML-03 100698 27-Mar-02 (SPEAG, in house check Dec-03) In house check: Dec-05 US37390585 S4206 Network Analyzer HP 8753E 18-Oct-01 (SPEAG, in house check Nov-04) Name Function Calibrated by: Mike Meili Laboratory Technician titleih Katja Pokovic Technical Manager Approved by: Issued: July 12, 2005 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-736_Jul05

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions*, Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-736 Jul05

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Area Scan resolution	dx, dy = 15 mm	
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

1000	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.5 ± 6 %	1.73 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	13.1 mW / g
SAR normalized	normalized to 1W	52.4 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	52.8 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ² (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.13 mW / g
SAR normalized	normalized to 1W	24.5 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	24.7 mW / g ± 16.5 % (k=2)

Certificate No: D2450V2-736_Jul05

Page 3 of 9

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.2 ± 0.2) °C	52.5 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature during test	(22.2 ± 0.2) °C		-

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	condition	
SAR measured	250 mW input power	13.5 mW / g
SAR normalized	normalized to 1W	54.0 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	52.8 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.26 mW / g
SAR normalized	normalized to 1W	25.0 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	24.5 mW / g ± 16.5 % (k=2)

Certificate No: D2450V2-736_Jul05

Page 4 of 9

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.6 Ω + 3.7 jΩ	
Return Loss	-26.0 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.9 Ω + 5.3 jΩ	
Return Loss	- 25.5 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.157 ns
Electrical Belay (one direction)	1.707 118

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	August 26, 2003	

Certificate No: D2450V2-736_Jul05

Page 5 of 9

DASY4 Validation Report for Head TSL

Date/Time: 12.07.2005 12:53:00

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN736

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.73$ mho/m; $\epsilon_c = 38.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

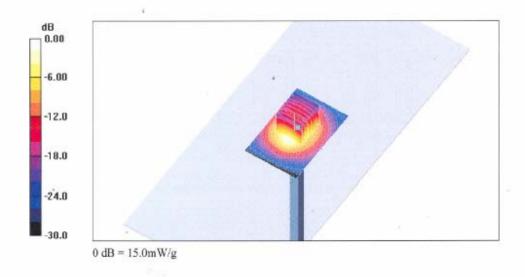
- Probe: ES3DV2 SN3025; ConvF(4.4, 4.4, 4.4); Calibrated: 29.10.2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 22.07.2004
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA
- Measurement SW: DASY4, V4.5 Build 30; Postprocessing SW: SEMCAD, V1.8 Build 149

Pin = 250 mW; d = 10 mm 2/Area Scan (41x61x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 16.6 mW/g

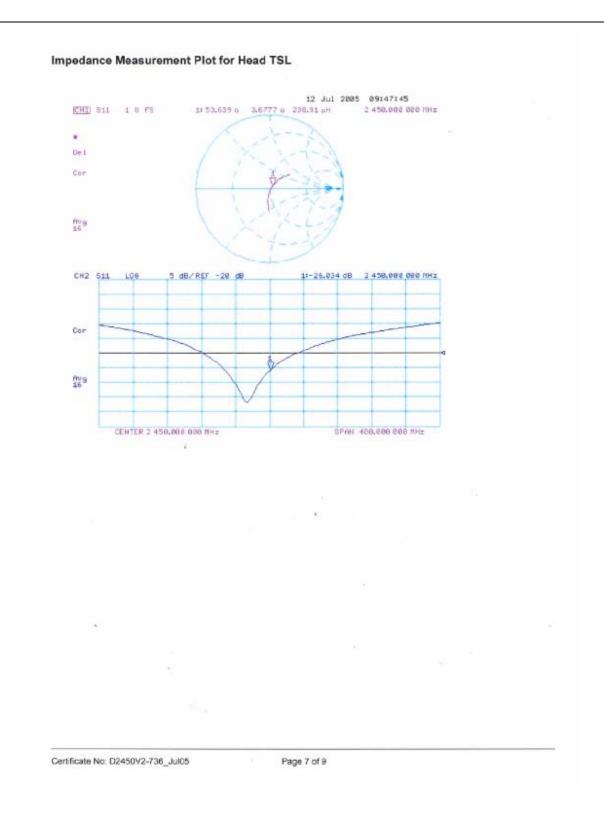
Pin = 250 mW; d = 10 mm 2/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.6 V/m; Power Drift = 0.077 dB

