

SAR TEST - REPORT

SAR Compliance Test Report

FCC ID: JYCC630

Test report no.:

G5M208050015-S-8

TABLE OF CONTENTS

1	General information	2
1.1	Notes	2
1.2	Testing laboratory	3
1.3	Details of approval holder	3
1.4	Manufacturer	4
1.5	Application details	4
1.6	Test item	4
1.7	Test results	5
1.8	Test standards	5
2	Technical test	6
2.1	Summary of test results	6
2.2	Test environment	6
2.3	Test equipment utilized	7
2.4	Definitions	8
2.5	Measurement system description	9
2.6	Test system specification	14
2.7	Measurement procedure	15
2.8	Reference points	16
2.9	Test positions	18
2.10	Measurement uncertainty	22
3	Tissue and system verification	23
3.1	Tissue verification	23
3.2	System verification	24
4	Test Results	25
5	References	31
6	Δημον	32

1 General Information

1.1 Notes

The purpose of conformity testing is to increase the probability of adherence to the essential requirements or conformity specifications, as appropriate.

The complexity of the technical specifications, however, means that full and thorough testing is impractical for both technical and economic reasons.

Furthermore, there is no guarantee that a test sample which has passed all the relevant tests conforms to a specification.

The existence of the tests nevertheless provides the confidence that the test sample possesses the qualities as maintained and that is performance generally conforms to representative cases of communications equipment.

The test results of this test report relate exclusively to the item tested as specified in 1.5.

The test report may only be reproduced or published in full.

Reproduction or publication of extracts from the report requires the prior written approval of the EUROFINS ETS PRODUCT SERVICE GMBH.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualification of all persons taking them.

Operator:			
20.08.2008		M. Handrik	
Date	Eurofins -Lab.	Name	Signature
Technical re	sponsibility for are	ea of testing:	
20.08.2008		K. Damm	
Date	Eurofins	Name	Signature

1.2 **Testing laboratory**

1.2.1 Location

EUROFINS ETS PRODUCT SERVICE GMBH Storkower Straße 38c D-15526 Reichenwalde b. Berlin

Germany

Telephone: +49 33631 888 00 : +49 33631 888 660

1.2.2 **Details of accreditation status**

DAR ACCREDITED TESTING LABORATORY

DAR-REGISTRATION NUMBER: DAT-P-268/08

RECOGNIZED NOTIFIED BODY EMC

REGISTRATION NUMBER: BNetzA-bS EMV-07/61

RECOGNIZED NOTIFIED BODY R&TTE

REGISTRATION NUMBER: BNetzA-bS-02/51-53

FCC FILED TEST LABORATORY

REG.-No. 96970

A2LA ACCREDITED TESTING LABORATORY

CERTIFICATE No. 1983.01

BLUETOOTH QUALIFICATION TEST FACILITY (BQTF)

ACCREDITED BY BLUETOOTH QUALIFICATION REVIEW BOARD

INDUSTRY CANADA FILED TEST LABORATORY

Reg. No. IC 3470

Statement: The tests documented within this report are carried out in accordance with the scope of

accreditation of test laboratory Eurofins ETS Product Service GmbH.

1.3 **Details of approval holder**

Name : Pantech Co., Ltd.

Street : Pantech Bldg, I-2 DMC, Sangam-dong

: Mapo-gu, Seoul Town

Country : Korea

Telephone : +82-2-2030-1320 : +82-2-2030-2519 Fax

Contact : Mr. B.W. Kim

E-Mail : bwkim@pantech.com

1.4 Manufacturer: (if applicable)

Name : Street : Town : Country : :

1.5 Application details

Date of receipt of application : 26.05.2008 Date of receipt of test item : 26.05.2008

Date of test : 16.07.2008 - 24.07.2008

1.6 Test item

FCC ID : JYCC630

Description of test item : UMTS GSM phone

Type identification : C630

Serial number : without; Identical prototype

Device category : PCE (Licensed Portable Transmitter held to ear)

Technical data

UMTS Frequency range	: Operation Band V	Operation Band II
TX Frequency range	: 824 - 849MHz	1850 - 1910 MHz
RX Frequency range	: 869 - 894MHz	1930 - 1990 MHz
Max. Conducted RF output power	: 23,73 (0,24 W)	22,40 (0,17 W)

GSM / PCS / EGPRS

Frequency range	: GSM 850 / EGPRS	PCS 1900 / / EGPRS
TX Frequency range	: 824.2 - 848.8 MHz	1850.2 - 1909.9 MHz
RX Frequency range	: 869.2 - 893.8 MHz	1930.2 - 1989.8 MHz
Max. Cond GSM RF output power	: 31,97 dBm (1,57 W)	29,41 dBm (0,87 W)
Max. Cond Edge RF output power	: 29,30 dBm (0,85 W)	26,40 dBm (0,44 W)

Power supply : 3.8 V DC rechargeable battery

Antenna Tx : integral
Antenna RX : integral

Additional information : Tx and Rx, antenna are the same.

This test sample was tested according FCC OET Bulletin 65, Supplement C, Edition 01-01 on the used Frequency band. Body

worn configuration has to be 15 mm for compliance!

1.7 Test Results

Max. SAR Measurement GSM (Head): 0.919 W/kg (averaged over 1 gram)Max. SAR Measurement GSM (Body): 1.24 W/kg (averaged over 1 gram)Max. SAR Measurement PCS (Head): 0.687 W/kg (averaged over 1 gram)Max. SAR Measurement PCS (Body): 0.799 W/kg (averaged over 1 gram)

Max. SAR Measurement UMTS Band V (Head): 1.25 W/kg (averaged over 1 gram)Max. SAR Measurement UMTS Band V (Body): 1.21 W/kg (averaged over 1 gram)Max. SAR Measurement UMTS Band II (Head): 1.36 W/kg (averaged over 1 gram)Max. SAR Measurement UMTS Band II (Body): 1.55 W/kg (averaged over 1 gram)

Max. SAR Measurement GPRS 850 (Body): 0.984 W/kg (averaged over 1 gram)Max. SAR Measurement GPRS 1900 (Body): 1.50 W/kg (averaged over 1 gram)Max. SAR Measurement EGPRS 850 (Body): 0.949 W/kg (averaged over 1 gram)Max. SAR Measurement EGPRS 1900 (Body): 1.54 W/kg (averaged over 1 gram)

This EUT has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE Std. C95.1-1992 and had been tested in accordance with the measurement procedures specified in FCC/OET Bulletin 65 Supplement C (2001) and IEEE Std. 1528-2003, December 2003.

1.8 Test standards

Standards : - IEEE Std. 1528-2003, December 2003

FCC Rule Part(s) : - FCC OET Bulletin 65, Supplement C, Edition 01-01

2 Technical test

2.1 Summary of test results

Applicable Configuration

Handset (Head)	Χ
Handset (Body)	Х
Headset (Head)	
Body Worn Equipment	

EUT complies with the RF radiation exposure limits of the FCC as shown by the SAR measurement results. These measurements are taken to simulate the RF effects exposure under worst-case conditions. The EUT complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [1]

In case of multiple hotspots the secondary hotspots within 2 dB of the maximum SAR value will be recorded and displayed in the measurement plots. The secondary hotspots with a peak SAR value below 0.5 W/kg will not be measured by the system, due to the high margin to the limits.

2.2 Test environment

Room temperature : 22.1 - 22.6 ° C
Liquid temperature : 22.0 - 22.3 ° C
Relative humidity content : 20 ... 75 %
Air pressure : 86 ... 103 kPa

Details of power supply : 3.8 V DC

2.3 Test equipment utilized

No.	Measurement device:	Type:	Manufacturer:
ETS 0449	Stäubli Robot	RX90B L	Stäubli
ETS 0450	Stäubli Robot Controller	CS/MBs&p	Stäubli
ETS 0451	DASY 4 Measurement Server		Schmid & Partner
ETS 0452	Control Pendant		Stäubli
ETS 0453	Compaq Computer	Pentium IV, 2 GHz,	Schmid & Partner
ETS 0454	Dabu Acquisition Electronics	DAE3V1	Schmid & Partner
ETS 0455	Dummy Probe		Schmid & Partner
ETS 0456	Dosimetric E-Field Probe	ET3DV6	Schmid & Partner
ETS 0457	Dosimetric E-Field Probe	ET3DV6	Schmid & Partner
ETS 0458	Dosimetric H-Field Probe	H3DV6	Schmid & Partner
ETS 0479	System Validation Kit	D300V3	Schmid & Partner
ETS 0480	System Validation Kit	D450V3	Schmid & Partner
ETS 0459	System Validation Kit	D900V2	Schmid & Partner
ETS 0460	System Validation Kit	D1800V2	Schmid & Partner
ETS 0461	System Validation Kit	D1900V2	Schmid & Partner
ETS 0462	System Validation Kit	D2450V2	Schmid & Partner
ETS 0463	Probe Alignment Unit	LBV2	Schmid & Partner
ETS 0464	SAM Twin phantom	V 4.0	Schmid & Partner
ETS 0513	Flat phantom	V 4.4	Schmid & Partner
ETS 0467	Oval flat phantom	ELI 4	Schmid & Partner
ETS 0465	Mounting Device	V 3.1	Schmid & Partner
ETS 0224a	Millivoltmeter	URV 5	Rohde & Schwarz
ETS 0219	Power sensor	NRV-Z2	Rohde & Schwarz
ETS 0268	RF signal generator	SMP 02	Rohde & Schwarz
ETS 0322	Insertion unit	URV5-Z4	Rohde & Schwarz
ETS 0466	Directional Coupler	HP 87300B	HP
ETS 0231	Radio Communication Tester	CMD65	Rohde & Schwarz
ETS 0484	Universal Radio Communication Tester	CMU 200	Rohde & Schwarz
ETS 0468	Network Analyzer 300 kHz to 3 GHz	8753C	Agilent
ETS 0469	Dielectric Probe Kit	85070C	Agilent

2.4 Definitions

2.4.1 SAR

The specific absorption rate (SAR) is defined as the time derivative of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ_t), expressed in watts per kilogram (W/kg).

SAR =
$$\frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho_t dV} \right) = \frac{\sigma}{\rho} |E_t|^2$$

where:

$$\frac{dW}{dt} = \int_{V} E \cdot J \, dV = \int_{V} \sigma E^{2} dV$$

2.4.2 Uncontrolled Exposure

The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Warning labels placed on low-power consumer devices such as cellular telephones are not considered sufficient to allow the device to be considered under the occupational/controlled category, and the general population/uncontrolled exposure limits apply to these devices. [2].

2.4.3 Controlled Exposure

In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. Awareness of the potential for RF exposure in a workplace or similar environment can be provided through specific training as part of a RF safety program. If appropriate, warning signs and labels can also be used to establish such awareness by providing prominent information on the risk of potential exposure and instructions on the risk of potential exposure risks. [2].

2.5 **Measurement System Description**

2.5.1 **System Setup**

Measurements are performed using the DASY4 automated dosimetric assessment system (figure 1) made by Schmid & Partner Engineering AG (SPEAG)in Zurich, Switzerland.

The DASY4 system for performing compliance tests consists of the following items:

Figure 1

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach tware. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- An unit to operate the optical surface detector which is connected to the EOC.
- The Electro-optical converter (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the measurement server.
- The functions of the measurement server is to perform the time critical task such as signal filtering, surveillance of the robot operation, fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows NT.
- DASY4 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes (see Application Notes).
- System validation dipoles allowing to validate the proper functioning of the system.

2.5.2 Phantom Description

(Figure 2.1)

The SAM twin phantom V4.0 (figure 2.1) is a fiberglass shell phantom with 2 mm shell thickness. It has three measurement areas:

- Left hand
- Right hand
- Flat phantom

(Figure 2.2)

The FLATPHANTOM V4 (figure 2.2) is a phantom for dosimetric evaluations of body mounted usage and system performance check for the frequency up to 3 GHz.

(Figure 2.3)

The Oval flat phantom (ELI 4) (figure 2.3) is a fiberglass shell phantom with 2 mm thickness.

The phantom is integrated in a wooden table.

The bottom plate of the table contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. Only one device holder is necessary if two phantoms are used (e.g., for different liquids).

A cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on the cover are possible.

On the phantom top, three reference markers are provided to identify the phantom positions with respect to the robot.

2.5.3 Tissue Simulating Liquids

The parameters of the tissue simulating liquid strongly influence the SAR. The parameters for the different frequencies are defined in the corresponding compliance standards (e.g., EN 50361, IEEE P1528-2003.

Tissue dielectric properties

	He	ad	Во	ody
Frequency (MHz)	Relative Dielectric Constant (ε _r)	Conductivity (σ) (S/m)	Relative Dielectric Constant (ε _r)	Conductivity (σ) (S/m)
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
1450	40.5	1.20	54.0	1.30
1800	40.0	1.40	53.3	1.52
1900	40.0	1.40	53.3	1.52
2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73

2.5.4 Device Holder

The DASY device holder (figure 3.1 and 3.2) is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The rotation centers for both scales is the ear opening. Thus the device needs no repositioning when changing the angles.

Figure 3.1 Figure 3.2

The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

2.5.5 Probes

The SAR measurements were conducted with the dosimetric probe ET3DV6 (figure 4), designed in the classical triangular configuration and optimized for dosimetric evaluation. [3] The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

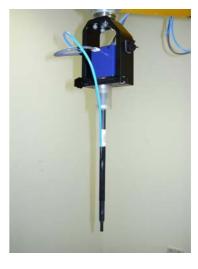


Figure 4

Probe Specifications

Dynamic Range:

Calibration: In air from 10 MHz to 2.5 GHz

In brain and muscle simulating tissue at Frequencies of 835 MHz, 900

MHz, 1800 MHz, 1900 MHz and 2450 MHz Calibration certificates please find attached.

Frequency: 10 MHz to > 3 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz)

Directivity: \pm 0.2 dB in HSL (rotation around probe axis) \pm 0.4 dB in HSL (rotation normal probe axis)

 $5 \mu W/g \text{ to > } 100 \text{ mW/g};$

Linearity: $\pm 0.2 dB$

Dimensions: Overall length: 330 m

Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

Application: General dosimetry up to 3 GHz

Compliance tests of mobile phones

Fast automatic scanning in arbitrary phantoms

2.6 Test System Specification

Positioner

Robot: Stäubli Animation Corp. Robot Model: RX90B L

Repeatability: 0.02 mm

No. of axis: 6

Data Acquisition Electronic (DAE) System

Cell Controller

Processor: Pentium IV
Clock Speed: 2.0 GHz
Operating System: Windows 2000
Data Card: DASY4 PC-Board

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter, & control logic

Software: DASY4 software

Connecting Lines: Optical downlink for data and status info.

Optical uplink for commands and clock

PC Interface Card

Function: 24 bit (64 MHz) DSP for real time processing

Link to DAE3

16 bit A/D converter for surface detection system

serial link to robot

direct emergency stop output for robot

E-Field Probes

Model: ET3DV6 SN1711

Construction: Triangular core fiber optic detection system

Frequency: 10 MHz to 6 GHz

Linearity: \pm 0.2 dB (30MHz to 3 GHz)

Phantom

Phantom 1: Oval flat phantom (ELI 4)

Shell Material: Fiberglass Thickness: $2.0 \pm 0.2 \text{ mm}$

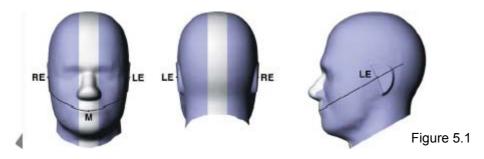
Phantom 2: Flat Phantom (V4.4)

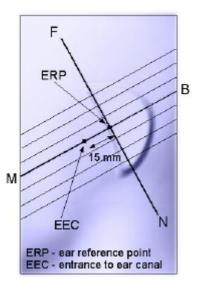
Shell Material: Fiberglass Thickness: $6.0 \pm 0.2 \text{ mm}$

Phantom 3: SAM Twin Phantom (V4.0)

Shell Material: Fiberglass Thickness: $2.0 \pm 0.2 \text{ mm}$

2.7 Measurement Procedure


The evaluation was performed using the following procedure:


- 1. The SAR measurement was taken at a selected spatial reference point to monitor power variations during testing. This fixed location point was measured and used as a reference value.
- 2. The SAR distribution at the exposed side of the head was measured at a distance of 3.9 mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 10 mm x 10 mm.
- 3. Based on the area scan data, the area of the maximum absorption was determined by spline interpolation. Around this point, a volume of 30 mm x 30 mm x 30 mm (fine resolution volume scan, zoom scan) was assessed by measuring 5 x 5 x 5 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:
 - a. The data at the surface was extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm [4]. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - b. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions) [4] [5]. The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as procedure # 1, was re-measured. If the value changed by more than 5 %, the evaluation is repeated.

2.8 Reference Points

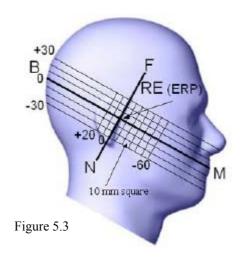
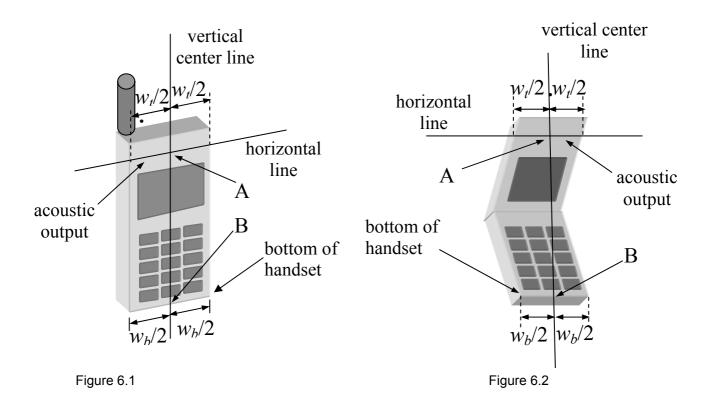

2.8.1 Ear Reference Points

Figure 5.1 shows the front, back and side vies of SAM. The point "M" is the reference point for the center of mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERPs are 15 mm posterior to the entrance to ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5.2. The plane passing through the two ear reference points and M is defined as the Reference Plane. The line N-F (Neck-Front) perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 5.3). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines should be marked on the external phantom shell to facilitate handset positioning. Posterior to the N-F line, the thickness of the N-F line, the ear is truncated as illustrated in Figure 5.2. The ear truncation is introduced to avoid the handset from touching the ear lobe, which can cause unstable handset positioning at the cheek. [6]



2.8.2 Handset Reference Points

Two imaginary lines on the handset were defined: the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset: the midpoint of the width wt of the handset at the level of the acoustic output (point A on Figures 6.1 and 6.2), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 6.1). The two lines intersect at point A. For many handsets, point A coincides with the center of the acoustic output. However, the acoustic output may be located elsewhere on the horizontal line. The vertical centerline is not necessarily parallel to the front face of the handset (see Figure 6.2), especially for clamshell handsets, handsets with flip pieces, and other irregularly-shaped handsets. [6]

2.9 Test Positions

2.9.1 "Cheek" / "Touch" Position

The EUT was positioned close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 7), such that the plane defined by the vertical center line and the horizontal line of the handset is approximately parallel to the sagittal plane of the phantom.

