



## FCC PART 90

### TEST AND MEASUREMENT REPORT For **Teledesign Systems, Inc.**

1729 South Main Street,  
Milpitas, CA 95035, USA

**FCC ID: JWFTS4000GL  
Model: TS4000-05G13**

|                                                                                                                                            |                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| <b>Report Type:</b><br>Original Report                                                                                                     | <b>Product Type:</b><br>VHF Radio Modem |
| <b>Test Engineer:</b> <u>Lionel Lara</u> <i>Lionel Lara</i>                                                                                |                                         |
| <b>Report Number:</b> <u>R1209046-90GL</u>                                                                                                 |                                         |
| <b>Report Date:</b> <u>2012-10-29</u>                                                                                                      |                                         |
| <b>Reviewed By:</b> <u>Victor Zhang</u> <i>Victor Zhang</i><br><u>RF/EMC Lead</u>                                                          |                                         |
| Bay Area Compliance Laboratories Corp.<br>1274 Anvilwood Avenue,<br>Sunnyvale, CA 94089, USA<br>Tel: (408) 732-9162<br>Fax: (408) 732 9164 |                                         |

**Note:** This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by A2LA\* or any agency of the Federal Government.

\* This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk “\*” (Rev. 1)

## TABLE OF CONTENTS

|                                                                                    |           |
|------------------------------------------------------------------------------------|-----------|
| <b>1. General Information.....</b>                                                 | <b>5</b>  |
| 1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).....                        | 5         |
| 1.2 MECHANICAL DESCRIPTION.....                                                    | 5         |
| 1.3 OBJECTIVE .....                                                                | 5         |
| 1.4 RELATED SUBMITTAL(S)/GRANT(S).....                                             | 5         |
| 1.5 TEST METHODOLOGY .....                                                         | 6         |
| 1.6 MEASUREMENT UNCERTAINTY.....                                                   | 6         |
| 1.7 TEST FACILITY.....                                                             | 6         |
| <b>2 System Test Configuration.....</b>                                            | <b>7</b>  |
| 2.1 JUSTIFICATION .....                                                            | 7         |
| 2.2 EUT EXERCISE SOFTWARE .....                                                    | 7         |
| 2.3 EQUIPMENT MODIFICATIONS .....                                                  | 7         |
| 2.4 INTERNAL CONFIGURATION .....                                                   | 7         |
| 2.5 LOCAL SUPPORT EQUIPMENT.....                                                   | 7         |
| 2.6 LOCAL SUPPORT EQUIPMENT POWER SUPPLY AND LINE FILTERS .....                    | 7         |
| 2.7 EXTERNAL I/O CABLING LIST AND DETAILS .....                                    | 7         |
| <b>3 Summary of Test Results.....</b>                                              | <b>8</b>  |
| <b>4 FCC §2.1091 - RF Exposure Information.....</b>                                | <b>9</b>  |
| 4.1 APPLICABLE STANDARDS .....                                                     | 9         |
| <b>5 FCC §2.1046 &amp; §90.205 – RF Output Power.....</b>                          | <b>10</b> |
| 5.1 APPLICABLE STANDARD .....                                                      | 10        |
| 5.2 TEST PROCEDURE .....                                                           | 10        |
| 5.3 TEST EQUIPMENT LIST AND DETAILS.....                                           | 10        |
| 5.4 TEST ENVIRONMENTAL CONDITIONS.....                                             | 11        |
| 5.5 TEST RESULTS .....                                                             | 11        |
| <b>6 FCC §2.1047 &amp; §90.207 – Modulation Characteristic.....</b>                | <b>13</b> |
| 6.1 APPLICABLE STANDARD .....                                                      | 13        |
| 6.2 TEST RESULT .....                                                              | 13        |
| <b>7 FCC §2.1049 &amp; §90.210 – Occupied Bandwidth &amp; Emission Mask.....</b>   | <b>14</b> |
| 7.1 APPLICABLE STANDARD .....                                                      | 14        |
| 7.2 TEST PROCEDURE .....                                                           | 14        |
| 7.3 TEST EQUIPMENT LIST AND DETAILS.....                                           | 14        |
| 7.4 TEST ENVIRONMENTAL CONDITIONS .....                                            | 14        |
| 7.5 TEST RESULTS .....                                                             | 14        |
| <b>8 FCC §2.1051 &amp; §90.210 - Spurious Emissions at Antenna Terminals .....</b> | <b>21</b> |
| 8.1 APPLICABLE STANDARD .....                                                      | 21        |
| 8.2 TEST PROCEDURE .....                                                           | 21        |
| 8.3 TEST EQUIPMENT LIST AND DETAILS.....                                           | 21        |
| 8.4 TEST ENVIRONMENTAL CONDITIONS .....                                            | 21        |
| 8.5 TEST RESULTS .....                                                             | 21        |
| <b>9 FCC §2.1055 (d) &amp; §90.213 - Frequency Stability .....</b>                 | <b>25</b> |
| 9.1 APPLICABLE STANDARD .....                                                      | 25        |
| 9.2 TEST PROCEDURE .....                                                           | 25        |
| 9.3 TEST EQUIPMENT LIST AND DETAILS.....                                           | 26        |
| 9.4 TEST ENVIRONMENTAL CONDITIONS .....                                            | 26        |
| 9.5 TEST RESULTS .....                                                             | 26        |