Peak SAR (extrapolated) = 27.0 W/kg

SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.13 mW/g


Maximum value of SAR (measured) = 15.0 mW/g

Certificate No: D2450V2-736_Jul05

Page 6 of 9

CC SAR Test Report No : FA602516-2-2-03

DASY4 Validation Report for Body TSL

Date/Time: 11.07.2005 17:33:35

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN736

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL 2450

Medium parameters used: f = 2450 MHz; $\sigma = 2.02$ mho/m; $\varepsilon_r = 52.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

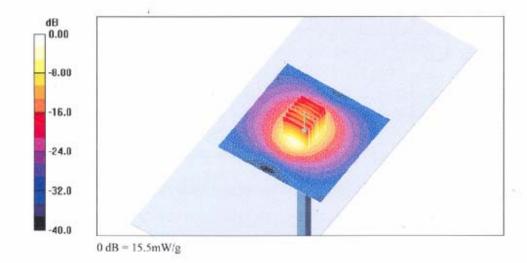
- Probe: ES3DV2 SN3025; ConvF(4.13, 4.13, 4.13); Calibrated: 29.10.2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
 Ph Fr (College Co
- Electronics: DAE4 Sn601; Calibrated: 22.07.2004
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA
- Measurement SW: DASY4, V4.6 Build 4; Postprocessing SW: SEMCAD, V1.8 Build 149

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 15.8 mW/g

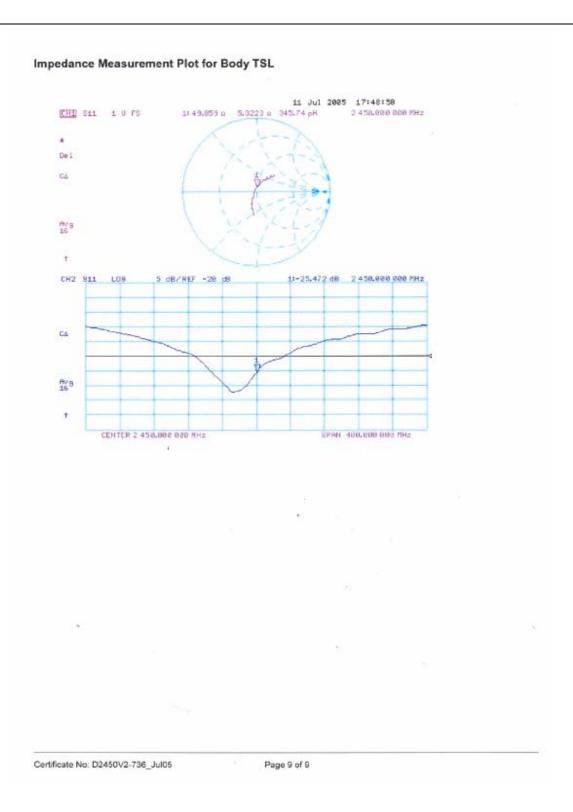
Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx-5mm, dy-5mm, dz-5mm

Reference Value = 85.9 V/m; Power Drift = 0.160 dB

Peak SAR (extrapolated) = 27.6 W/kg

SAR(1 g) = 13.5 mW/g; SAR(10 g) = 6.26 mW/g


Maximum value of SAR (measured) = 15.5 mW/g

Certificate No: D2450V2-736_Jul05

Page 8 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Cartificate No. D5CH+V2-1006 Feb06

Accreditation No.: SCS 108

CALIBRATION C	CERTIFICATE		
Object	D5GHzV2 - SN: 1006		
Calibration procedure(s)	QA CAL-22.v1 Calibration procedure for dipole validation kits between 3-6 GHz		
Calibration date:	February 10, 200	6	
Condition of the calibrated item	In Tolerance		English State
	cted in the closed laborator	robability are given on the following pages and arr y facility: environment temperature (22 \pm 3) $^{\circ}$ C an	
Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	3-May-05 (METAS, No. 251-00466)	May-06
Power sensor E4412A	MY41495277	3-May-05 (METAS, No. 251-00466)	May-06
Reference 20 dB Attenuator	SN: S5086 (20b)	3-May-05 (METAS, No. 251-00467)	May-06
Reference 10 dB Attenuator	SN: 5047.2 (10r)	11-Aug-05 (METAS, No 251-00498)	Aug-06
Reference Probe EX3DV4	SN 3503	19-Mar-05 (SPEAG, No. Ex3-3503_Mar05)	Mar-06
DAE4	SN 601	15-Dec-05 (SPEAG, No. DAE4-601_Dec05)	Dec-06
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41093315	10-Aug-03 (SPEAG, in house check Oct-05)	In house check: Oct-06
Power meter E4419B	GB43310788	12-Aug-03 (SPEAG, in house check Oct-05)	In house check: Oct-06
RF generator R&S SMT-06	100005	4-Aug-99 (SPEAG, in house check Nov-05)	In house check: Nov-07
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (SPEAG, in house check Nov-05)	In house check: Nov-06
	Name	Function	Signature
Calibrated by:	Katja Pokovio	Technical Manager	The Kly
Approved by:	Niels Kuster	Quality Manager	V. 186