The EUT was translated towards the phantom along the line passing through RE and LE until the handset touches the pinna.

While maintaining the handset in this plane, the EUT was rotated it around the LE-RE line until the vertical centerline was in the plane normal to MB-NF including the line MB (called the reference plane).

The EUT was rotated around the vertical centerline until the handset (horizontal line) was symmetrical with respect to the line NF.

While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE and maintaining the handset contact with the pinna, the EUT was rotated about the line NF until any point on the handset was in contact with a phantom point below the pinna (cheek). [6] See Figure 7.

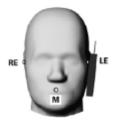


Figure 7

2.9.2 "Tilted" Position

The EUT was in "cheek position".

While maintaining the orientation of the handset move the handset away from the pinna along the line passing through RE and LE in order to enable a rotation of the handset by 15 degrees.

The EUT was rotated around the horizontal line by 15 degrees.

While maintaining the orientation of the handset, the EUT was moved towards the phantom on a line passing through RE and LE until any part of the handset touched the ear. The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna (e.g., the antenna with the back of the phantom head), the angle of the handset would be reduced. In this case, the tilted position is obtained if any part of the handset was in contact with the pinna as well as a second part of the handset was in contact with the phantom (e.g., the antenna with the back of the head). [6] See Figure 8.

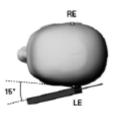


Figure 8

2.9.3 Belt Clip/Holster Configuration

Test configurations for body-worn operated EUTs are carried out while the belt-clip and/or holster is attached to the EUT and placed against a flat phantom in a regular configuration (see Figure 9). An EUT with a headset output is tested with a headset connected to the device.

Body dielectric parameters are used.

There are two categories for accessories for body-worn operation configurations:

- 1. accessories not containing metallic components
- 2. accessories containing metallic components.

When the EUT is equipped with accessories not containing metallic components the tests are done with the accessory that dictates the closest spacing to the body. For accessories containing metallic parts a test with each one is implemented. If the multiple accessories share an identical metallic component (e.g. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that has the closest spacing to the body is tested.

In case that a EUT authorized to be body-worn is not supplied or has no options to be operated with any accessories, a test configuration where a separation distance between the back of the device and the flat phantom is used. All test position spacings are documented.

Transmitters operating in front of a person's face (e.g. push-to-talk configurations) are tested for SAR compliance with the front of the device positioned to face the flat platform. SAR Compliance tests for shoulder, waist or chest-worn transmitters are carried out with the accessories including headsets and microphones attached to the device and placed against a flat phantom in a regular configuration.

The SAR measurements are performed to investigate the worst-case positioning. This is documented and used to perform Body SAR testing. [2].

Figure 9

2.9.4 Headset Configuration

Headsets which have their radiating structure in close proximity to the head are measured according to the following conditions.

- Head tissue liquid is used.
- The EUT is positioned on the surface of the head of phantom according the picture below. Right and left position is tested according to the normal use (see figure 10).
- Additional metallic parts like clips or others are subject of testing, too.

Figure 10

Headsets which have their radiating structure in close proximity to the body are tested as body worn equipment.

2.10 Measurement uncertainty

The uncertainty budget has been determined for the DASY4 system performance check according to IEEE Std. 1528-2003 December 2003.

	Tol.	Prob.	Div.	(^c i) ¹	Std. unc.	$(^{v}i)^{2}$
Error Description	(± %)	dist.		(1 g)	(1 g) (± %)	
Measurement System						
Probe Calibration	4.8	N	1	1	4.8	8
Axial Isotropy	4.7	R	√3	0.7	1.9	∞
Hemispherical Isotropy	9.6	R	√3	0.7	3.9	∞
Boundary Effects	1.0	R	√3	1	0.6	∞
Linearity	4.7	R	√3	1	2.7	∞
System Detection Limit	1.0	R	√3	1	0.6	∞
Readout Electronics	1.0	N	1	1	1.0	∞
Response Time	0.8	R	√3	1	0.5	∞
Integration Time	2.6	R	√3	1	1.5	∞
RF Ambient Conditions	3.0	R	√3	1	1.7	∞
Probe Positioner	0.4	R	√3	1	0.2	∞
Probe Positioning	2.9	R	√3	1	1.7	∞
Algorithms for Max. SAR Eval.	1.0	R	√3	1	0.6	∞
Test Sample Related						
Device Positioning	2.9	N	1	1	2.9	145
Device Holder	3.6	N	1	1	3.6	5
Power Drift	5.0	R	√3	1	2.9	∞
Phantom and Setup			,			
Phantom Uncertainty	4.0	R	[√] 3	1	2.3	∞
Liquid Conductivity (target)	5.0	R.	√3	0.64	1.8	∞
Liquid Conductivity (meas.)	2.6	N	1	0.64	1.7	8
Liquid Permittivity (target)	5.0	R	√3	0.6	1.7	∞
Liquid Permittivity (meas.)	3.8	N	1	0.6	2.3	∞
Combined Standard Uncertainty				_	10.4	330
Expanded Uncertainty kp = 2						
Coverage Factor for 95 %					20.8	

The budget is valid for the frequency range 300 MHz - 3 GHz and represent a worst case analysis. For specific tests and configurations, the uncertainty could be considerable smaller.

3 Tissue and System Verification

3.1 Tissue Verification

Dielectric parameters of the simulating liquids were verified using a Dielectric Probe Kit Agilent 85070D to a tolerance of \pm 5 %.

Room Temperature: 22.1 - 22.6 ° C

	Measured Tissue Parameters						
	900 MI	900 MHz Head 1900 MHz Head					
	Target	Measured	Target	Measured			
Date:		18.07.2008		16.07.2008			
		19.07.2008		17.07.2008			
		23.07.2008		22.07.2008			
Liquid Temperature: ° C		22,1		22,0			
Dielectric Constant: ε	41,5	40,5	40,0	39,9			
Conductivity: σ	0,97	0.944	1,40	1,42			

Room Temperature: 22.1 - 22.6 ° C

		Measured Tissue Parameters					
	900 MHz Muscle 1900 MHz Muscle						
	Target	Measured	Target	Measured			
Date:		18.07.2008		17.07.2008			
		21.07.2008		23.07.2008			
		22.07.2008		24.07.2008			
Liquid Temperature: ° C		22,1		22,1			
Dielectric Constant: ε	55,0	54,1	53,3	51,9			
Conductivity: σ	1,05	1,01	1,52	1,58			

3.2 System Verification

Prior to the assessment, the system was verified by using a 1900 MHz validation dipole. Power level of 250 mW was supplied to the dipole antenna placed under the flat section of SAM Phantom. This system validation is valid for a frequency range of 1900 \pm 100 MHz.

The system was verified to a tolerance of \pm 10 %.

Liquid Temperature: 22.0 - 22.3 ° C Room Temperature: 22.1 - 22.6 ° C Liquid Depth: >15.5 cm

	System Dipole Validation Target & Measurement							
Date	System Validation Kit:	Liquid	Targeted SAR 1 g (mW/g)	Measured SAR 1 g (mW/g)	Deviation (%)			
18.07.2008	D900V2 SN164	900 MHz Head	10,2	10,4	1,96			
19.07.2008	D900V2 SN164	900 MHz Head	10,2	11,04	8,23			
23.07.2008	D900V2 SN164	900 MHz Head	10,2	10,4	1,96			
18.07.2008	D900V2 SN164	900 MHz Muscle	11,2	10,72	-4,28			
21.07.2008	D900V2 SN164	900 MHz Muscle	11,2	10,76	-3,92			
22.07.2008	D900V2 SN164	900 MHz Muscle	11,2	10,80	-3,57			
16.07.2008	D1900V2 SN5d025	1900 MHz Head	40,4	42,0	3,96			
17.07.2008	D1900V2 SN5d025	1900 MHz Head	40,4	41,2	1,98			
22.07.2008	D1900V2 SN5d025	1900 MHz Head	40,4	42,0	3,96			
17.07.2008	D1900V2 SN5d025	1900 MHz Muscle	45,6	42,8	-6,14			
23.07.2008	D1900V2 SN5d025	1900 MHz Muscle	45,6	42,4	-7,02			
24.07.2008	D1900V2 SN5d025	1900 MHz Muscle	45,6	43,20	-5,26			

Comment: Please find attached the measurement plots.

4 Test Results

Procedures Used To Establish Test Signal

The EUT was placed into simulated call mode (e.g. AMPS, Cellular CDMA & PCS CDMA modes) using manufacturers test codes. Such test signals offer a consistent means for testing SAR and are recommended for evaluating SAR [2]. The actual transmission is activated through a base station simulator or similar when test modes are not available or inappropriate for testing the EUT.

The EUT is rechargeable battery operated. The battery used for the SAR measurements was completely charged. The device was tested at full power verified by implementing conducted output power measurements. For confirming of the output power it was tested before and after each SAR measurement. The test was repeated if a conducted power deviation of more than 5 % occurred.

Frequency band: GSM 850
Mixture Type: 900 MHz Head

Date: 18.07.2008 - 19.07.2008

Liquid Temperature: 22.0 - 22.3 °C Room Temperature: 22.1 - 22.6 °C

Frequency		Power Drift	Antenna	Phantom	Test Position	SAR	
MHz	Channel	Modulation	dBm	Pos.	Section		(W/kg)
824,2	128	GSM	-0,029	Integral	Right Ear	Cheek	0.882
836,4	189	GSM	-0,049	Integral	Right Ear	Cheek	0.919
836,4	189	GSM	0.003	Integral	Right Ear	Tilted	0.477
848,8	251	GSM	-0.0005	Integral	Right Ear	Cheek	0.853
836,4	189	GSM	-0.027	Integral	Left Ear	Cheek	0.878
836,4	189	GSM	-0.008	Integral	Left Ear	Tilted	0.422

Mixture Type: 900 MHz Muscle Date: 18.07.2008

	Frequency		Power Drift	Antenna	Phantom	Test Position	SAR
MHz	Channel	Modulation	dBm	Pos.	Section	10 mm	(W/kg)
824,2	128	GSM	0.016	Integral	Flat	Back	1.24
836,4	189	GSM	0.056	Integral	Flat	Back	1.17
836,4	189	GSM	0.048	Integral	Flat	Front	0.727
848,8	251	GSM	-0.042	Integral	Flat	Back	1.18

Frequency band: PCS 1900 Mixture Type: 1900 MHz Head

Date: 16.07.2008 - 17.07.2008

Liquid Temperature: 22.0 - 22.3 °C Room Temperature: 22.1 - 22.6 °C

	Frequency		Power Drift	Antenna	Phantom	Test Position	SAR	
MHz	Channel	Modulation	dBm	Pos.	Section		(W/kg)	
1850,2	512	GSM	0.044	Integral	Right Ear	Cheek	0.649	
1880,0	661	GSM	-0.006	Integral	Right Ear	Cheek	0.687	
1880,0	661	GSM	-0.037	Integral	Right Ear	Tilted	0.469	
1909,8	810	GSM	-0.008	Integral	Right Ear	Cheek	0.591	
1880,0	661	GSM	0.016	Integral	Left ear	Cheek	0.667	
1880,0	661	GSM	0.006	Integral	Left ear	Tilted	0.427	

Note: Upper and lower frequencies were measured at the worst position.

Mixture Type: 1900 MHz Muscle

Date: 17.07.2008

	Frequency		Power Drift	Antenna	Phantom	Test Position	SAR	
MHz	Channel	Modulation	dBm	Pos.	Section	10 mm	(W/kg)	
1850,2	512	GSM	0.043	Integral	Flat	Back	0.760	
1880,0	661	GSM	-0.031	Integral	Flat	Back	0.876	
1880,0	661	GSM	0.030	Integral	Flat	Front	0.392	
1909,8	810	GSM	-0.027	Integral	Flat	Back	0.799	

Frequency band: UMTS Operation Band V

 Mixture Type:
 900 MHz Head

 Date:
 23.07.2008

 Liquid Temperature:
 22.0 - 22.3 ° C

	Frequency		Power Drift	Antenna	Phantom	Test Position	SAR	
MHz	Channel	Modulation	dBm	Pos.	Section		(W/kg)	
835,0	4175	WCDMA	0.048	Integral	Right Ear	Cheek	1.04	
835,0	4175	WCDMA	0.035	Integral	Right Ear	Tilted	0.536	
826,6	4133	WCDMA	-0.049	Integral	Left Ear	Cheek	0.921	
835,0	4175	WCDMA	0.013	Integral	Left Ear	Cheek	1.07	
835,0	4175	WCDMA	0.045	Integral	Left Ear	Tilted	0.584	
846,4	4232	WCDMA	0.017	Integral	Left Ear	Cheek	1.25	

Room Temperature: 22.1 - 22.6 ° C

Mixture Type: 900 MHz Muscle Date: 21.07.2008

	Frequency		Power Drift	Antenna	Phantom	Test Position	SAR
MHz	Channel	Modulation	dBm	Pos.	Section	10 mm	(W/kg)
826,6	4133	WCDMA	0.040	Integral	Flat	Back	1.13
835,0	4175	WCDMA	0.053	Integral	Flat	Back	1.21
835,0	4175	WCDMA	0.052	Integral	Flat	Front	0.835
846,4	4232	WCDMA	0.022	Integral	Flat	Back	1.21

Frequency band: UMTS Operation Band II

Mixture Type: 1900 MHz Head Date: 22.07.2008 Liquid Temperature: 22.0 - 22.3 °C

	Frequency		Power Drift	Antenna	Phantom	Test Position	SAR
MHz	Channel	Modulation	dBm	Pos.	Section		(W/kg)
1880,0	9400	WCDMA	-0.046	Integral	Right Ear	Cheek	1.21
1880,0	9400	WCDMA	-0.094	Integral	Right Ear	Tilted	0.971
1852,6	9263	WCDMA	-0.094	Integral	Left Ear	Cheek	1.24
1880,0	9400	WCDMA	0.046	Integral	Left Ear	Cheek	1.36
1880,0	9400	WCDMA	-0.090	Integral	Left Ear	Tilted	0.850
1907,4	9537	WCDMA	-0.084	Integral	Left Ear	Cheek	1.24

Room Temperature: 22.1 - 22.6 ° C

Room Temperature: 22.1 - 22.6 ° C

Mixture Type: 1900 MHz Muscle

Date: 28.04.2008 Liquid Temperature: 22.0 - 22.3 ° C

	Frequency		Power Drift	Antenna	Phantom	Test Position	SAR	
MHz	Channel	Modulation	dBm	Pos.	Section	10 mm	(W/kg)	
1852,6	9263	WCDMA	-0,031	Integral	Flat	Back	1.51	
1880,0	9400	WCDMA	-0.022	Integral	Flat	Back	1.55	
1880,0	9400	WCDMA	0.043	Integral	Flat	Front	0.766	
1907,4	9537	WCDMA	-0.025	Integral	Flat	Back	1.50	

Frequency band: GPRS 850
Mixture Type: 900 MHz Muscle
Date: 21.07.2008

	Frequency		Power Drift	Antenna	Phantom	Test Position	SAR
MHz	Channel	Modulation	dBm	Pos.	Section	15 mm	(W/kg)
824,2	128	GPRS	0.092	Integral	Flat	Back	0.984

Note: Device positioning: spacing from flat phantom was adjusted at 15 mm.

Frequency band: GPRS 1900
Mixture Type: 1900 MHz Muscle
Date: 24.07.2008

	Frequency		Power Drift	Antenna	Phantom	Test Position	SAR	
MHz	Channel	Modulation	dBm	Pos.	Section	10 mm	(W/kg)	
1880	661	GPRS	-0,015	Integral	Flat	Back	1,50	

Frequency band: EGPRS 850
Mixture Type: 900 MHz Muscle
Date: 21.07.2008

	Frequency		Power Drift	Antenna	Phantom	Test Position	SAR
MHz	Channel	Modulation	dBm	Pos. Section		15 mm	(W/kg)
824,2	128	EGPRS	0.042	Integral	Flat	Back	0.949

Note: Device positioning: spacing from flat phantom was adjusted at 15 mm.

Frequency band: EGPRS 1900
Mixture Type: 1900 MHz Muscle
Date: 24.07.2008

	Frequency		Power Drift	Antenna	Phantom	Test Position	SAR	
MHz	Channel	Modulation	dBm	Pos.	Section	10 mm	(W/kg)	
1880	661	EGPRS	0,047	Integral	Flat	Back	1.54	

Limits:

	SAR (W/kg)							
Exposure Limits		led Exposui ation Enviro		Controlled Exposure/Occupational Environment				
Region	Australia	US	EU	Australia	US	EU		
Spatial Average SAR (averaged over the whole body)	0.08	0.08	0.08	0.40	0.40	0.40		
Spatial Peak SAR (averaged over any 1 g of tissue)	2.00	1.60	2.00	10.0	8.00	10.0		
Spatial Peak SAR (Hands, Feet, Ankles, Wrist) (averaged over any 10 g of tissue)	4.00	4.00	4.00	20.0	20.0	20.0		

Notes:

- 1. Test data represent the worst case SAR value and test procedure used are according to OET Bulletin 65, Supplement C (01-01).
- 2. All modes of operation were investigated.