|           |                                                                              |           |
|-----------|------------------------------------------------------------------------------|-----------|
| <b>10</b> | <b>FCC §2.1053 &amp; §90.210 – Field Strength of Spurious Radiation.....</b> | <b>27</b> |
| 10.1      | APPLICABLE STANDARD .....                                                    | 27        |
| 10.2      | TEST PROCEDURE .....                                                         | 27        |
| 10.3      | TEST EQUIPMENT LIST AND DETAILS.....                                         | 27        |
| 10.4      | TEST ENVIRONMENTAL CONDITIONS.....                                           | 27        |
| 10.5      | TEST RESULTS .....                                                           | 28        |
| <b>11</b> | <b>FCC §90.214 - Transient Frequency Behavior .....</b>                      | <b>29</b> |
| 11.1      | APPLICABLE STANDARD .....                                                    | 29        |
| 11.2      | TEST PROCEDURE .....                                                         | 30        |
| 11.3      | TEST EQUIPMENT LIST AND DETAILS.....                                         | 30        |
| 11.4      | TEST ENVIRONMENTAL CONDITIONS.....                                           | 30        |
| 11.5      | TEST RESULTS .....                                                           | 30        |
| <b>12</b> | <b>Exhibit A - FCC Labeling Requirements .....</b>                           | <b>32</b> |
| 12.1      | FCC ID LABEL REQUIREMENT .....                                               | 32        |
| 12.2      | FCC ID LABEL & LOCATION .....                                                | 32        |
| <b>13</b> | <b>Exhibit B - Test Setup Photographs.....</b>                               | <b>33</b> |
| 13.1      | RADIATED EMISSION BELOW 1 GHZ – FRONT VIEW .....                             | 33        |
| 13.2      | RADIATED EMISSION BELOW 1 GHZ – REAR VIEW.....                               | 33        |
| 13.3      | RADIATED EMISSION ABOVE 1 GHZ – FRONT VIEW .....                             | 34        |
| 13.4      | RADIATED EMISSION ABOVE 1 GHZ – REAR VIEW .....                              | 34        |
| <b>14</b> | <b>Exhibit C - EUT Photographs .....</b>                                     | <b>35</b> |
| 14.1      | EUT - TOP VIEW .....                                                         | 35        |
| 14.2      | EUT – BOTTOM VIEW.....                                                       | 35        |
| 14.3      | EUT – PORT VIEW .....                                                        | 36        |
| 14.4      | EUT – SIDE VIEW .....                                                        | 36        |
| 14.5      | EUT – MODEM PCB TOP VIEW .....                                               | 37        |
| 14.6      | EUT – MODEM PCB BOTTOM VIEW.....                                             | 37        |
| 14.7      | EUT – RADIO PCB TOP VIEW .....                                               | 38        |
| 14.8      | EUT – RADIO PCB BOTTOM VIEW .....                                            | 38        |
| 14.9      | EUT – RADIO PCB (SHIELDING OFF) TOP VIEW .....                               | 39        |
| 14.10     | EUT – RADIO PCB (SHIELDING OFF) BOTTOM VIEW .....                            | 39        |

## DOCUMENT REVISION HISTORY

| Revision Number | Report Number | Description of Revision | Date of Revision |
|-----------------|---------------|-------------------------|------------------|
| 0               | R1209046-90GL | Original Report         | 2012-10-29       |

## 1. General Information

### 1.1 Product Description for Equipment under Test (EUT)

This test and measurement report was prepared on behalf of *Teledesign Systems, Inc.* and their product, FCC ID: JWFTS4000GL, model: TS4000-05G13, which will henceforth be referred to as the EUT (Equipment Under Test). The EUT is a VHF radio modem.

The EUTs are VHF radio modems that operate under FCC Part 90

| Specifications      |                              |
|---------------------|------------------------------|
| Frequency Band      | 136-162 MHz                  |
| Modulation Type     | GMSK                         |
| Emission Designator | F1D                          |
| RF Output Power     | Low: 1 Watt<br>High: 5 Watts |
| Channel Spacing     | 12.5 kHz                     |
| Power Supply        | 13.8 VDC                     |

### 1.2 Mechanical Description

The EUT measures approximately 17cm (L) x 8 cm (W) x 4.5 cm (H) and weighs approximately 780g.

*The test data gathered are from production sample, serial number: 41472, provided by the manufacturer.*

### 1.3 Objective

This type approval report is prepared on behalf of *Teledesign Systems, Inc.* in accordance Part 90 of the Federal Communication Commissions rules.

The objective was to determine the RF output power; Occupied Bandwidth, Spurious Emissions, Frequency Stability and Transient Frequency Behavior are in compliance with the FCC rules.

### 1.4 Related Submittal(s)/Grant(s)

None.

## 1.5 Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of federal Regulations Title 47 Part 2, Sub-part J as well as the following individual parts:

Part 90 – Private Land Mobile Radio Service

Applicable Standards: TIA603-C and ANSI 63.4-2009, American National Standard for Method of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All emissions measurement was performed by Bay Area Compliance Laboratories Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

## 1.6 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on CISPR16-4-2:2003, The Treatment of Uncertainty in EMC Measurements, the values ranging from  $\pm 2.0$  dB for Conducted Emissions tests and  $\pm 4.0$  dB for Radiated Emissions tests are the most accurate estimates pertaining to uncertainty of EMC measurements at BACL Corp.

## 1.7 Test Facility

The test site used by BACL Corp. to collect radiated and conducted emissions measurement data is located at its facility in Sunnyvale, California, USA.

The test site at BACL Corp. has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997, and Article 8 of the VCCI regulations on December 25, 1997. The test site also complies with the test methods and procedures set forth in CISPR 22:2008 §10.4 for measurements below 1 GHz and §10.6 for measurements above 1 GHz as well as ANSI C63.4-2003, ANSI C63.4-2009, TIA/EIA-603 & CISPR 24:2010.

The Federal Communications Commission and Voluntary Control Council for Interference have the reports on file and they are listed under FCC registration number: 90464 and VCCI Registration No.: A-0027. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL Corp. is an American Association for laboratory Accreditation (A2LA) accredited laboratory (Lab Code 3297-02). The current scope of accreditations can be found at

<http://www.a2la.org/scopepdf/3297-02.pdf?CFID=1132286&CFTOKEN=e42a3240dac3f6ba-6DE17DCB-1851-9E57-477422F667031258&jsessionid=8430d44f1f47cf2996124343c704b367816b>

## 2 System Test Configuration

### 2.1 Justification

The EUT was configured for testing according to TIA/EIA-603-C.

The EUT was tested in the normal (native) operating mode to represent *worst-case* results during the final qualification test.

### 2.2 EUT Exercise Software

The software used was TS4000 Configuration Program provided by the client.

### 2.3 Equipment Modifications

No modifications were made to the EUT.

### 2.4 Internal Configuration

| Manufacturers            | Descriptions | Model    | Serial Numbers |
|--------------------------|--------------|----------|----------------|
| Teledesign Systems, Inc. | Modem Board  | TS4000   | 036121         |
| CalAmp                   | Radio Board  | 140-3433 | -              |

### 2.5 Local Support Equipment

| Manufacturer | Description | Model No. | Serial No.  |
|--------------|-------------|-----------|-------------|
| Dell         | Laptop      | PP37L     | 15324358501 |

### 2.6 Local Support Equipment Power Supply and Line Filters

| Manufacturer | Description     | Model | Serial Number |
|--------------|-----------------|-------|---------------|
| Topward      | DC Power Supply | 3303D | 719031        |

### 2.7 External I/O Cabling List and Details

| Cable Description  | Length (m) | From         | To              |
|--------------------|------------|--------------|-----------------|
| USB to RS232 cable | 1.0        | Laptop USB   | EUT Serial Port |
| Coax cable         | 1.5        | EUT          | Antenna         |
| Power supply cable | 1.0        | Power Supply | EUT             |

### 3 Summary of Test Results

| FCC Rules        | Description of Tests                                                           | Results          |
|------------------|--------------------------------------------------------------------------------|------------------|
| §2.1091          | RF Exposure                                                                    | Compliant        |
| §2.1046, §90.205 | RF Output Power                                                                | Compliant        |
| §2.1047          | Modulation Characteristics, Audio Frequency Response and Audio Filter Response | N/A <sup>1</sup> |
| §2.1049, §90.209 | Occupied Bandwidth and Emission Mask                                           | Compliant        |
| §2.1051, §90.210 | Spurious Emissions at Antenna Terminals                                        | Compliant        |
| §2.1055, §90.213 | Frequency Stability                                                            | Compliant        |
| §2.1053, §90.210 | Field Strength of Spurious Radiation                                           | Compliant        |
| §90.214          | Transient Frequency Behavior                                                   | Compliant        |

Note 1: Modulation characteristic is not required for digital modulaton.