Certificate No: D5GHzV2-1006_Feb06

Page 1 of 7

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC Std 62209 Part 2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", Draft Version 0.9, December 2004
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

c) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D5GHzV2-1006_Feb06

Page 2 of 7

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	* with Spacer
Area Scan resolution	dx, dy = 10 mm	
Zoom Scan Resolution	dx, dy = 4.3 mm, dz = 3 mm	
Frequency	5200 MHz ± 1 MHz 5500 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.1 ± 6 %	5.11 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		-

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	250 mW input power	1840 mW/g
SAR normalized	normalized to 1W	73.6 mW / g
SAR for nominal Body TSL parameters 1	normalized to 1W	73.7 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.16 mW / g
SAR normalized	normalized to 1W	20.6 mW/g
SAR for nominal Body TSL parameters 1	normalized to 1W	20.6 mW / g ± 19.5 % (k=2)

Certificate No: D5GHzV2-1006_Feb06

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.4 ± 6 %	5.50 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm3 (1 g) of Body TSL	condition	
SAR measured	250 mW input power	18.8 mW/g
SAR normalized	normalized to 1W	75.2 mW / g
SAR for nominal Body TSL parameters 1	normalized to 1W	75.0 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.26 mW/g
SAR normalized	normalized to 1W	21.0 mW/g
SAR for nominal Body TSL parameters 1	normalized to 1W	21.0 mW / g ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.8 ± 6 %	5.88 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm3 (1 g) of Body TSL	-condition	
SAR measured	250 mW input power	17.5 mW / g
SAR normalized	normalized to 1W	70.0 mW / g
SAR for nominal Body TSL parameters 1	normalized to 1W	69.8 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.94 mW / g
SAR normalized	normalized to 1W	19.8 mW / g
SAR for nominal Body TSL parameters 1	normalized to 1W	19.7 mW / g ± 19.5 % (k=2)

Certificate No: D5GHzV2-1006_Feb06

Page 4 of 7

Appendix

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	48.3 Ω - 2.2jΩ	
Return Loss	-31.1 dB	

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	54.1 Ω - 9.4jΩ
Return Loss	-20.1 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	56.3 Ω + 8.3jΩ			
Return Loss	-20.1 dB			

General Antenna Parameters and Design

Electrical Delay (one direction)	1.202 ns

After long term use with 40 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 28, 2003

Certificate No: D5GHzV2-1006_Feb06

Page 5 of 7

DASY4 Validation Report for Body TSL

Date/Time: 10.02.2006 21:06:10

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHz; Serial: D5GHzV2 - SN:1006

Communication System: CW-5GHz; Frequency: 5800 MHz Frequency: 5500 MHz Frequency: 5200 MHz;

Duty Cycle: 1:1

Medium: MSL 5800 MHz;

Medium parameters used: f = 5800 MHz; $\sigma = 5.88$ mho/m; $\varepsilon_r = 47.8$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5500 MHz; $\sigma = 5.5$ mho/m; $\varepsilon_r = 48.4$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5200 MHz; $\sigma = 5200$ MHz; $\sigma =$

5.11 mho/m; $\varepsilon_r = 49.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.69, 4.69, 4.69)ConvF(4.78, 4.78, 4.78, 4.78)ConvF(5.18, 5.18, 5.18); Calibrated: 19.03.2005
- · Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 15.12.2005
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA
- Measurement SW: DASY4, V4.6 Build 47; Postprocessing SW: SEMCAD, V1.8 Build 160

d=10mm, Pin=250mW, f=5200 MHz/Zoom Scan (8x8x8), dist=2mm (8x8x8)/Cube 0:

Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm Reference Value = 77.8 V/m; Power Drift = -0.025 dB

Peak SAR (extrapolated) = 65.4 W/kg

SAR(1 g) = 18.4 mW/g; SAR(10 g) = 5.16 mW/g

Maximum value of SAR (measured) = 37.8 mW/g

d=10mm, Pin=250mW, f=5500 MHz/Zoom Scan (8x8x8), dist=2mm (8x8x8)/Cube 0:

Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 73.9 V/m; Power Drift = 0.003 dB

Peak SAR (extrapolated) = 72.9 W/kg

SAR(1 g) = 18.8 mW/g; SAR(10 g) = 5.26 mW/g

Maximum value of SAR (measured) = 39.6 mW/g

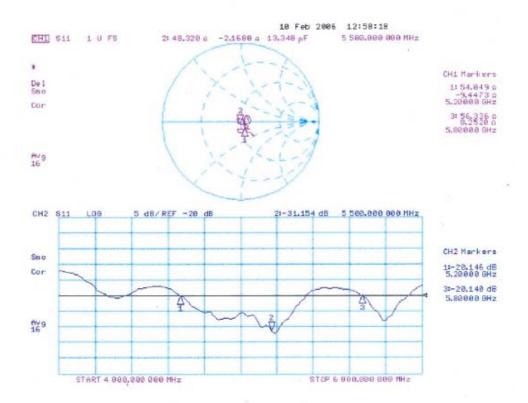
d=10mm, Pin=250mW, f=5800 MHz/Zoom Scan (8x8x8), dist=2mm (8x8x8)/Cube 0:

Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm

Reference Value = 69.5 V/m; Power Drift = -0.024 dB

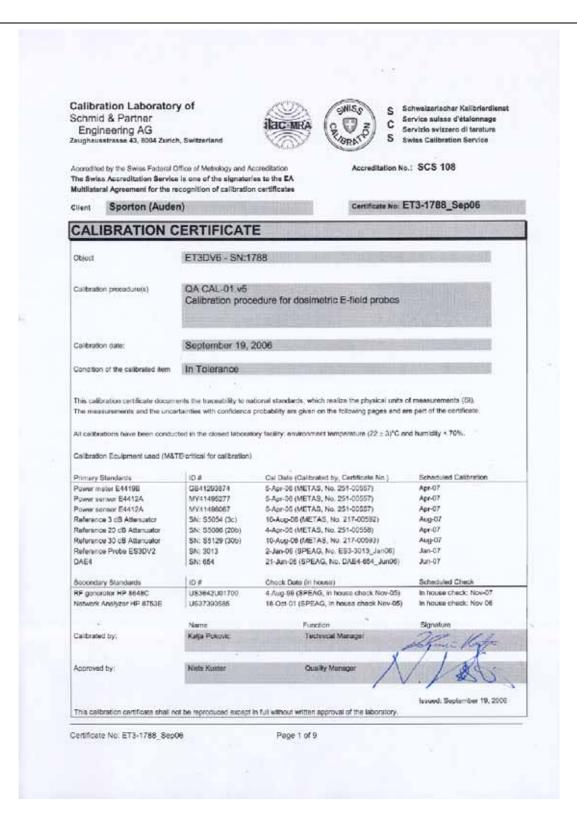
Peak SAR (extrapolated) = 70.0 W/kg

SAR(1 g) = 17.5 mW/g; SAR(10 g) = 4.94 mW/g


Maximum value of SAR (measured) = 36.7 mW/g

Certificate No: D5GHzV2-1006_Feb06

Page 6 of 7



Impedance Measurement Plot for Body TSL

Certificate No: D5GHzV2-1006_Feb06

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zarich, Switzerland

S Schweizerischer Kalibrierdienst
C Sorvice suisse d'étalonnage
Servizie svizzere di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation. The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates.

Glossary:

TSL NORMx,y,z ConF

DCP

tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point φ rotation around probe axis

Polarization

Polarization

8

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate	No:	ET3-1	788	Seption

ET3DV6 SN:1788

September 19, 2006

Probe ET3DV6

SN:1788

Manufactured:

May 28, 2003

Last calibrated: Recalibrated: September 30, 2004

September 19, 2006

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate Not ET3-1788_Sep06

Page 3 of 9

ET3DV6 SN:1788

September 19, 2006

93 mV

DASY - Parameters of Probe: ET3DV6 SN:1788

Sensitivity in Fre	Diode Compression ⁶			
NormX	1.73 ± 10.1%	$\mu V/(V/m)^2$	DCP X	95 mV
NormY	1.67 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	101 mV

 $\mu V/(V/m)^2$

DCP Z

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

1.70 ± 10.1%

Please see Page 8.