5 References

- [1] ANSI/IEEE C95.3 1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic fields, 300 kHz to 100 GHz, New York: IEEE, Aug. 1992
- [2] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, July 2001.
- [3] T. Schmid, O. Egger, N. Kuster, *Automated E-field scanning system for dosimetric assessments*, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [4] W. Gander, Computer mathematics, Birkhaeuser, Basel, 1992.
- [5] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, *Numerical Recipes in C*, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [6] IEEE Standards Coordinating Committee 34 IEEE Std. 1528-2003, December 2003 Recommended Practice for Determining the Peak Spatial-Average Absorption Rate (SAR in the Human Body Due to Wireless Communications Devices: Experimental Techniques.
- [7] DASY4 Dosimetric Assessment System Manual; Draft; September 6, 2002; Schmid & Partner Engineering AG

6 Annex

1.	Annex A	Calibration Certificate	D1900V2 SN5d025 D900V2 SN164 ET3DV6 SN1711 DAE3V1-522	9 pages 9 pages 11 pages 5 pages
2.	Annex B	Measurement Plots		57 pages
3.	Annex C	Pictures		12 pages

Δ	n	n	ex	Δ
м			CA	_

Calibration Certificate

Note:

The calibration cycle for SAR field probes and related equipment is determined to one year. According to Eurofins's internal quality management instruction based on EN 17025 the calibration cycle for other test equipment is determined to 2 years. Additionally, Eurofins has prolonged the calibration interval for SPEAG System Validation Dipoles by two additional years. These QM procedures are acknowledged by the accreditation bodies mentioned on page 3 of this report during several accreditation audits.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

ETS Dr. Genz

Certificate No: D909V2-764_JUIOS

CALLERATION CERTIFICATE

Object D900V2 - SN: 164

Calibration procedure(s) QA CAL-05.v6

Calibration procedure for dipole validation kits

Calibration date: July 28, 2006

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

i e	1		- · · · · - · · · ·
Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	04-Oct-05 (METAS, No. 251-00516)	Oct-06
Power sensor HP 8481A	US37292783	04-Oct-05 (METAS, No. 251-00516)	Oct-06
Reference 20 dB Attenuator	SN: 5086 (20g)	11-Aug-05 (METAS, No 251-00498)	Aug-06
Reference 10 dB Attenuator	SN: 5047.2 (10r)	11-Aug-05 (METAS, No 251-00498)	Aug-06
Reference Probe ET3DV6 (HF)	SN 1507	28-Oct-05 (SPEAG, No. ET3-1507_Oct05)	Oct-06
DAE4	SN 601	15-Dec-05 (SPEAG, No. DAE4-601_Dec05)	Dec-06
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (SPEAG, in house check Oct-05)	In house check: Oct-07
RF generator Agilent E4421B	MY41000675	11-May-05 (SPEAG, in house check Nov-05)	In house check: Nov-07
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (SPEAG, in house check Nov-05)	In house check: Nov-06
	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	1 W
Approved by:	Fin Bomholt	Technical Director	militally and the

Issued: August 3, 2006

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D900V2-164_Jul06

Page 1 of 9

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.97 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.9 ± 6 %	0.95 mho/m ± 6 %
Head TSL temperature during test	(23.2 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.75 mW / g
SAR normalized	normalized to 1W	11.0 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	10.9 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.76 mW / g
SAR normalized	normalized to 1W	7.04 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	6.96 mW /g ± 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.0	1.05 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.2 ± 6 %	1.06 mho/m ± 6 %
Body TSL temperature during test	(23.5 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	250 mW input power	2.71 mW / g
SAR normalized	normalized to 1W	10.8 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	10.7 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.76 mW / g
SAR normalized	normalized to 1W	7.04 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	6.96 mW /g ± 16.5 % (k=2)

Certificate No: D900V2-164_Jul06

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.1 Ω - 6.9 jΩ
Return Loss	- 23.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.9 Ω - 9.2 jΩ
Return Loss	- 19.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.407 ns
· · · · · · · · · · · · · · · · · · ·	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 16, 2002

Certificate No: D900V2-164_Jul06

DASY4 Validation Report for Head TSL

Date/Time: 28.07.2006 11:17:39

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:164

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz:

Medium parameters used: f = 900 MHz; $\sigma = 0.953 \text{ mho/m}$; $\varepsilon_r = 40.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1507 (HF); ConvF(5.8, 5.8, 5.8); Calibrated: 28.10.2005

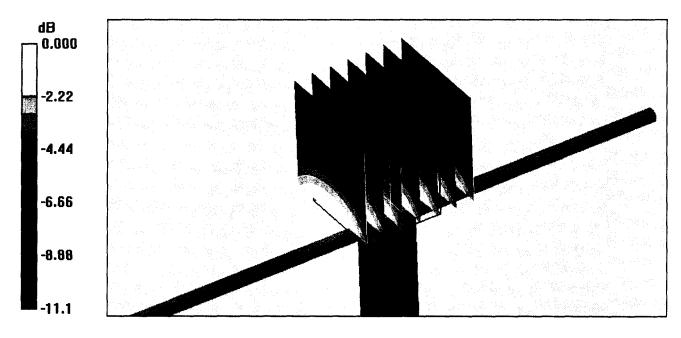
• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 15.12.2005

Phantom: Flat Phantom 4.9L; Type: QD000P49AA;;

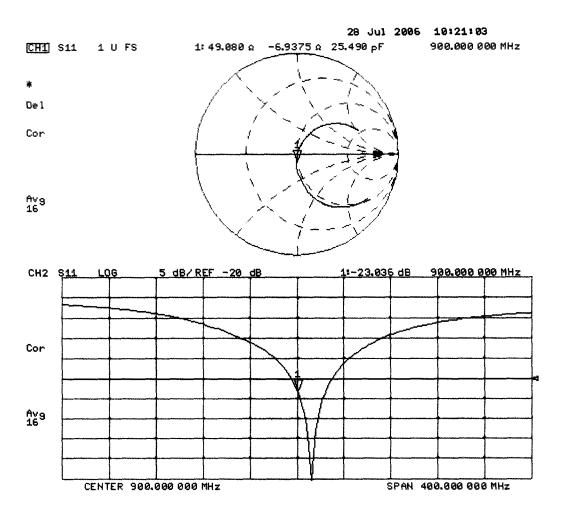
Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 57.7 V/m; Power Drift = 0.026 dB

Peak SAR (extrapolated) = 4.16 W/kg


SAR(1 g) = 2.75 mW/g; SAR(10 g) = 1.76 mW/g

Maximum value of SAR (measured) = 2.98 mW/g

0 dB = 2.98 mW/g

Impedance Measurement Plot for Head TSL

DASY4 Validation Report for Body TSL

Date/Time: 28.07.2006 13:09:12

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:164

Communication System: CW-900; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: MSL 900:

Medium parameters used: f = 900 MHz; $\sigma = 1.05 \text{ mho/m}$; $\epsilon_r = 53.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1507 (HF); ConvF(5.76, 5.76, 5.76); Calibrated: 28.10.2005

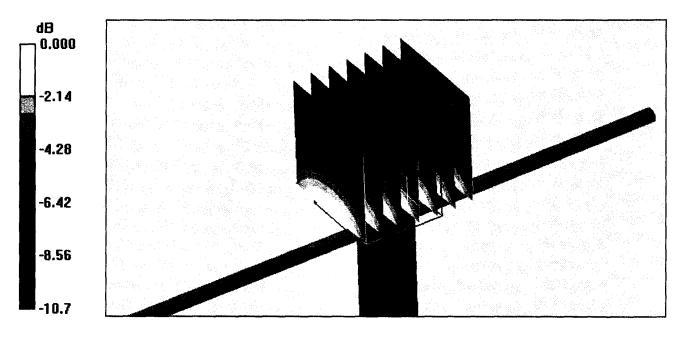
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 15.12.2005

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; ;

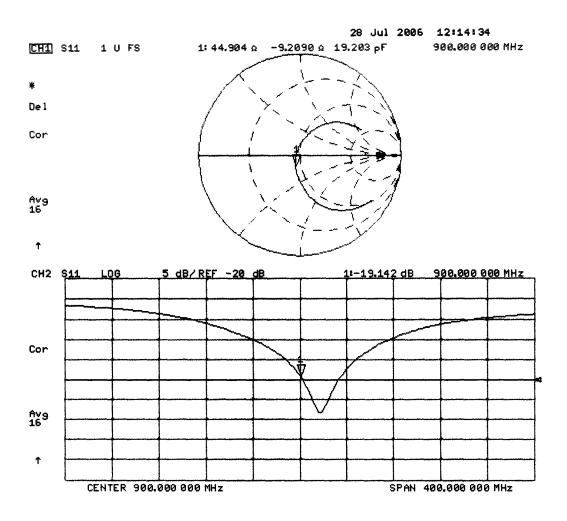
Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.2 V/m: Power Drift = -0.020 dB

Peak SAR (extrapolated) = 3.97 W/kg


SAR(1 g) = 2.71 mW/g; SAR(10 g) = 1.76 mW/g

Maximum value of SAR (measured) = 2.95 mW/g

0 dB = 2.95 mW/g

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

Caronical, New DYS06V2-56025_Sep06

Calibration procedure(s) Calibration procedure(s) Calibration procedure for dipole validation libs Calibration date: Calibration of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	lıp#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	04-Oct-05 (METAS, No. 251-00516)	Oct-06
Power sensor HP 8481A	US37292783	04-Oct-05 (METAS, No. 251-00516)	Oct-06
Reference 20 dB Attenuator	SN: 5086 (20g)	10-Aug-06 (METAS, No 217-00591)	Aug-07
Reference 10 dB Attenuator	SN: 5047.2 (10r)	10-Aug-06 (METAS, No 217-00591)	Aug-07
Reference Probe ET3DV6	SN: 1507	28-Oct-05 (SPEAG, No. ET3-1507_Oct05)	Oct-06
Reference Probe ES3DV3	SN: 3025	28-Oct-05 (SPEAG, No. ES3-3025_Oct05)	Oct-06
DAE4	SN: 601	15-Dec-Q5 (SPEAG, No. DAE4-601_Dec05)	Dec-06
	•	•	
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (SPEAG, in house check Oct-05)	In house check: Oct-07
RF generator Agilent E4421B	MY41000675	11-May-05 (SPEAG, in house check Nov-05)	In house check: Nov-07
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (SPEAG, in house check Nov-05)	In house check: Nov-06
	•		
	Name	Function	Signature
Calibrated by:	Marcel Fehr	Laboratory Technician	
			m-m
	A SACLEMENT OF THE CONTROL OF THE CO	The second section of the second seco	
Approved by:	Katja Pokovic	Technical Manager	m n
			опринунунунун компониция жилимин компониция и компониция и компониция и компониция и компониция и компониция и Статура

Issued: September 27, 2006

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.6 ± 6 %	1.41 mho/m ± 6 %
Head TSL temperature during test	(21.6 ± 0.2) °C	an 10-10-10	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	9.65 mW / g
SAR normalized	normalized to 1W	38.6 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	37.7 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.11 mW / g
SAR normalized	normalized to 1W	20.4 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	20.1 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-5d025_Sep06

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.7 ± 6 %	1.56 mho/m ± 6 %
Body TSL temperature during test	(22.4 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.2 mW / g
SAR normalized	normalized to 1W	40.8 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	39.9 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.40 mW / g
SAR normalized	normalized to 1W	21.6 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	21.3 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-5d025_Sep06

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.8 Ω + 4.5 jΩ
Return Loss	- 24.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.3 Ω + 3.9 jΩ
Return Loss	- 26.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.198 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 29, 2002

Certificate No: D1900V2-5d025_Sep06

DASY4 Validation Report for Head TSL

Date/Time: 26.09.2006 13:01:39

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d025

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB;

Medium parameters used: f = 1900 MHz; $\sigma = 1.41 \text{ mho/m}$; $\epsilon_r = 38.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

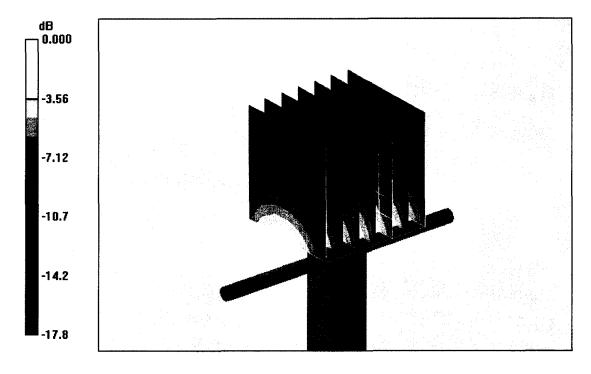
Probe: ET3DV6 - SN1507 (HF); ConvF(4.74, 4.74, 4.74); Calibrated: 28.10.2005

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 15.12.2005

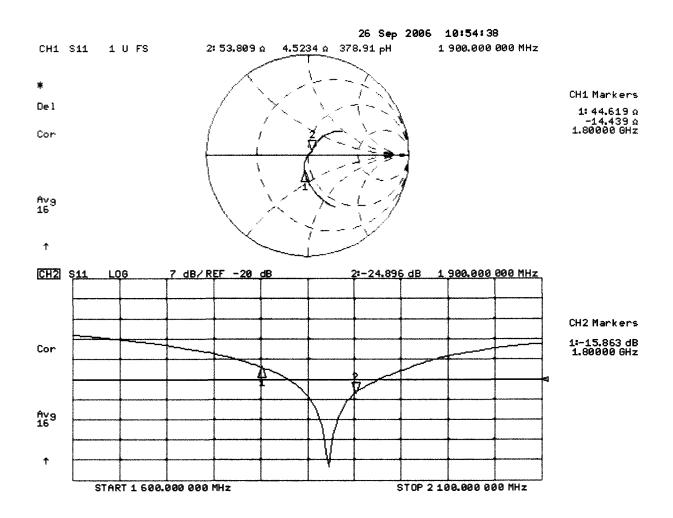
Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA;;

Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.1 V/m; Power Drift = 0.007 dB


Peak SAR (extrapolated) = 16.4 W/kg

SAR(1 g) = 9.65 mW/g; SAR(10 g) = 5.11 mW/g Maximum value of SAR (measured) = 10.8 mW/g

0 dB = 10.8 mW/g

Impedance Measurement Plot for Head TSL

DASY4 Validation Report for Body TSL

Date/Time: 20.09.2006 11:37:46

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d025

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U10;

Medium parameters used: f = 1900 MHz; $\sigma = 1.56 \text{ mho/m}$; $\varepsilon_r = 52.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

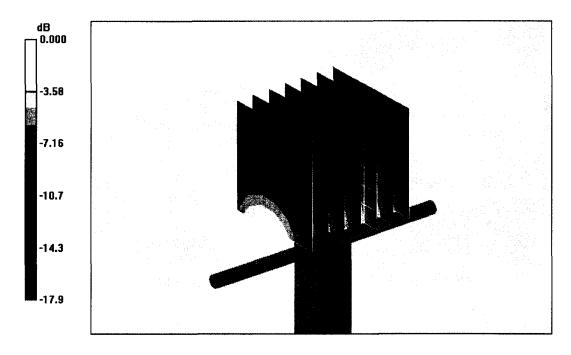
DASY4 Configuration:

Probe: ES3DV2 - SN3025 (HF); ConvF(4.38, 4.38, 4.38); Calibrated: 28.10.2005

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 15.12.2005

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; ;


Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 86.5 V/m; Power Drift = 0.034 dB


Peak SAR (extrapolated) = 16.8 W/kg

SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.4 mW/g Maximum value of SAR (measured) = 11.3 mW/g

0 dB = 11.3 mW/g

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

ETS Product Service

Centificate No: ETG-1711 Septit

OZEBRATION CERTICICAT Object OA CAL-01.v6 and QA-CAL-12.v5 Calibration procedure(s) Calibration procedure for desimetric E Calibration date: September 19, 2007 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration **Primary Standards** Cal Date (Calibrated by, Certificate No.) Power meter E4419B GB41293874 29-Mar-07 (METAS, No. 217-00670) Mar-08 MY41495277 29-Mar-07 (METAS, No. 217-00670) Mar-08 Power sensor E4412A MY41498087 Mar-08 Power sensor E4412A 29-Mar-07 (METAS, No. 217-00670) Aug-08 Reference 3 dB Attenuator SN: S5054 (3c) 8-Aug-07 (METAS, No. 217-00719) Mar-08 Reference 20 dB Attenuator SN: S5086 (20b) 29-Mar-07 (METAS, No. 217-00671) Aug-08 Reference 30 dB Attenuator SN: S5129 (30b) 8-Aug-07 (METAS, No. 217-00720) Jan-08 Reference Probe ES3DV2 SN: 3013 4-Jan-07 (SPEAG, No. ES3-3013 Jan07) Apr-08 DAE4 SN: 654 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) ID# Scheduled Check Secondary Standards Check Date (in house) US3642U01700 In house check: Nov-07 RF generator HP 8648C 4-Aug-99 (SPEAG, in house check Nov-05) Network Analyzer HP 8753E US37390585 18-Oct-01 (SPEAG, in house check Oct-06) In house check: Oct-07 Name Function Signature Calibrated by: Katja Pokovic Approved by: Niels Kuster

tory.