## 4 FCC §2.1091 - RF Exposure Information

### 4.1 Applicable Standards

FCC §2.1091, (a) Requirements of this section are a consequence of Commission responsibilities under the National Environmental Policy Act to evaluate the environmental significance of its actions. See subpart I of part 1 of this chapter, in particular §1.1307(b).

According to §1.1310 and §2.1091 RF exposure is calculated.

| Frequency Range (MHz)                                          | Electric Field Strength (V/m) | Magnetic Field Strength (A/m) | Power Density (mW/cm <sup>2</sup> ) | Averaging Time (minutes) |
|----------------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------------|--------------------------|
| <b>(B) Limits for General Population/Uncontrolled Exposure</b> |                               |                               |                                     |                          |
| 0.3-1.34                                                       | 614                           | 1.63                          | *(100)                              | 30                       |
| 1.34-30                                                        | 842/f                         | 2.19/f                        | *(180/f <sup>2</sup> )              | 30                       |
| 30-300                                                         | 27.5                          | 0.073                         | 0.2                                 | 30                       |
| 300-1500                                                       | /                             | /                             | f/1500                              | 30                       |
| 1500-100,000                                                   | /                             | /                             | 1                                   | 30                       |

*f = frequency in MHz*

*\* = Plane-wave equivalent power density*

### MPE Prediction

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2$$

Where: *S* = power density

*P* = power input to antenna

*G* = power gain of the antenna in the direction of interest relative to an isotropic radiator

*R* = distance to the center of radiation of the antenna

|                                                                                         |                |
|-----------------------------------------------------------------------------------------|----------------|
| <u>Maximum rated peak output power at antenna input terminal (dBm):</u>                 | <u>36.99</u>   |
| <u>Maximum peak output power at antenna input terminal (mW):</u>                        | <u>5000</u>    |
| <u>Prediction distance (cm):</u>                                                        | <u>180</u>     |
| <u>Prediction frequency (MHz):</u>                                                      | <u>140.985</u> |
| <u>Maximum Antenna Gain, typical (dBi):</u>                                             | <u>12.1</u>    |
| <u>Maximum Antenna Gain (numeric):</u>                                                  | <u>16.218</u>  |
| <u>Power density of prediction frequency at 180 cm (mW/cm<sup>2</sup>):</u>             | <u>0.199</u>   |
| <u>MPE limit for uncontrolled exposure at prediction frequency (mW/cm<sup>2</sup>):</u> | <u>0.2</u>     |

### Conclusion

The device complies with the MPE requirements by providing a safe separation distance of at least 6 ft. (180) cm between the antenna with maximum 10 dBd (12.1 dBi) gain, including any radiating structure, and any persons when normally operated. RF exposure has been specified in the user manual.

## 5 FCC §2.1046 & §90.205 – RF Output Power

### 5.1 Applicable Standard

According to FCC §2.1046, and §90.205, (d) 150–174 MHz. (1) The maximum allowable station ERP is dependent upon the station's antenna HAAT and required service area and will be authorized in accordance with table 1. Applicants requesting an ERP in excess of that listed in table 1 must submit an engineering analysis based upon generally accepted engineering practices and standards that includes coverage contours to demonstrate that the requested station parameters will not produce coverage in excess of that which the applicant requires.

Table 1—150–174MHz—Maximum ERP/Reference HAAT for a Specific Service Area Radius

|                                       | Service area radius (km) |    |     |                  |                  |                  |                  |                  |                  |                  |
|---------------------------------------|--------------------------|----|-----|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|                                       | 3                        | 8  | 13  | 16               | 24               | 32               | 40               | 48 <sup>4</sup>  | 64 <sup>4</sup>  | 80 <sup>4</sup>  |
| Maximum ERP (w) <sup>1</sup>          | 1                        | 28 | 178 | 500 <sup>2</sup> |
| Up to reference HAAT (m) <sup>3</sup> | 15                       | 15 | 15  | 15               | 33               | 65               | 110              | 160              | 380              | 670              |

1 Maximum ERP indicated provides for a 37 dBu signal strength at the edge of the service area per FCC Report R-6602, Fig. 19 (See §73.699, Fig. 10).

2 Maximum ERP of 500 watts allowed. Signal strength at the service area contour may be less than 37 dBu.

3 When the actual antenna HAAT is greater than the reference HAAT, the allowable ERP will be reduced in accordance with the following equation:  $ERP_{allow} = ERP_{max} \times (HAAT_{ref}/HAAT_{actual})^2$ .

4 Applications for this service area radius may be granted upon specific request with justification and must include a technical demonstration that the signal strength at the edge of the service area does not exceed 37 dBu.

### 5.2 Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

### 5.3 Test Equipment List and Details

| Manufacturer | Description       | Model  | Serial Number | Calibration Date | Calibration Interval |
|--------------|-------------------|--------|---------------|------------------|----------------------|
| Agilent      | Spectrum Analyzer | E4446A | US44300386    | 2012-08-11       | 1 Year               |

**Statement of Traceability:** **BACL Corp.** attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

## 5.4 Test Environmental Conditions

|                           |           |
|---------------------------|-----------|
| <b>Temperature:</b>       | 22 °C     |
| <b>Relative Humidity:</b> | 48 %      |
| <b>ATM Pressure:</b>      | 101.6 kPa |

The testing was performed by Lionel Lara on 2012-08-27 in the RF Site.