NormZ

Boundary Effect

TSL	900 MHz	Typical SAR	gradlent:	5 % per mm

Sensor Cente	er to Phantom Surface Distance	3.7 mm	4.7 mm
SAR [%]	Without Correction Algorithm	7.9	4.3
SAR. [%]	With Correction Algorithm	0.1	0.3

TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Cente	r to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{6e} [%]	Without Correction Algorithm	11.8	7.0
SAR [%]	With Correction Algorithm	0.2	0.4

Sensor Offset

Probe Tip to Sensor Center 2.7 mm

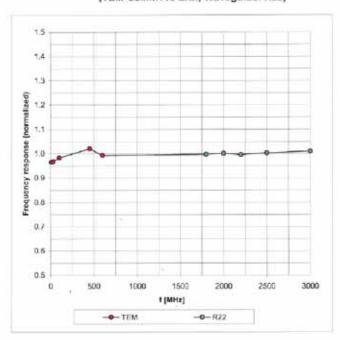
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ET3-1788_Sep06

Page 4 of 9

ⁿ The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Fage 8).

^{*} Numerical linearization parameter; uncertainty not required.



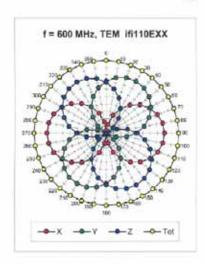
September 19, 2006

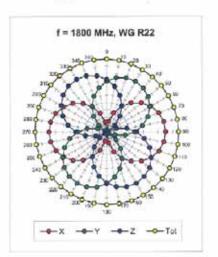
Frequency Response of E-Field

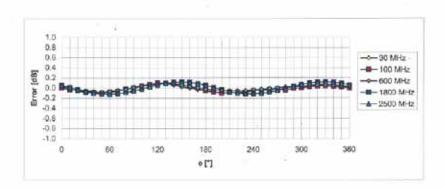
(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ET3-1788_Sep06


Page 5 of 9





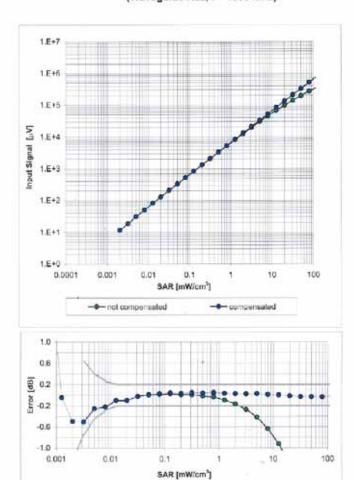
September 19, 2006

Receiving Pattern (4), 9 = 0°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ET3-1788_Sep06

Page 6 of 9



ET3DV6 SN:1788

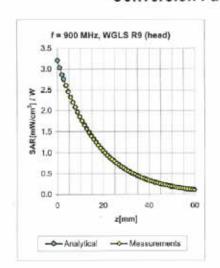
September 19, 2006

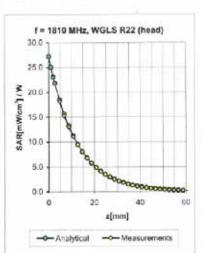
Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ET3-1788 Sep06


Page 7 of 9



ET3DV6 SN:1788

September 19, 2006

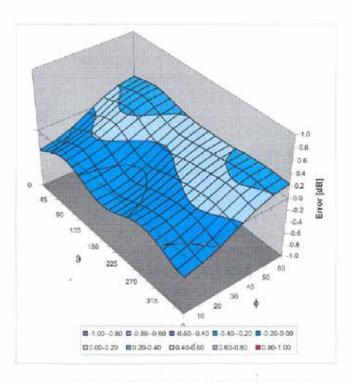
Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	±50/±100	Head	$41.5 \pm 5\%$	0.97 ± 5%	0.49	1.94	6.60 ± 11.0% (k=2)
1810	±50/±100	Head	$40.0\pm5\%$	1.40 ± 5%	0.48	2.74	5.30 ± 11.0% (k=2)
2000	± 50 / ± 100	Head	$40.0 \pm 5\%$	1.40 ± 5%	0.53	2.75	5.00 ± 11.0% (k=2)
2450	±50/±100	Head	$39.2\pm5\%$	$1.80\pm5\%$	0.68	1.96	4.66 ± 11.8% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.45	2.12	6,33 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.59	2.89	4.67 ± 11.0% (k=2)
2000	±50/±100	Body	$53.3\pm5\%$	1.52 ± 5%	0.56	2.79	4.50 ± 11.0% (k=2)
2450	±50/±100	Body	52.7 ± 5%	1.95 ± 5%	0.60	1.70	4.11 ± 11.8% (k=2)