Issued: September 19, 2007

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,v,z sensitivity in free space

ConF sensitivity in TSL / NORMx,y,z
DCP diode compression point

Polarization φ

φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Page 2 of 9

Certificate No: ET3-1711_Sep07

Probe ET3DV6

SN:1711

Manufactured:

Last calibrated:

Recalibrated:

August 7, 2002

October 16, 2006

September 19, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6 SN:1711

Sensitivity in Free Space ^A			Diode C	compression ⁶	3
NormX	1.91 ± 10.1%	μ V/(V/m) ²	DCP X	92 mV	
NormY	1.87 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	94 mV	
NormZ	2.04 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	96 mV	

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 900 MHz Typical SAR gradient: 5 % per mm

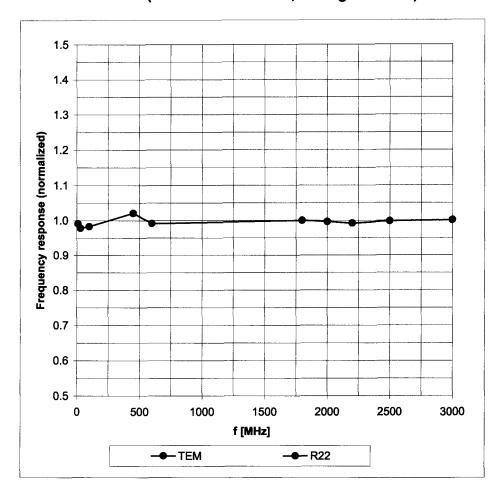
Sensor Center to	o Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	7.0	3.8
SAR _{be} [%]	With Correction Algorithm	0.3	0.5

TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Center to	3.7 mm	4.7 mm	
SAR _{be} [%]	Without Correction Algorithm	12.3	8.4
SAR _{be} [%]	With Correction Algorithm	0.1	0.4

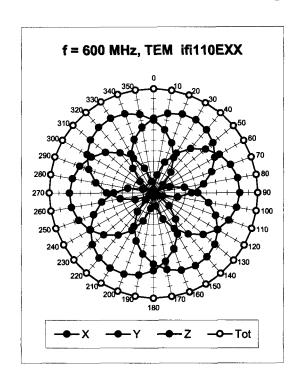
Sensor Offset

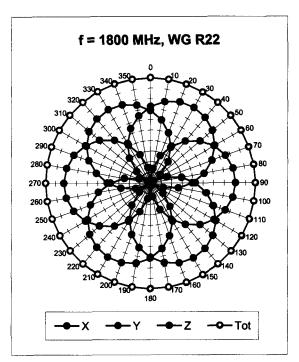
Probe Tip to Sensor Center 2.7 mm

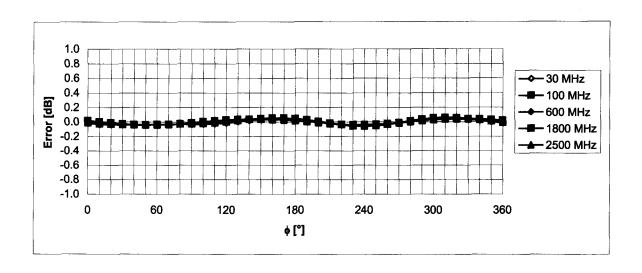

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

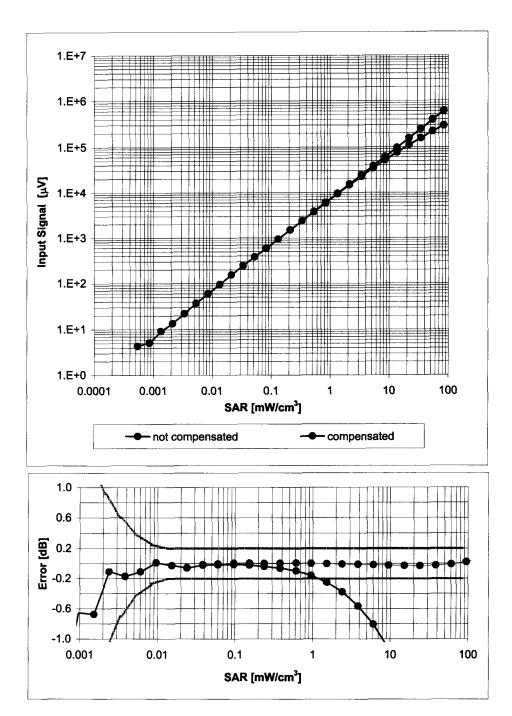

Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide: R22)

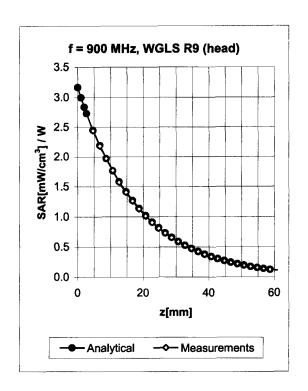


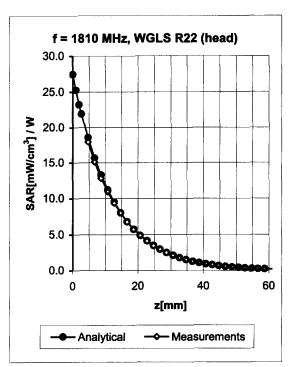
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



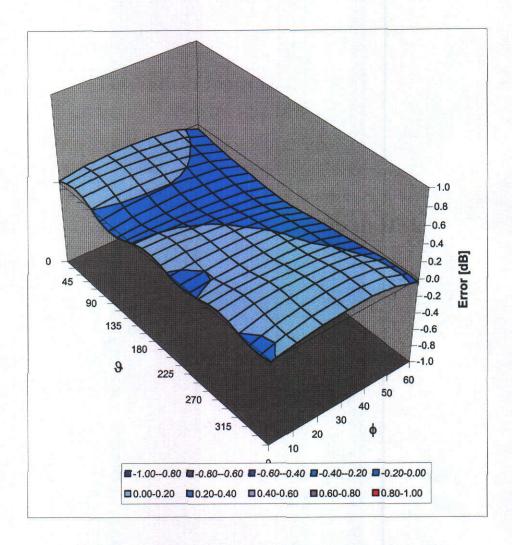
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
450	± 50 / ± 100	Head	43.5 ± 5%	0.87 ± 5%	0.36	1.91	7.14 ± 13.3% (k=2)
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.22	4.02	6.58 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.49	2.55	5.22 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.52	2.64	4.91 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.57	2.53	4.51 ± 11.8% (k=2)
450	± 50 / ± 100	Body	56.7 ± 5%	0.94 ± 5%	0.29	1.93	7.68 ± 13.3% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.37	2.87	6.04 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.66	2.57	4.71 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.84	2.16	4.42 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.63	2.29	3.98 ± 11.8% (k=2)

 $^{^{\}rm c}$ The validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ, ϑ) , f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ET3DV6
Serial Number:	1711
Place of Assessment:	Zurich
Date of Assessment:	September 21, 2007
Probe Calibration Date:	September 19, 2007

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1810 MHz.

Assessed by:

ET3DV6-SN:1711

Page 1 of 2

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ET3DV6 SN:1711

Conversion factor (± standard deviation)

COII/CIDIOII IUCC	- Junium u	O 1 12011)	
150 MHz	ConvF	8.9 ± 10%	$\epsilon_r = 52.3$ $\sigma = 0.76 \text{ mho/m}$ (head tissue)
250 MHz	ConvF	8.1 ± 10%	$\epsilon_r = 47.6$ $\sigma = 0.83 \text{ mho/m}$ (head tissue)
300 MHz	ConvF	8.0 ± 9 %	$\epsilon_r = 45.3$ $\sigma = 0.87 \text{ mho/m}$ (head tissue)
750 MHz	ConvF	6.9 ± 7%	$\epsilon_r = 41.9$ $\sigma = 0.89 \text{ mho/m}$ (head tissue)
150 MHz	ConvF	8.5 ± 10%	$\epsilon_r = 61.9$ $\sigma = 0.80 \text{ mho/m}$ (body tissue)
250 MHz	ConvF	8.2 ± 10%	$\epsilon_r = 59.4$ $\sigma = 0.88 \text{ mho/m}$ (body tissue)
300 MHz	ConvF	8.0 ± 9%	$\epsilon_r = 58.2$ $\sigma = 0.92 \text{ mho/m}$ (body tissue)
750 MHz	ConvF	7.0 ± 7%	$\epsilon_r = 55.5$ $\sigma = 0.96 \text{ mho/m}$ (body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also Section 4.7 of the DASY4 Manual.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

EIS

Carollicate No.: DAES4522, Sep07

ď,	000	EXI.	QUE:	disas.	90		1840	GE 14	300	100	NAME		100	913	1	200	1	Section 2	10	100	320	SEC.	Sept.	17.00	198		100	200	hite	zacary
ijΥ	diam	Ψ.	34	132	Bà.	500	8 :	an i	g , '	STATE OF	25	3	200	15	Ψ.	3.0	dia	\$ 1480	1	ee j	34	inte	88	and.	1	Sa &	9 ,	TOTAL	36	- 67-2 - 67-25
Ł		7 4		75 %		200	톃	. 6	* **	100		3.	1.12	2 1	٠.	39.5		242	α,	a 4		345	8	nedS.	2.1	W 1	ĸ.	1	535	100
92	-	930	S. 1		1.0		20.5	66 Y	4400	100	2.70	46.	_	-61	er.	24.6		e.	3.3	100	25.	300	22	32.75	10.1	- 2	200	6.34	$(0)_{i \leftarrow i}$	A

Object

DAE3 - SD 000 D03 AA - SN: 522

Calibration procedure(s)

QA CAL-06.V12

Calibration procedure for the data acquisition electronics (DAE)

Calibration date:

September 18, 2007

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Fluke Process Calibrator Type 702	SN: 6295803	13-Oct-06 (Elcal AG, No: 5492)	Oct-07
Keithley Multimeter Type 2001	SN: 0810278	03-Oct-06 (Elcal AG, No: 5478)	Oct-07
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Calibrator Box V1.1	SE UMS 006 AB 1004	25-Jun-07 (SPEAG, in house check)	In house check Jun-08

Calibrated by:

Name

Function

Signatur

Dominique Steffen

Technician

to selle

Approved by:

Fin Bomholt

R&O Directo

Issued: September 18, 2007

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE3-522_Sep07

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters contain technical information as a result from the performance test and require no uncertainty.
- DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
- Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
- Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
- AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
- Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
- Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
- Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
- Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
- Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range:

1LSB =

6.1μV ,

full range = -100...+300 mV

Low Range:

1LSB =

61nV,

full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	x	Υ	Z
High Range	404.305 ± 0.1% (k=2)	403.974 ± 0.1% (k=2)	404.799 ± 0.1% (k=2)
Low Range	3.96579 ± 0.7% (k=2)	3.94746 ± 0.7% (k=2)	3.95284 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	59°±1°

Page 3 of 5

Certificate No: DAE3-522_Sep07

Appendix

1. DC Voltage Linearity

High Range		Input (μV)	Reading (μV)	Error (%)
Channel X	+ Input	200000	200000.5	0.00
Channel X	+ Input	20000	20005.77	0.03
Channel X	- Input	20000	-20000.12	0.00
Channel Y	+ Input	200000	199999.4	0.00
Channel Y	+ Input	20000	20005.73	0.03
Channel Y	- Input	20000	-19999.40	0.00
Channel Z	+ Input	200000	200000.6	0.00
Channel Z	+ Input	20000	20002.42	0.01
Channel Z	- input	20000	-20000.69	0.00

Low Range	Input (μV)	Reading (μV)	Error (%)
Channel X + Input	2000	2000	0.00
Channel X + Input	200	199.83	-0.08
Channel X - Input	200	-199.71	-0.14
Channel Y + Input	2000	2000.1	0.00
Channel Y + Input	200	200.40	0.20
Channel Y - Input	200	-200.24	0.12
Channel Z + Input	2000	2000	0.00
Channel Z + Input	200	199.07	-0.47
Channel Z - Input	200	-200.56	0.28

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-4.74	-4.30
	- 200	6.13	6.55
Channel Y	200	-0.73	-0.52
	- 200	-0.29	-0.31
Channel Z	200	15.64	16.61
	- 200	-18.31	-17.69

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	2.15	0.66
Channel Y	200	1.77	-	3.74
Channel Z	200	-1.80	-0.02	•

Certificate No: DAE3-522_Sep07 Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15732	16392
Channel Y	15742	15211
Channel Z	16043	16788

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	0.87	-1.51	3.42	0.62
Channel Y	-1.51	-2.92	-0.03	0.55
Channel Z	-0.45	-2.22	0.94	0.51

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2000	198.7
Channel Y	0.2001	199.8
Channel Z	0.2000	196.8

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE3-522_Sep07 Page 5 of 5

Annex B

Measurement Plots

Date/Time: 7/18/2008 13:15:03

Test Laboratory: Eurofins Product Service GmbH

Dipol Valid.900 (h)_250mW_18.07.08

DUT: Dipole 900 MHz; Type: D900V2; Serial: 164

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: Head 900 MHz Medium parameters used: f = 900 MHz; $\sigma = 0.944$ mho/m; $\epsilon_r = 40.5$; $\rho =$

 1000 kg/m^3

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(6.58, 6.58, 6.58); Calibrated: 9/19/2007

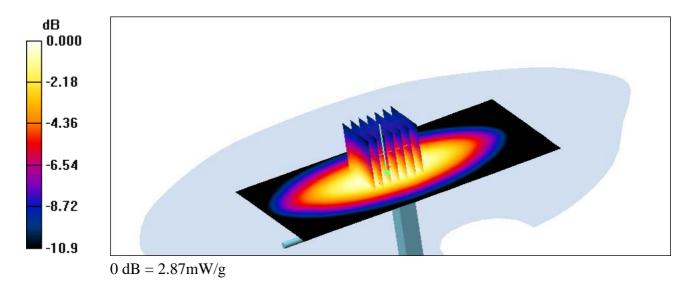
• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Dipol 900 (250mW)/Area Scan (81x161x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.84 mW/g


Dipol 900 (250mW)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.5 V/m; Power Drift = -0.026 dB

Peak SAR (extrapolated) = 3.92 W/kg

SAR(1 g) = 2.66 mW/g; SAR(10 g) = 1.71 mW/g

Maximum value of SAR (measured) = 2.87 mW/g

Date/Time: 7/19/2008 08:54:37

Test Laboratory: Eurofins Product Service GmbH

Dipol Valid.900 (h)_250mW_19.07.08

DUT: Dipole 900 MHz; Type: D900V2; Serial: 164

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: Head 900 MHz Medium parameters used: f = 900 MHz; $\sigma = 0.944$ mho/m; $\epsilon_r = 40.5$; $\rho =$

 1000 kg/m^3

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(6.58, 6.58, 6.58); Calibrated: 9/19/2007

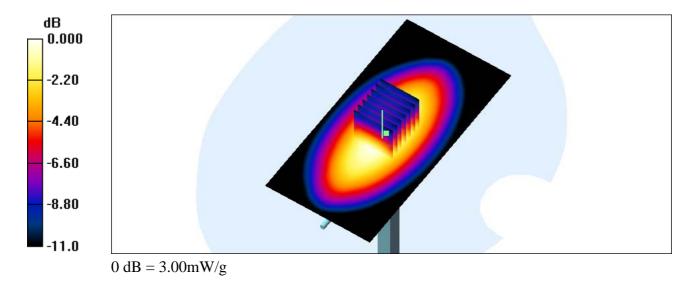
• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Dipol 900 (250mW)/Area Scan (81x161x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.93 mW/g


Dipol 900 (250mW)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.3 V/m; Power Drift = -0.031 dB

Peak SAR (extrapolated) = 4.18 W/kg

SAR(1 g) = 2.76 mW/g; SAR(10 g) = 1.77 mW/g

Maximum value of SAR (measured) = 3.00 mW/g

Date/Time: 7/23/2008 07:16:57

Test Laboratory: Eurofins Product Service GmbH

Dipol Valid.900 (h)_250mW_23.07.08

DUT: Dipole 900 MHz; Type: D900V2; Serial: 164

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: Head 900 MHz Medium parameters used: f = 900 MHz; $\sigma = 0.944$ mho/m; $\epsilon_r = 40.5$; $\rho =$

 1000 kg/m^3

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(6.58, 6.58, 6.58); Calibrated: 9/19/2007

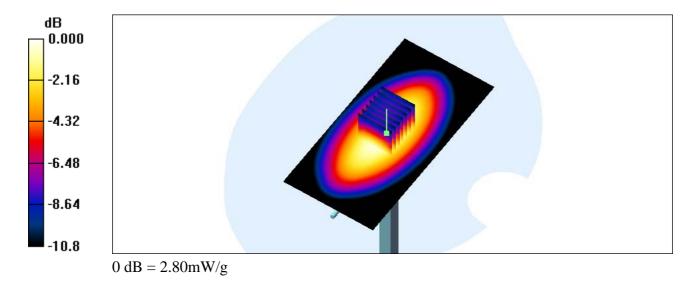
• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Dipol 900 (250mW)/Area Scan (81x161x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.84 mW/g


Dipol 900 (250mW)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.013 dB

Peak SAR (extrapolated) = 3.73 W/kg

SAR(1 g) = 2.58 mW/g; SAR(10 g) = 1.67 mW/g

Maximum value of SAR (measured) = 2.80 mW/g

Date/Time: 7/18/2008 07:31:55

Test Laboratory: Eurofins Product Service GmbH

Dipol Valid.900 (m)_250mW_18.07.08

DUT: Dipole 900 MHz; Type: D900V2; Serial: 164

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: Muscle 900 MHz Medium parameters used: f = 900 MHz; $\sigma = 1.01$ mho/m; $\varepsilon_r = 54.1$; $\rho =$

 1000 kg/m^3

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(6.04, 6.04, 6.04); Calibrated: 9/19/2007

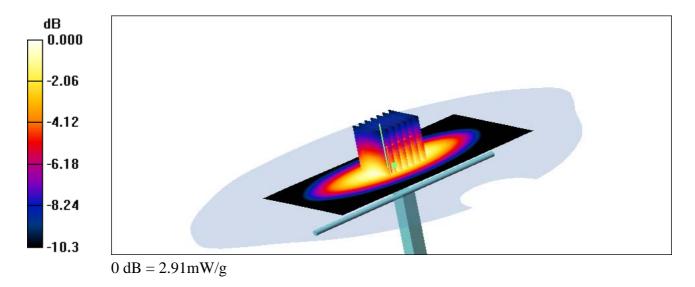
• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Dipol 900 (250mW)/Area Scan (81x161x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.91 mW/g


Dipol 900 (250mW)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.3 V/m; Power Drift = 0.001 dB