## 5.5 Test Results

Test Mode: Transmitting GMSK with BT = 0.3 (Channel Baud Rate = 12600 bps for 12.5 kHz)

| Channel Spacing (kHz) | Frequency (MHz) | Output Power (Low) |        | Output Power (High) |        |
|-----------------------|-----------------|--------------------|--------|---------------------|--------|
|                       |                 | (dBm)              | (Watt) | (dBm)               | (Watt) |
| 12.5 kHz              | 140.985         | 29.75              | 0.94   | 37.04               | 5.06   |

Test Mode: Transmitting GMSK with BT = 0.3 (Channel Baud Rate = 4000 bps for 12.5 kHz)

| Channel Spacing (kHz) | Frequency (MHz) | Output Power (Low) |        | Output Power (High) |        |
|-----------------------|-----------------|--------------------|--------|---------------------|--------|
|                       |                 | (dBm)              | (Watt) | (dBm)               | (Watt) |
| 12.5 kHz              | 140.985         | 30.01              | 1.00   | 37.04               | 5.06   |

Test Mode: Transmitting GMSK with BT = 0.5 (Channel Baud Rate = 8400 bps for 12.5 kHz)

| Channel Spacing (kHz) | Frequency (MHz) | Output Power (Low) |        | Output Power (High) |        |
|-----------------------|-----------------|--------------------|--------|---------------------|--------|
|                       |                 | (dBm)              | (Watt) | (dBm)               | (Watt) |
| 12.5 kHz              | 140.985         | 29.87              | 0.97   | 37.05               | 5.07   |

Test Mode: Transmitting GMSK with BT = 0.5 (Channel Baud Rate = 4000 bps for 12.5 kHz)

| Channel Spacing (kHz) | Frequency (MHz) | Output Power (Low) |        | Output Power (High) |        |
|-----------------------|-----------------|--------------------|--------|---------------------|--------|
|                       |                 | (dBm)              | (Watt) | (dBm)               | (Watt) |
| 12.5 kHz              | 140.985         | 30.09              | 1.02   | 37.05               | 5.07   |

Test Mode: Transmitting GMSK with BT = 0.3 (Channel Baud Rate = 12600 bps for 12.5 kHz)

| Channel Spacing (kHz) | Frequency (MHz) | Output Power (Low) |        | Output Power (High) |        |
|-----------------------|-----------------|--------------------|--------|---------------------|--------|
|                       |                 | (dBm)              | (Watt) | (dBm)               | (Watt) |
| 12.5 kHz              | 148.945         | 29.98              | 0.99   | 37.00               | 5.01   |

Test Mode: Transmitting GMSK with BT = 0.3 (Channel Baud Rate = 4000 bps for 12.5 kHz)

| Channel Spacing (kHz) | Frequency (MHz) | Output Power (Low) |        | Output Power (High) |        |
|-----------------------|-----------------|--------------------|--------|---------------------|--------|
|                       |                 | (dBm)              | (Watt) | (dBm)               | (Watt) |
| 12.5 kHz              | 148.945         | 30.05              | 1.01   | 36.98               | 4.99   |

Test Mode: Transmitting GMSK with BT = 0.5 (Channel Baud Rate = 8400 bps for 12.5 kHz)

| Channel Spacing (kHz) | Frequency (MHz) | Output Power (Low) |        | Output Power (High) |        |
|-----------------------|-----------------|--------------------|--------|---------------------|--------|
|                       |                 | (dBm)              | (Watt) | (dBm)               | (Watt) |
| 12.5 kHz              | 148.945         | 30.09              | 1.02   | 36.98               | 4.99   |

Test Mode: Transmitting GMSK with BT = 0.5 (Channel Baud Rate = 4000 bps for 12.5 kHz)

| Channel Spacing (kHz) | Frequency (MHz) | Output Power (Low) |        | Output Power (High) |        |
|-----------------------|-----------------|--------------------|--------|---------------------|--------|
|                       |                 | (dBm)              | (Watt) | (dBm)               | (Watt) |
| 12.5 kHz              | 148.945         | 29.97              | 0.99   | 36.97               | 4.98   |

Test Mode: Transmitting GMSK with BT = 0.3 (Channel Baud Rate = 12600 bps for 12.5 kHz)

| Channel Spacing (kHz) | Frequency (MHz) | Output Power (Low) |        | Output Power (High) |        |
|-----------------------|-----------------|--------------------|--------|---------------------|--------|
|                       |                 | (dBm)              | (Watt) | (dBm)               | (Watt) |
| 12.5 kHz              | 156.03          | 30.30              | 1.07   | 36.67               | 4.65   |

Test Mode: Transmitting GMSK with BT = 0.3 (Channel Baud Rate = 4000 bps for 12.5 kHz)

| Channel Spacing (kHz) | Frequency (MHz) | Output Power (Low) |        | Output Power (High) |        |
|-----------------------|-----------------|--------------------|--------|---------------------|--------|
|                       |                 | (dBm)              | (Watt) | (dBm)               | (Watt) |
| 12.5 kHz              | 156.03          | 30.22              | 1.05   | 36.66               | 4.63   |

Test Mode: Transmitting GMSK with BT = 0.5 (Channel Baud Rate = 8400 bps for 12.5 kHz)

| Channel Spacing (kHz) | Frequency (MHz) | Output Power (Low) |        | Output Power (High) |        |
|-----------------------|-----------------|--------------------|--------|---------------------|--------|
|                       |                 | (dBm)              | (Watt) | (dBm)               | (Watt) |
| 12.5 kHz              | 156.03          | 30.33              | 1.08   | 36.66               | 4.63   |

Test Mode: Transmitting GMSK with BT = 0.5 (Channel Baud Rate = 4000 bps for 12.5 kHz)

| Channel Spacing (kHz) | Frequency (MHz) | Output Power (Low) |        | Output Power (High) |        |
|-----------------------|-----------------|--------------------|--------|---------------------|--------|
|                       |                 | (dBm)              | (Watt) | (dBm)               | (Watt) |
| 12.5 kHz              | 156.03          | 30.28              | 1.07   | 36.66               | 4.63   |

## **6 FCC §2.1047 & §90.207 – Modulation Characteristic**

---

### **6.1 Applicable Standard**

#### **FCC §2.1047 & §90.207:**

- (a) Equipment which utilizes voice modulated communication shall show the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz. for equipment which is required to have a low pass filter, the frequency response of the filter, or all of the circuitry installed between the modulation limited and the modulated stage shall be supplied.
- (b) Equipment which employs modulation limiting, a curve showing the percentage of modulation versus the modulation input voltage shall be supplied.

### **6.2 Test Result**

N/A, modulation characteristic is not required for digital modulaton.

## 7 FCC §2.1049 & §90.210 – Occupied Bandwidth & Emission Mask

### 7.1 Applicable Standard

According to FCC §90.210: *Emission Mask D—12.5 kHz channel bandwidth equipment.* For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- (1) On any frequency from the center of the authorized bandwidth  $f_0$  to 5.625 kHz removed from  $f_0$ : Zero dB.
- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency ( $f_d$  in kHz) of more than 5.625 kHz but no more than 12.5 kHz: At least  $7.27(f_d - 2.88 \text{ kHz})$  dB.
- (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency ( $f_d$  in kHz) of more than 12.5 kHz: At least  $50 + 10 \log (P)$  dB or 70 dB, whichever is the lesser attenuation.

### 7.2 Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 100 Hz and the spectrum was recorded in the frequency band  $\pm 50 \text{ kHz}$  from the carrier frequency.