Certificate No: ET3-1788_Sep06

Page 8 of 9

⁶ The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.



ET3DV6 SN:1788

September 19, 2006

Deviation from Isotropy in HSL

Error (o, 8), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1788_Sep06

Page 9 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton (Auden)

Certificate No: EX3-3514 Feb07

Accreditation No.: SCS 108

CALIBRATION	CERTIFICAT	E	
Object	EX3DV3 - SN:3	514	
Calibration procedure(s)		and QA CAL-14.v3 edure for dosimetric E-field probes	
Calibration date:	February 21, 20	07	
Condition of the calibrated item	In Tolerance		
	cted in the closed laborate	probability are given on the following pages and are ory facility: environment temperature $(22 \pm 3)^{\circ}$ C and	
Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Power sensor E4412A	MY41495277	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Power sensor E4412A	MY41498087	5-Apr-05 (METAS, No. 251-00557)	Apr-07
Reference 3 dB Attenuator	SN: S5054 (3c)	10-Aug-05 (METAS, No. 217-00592)	Aug-07
Reference 20 dB Attenuator	SN: S5086 (20b)	4-Apr-06 (METAS, No. 251-00558)	Apr-07
Reference 30 dB Attenuator	SN: S5129 (30b)	10-Aug-06 (METAS, No. 217-00593)	Aug-07
	SN: 3013	4-Jan-07 (SPEAG, No. ES3-3013_Jan07)	Jan-08
at Desta City	SN: 654	21-Jun-06 (SPEAG, No. DAE4-654_Jun06)	Jun-07
DAE4	SN: 654	21-Jun-06 (SPEAG, No. DAE4-654_Jun06) Check Date (in house)	
DAE4 Secondary Standards		Mark - And Andrews Control to	Jun-07
DAE4 Secondary Standards RF generator HP 8648C	ID#	Check Date (in house)	Jun-07 Scheduled Check
DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID # US3642U01700 US37390585 Name	Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06) Function	Jun-07 Scheduled Check In house check: Nov-07
DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID # US3642U01700 US37390585	Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06)	Jun-07 Scheduled Check In house check: Nov-07 In house check: Oct-07
Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by: Approved by:	ID # US3642U01700 US37390585 Name	Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06) Function	Jun-07 Scheduled Check In house check: Nov-07 In house check: Oct-07

Certificate No: EX3-3514_Feb07

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConF sensitivity in TSL / NORMx,y,z
DCP diode compression point
Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a
 flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3514 Feb07 Page 2 of 9

EX3DV3 SN:3514

February 21, 2007

Probe EX3DV3

SN:3514

Manufactured:

December 15, 2002

Last calibrated:

February 17, 2006

Recalibrated:

February 21, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3514_Feb07

Page 3 of 9

EX3DV3 SN:3514

February 21, 2007

DASY - Parameters of Probe: EX3DV3 SN:3514

Sensitivity in Free Space^A

Diode Compression^B

NormX	0.660 ± 10.1%	$\mu V/(V/m)^2$	DCP X	95 mV
NormY	0.690 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	93 mV
NormZ	0.570 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	96 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL

5200 MHz Typical SAR gradient: 25 % per mm

Sensor Cente	er to Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	3.7	0.6
SAR _{be} [%]	With Correction Algorithm	0.0	0.0

TSL

5800 MHz Ty

Typical SAR gradient: 30 % per mm

Sensor Center to Phantom Surface Distance		2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	1.7	0.5
SAR _{be} [%]	With Correction Algorithm	0.0	0.0

Sensor Offset

Probe Tip to Sensor Center

1.0 mm

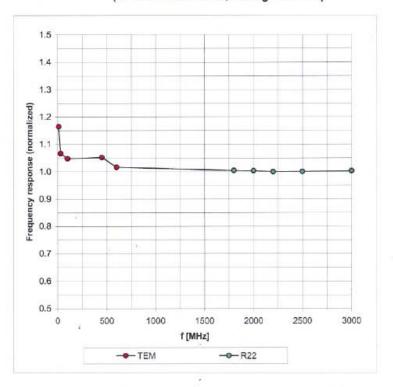
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3514_Feb07

Page 4 of 9

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

Numerical linearization parameter; uncertainty not required.