Peak SAR (extrapolated) = 3.74 W/kg

SAR(1 g) = 2.68 mW/g; SAR(10 g) = 1.77 mW/g

Maximum value of SAR (measured) = 2.91 mW/g

Date/Time: 7/21/2008 07:59:03

Test Laboratory: Eurofins Product Service GmbH

Dipol Valid.900 (m)_250mW_21.07.08

DUT: Dipole 900 MHz; Type: D900V2; Serial: 164

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: Muscle 900 MHz Medium parameters used: f = 900 MHz; $\sigma = 1.01$ mho/m; $\varepsilon_r = 54.1$; $\rho =$

 1000 kg/m^3

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(6.04, 6.04, 6.04); Calibrated: 9/19/2007

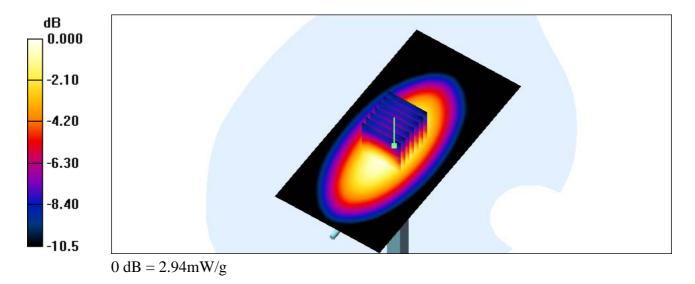
• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Dipol 900 (250mW)/Area Scan (81x161x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.96 mW/g


Dipol 900 (250mW)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.7 V/m; Power Drift = -0.050 dB

Peak SAR (extrapolated) = 3.82 W/kg

SAR(1 g) = 2.69 mW/g; SAR(10 g) = 1.77 mW/g

Maximum value of SAR (measured) = 2.94 mW/g

Date/Time: 7/22/2008 07:12:18

Test Laboratory: Eurofins Product Service GmbH

Dipol Valid.900 (m)_250mW_22.07.08

DUT: Dipole 900 MHz; Type: D900V2; Serial: 164

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: Muscle 900 MHz Medium parameters used: f = 900 MHz; $\sigma = 1.01$ mho/m; $\varepsilon_r = 54.1$; $\rho =$

 1000 kg/m^3

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(6.04, 6.04, 6.04); Calibrated: 9/19/2007

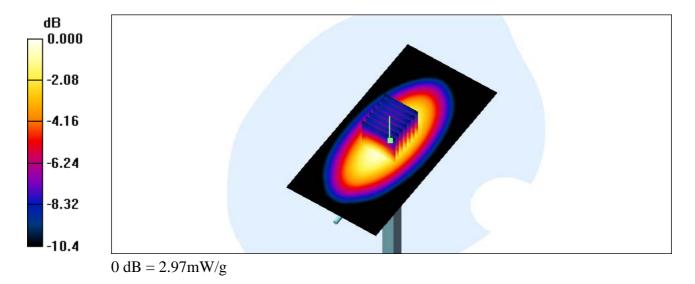
• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Dipol 900 (250mW)/Area Scan (81x161x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.97 mW/g


Dipol 900 (250mW)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.4 V/m; Power Drift = -0.010 dB

Peak SAR (extrapolated) = 3.85 W/kg

SAR(1 g) = 2.7 mW/g; SAR(10 g) = 1.77 mW/g

Maximum value of SAR (measured) = 2.97 mW/g

Date/Time: 7/16/2008 09:50:49

Test Laboratory: ETS PRODUCT SERVICE AG

Dipol Valid.1900(h)_250mW_16.07.08

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d025

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: Head 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.42$ mho/m; $\varepsilon_r = 39.9$; $\rho =$

 1000 kg/m^3

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(5.22, 5.22, 5.22); Calibrated: 9/19/2007

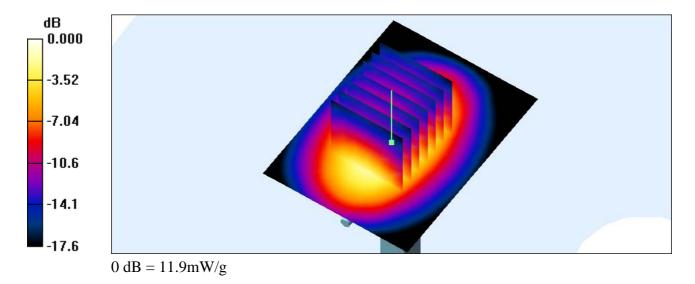
• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Dipol 1900 (250mW)/Area Scan (61x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 11.9 mW/g


Dipol 1900 (250mW)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.9 V/m; Power Drift = -0.038 dB

Peak SAR (extrapolated) = 18.7 W/kg

SAR(1 g) = 10.5 mW/g; SAR(10 g) = 5.46 mW/g

Maximum value of SAR (measured) = 11.9 mW/g

Date/Time: 7/17/2008 09:25:46

Test Laboratory: ETS PRODUCT SERVICE AG

Dipol Valid.1900(h)_250mW_17.07.08

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d025

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: Head 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.42$ mho/m; $\varepsilon_r = 39.9$; $\rho =$

 1000 kg/m^3

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(5.22, 5.22, 5.22); Calibrated: 9/19/2007

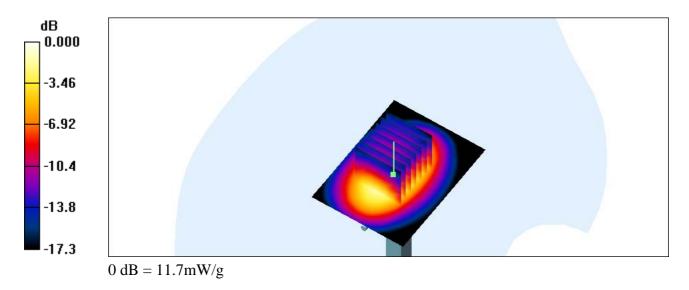
• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Dipol 1900 (250mW)/Area Scan (61x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 11.8 mW/g


Dipol 1900 (250mW)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.0 V/m; Power Drift = -0.013 dB

Peak SAR (extrapolated) = 18.1 W/kg

SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.39 mW/g

Maximum value of SAR (measured) = 11.7 mW/g

Date/Time: 7/22/2008 09:24:21

Test Laboratory: Eurofins Product Service GmbH

Dipol Valid.1900(h)_250mW_22.07.08

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d025

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: Head 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.42$ mho/m; $\varepsilon_r = 39.9$; $\rho =$

 1000 kg/m^3

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(5.22, 5.22, 5.22); Calibrated: 9/19/2007

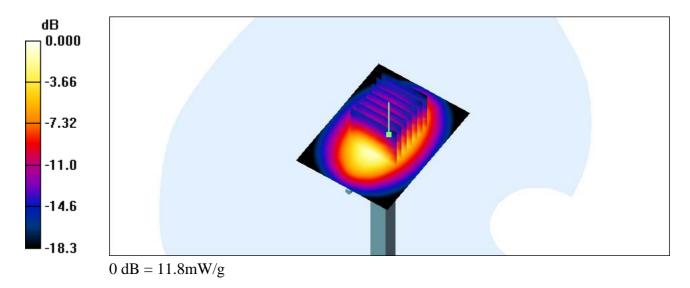
• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Dipol 1900 (250mW)/Area Scan (61x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 12.0 mW/g


Dipol 1900 (250mW)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.1 V/m; Power Drift = -0.001 dB

Peak SAR (extrapolated) = 18.6 W/kg

SAR(1 g) = 10.5 mW/g; SAR(10 g) = 5.44 mW/g

Maximum value of SAR (measured) = 11.8 mW/g

Date/Time: 7/17/2008 10:59:38

Test Laboratory: ETS PRODUCT SERVICE AG

Dipol Valid.1900(m)_250mW_17.07.08

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d025

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: Muscle 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.58$ mho/m; $\epsilon_r = 51.9$; ρ

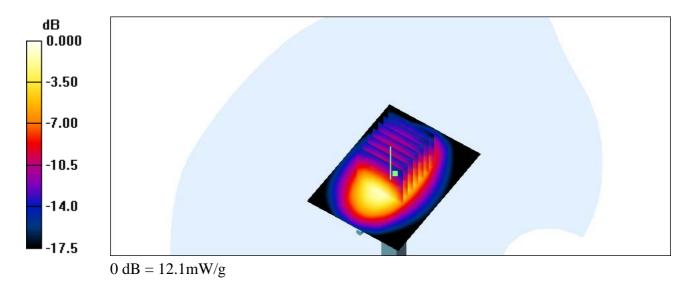
 $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(4.71, 4.71, 4.71); Calibrated: 9/19/2007
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/18/2007
- Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Dipol 1900 (250mW)/Area Scan (61x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 12.3 mW/g


Dipol 1900 (250mW)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.5 V/m; Power Drift = -0.036 dB

Peak SAR (extrapolated) = 17.9 W/kg

SAR(1 g) = 10.7 mW/g; SAR(10 g) = 5.65 mW/g

Maximum value of SAR (measured) = 12.1 mW/g

Date/Time: 7/23/2008 13:29:51

Test Laboratory: Eurofins Product Service GmbH

Dipol Valid.1900(m)_250mW_23.07.08

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d025

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: Muscle 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.58$ mho/m; $\epsilon_r = 51.9$; ρ

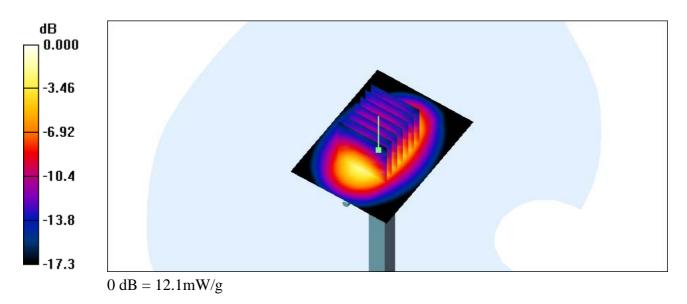
 $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(4.71, 4.71, 4.71); Calibrated: 9/19/2007
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/18/2007
- Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Dipol 1900 (250mW)/Area Scan (61x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 12.2 mW/g


Dipol 1900 (250mW)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.4 V/m; Power Drift = -0.012 dB

Peak SAR (extrapolated) = 18.0 W/kg

SAR(1 g) = 10.6 mW/g; SAR(10 g) = 5.59 mW/g

Maximum value of SAR (measured) = 12.1 mW/g

Date/Time: 7/24/2008 07:09:23

Test Laboratory: Eurofins Product Service GmbH

Dipol Valid.1900(m)_250mW_24.07.08

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d025

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: Muscle 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.58$ mho/m; $\epsilon_r = 51.9$; ρ

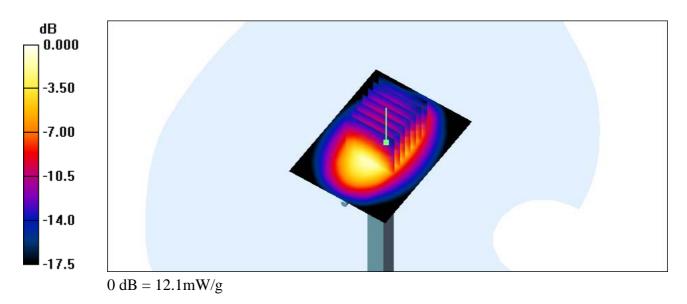
 $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(4.71, 4.71, 4.71); Calibrated: 9/19/2007
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/18/2007
- Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Dipol 1900 (250mW)/Area Scan (61x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 12.5 mW/g


Dipol 1900 (250mW)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.5 V/m; Power Drift = 0.005 dB

Peak SAR (extrapolated) = 17.9 W/kg

SAR(1 g) = 10.8 mW/g; SAR(10 g) = 5.72 mW/g

Maximum value of SAR (measured) = 12.1 mW/g

Date/Time: 7/19/2008 11:26:45

Test Laboratory: Eurofins Product Service GmbH

GSM_850_ch128_right_cheek

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: GSM 850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: Head 900 MHz Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.874$ mho/m;

 $\varepsilon_{\rm r} = 41.3; \, \rho = 1000 \, {\rm kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(6.58, 6.58, 6.58); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

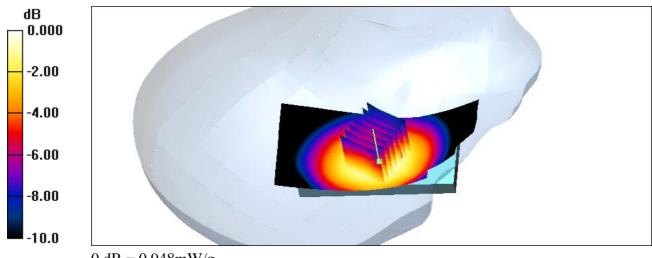
• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (61x131x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.931 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.7 V/m; Power Drift = -0.029 dB

Peak SAR (extrapolated) = 1.15 W/kg

SAR(1 g) = 0.882 mW/g; SAR(10 g) = 0.625 mW/g

Maximum value of SAR (measured) = 0.948 mW/g

0 dB = 0.948 mW/g

Date/Time: 7/18/2008 14:05:26

Test Laboratory: Eurofins Product Service GmbH

GSM_850_ch189_right_cheek

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: GSM 850; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: Head 900 MHz Medium parameters used: f = 836.512 MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 41.1$; ρ

 $= 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(6.58, 6.58, 6.58); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

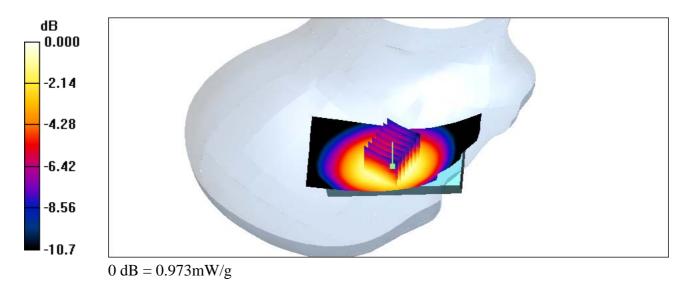
• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (61x131x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.991 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.8 V/m; Power Drift = -0.049 dB

Peak SAR (extrapolated) = 1.16 W/kg

SAR(1 g) = 0.919 mW/g; SAR(10 g) = 0.658 mW/g

Maximum value of SAR (measured) = 0.973 mW/g

Date/Time: 7/18/2008 14:44:34

Test Laboratory: Eurofins Product Service GmbH

GSM_850_ch189_right_tilted

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: GSM 850; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: Head 900 MHz Medium parameters used: f = 836.512 MHz; $\sigma = 0.89$ mho/m; $\varepsilon_r = 41.1$; ρ

 $= 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(6.58, 6.58, 6.58); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

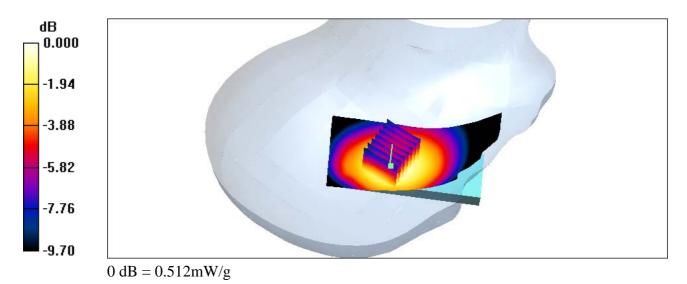
• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (61x131x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.503 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.5 V/m; Power Drift = 0.003 dB

Peak SAR (extrapolated) = 0.606 W/kg

SAR(1 g) = 0.477 mW/g; SAR(10 g) = 0.343 mW/g

Maximum value of SAR (measured) = 0.512 mW/g

Date/Time: 7/19/2008 12:01:20

Test Laboratory: Eurofins Product Service GmbH

GSM_850_ch251_right_cheek

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: GSM 850; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: Head 900 MHz Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.904$ mho/m;

 $\varepsilon_{\rm r} = 40.9; \, \rho = 1000 \, {\rm kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(6.58, 6.58, 6.58); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

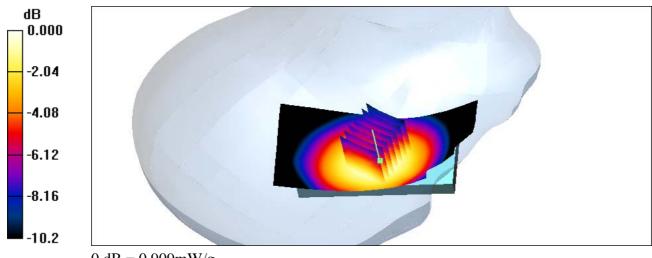
• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (61x131x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.901 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.4 V/m; Power Drift = -0.005 dB

Peak SAR (extrapolated) = 1.12 W/kg

SAR(1 g) = 0.853 mW/g; SAR(10 g) = 0.607 mW/g

Maximum value of SAR (measured) = 0.909 mW/g

0 dB = 0.909 mW/g

Date/Time: 7/19/2008 10:40:16

Test Laboratory: Eurofins Product Service GmbH

GSM_850_ch189_left_cheek

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: GSM 850; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: Head 900 MHz Medium parameters used: f=836.512 MHz; $\sigma=0.89$ mho/m; $\epsilon_r=41.1$; ρ

 $= 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(6.58, 6.58, 6.58); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

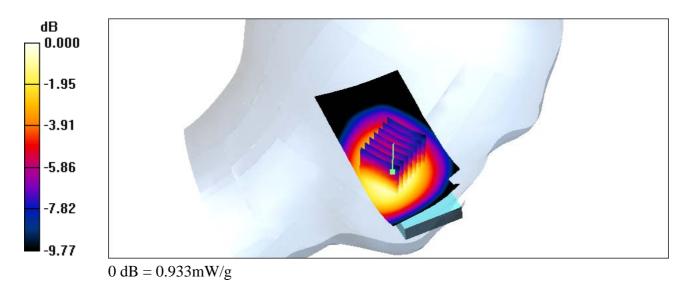
• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.936 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.88 V/m; Power Drift = -0.027 dB

Peak SAR (extrapolated) = 1.11 W/kg

SAR(1 g) = 0.878 mW/g; SAR(10 g) = 0.627 mW/g

Maximum value of SAR (measured) = 0.933 mW/g

Date/Time: 7/19/2008 10:02:01

Test Laboratory: Eurofins Product Service GmbH

GSM_850_ch189_left_tilted

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: GSM 850; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: Head 900 MHz Medium parameters used: f=836.512 MHz; $\sigma=0.89$ mho/m; $\epsilon_r=41.1$; ρ