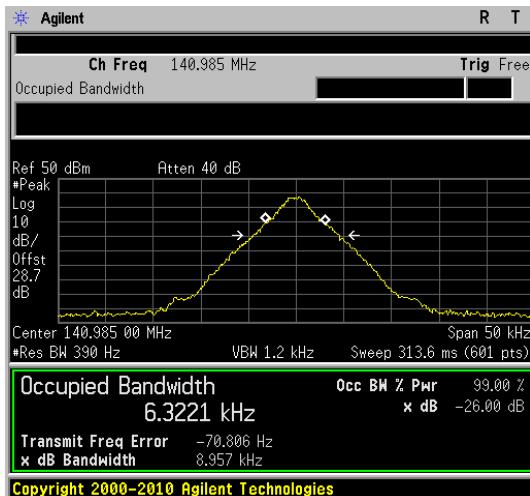
### 7.3 Test Equipment List and Details

| Manufacturer | Description       | Model  | Serial Number | Calibration Date | Calibration Interval |
|--------------|-------------------|--------|---------------|------------------|----------------------|
| Agilent      | Spectrum Analyzer | E4446A | US44300386    | 2012-08-11       | 1 Year               |

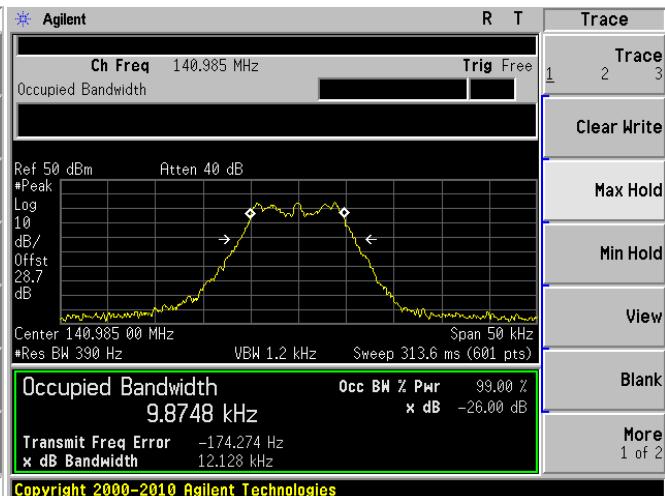
*Statement of Traceability:* **BACL Corp.** attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

### 7.4 Test Environmental Conditions

|                           |           |
|---------------------------|-----------|
| <b>Temperature:</b>       | 22 °C     |
| <b>Relative Humidity:</b> | 48 %      |
| <b>ATM Pressure:</b>      | 101.6 kPa |


The testing was performed by Lionel Lara on 2012-08-27 in the RF Site.

### 7.5 Test Results


Please refer to the hereinafter plots.

**Occupied Bandwidth (High Power Level)**

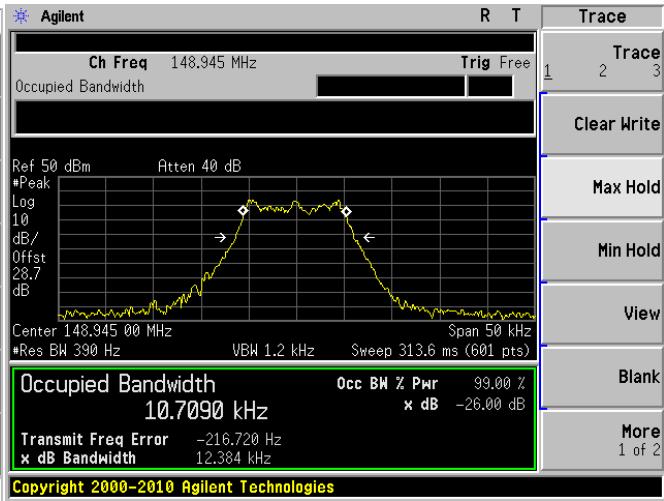
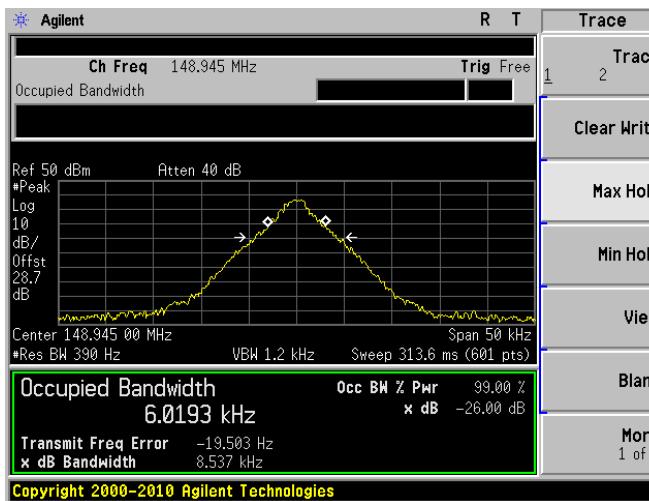
140.985 MHz, Modulation: GMSK with BT = 0.3,  
Channel Baud Rate: 12600 bps, 12.5 kHz



140.985 MHz, Modulation: GMSK with BT = 0.3,  
Channel Baud Rate: 4000 bps, 12.5 kHz

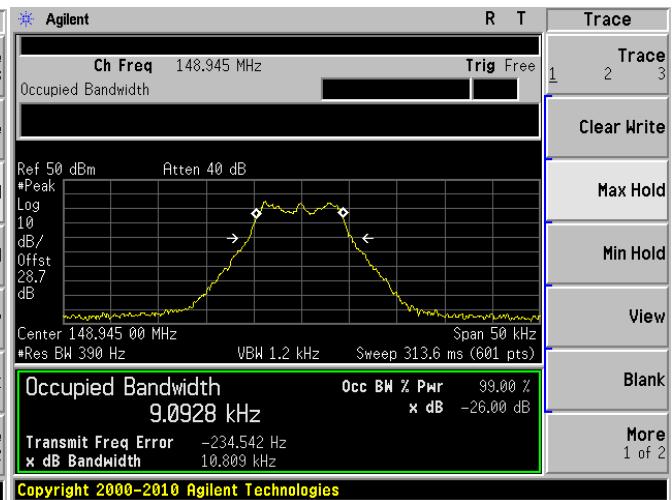
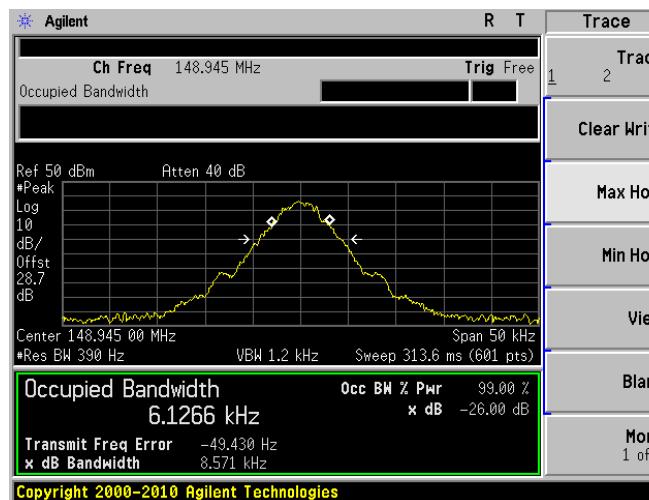