EX3DV3 SN:3514

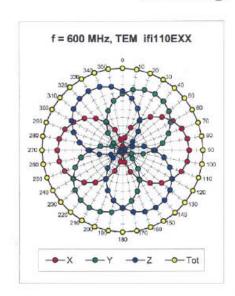
February 21, 2007

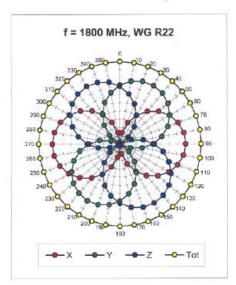
Frequency Response of E-Field

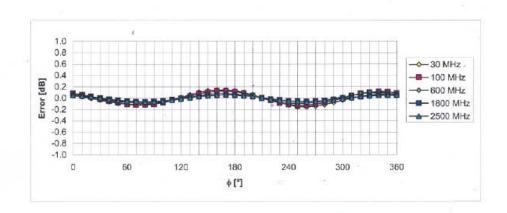
(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3514_Feb07


Page 5 of 9




EX3DV3 SN:3514

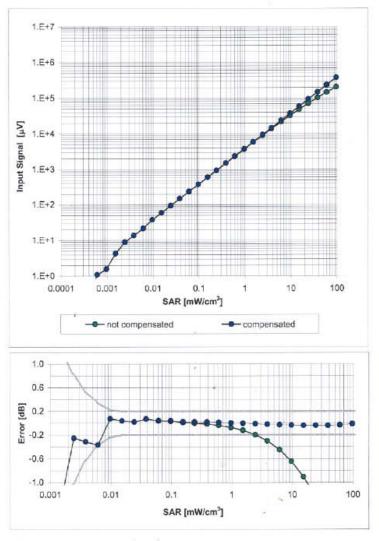
February 21, 2007

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3514_Feb07

Page 6 of 9



EX3DV3 SN:3514

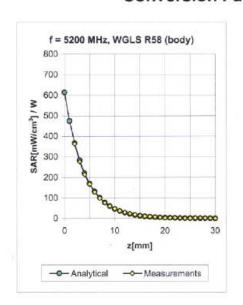
February 21, 2007

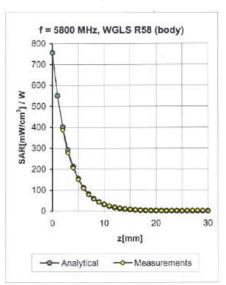
Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3514_Feb07

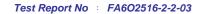

Page 7 of 9



EX3DV3 SN:3514

February 21, 2007

Conversion Factor Assessment

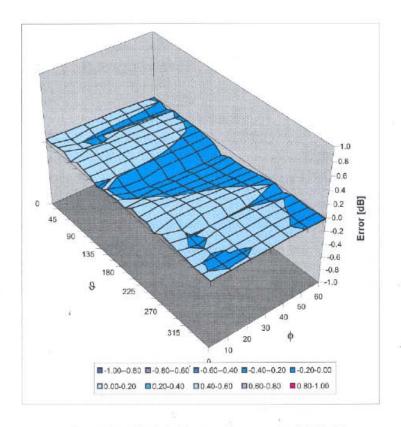


f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
5200	± 50 / ± 100	Body	49.0 ± 5%	5.30 ± 5%	0.35	1.70	4.31	± 13.1% (k=2)
5500	± 50 / ± 100	Body	$48.6\pm5\%$	$5.65\pm5\%$	0.35	1.70	4.09	± 13.1% (k=2)
5800	± 50 / ± 100	Body	48.2 ± 5%	$6.00 \pm 5\%$	0.35	1.70	4.16	± 13.1% (k=2)

Certificate No: EX3-3514_Feb07

Page 8 of 9

^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.