 $= 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(6.58, 6.58, 6.58); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

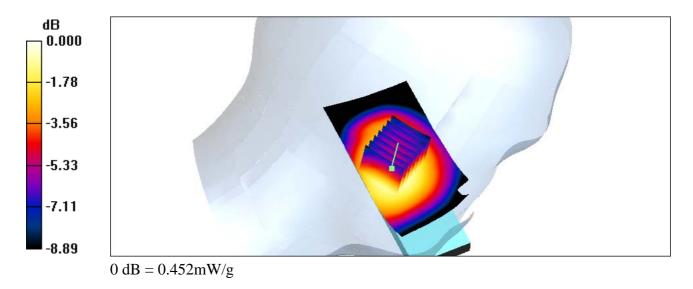
• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.451 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.4 V/m; Power Drift = -0.008 dB

Peak SAR (extrapolated) = 0.544 W/kg

SAR(1 g) = 0.422 mW/g; SAR(10 g) = 0.306 mW/g

Maximum value of SAR (measured) = 0.452 mW/g

Date/Time: 7/18/2008 10:05:19

Test Laboratory: Eurofins Product Service GmbH

GSM_850_flat_ch128_back_10mm

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: GSM 850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: Muscle 900 MHz Medium parameters used: f = 824.2 MHz; $\sigma = 0.927$ mho/m; $\epsilon_r = 54.9$; ρ

 $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(6.04, 6.04, 6.04); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

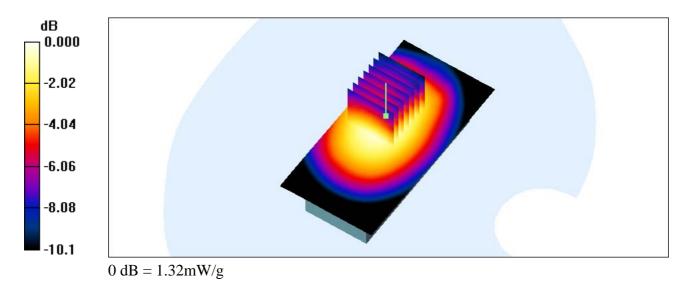
• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.33 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 36.8 V/m; Power Drift = 0.016 dB

Peak SAR (extrapolated) = 1.59 W/kg

SAR(1 g) = 1.24 mW/g; SAR(10 g) = 0.892 mW/g

Maximum value of SAR (measured) = 1.32 mW/g

Date/Time: 7/18/2008 09:32:35

Test Laboratory: Eurofins Product Service GmbH

GSM_850_flat_ch189_back_10mm

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: GSM 850; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: Muscle 900 MHz Medium parameters used: f = 836.4 MHz; $\sigma = 0.936$ mho/m; $\epsilon_r = 54.8$; ρ

 $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(6.04, 6.04, 6.04); Calibrated: 9/19/2007

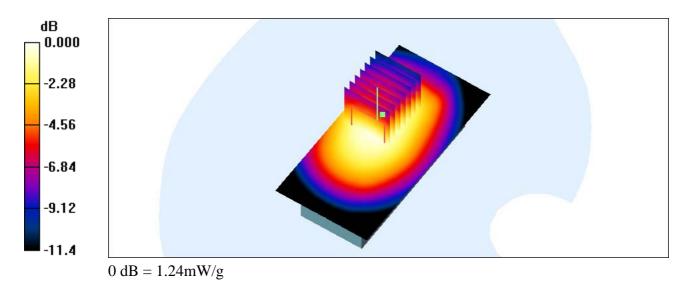
• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.24 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 35.9 V/m; Power Drift = 0.056 dB

Peak SAR (extrapolated) = 1.50 W/kg

SAR(1 g) = 1.17 mW/g; SAR(10 g) = 0.838 mW/g

Maximum value of SAR (measured) = 1.24 mW/g

Date/Time: 7/18/2008 08:26:57

Test Laboratory: Eurofins Product Service GmbH

GSM_850_flat_ch189_front_10mm

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: GSM 850; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: Muscle 900 MHz Medium parameters used: f = 836.4 MHz; $\sigma = 0.936$ mho/m; $\epsilon_r = 54.8$; ρ

 $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(6.04, 6.04, 6.04); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

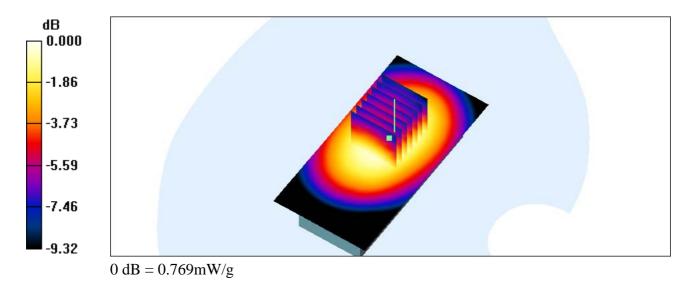
• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.781 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 29.4 V/m; Power Drift = -0.048 dB

Peak SAR (extrapolated) = 0.891 W/kg

SAR(1 g) = 0.727 mW/g; SAR(10 g) = 0.531 mW/g

Maximum value of SAR (measured) = 0.769 mW/g

Date/Time: 7/18/2008 11:14:48

Test Laboratory: Eurofins Product Service GmbH

GSM_850_flat_ch251_back_10mm

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: GSM 850; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: Muscle 900 MHz Medium parameters used: f = 848.8 MHz; $\sigma = 0.944$ mho/m; $\epsilon_r = 54.7$; ρ

 $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(6.04, 6.04, 6.04); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

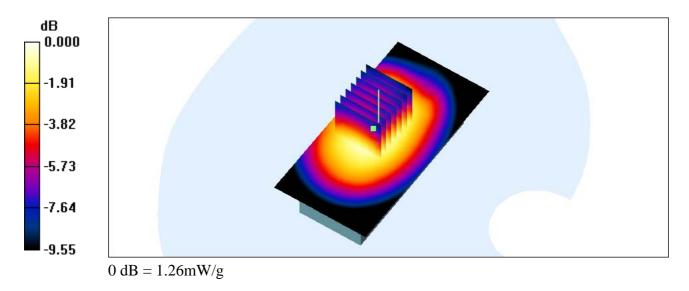
• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.26 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 36.9 V/m; Power Drift = -0.042 dB

Peak SAR (extrapolated) = 1.52 W/kg

SAR(1 g) = 1.18 mW/g; SAR(10 g) = 0.841 mW/g

Maximum value of SAR (measured) = 1.26 mW/g

Date/Time: 7/17/2008 07:19:06

Test Laboratory: ETS PRODUCT SERVICE AG

PCS_1900_ch512_right_cheek

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: GSM 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium: Head 1900 MHz Medium parameters used: f = 1850.2 MHz; $\sigma = 1.37$ mho/m; $\epsilon_r = 39.9$; ρ

 $= 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(5.22, 5.22, 5.22); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

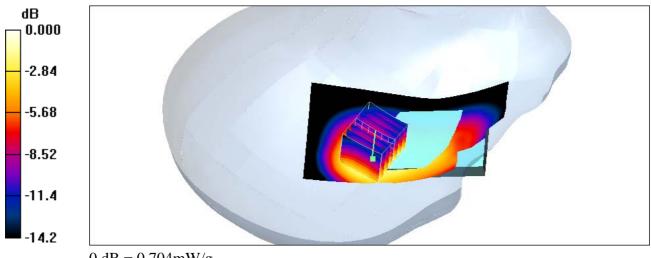
• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (71x131x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.718 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.89 V/m; Power Drift = 0.044 dB

Peak SAR (extrapolated) = 0.870 W/kg

SAR(1 g) = 0.649 mW/g; SAR(10 g) = 0.419 mW/g

Maximum value of SAR (measured) = 0.704 mW/g

0 dB = 0.704 mW/g

Date/Time: 7/16/2008 14:52:58

Test Laboratory: ETS PRODUCT SERVICE AG

PCS_1900_ch661_right_cheek

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.4$ mho/m; $\epsilon_r = 39.9$; $\rho = 1.4$ mho/m; $\epsilon_r = 39.9$; $\epsilon_$

 1000 kg/m^3

Phantom section: Right Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(5.22, 5.22, 5.22); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

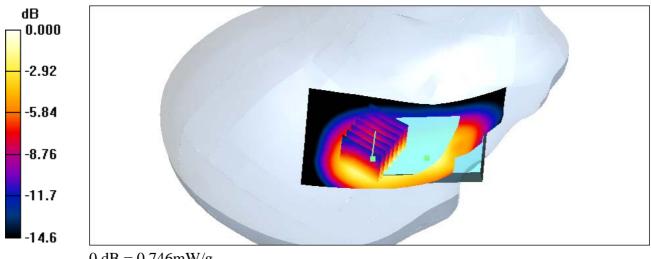
• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (71x131x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.743 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.00 V/m; Power Drift = -0.006 dB

Peak SAR (extrapolated) = 0.925 W/kg

SAR(1 g) = 0.687 mW/g; SAR(10 g) = 0.438 mW/g

Maximum value of SAR (measured) = 0.746 mW/g

0 dB = 0.746 mW/g

Date/Time: 7/16/2008 14:14:35

Test Laboratory: ETS PRODUCT SERVICE AG

PCS_1900_ch661_right_tilted

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.4$ mho/m; $\epsilon_r = 39.9$; $\rho = 1.4$ mho/m; $\epsilon_r = 39.9$; $\epsilon_$

 1000 kg/m^3

Phantom section: Right Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(5.22, 5.22, 5.22); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

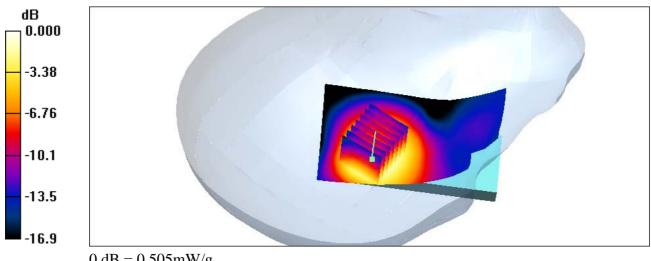
• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (71x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.531 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.53 V/m; Power Drift = -0.037 dB

Peak SAR (extrapolated) = 0.690 W/kg

SAR(1 g) = 0.469 mW/g; SAR(10 g) = 0.288 mW/g

Maximum value of SAR (measured) = 0.505 mW/g

0 dB = 0.505 mW/g

Date/Time: 7/17/2008 07:56:17

Test Laboratory: ETS PRODUCT SERVICE AG

PCS_1900_ch810_right_cheek

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: GSM 1900; Frequency: 1989.8 MHz; Duty Cycle: 1:8.3

Medium: Head 1900 MHz Medium parameters used: f = 1989.8 MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 39.8$; ρ

 $= 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(5.22, 5.22, 5.22); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

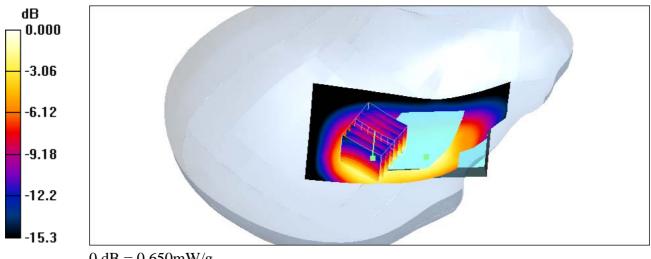
• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (71x131x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.658 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.76 V/m; Power Drift = -0.008 dB

Peak SAR (extrapolated) = 0.827 W/kg

SAR(1 g) = 0.591 mW/g; SAR(10 g) = 0.381 mW/g

Maximum value of SAR (measured) = 0.650 mW/g

0 dB = 0.650 mW/g

Date/Time: 7/16/2008 10:47:29

Test Laboratory: ETS PRODUCT SERVICE AG

1900_ch661_left_cheek

DUT: C630; Type: UMTS-GSM phone; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.4$ mho/m; $\epsilon_r = 39.9$; $\rho = 1.4$ mho/m; $\epsilon_r = 39.9$; $\epsilon_$

 1000 kg/m^3

Phantom section: Left Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(5.22, 5.22, 5.22); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

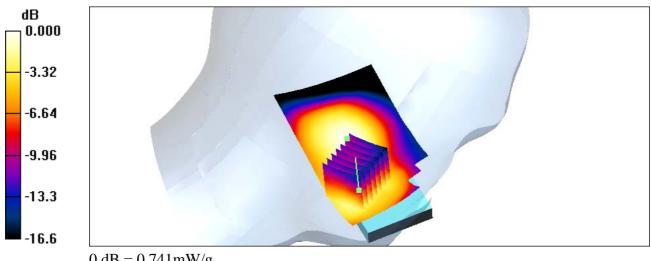
• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (71x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.725 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.00 V/m; Power Drift = 0.016 dB

Peak SAR (extrapolated) = 1.00 W/kg

SAR(1 g) = 0.667 mW/g; SAR(10 g) = 0.395 mW/g

Maximum value of SAR (measured) = 0.741 mW/g

0 dB = 0.741 mW/g

Date/Time: 7/16/2008 13:17:38

Test Laboratory: ETS PRODUCT SERVICE AG

PCS_1900_ch661_left_tilted

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: Head 1900 MHz Medium parameters used: f=1880 MHz; $\sigma=1.4$ mho/m; $\epsilon_r=39.9$; $\rho=1.4$ mho/m; $\epsilon_r=39.9$; $\epsilon_r=39.9$;

 1000 kg/m^3

Phantom section: Left Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(5.22, 5.22, 5.22); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

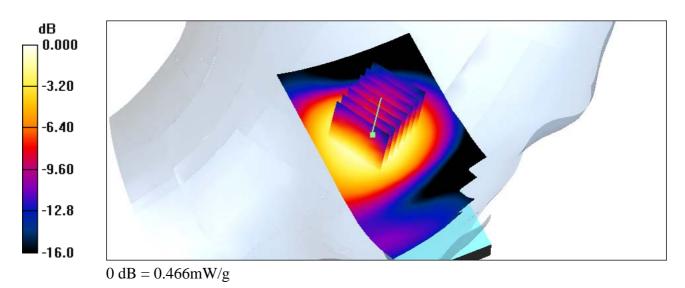
• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (71x131x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.467 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.40 V/m; Power Drift = 0.006 dB

Peak SAR (extrapolated) = 0.619 W/kg

SAR(1 g) = 0.427 mW/g; SAR(10 g) = 0.269 mW/g

Maximum value of SAR (measured) = 0.466 mW/g

Date/Time: 7/17/2008 14:24:00

Test Laboratory: EUROFINS PRODUCT SERVICE GmbH

PCS_1900_flat_ch512_back

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: GSM 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium: Muscle 1900 MHz Medium parameters used: f = 1850.2 MHz; $\sigma = 1.51$ mho/m; $\varepsilon_r = 52$; ρ

 $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(4.71, 4.71, 4.71); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

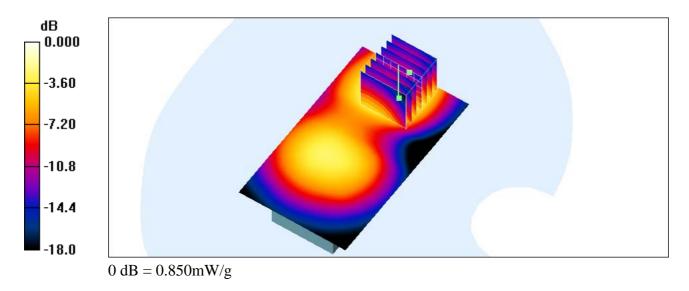
• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (71x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.858 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.8 V/m; Power Drift = 0.034 dB

Peak SAR (extrapolated) = 1.25 W/kg

SAR(1 g) = 0.760 mW/g; SAR(10 g) = 0.425 mW/g

Maximum value of SAR (measured) = 0.850 mW/g

Date/Time: 7/17/2008 13:38:22

Test Laboratory: EUROFINS PRODUCT SERVICE GmbH

PCS_1900_flat_ch661_back

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: Muscle 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.55$ mho/m; $\epsilon_r = 51.9$; ρ

 $= 1000 \text{ kg/m}^3$

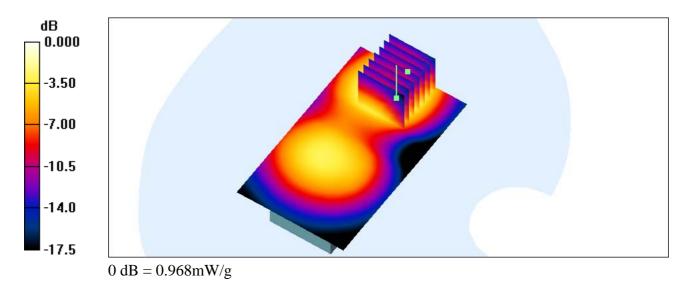
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(4.71, 4.71, 4.71); Calibrated: 9/19/2007
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/18/2007
- Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (71x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.969 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.3 V/m; Power Drift = -0.031 dB

Peak SAR (extrapolated) = 1.46 W/kg

SAR(1 g) = 0.876 mW/g; SAR(10 g) = 0.493 mW/g

Maximum value of SAR (measured) = 0.968 mW/g

Date/Time: 7/17/2008 12:53:11

Test Laboratory: EUROFINS PRODUCT SERVICE GmbH

PCS_1900_flat_ch661_front

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: Muscle 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.55$ mho/m; $\epsilon_r = 51.9$; ρ

 $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(4.71, 4.71, 4.71); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

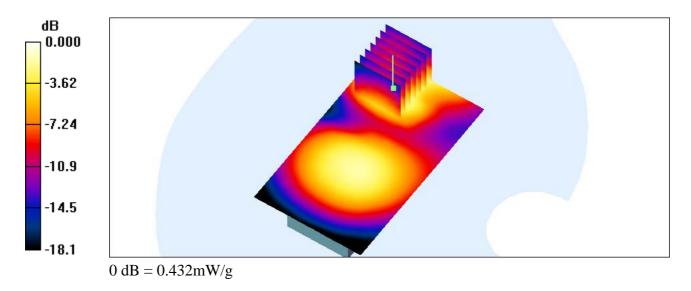
• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (71x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.438 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.29 V/m; Power Drift = 0.030 dB