140.985 MHz, Modulation: GMSK with BT = 0.5,  
Channel Baud Rate: 8400 bps, 12.5 kHz

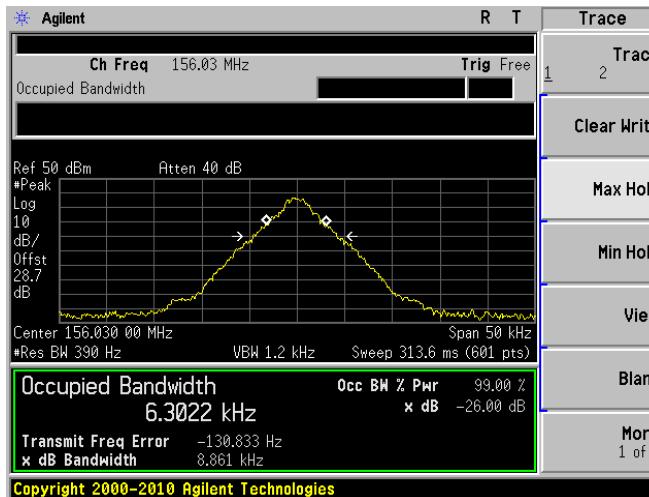




140.985 MHz, Modulation: GMSK with BT = 0.5,  
Channel Baud Rate: 4000 bps, 12.5 kHz

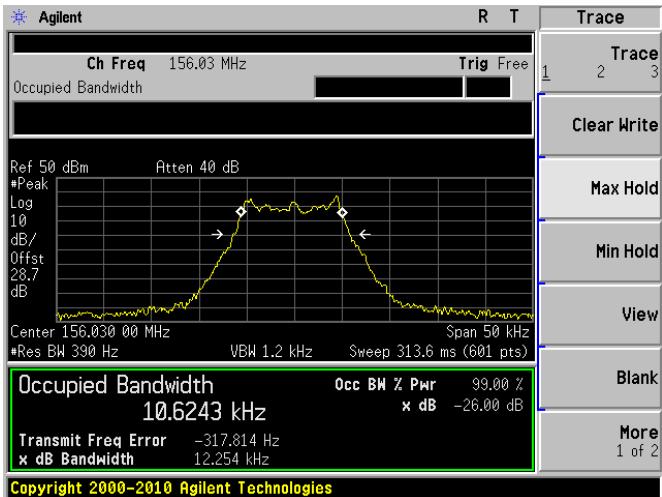




148.945 MHz, Modulation: GMSK with BT = 0.3,  
Channel Baud Rate: 12600 bps, 12.5 kHz

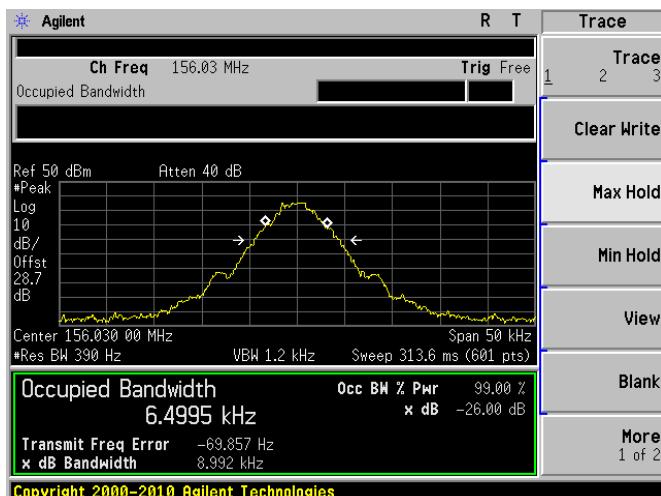
148.945 MHz, Modulation: GMSK with BT = 0.3,  
Channel Baud Rate: 4000 bps, 12.5 kHz



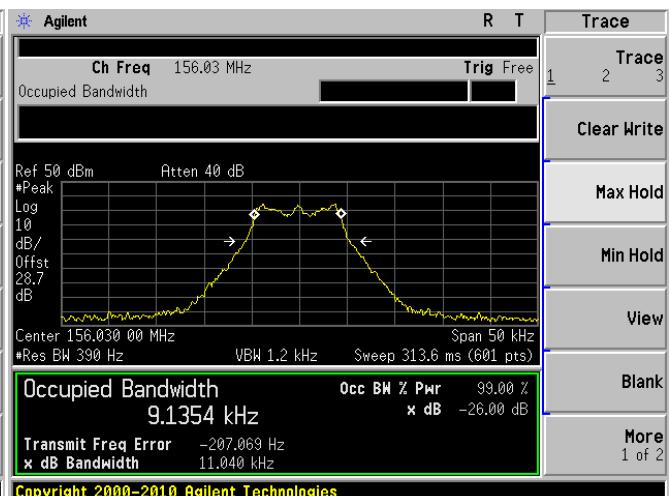

148.945 MHz, Modulation: GMSK with BT = 0.5,  
Channel Baud Rate: 8400 bps, 12.5 kHz


148.945 MHz, Modulation: GMSK with BT = 0.5,  
Channel Baud Rate: 4000 bps, 12.5 kHz




156.03 MHz, Modulation: GMSK with BT = 0.3,  
Channel Baud Rate: 12600 bps, 12.5 kHz

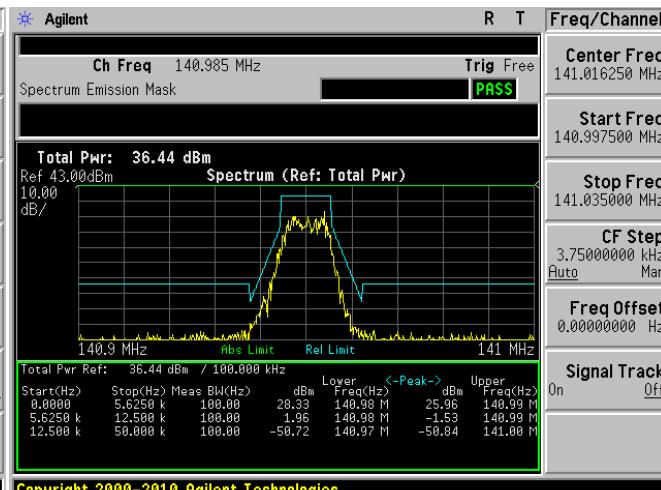
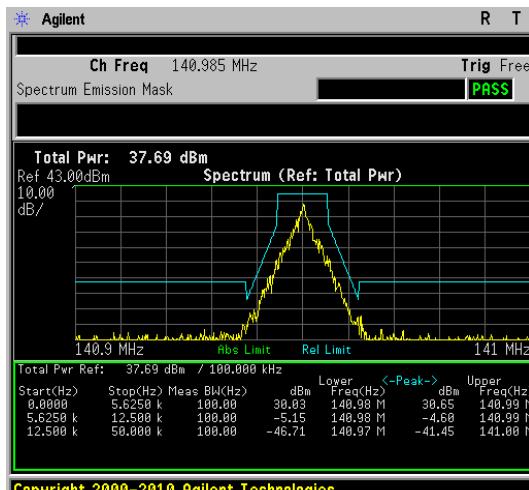