EX3DV3 SN:3514

February 21, 2007

Deviation from Isotropy in HSL

Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-3514_Feb07

Page 9 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servitlo svizzero di taratura
S swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton (Auder

Certificate No: DAE3-577 Nov06

Accreditation No.: SCS 108

CALIBRATION C	ERTIFICATE		
Object	DAE3 - SD 000 D	03 AA - SN: 577	
Calibration procedure(s)	QA CAL-06.v12 Calibration proces	dure for the data acquisition elect	ronics (DAE)
Calibration date:	November 21, 200	06	
Condition of the calibrated item	In Tolerance		
The measurements and the uncertainty	ainties with confidence pro id in the closed laboratory	mal standards, which realize the physical unit obsolity are given on the following degree and r facility: environment temperature (22 ± 3)°C	are part of the certificate.
Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Fluke Process Collibrator Type 702 Keithley Multimeter Type 2001	SN: 6295803 SN: 0810278	13-Oct-06 (Elcel AG, No: 5492) 03-Oct-06 (Elcel AG, No: 5478)	Oct-07 Oct-07
Secondary Standards	io #	Check Date (in house)	Scheduled Check
Calibrator Box V1.1	SE UMS 006 AB 1002	15 Jun-06 (SPEAG, in house check)	In house check Jun-07
-			
	Name	Function	Signature
			وعيد الراسد التنف
Calibrated by:	Eric Hainfeld	Technician	
Calibrated by:	Eric Hainfeld Fin Bornholt		Brutolf

Certificate No: DAE3-577_Nov06

Page 1 of 5

Calibration Laboratory of

Schmid & Partner Engineering AG Zoughousstrasse 43, 8004 Zurlch, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation.

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates.

Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters contain technical information as a result from the performance test and require no uncertainty.
- DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
- Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
- Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
- AD Converter Values with Inputs shorted: Values on the internal AD converter corresponding to zero input voltage
- Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
- Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
- Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
- Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
- Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE3-577_Nov06

Page 2 of 5

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB =

Low Range: 1LSB =

High Range: 1LSB = 6.1μV, full range = -100...+300 mV Low Range: 1LSB = 81nV, full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	×	Y	Z
High Range	404.355 ± 0.1% (k=2)	403.806 ± 0.1% (k=2)	404.276 ± 0.1% (k=2)
Low Range	3.92854 ± 0.7% (k=2)	3.93862 ± 0.7% (k=2)	3.93591 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	268°±1°
---	---------

Certificate No: DAE3-577_Nov08

Page 3 of 5

Appendix

High Range	Input (µV)	Reading (µV)	Error (%)
Channel X + Input	200000	199999.5	0.00
Channel X + Input	20000	20005.87	0.03
Channel X - Input	20000	-19998.71	-0.01
Channel Y + Input	200000	200000	0.00
Channel Y + Input	20000	20004.22	0.02
Channel Y - Input	20000	-20003.23	0.02
Channel Z + Input	200000	200000.6	0.00
Channel Z + Input	20000	20005.24	0.03
Channel Z - Input	20000	-20001.80	0.01

Low Range		Input (µV)	Reading (µV)	Error (%)
Channel X	+ Input	2000	1999.9	0.00
Channel X	+ Input	200	200.27	0.13
Channel X	- Input	200	-200.73	0.36
Channel Y	+ Input	2000	2000.1	0.00
Channel Y	+ input	200	199.22	-0.39
Channel Y	- Input	200	-200.86	0.43
Channel Z	+ Input	2000	1999.9	0.00
Channel Z	+ Input	200	199.28	-0.36
Channel Z	- Input	200	-200.94	0.47

2. Common mode sensitivity

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	14.24	12.49
	- 200	-12.13	-12.92
Channel Y	200	-6.51	-7.06
	- 200	6.05	5.81
Channel Z	200	1.09	0.88
	- 200	-2.86	-2.63

3. Channel separation
DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200		2.51	0.09
Channel Y	200	0.43	-	3.37
Channel Z	200	-0.55	0.96	

Certificate No: DAE3-577_Nov06

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15970	16306
Channel Y	15851	16305
Channel Z	16208	17068

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

25472222	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-0.51	+1.55	0.47	0.50
Channel Y	-2.06	-4.32	-0.65	0.60
Channel Z	-1.63	-2.56	-0.15	0.35

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <26fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0,2000	199.8
Channel Y	0.2000	200.7
Channel Z	0.2000	199.8

8. Low Battery Alarm Voltage (verified during pre lest)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	7,6	

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE3-577_Nov06

Page 5 of 5