Peak SAR (extrapolated) = 0.643 W/kg

SAR(1 g) = 0.392 mW/g; SAR(10 g) = 0.219 mW/g

Maximum value of SAR (measured) = 0.432 mW/g

Date/Time: 7/17/2008 15:01:47

Test Laboratory: EUROFINS PRODUCT SERVICE GmbH

PCS_1900_flat_ch810_back

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: GSM 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium: Muscle 1900 MHz Medium parameters used: f = 1909.8 MHz; $\sigma = 1.59$ mho/m; $\varepsilon_r = 51.9$;

 $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(4.71, 4.71, 4.71); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

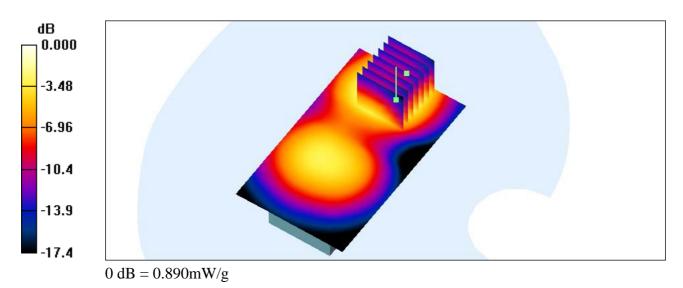
• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (71x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.882 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.3 V/m; Power Drift = -0.027 dB

Peak SAR (extrapolated) = 1.34 W/kg

SAR(1 g) = 0.799 mW/g; SAR(10 g) = 0.450 mW/g

Maximum value of SAR (measured) = 0.890 mW/g

Date/Time: 7/23/2008 09:51:44

Test Laboratory: Eurofins Product Service GmbH

UMTS Band V_ch4175_right_cheek

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: UMTS Up Band V; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: Head 900 MHz Medium parameters used (interpolated): f = 835 MHz; $\sigma = 0.888$ mho/m; ϵ_r

= 41.1; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(6.58, 6.58, 6.58); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

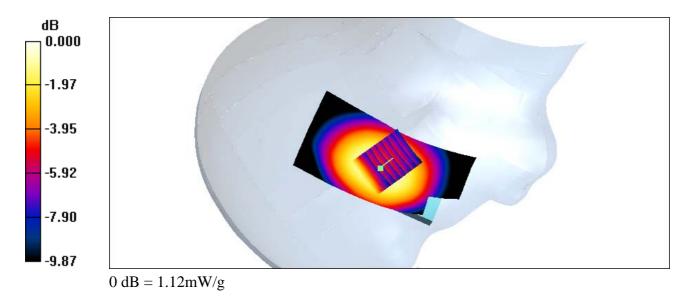
• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.12 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.2 V/m; Power Drift = 0.048 dB

Peak SAR (extrapolated) = 1.30 W/kg

SAR(1 g) = 1.04 mW/g; SAR(10 g) = 0.754 mW/g

Maximum value of SAR (measured) = 1.12 mW/g

Date/Time: 7/23/2008 10:58:37

Test Laboratory: Eurofins Product Service GmbH

UMTS Band V_ch4175_right_tilted

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: UMTS Up Band V; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: Head 900 MHz Medium parameters used (interpolated): f = 835 MHz; $\sigma = 0.888$ mho/m; ϵ_r

= 41.1; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(6.58, 6.58, 6.58); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

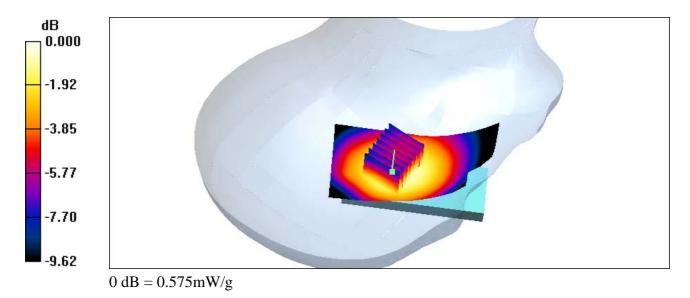
• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.570 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.4 V/m; Power Drift = 0.035 dB

Peak SAR (extrapolated) = 0.679 W/kg

SAR(1 g) = 0.536 mW/g; SAR(10 g) = 0.390 mW/g

Maximum value of SAR (measured) = 0.575 mW/g

Date/Time: 7/23/2008 11:35:32

Test Laboratory: Eurofins Product Service GmbH

UMTS Band V_ch4133_left_cheek

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: UMTS Up Band V; Frequency: 826.6 MHz; Duty Cycle: 1:1

Medium: Head 900 MHz Medium parameters used (interpolated): f = 826.6 MHz; $\sigma = 0.877$ mho/m;

 $\varepsilon_r = 41.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(6.58, 6.58, 6.58); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

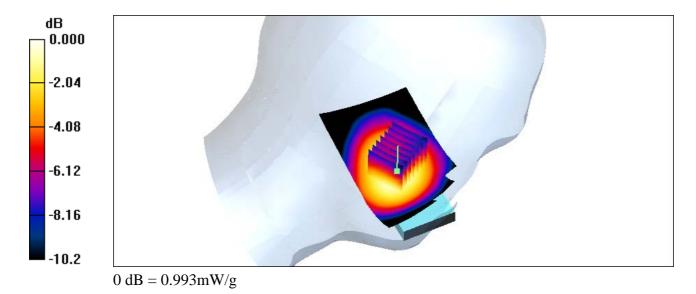
• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (71x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.01 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.5 V/m; Power Drift = -0.049 dB

Peak SAR (extrapolated) = 1.17 W/kg

SAR(1 g) = 0.921 mW/g; SAR(10 g) = 0.658 mW/g

Maximum value of SAR (measured) = 0.993 mW/g

Date/Time: 7/23/2008 08:02:31

Test Laboratory: Eurofins Product Service GmbH

UMTS Band V_ch4175_left_cheek

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: UMTS Up Band V; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: Head 900 MHz Medium parameters used (interpolated): f = 835 MHz; $\sigma = 0.888$ mho/m; ϵ_r

= 41.1; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(6.58, 6.58, 6.58); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

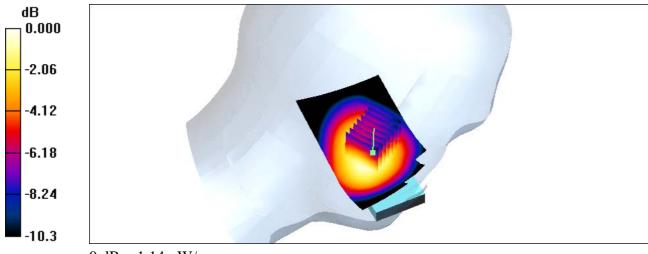
• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (71x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.12 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.0 V/m; Power Drift = 0.013 dB

Peak SAR (extrapolated) = 1.33 W/kg

SAR(1 g) = 1.07 mW/g; SAR(10 g) = 0.765 mW/g

Maximum value of SAR (measured) = 1.14 mW/g

0 dB = 1.14 mW/g

Date/Time: 7/23/2008 09:05:34

Test Laboratory: Eurofins Product Service GmbH

UMTS Band V_ch4175_left_tilted

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: UMTS Up Band V; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: Head 900 MHz Medium parameters used (interpolated): f = 835 MHz; $\sigma = 0.888$ mho/m; ϵ_r

= 41.1; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(6.58, 6.58, 6.58); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

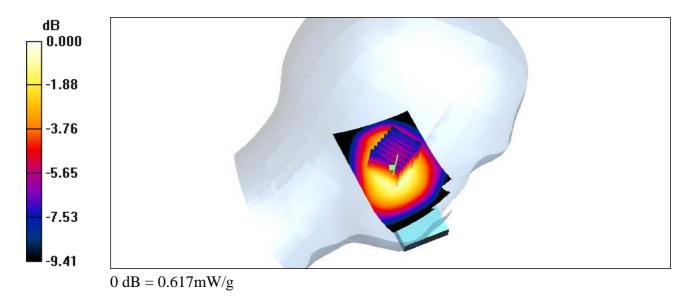
• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (71x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.625 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.8 V/m; Power Drift = 0.045 dB

Peak SAR (extrapolated) = 0.737 W/kg

SAR(1 g) = 0.584 mW/g; SAR(10 g) = 0.423 mW/g

Maximum value of SAR (measured) = 0.617 mW/g

Date/Time: 7/23/2008 12:10:34

Test Laboratory: Eurofins Product Service GmbH

UMTS Band V_ch4232_left_cheek

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: UMTS Up Band V; Frequency: 846.4 MHz; Duty Cycle: 1:1

Medium: Head 900 MHz Medium parameters used (interpolated): f = 846.4 MHz; $\sigma = 0.902$ mho/m;

 $\varepsilon_r = 40.9; \, \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(6.58, 6.58, 6.58); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

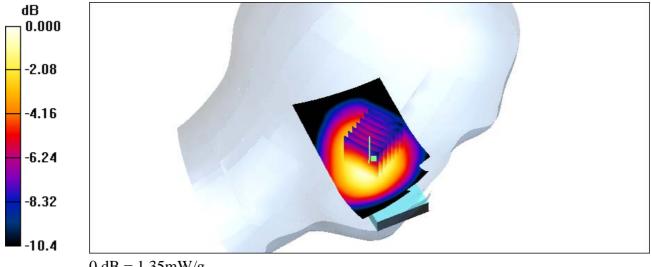
• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (71x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.35 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.3 V/m; Power Drift = 0.017 dB

Peak SAR (extrapolated) = 1.64 W/kg

SAR(1 g) = 1.25 mW/g; SAR(10 g) = 0.883 mW/g

Maximum value of SAR (measured) = 1.35 mW/g

0 dB = 1.35 mW/g

Date/Time: 7/21/2008 14:49:12

Test Laboratory: Eurofins Product Service GmbH

UMTS Band V_flat_ch4133_back_10mm

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: UMTS Up Band V; Frequency: 826.6 MHz; Duty Cycle: 1:1

Medium: Muscle 900 MHz Medium parameters used: f = 826.6 MHz; $\sigma = 0.929$ mho/m; $\epsilon_r = 54.8$; ρ

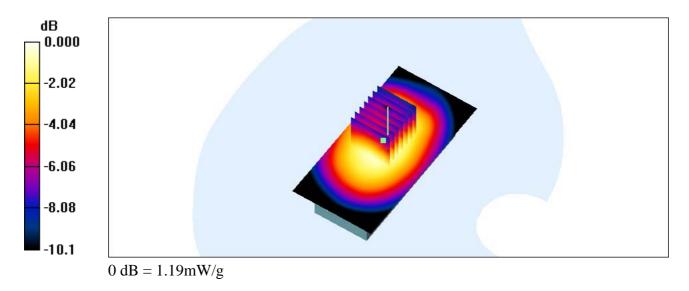
 $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(6.04, 6.04, 6.04); Calibrated: 9/19/2007
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/18/2007
- Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.19 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 36.6 V/m; Power Drift = 0.040 dB

Peak SAR (extrapolated) = 1.43 W/kg

SAR(1 g) = 1.13 mW/g; SAR(10 g) = 0.807 mW/g

Maximum value of SAR (measured) = 1.19 mW/g

Date/Time: 7/21/2008 14:11:17

Test Laboratory: Eurofins Product Service GmbH

UMTS Band V_flat_ch4175_back_10mm

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: UMTS Up Band V; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: Muscle 900 MHz Medium parameters used: f=835 MHz; $\sigma=0.931$ mho/m; $\epsilon_r=54.8$; $\rho=0.931$ mho/m; $\epsilon_r=54.8$; $\epsilon_r=54$

 1000 kg/m^3

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(6.04, 6.04, 6.04); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

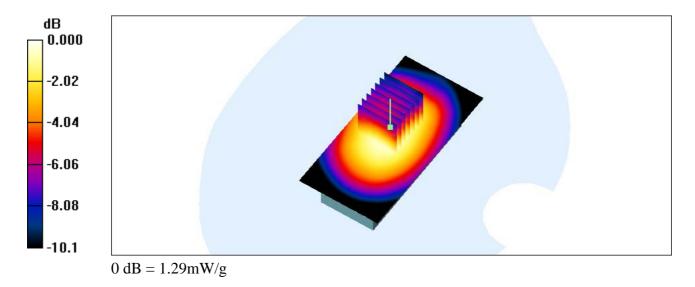
• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.28 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 38.0 V/m; Power Drift = 0.053 dB

Peak SAR (extrapolated) = 1.57 W/kg

SAR(1 g) = 1.21 mW/g; SAR(10 g) = 0.871 mW/g

Maximum value of SAR (measured) = 1.29 mW/g

Date/Time: 7/21/2008 13:30:43

Test Laboratory: Eurofins Product Service GmbH

UMTS Band V_flat_ch4175_front_10mm

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: UMTS Up Band V; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: Muscle 900 MHz Medium parameters used: f=835 MHz; $\sigma=0.931$ mho/m; $\epsilon_r=54.8$; $\rho=0.931$ mho/m; $\epsilon_r=54.8$; $\epsilon_r=54$

 1000 kg/m^3

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(6.04, 6.04, 6.04); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

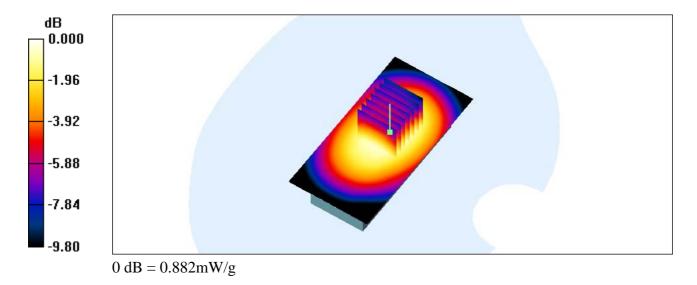
• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.893 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 32.1 V/m; Power Drift = 0.052 dB

Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.835 mW/g; SAR(10 g) = 0.609 mW/g

Maximum value of SAR (measured) = 0.882 mW/g

Date/Time: 7/22/2008 07:58:12

Test Laboratory: Eurofins Product Service GmbH

UMTS Band V_flat_ch4232_back_10mm

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: UMTS Up Band V; Frequency: 846.4 MHz; Duty Cycle: 1:1

Medium: Muscle 900 MHz Medium parameters used (interpolated): f = 846.4 MHz; $\sigma = 0.943$

mho/m; $\varepsilon_r = 54.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(6.04, 6.04, 6.04); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

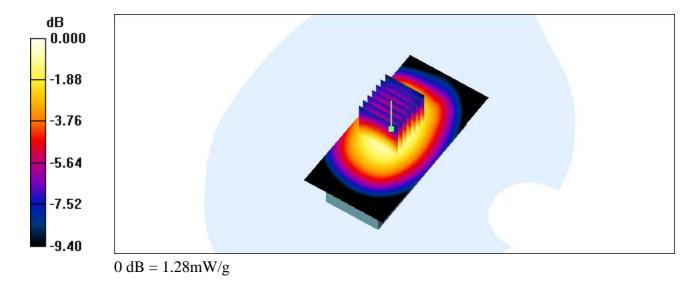
• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.25 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 37.0 V/m; Power Drift = 0.022 dB

Peak SAR (extrapolated) = 1.54 W/kg

SAR(1 g) = 1.21 mW/g; SAR(10 g) = 0.871 mW/g

Maximum value of SAR (measured) = 1.28 mW/g

Date/Time: 7/22/2008 11:59:14

Test Laboratory: Eurofins Product Service GmbH

UMTS Band II_ch9400_right_cheek

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: UMTS Up Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: Head 1900 MHz Medium parameters used: f=1880 MHz; $\sigma=1.4$ mho/m; $\epsilon_r=39.9$; $\rho=1.4$ mHz Medium: $\epsilon_r=39.9$; $\epsilon_r=3$

 1000 kg/m^3

Phantom section: Right Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(5.22, 5.22, 5.22); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

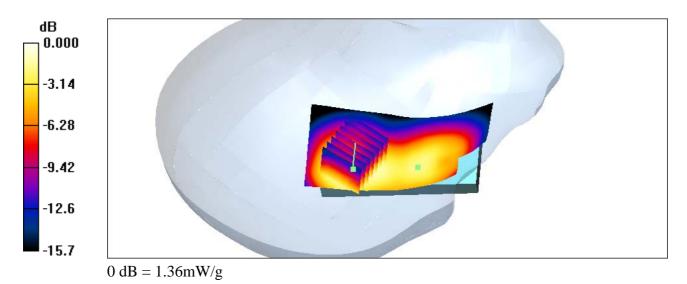
• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.31 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.7 V/m; Power Drift = -0.046 dB

Peak SAR (extrapolated) = 1.73 W/kg

SAR(1 g) = 1.21 mW/g; SAR(10 g) = 0.753 mW/g

Maximum value of SAR (measured) = 1.36 mW/g

Date/Time: 7/22/2008 12:35:02

Test Laboratory: Eurofins Product Service GmbH

UMTS Band II_ch9400_right_tilted

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: UMTS Up Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: Head 1900 MHz Medium parameters used: f=1880 MHz; $\sigma=1.4$ mho/m; $\epsilon_r=39.9$; $\rho=1.4$ mHz

 1000 kg/m^3

Phantom section: Right Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(5.22, 5.22, 5.22); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

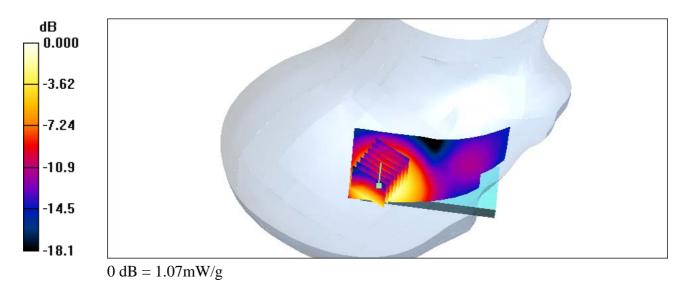
• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.07 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.8 V/m; Power Drift = -0.094 dB