156.03 MHz, Modulation: GMSK with BT = 0.3,  
Channel Baud Rate: 4000 bps, 12.5 kHz



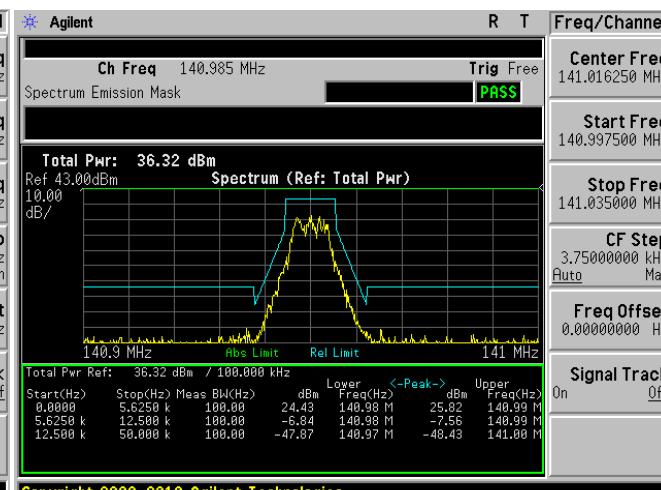
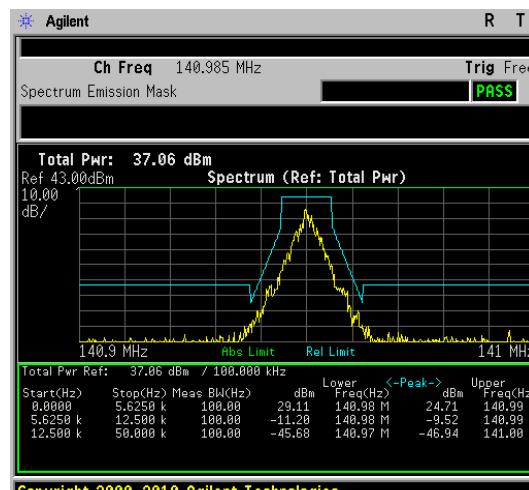
156.03 MHz, Modulation: GMSK with BT = 0.5,  
Channel Baud Rate: 8400 bps, 12.5 kHz





156.03 MHz, Modulation: GMSK with BT = 0.5,  
Channel Baud Rate: 4000 bps, 12.5 kHz

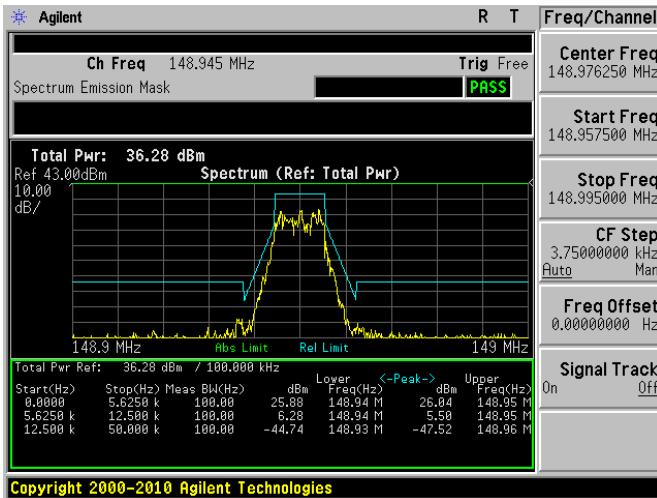
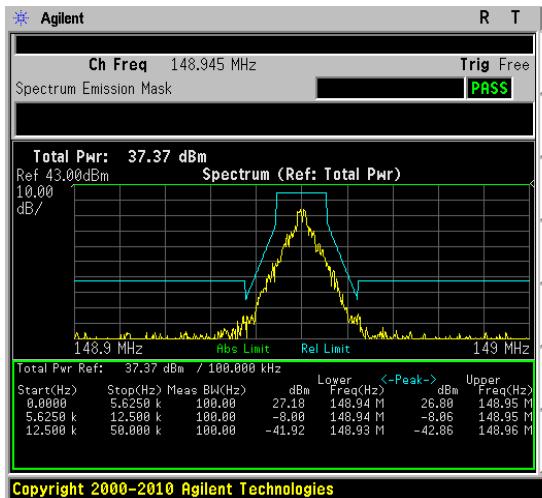


**Emission Mask (High Power Level)**



140.985 MHz, Modulation: GMSK with BT = 0.3,  
Channel Baud Rate: 12600 bps, 12.5 kHz

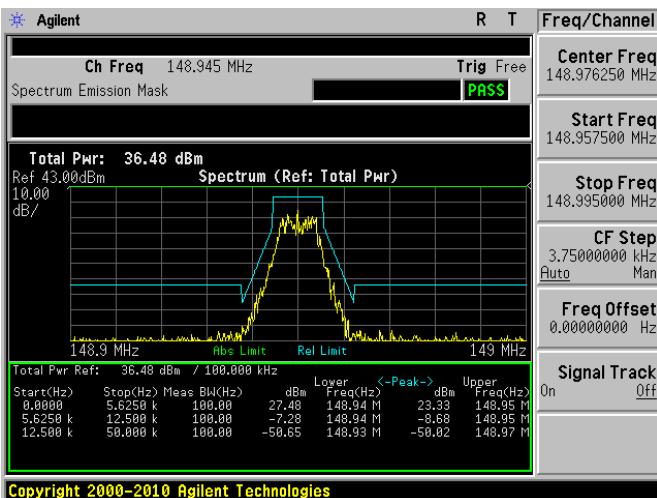
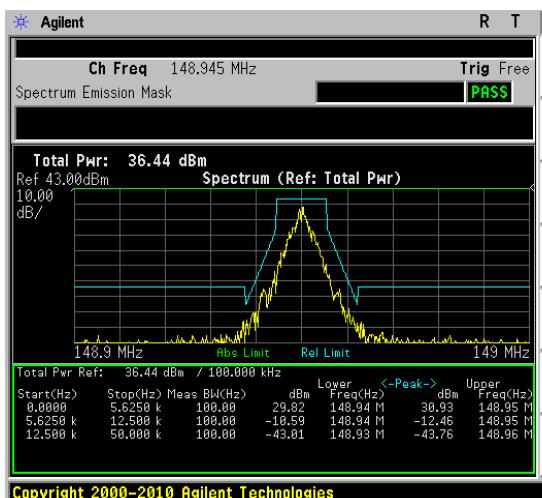
140.985 MHz, Modulation: GMSK with BT = 0.3,  
Channel Baud Rate: 4000 bps, 12.5 kHz