Peak SAR (extrapolated) = 1.48 W/kg

SAR(1 g) = 0.971 mW/g; SAR(10 g) = 0.577 mW/g

Maximum value of SAR (measured) = 1.07 mW/g

Date/Time: 7/22/2008 13:18:17

Test Laboratory: Eurofins Product Service GmbH

UMTS Band II_ch9263_left_cheek

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: UMTS Up Band II; Frequency: 1852.6 MHz; Duty Cycle: 1:1 Medium: Head 1900 MHz Medium parameters used (interpolated): f=1852.6 MHz; $\sigma=1.37$

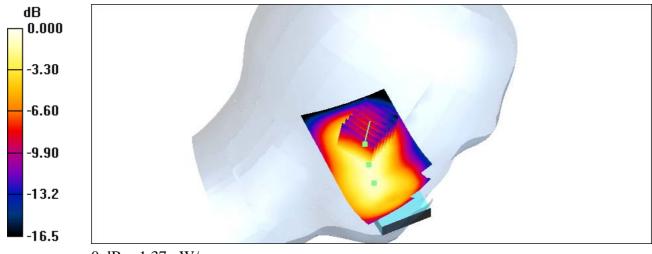
mho/m; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(5.22, 5.22, 5.22); Calibrated: 9/19/2007
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/18/2007
- Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (71x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.35 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.5 V/m; Power Drift = -0.094 dB

Peak SAR (extrapolated) = 1.64 W/kg

SAR(1 g) = 1.24 mW/g; SAR(10 g) = 0.782 mW/g

Maximum value of SAR (measured) = 1.37 mW/g

0 dB = 1.37 mW/g

Date/Time: 7/22/2008 10:17:26

Test Laboratory: Eurofins Product Service GmbH

UMTS Band II_ch9400_left_cheek

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: UMTS Up Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: Head 1900 MHz Medium parameters used: f=1880 MHz; $\sigma=1.4$ mho/m; $\epsilon_r=39.9$; $\rho=1.4$ mHz Medium: $\epsilon_r=39.9$; $\epsilon_r=3$

 1000 kg/m^3

Phantom section: Left Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(5.22, 5.22, 5.22); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

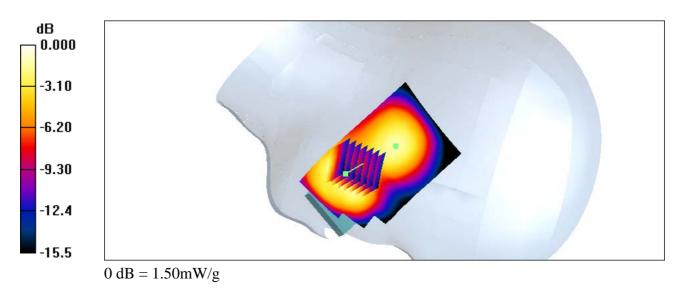
• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (71x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.52 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.9 V/m; Power Drift = 0.046 dB

Peak SAR (extrapolated) = 2.04 W/kg

SAR(1 g) = 1.36 mW/g; SAR(10 g) = 0.774 mW/g

Maximum value of SAR (measured) = 1.50 mW/g

Date/Time: 7/22/2008 11:00:45

Test Laboratory: Eurofins Product Service GmbH

UMTS Band II_ch9400_left_tilted

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: UMTS Up Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: Head 1900 MHz Medium parameters used: f=1880 MHz; $\sigma=1.4$ mho/m; $\epsilon_r=39.9$; $\rho=1.4$ mHz Medium: $\epsilon_r=39.9$; $\epsilon_r=3$

 1000 kg/m^3

Phantom section: Left Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(5.22, 5.22, 5.22); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (71x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.929 mW/g

C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.9 V/m; Power Drift = -0.090 dB

Peak SAR (extrapolated) = 1.24 W/kg

SAR(1 g) = 0.850 mW/g; SAR(10 g) = 0.527 mW/g

Maximum value of SAR (measured) = 0.936 mW/g

Date/Time: 7/22/2008 13:56:02

Test Laboratory: Eurofins Product Service GmbH

UMTS Band II_ch9537_left_cheek

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: UMTS Up Band II; Frequency: 1907.4 MHz; Duty Cycle: 1:1

Medium: Head 1900 MHz Medium parameters used: f = 1908 MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 39.8$; $\rho =$

 1000 kg/m^3

Phantom section: Left Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(5.22, 5.22, 5.22); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

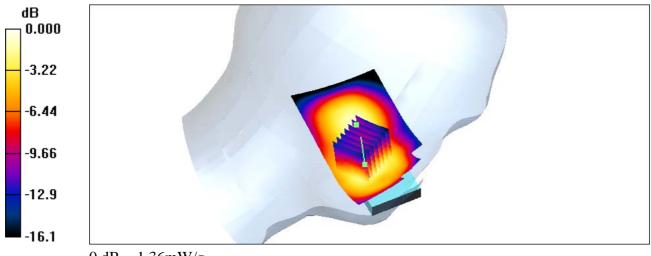
• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (71x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.37 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.8 V/m; Power Drift = -0.084 dB

Peak SAR (extrapolated) = 1.89 W/kg

SAR(1 g) = 1.24 mW/g; SAR(10 g) = 0.723 mW/g

Maximum value of SAR (measured) = 1.36 mW/g

0 dB = 1.36 mW/g

Date/Time: 7/24/2008 08:10:50

Test Laboratory: Eurofins Product Service GmbH

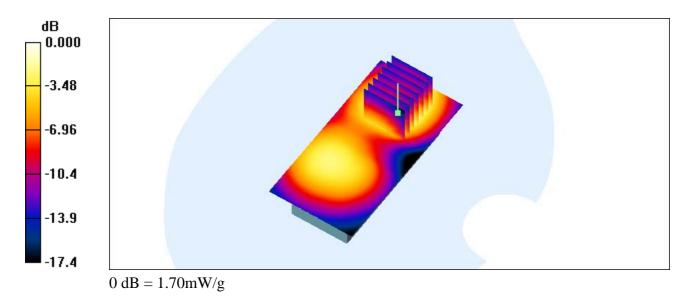
UMTS Band II_flat_ch9263_back_10mm

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: UMTS Up Band II; Frequency: 1852.6 MHz; Duty Cycle: 1:1 Medium: Muscle 1900 MHz Medium parameters used (interpolated): f=1852.6 MHz; $\sigma=1.52$ mho/m; $\epsilon_r=52;$ $\rho=1000$ kg/m 3

Phantom section: Flat Section

DASY4 Configuration:


- Probe: ET3DV6 SN1711; ConvF(4.71, 4.71, 4.71); Calibrated: 9/19/2007
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/18/2007
- Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.66 mW/g

C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 16.2 V/m; Power Drift = -0.031 dB Peak SAR (extrapolated) = 2.51 W/kg SAR(1 g) = 1.51 mW/g; SAR(10 g) = 0.840 mW/g

Maximum value of SAR (measured) = 1.70 mW/g

Date/Time: 7/23/2008 14:52:57

Test Laboratory: Eurofins Product Service GmbH

UMTS Band II_flat_ch9400_back_10mm

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: UMTS Up Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: Muscle 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.55$ mho/m; $\epsilon_r = 51.9$; ρ

 $= 1000 \text{ kg/m}^3$

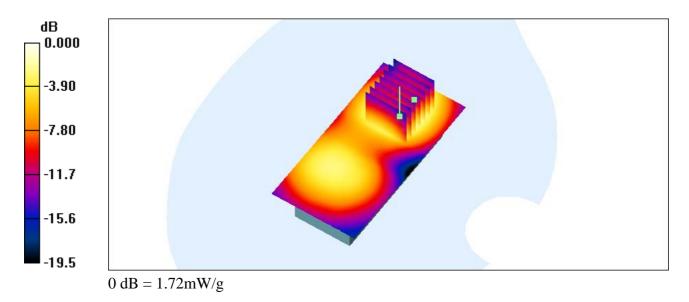
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(4.71, 4.71, 4.71); Calibrated: 9/19/2007
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/18/2007
- Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.65 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.4 V/m; Power Drift = -0.022 dB

Peak SAR (extrapolated) = 2.65 W/kg

SAR(1 g) = 1.55 mW/g; SAR(10 g) = 0.857 mW/g

Maximum value of SAR (measured) = 1.72 mW/g

Date/Time: 7/23/2008 14:09:32

Test Laboratory: Eurofins Product Service GmbH

UMTS Band II_flat_ch9400_front_10mm

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: UMTS Up Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: Muscle 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.55$ mho/m; $\epsilon_r = 51.9$; ρ

 $= 1000 \text{ kg/m}^3$

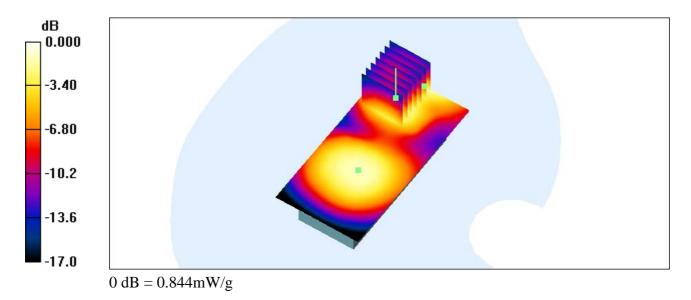
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(4.71, 4.71, 4.71); Calibrated: 9/19/2007
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/18/2007
- Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.859 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.0 V/m; Power Drift = 0.043 dB

Peak SAR (extrapolated) = 1.26 W/kg

SAR(1 g) = 0.766 mW/g; SAR(10 g) = 0.428 mW/g

Maximum value of SAR (measured) = 0.844 mW/g

Date/Time: 7/24/2008 07:40:59

Test Laboratory: Eurofins Product Service GmbH

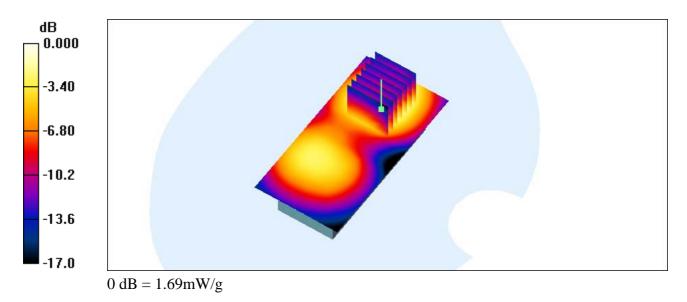
UMTS Band II_flat_ch9537_back_10mm

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: UMTS Up Band II; Frequency: 1907.4 MHz; Duty Cycle: 1:1 Medium: Muscle 1900 MHz Medium parameters used (interpolated): f=1907.4 MHz; $\sigma=1.59$ mho/m; $\epsilon_r=51.9$; $\rho=1000$ kg/m 3

Phantom section: Flat Section

DASY4 Configuration:


- Probe: ET3DV6 SN1711; ConvF(4.71, 4.71, 4.71); Calibrated: 9/19/2007
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/18/2007
- Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.68 mW/g

C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 14.5 V/m; Power Drift = -0.025 dB Peak SAR (extrapolated) = 2.58 W/kg SAR(1 g) = 1.5 mW/g; SAR(10 g) = 0.838 mW/g

Maximum value of SAR (measured) = 1.69 mW/g

Date/Time: 7/24/2008 09:57:12

Test Laboratory: Eurofins Product Service GmbH

E-GPRS_1900_flat_ch661_back_10mm

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: 1900 GPRS 2slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15

Medium: Muscle 1900 MHz Medium parameters used: f=1880 MHz; $\sigma=1.55$ mho/m; $\epsilon_r=51.9$; ρ

 $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(4.71, 4.71, 4.71); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

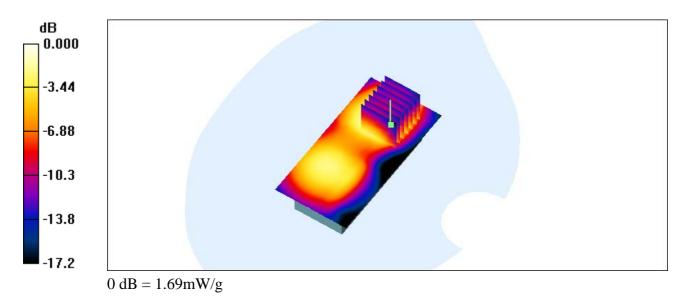
• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.88 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.7 V/m; Power Drift = 0.047 dB

Peak SAR (extrapolated) = 2.53 W/kg

SAR(1 g) = 1.54 mW/g; SAR(10 g) = 0.890 mW/g

Maximum value of SAR (measured) = 1.69 mW/g

Date/Time: 7/21/2008 12:21:00

Test Laboratory: Eurofins Product Service GmbH

E-GPRS_850_flat_ch128_back_15mm

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: GSM 850; Frequency: 824.2 MHz; Duty Cycle: 1:4.15

Medium: Muscle 900 MHz Medium parameters used: f = 824.2 MHz; $\sigma = 0.927$ mho/m; $\epsilon_r = 54.9$; ρ

 $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(6.04, 6.04, 6.04); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

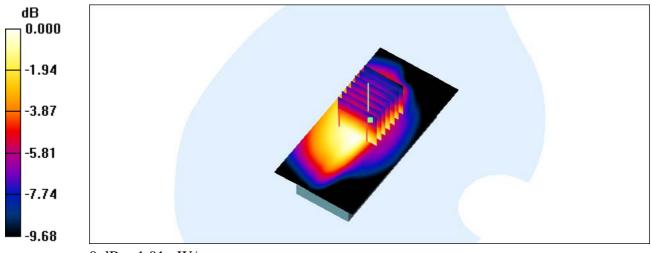
• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 1.13 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.9 V/m; Power Drift = 0.042 dB

Peak SAR (extrapolated) = 1.20 W/kg

SAR(1 g) = 0.949 mW/g; SAR(10 g) = 0.698 mW/g

Maximum value of SAR (measured) = 1.01 mW/g

0 dB = 1.01 mW/g

Date/Time: 7/24/2008 09:15:43

Test Laboratory: Eurofins Product Service GmbH

GPRS_1900_flat_ch661_back_10mm

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: 1900 GPRS 2slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15

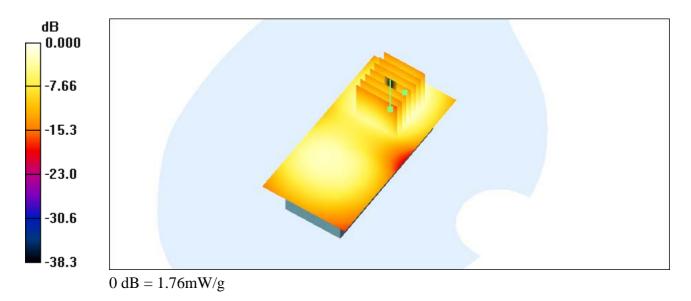
Medium: Muscle 1900 MHz Medium parameters used: f=1880 MHz; $\sigma=1.55$ mho/m; $\epsilon_r=51.9$; ρ

 $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1711; ConvF(4.71, 4.71, 4.71); Calibrated: 9/19/2007
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn522; Calibrated: 9/18/2007
- Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176


C630/Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.79 mW/g

C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 16.1 V/m; Power Drift = -0.015 dB

Peak SAR (extrapolated) = 2.35 W/kg

SAR(1 g) = 1.5 mW/g; SAR(10 g) = 0.858 mW/g

Maximum value of SAR (measured) = 1.76 mW/g

Date/Time: 7/21/2008 10:54:21

Test Laboratory: Eurofins Product Service GmbH

GPRS_850_flat_ch128_back_15mm

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: GSM 850; Frequency: 824.2 MHz; Duty Cycle: 1:4.15

Medium: Muscle 900 MHz Medium parameters used: f = 824.2 MHz; $\sigma = 0.927$ mho/m; $\epsilon_r = 54.9$; ρ

 $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(6.04, 6.04, 6.04); Calibrated: 9/19/2007

• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.972 mW/g

C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 32.3 V/m; Power Drift = 0.092 dB

Peak SAR (extrapolated) = 2.14 W/kg

SAR(1 g) = 0.984 mW/g; SAR(10 g) = 0.536 mW/g

Maximum value of SAR (measured) = 0.956 mW/g

Date/Time: 7/23/2008 14:52:57

Test Laboratory: Eurofins Product Service GmbH

Z - axis scan

DUT: C630; Type: UMTS - GSM phone; Serial: #1

Communication System: UMTS Up Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: Muscle 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.55$ mho/m; $\epsilon_r = 51.9$; ρ

 $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1711; ConvF(4.71, 4.71, 4.71); Calibrated: 9/19/2007

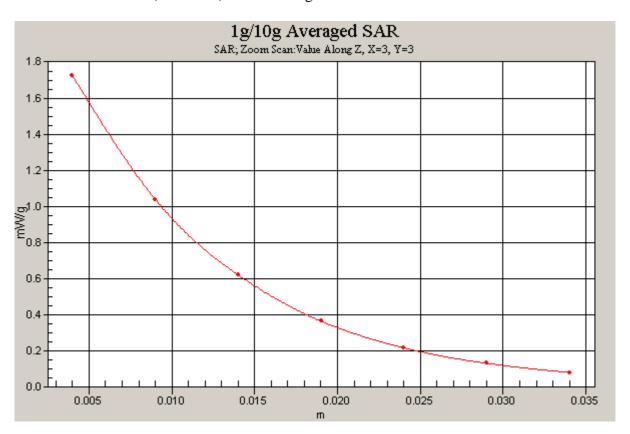
• Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

• Electronics: DAE3 Sn522; Calibrated: 9/18/2007

• Phantom: SAM 12; Type: TP-1217; Serial: QD000P40CA

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

C630/Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.65 mW/g


C630/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.4 V/m; Power Drift = -0.022 dB

Peak SAR (extrapolated) = 2.65 W/kg

SAR(1 g) = 1.55 mW/g; SAR(10 g) = 0.857 mW/g

Maximum value of SAR (measured) = 1.72 mW/g