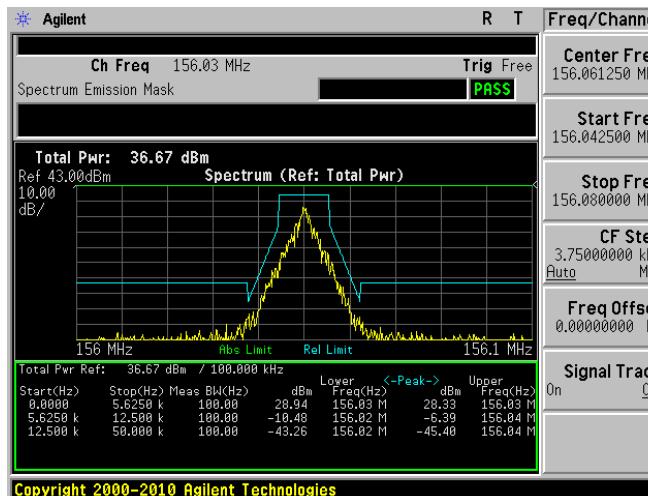


140.985 MHz, Modulation: GMSK with BT = 0.5,  
Channel Baud Rate: 8400 bps, 12.5 kHz

140.985 MHz, Modulation: GMSK with BT = 0.5,  
Channel Baud Rate: 4000 bps, 12.5 kHz

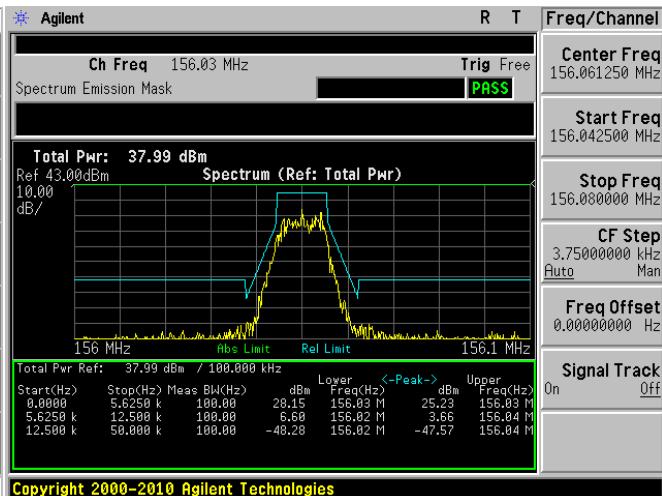




148.945 MHz, Modulation: GMSK with BT = 0.3,  
Channel Baud Rate: 12600 bps, 12.5 kHz

148.945 MHz, Modulation: GMSK with BT = 0.3,  
Channel Baud Rate: 4000 bps, 12.5 kHz



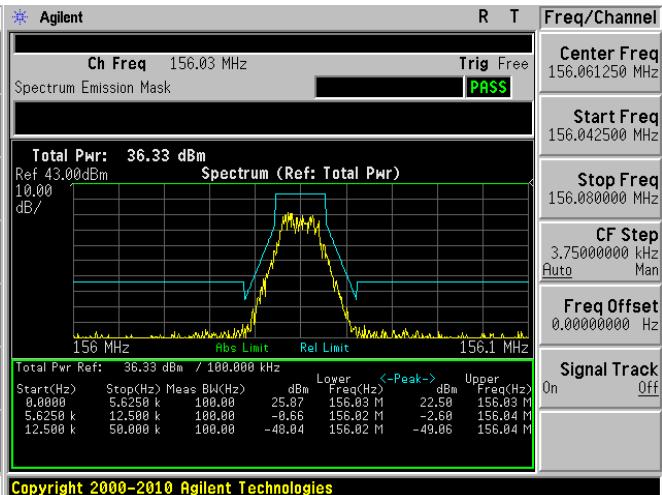

148.945 MHz, Modulation: GMSK with BT = 0.5,  
Channel Baud Rate: 8400 bps, 12.5 kHz


148.945 MHz, Modulation: GMSK with BT = 0.5,  
Channel Baud Rate: 4000 bps, 12.5 kHz



156.03 MHz, Modulation: GMSK with BT = 0.3,  
Channel Baud Rate: 12600 bps, 12.5 kHz




156.03 MHz, Modulation: GMSK with BT = 0.3,  
Channel Baud Rate: 4000 bps, 12.5 kHz



156.03 MHz, Modulation: GMSK with BT = 0.5,  
Channel Baud Rate: 8400 bps, 12.5 kHz



156.03 MHz, Modulation: GMSK with BT = 0.5,  
Channel Baud Rate: 4000 bps, 12.5 kHz



## 8 FCC §2.1051 & §90.210 - Spurious Emissions at Antenna Terminals

### 8.1 Applicable Standard

According to FCC §90.210: On any frequency removed from the center of the authorized bandwidth by a displacement frequency ( $f_d$  in kHz) of more than 12.5 kHz: At least  $50 + 10 \log (P)$  dB or 70 dB, whichever is the lesser attenuation.

### 8.2 Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz. Sufficient scans were taken to show any out of band emissions up to 10<sup>th</sup> harmonic.

### 8.3 Test Equipment List and Details

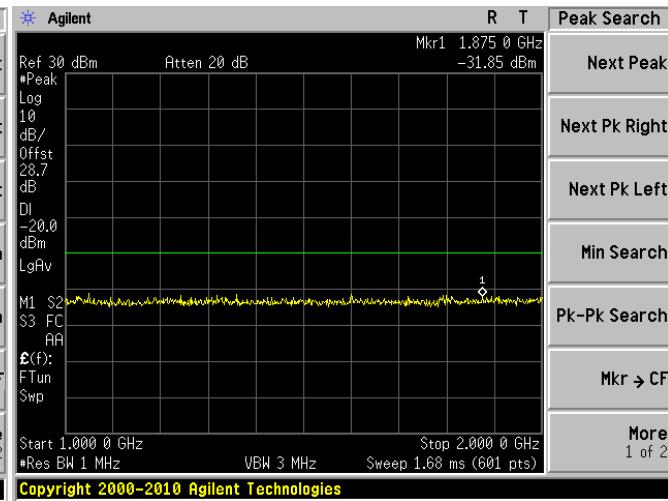
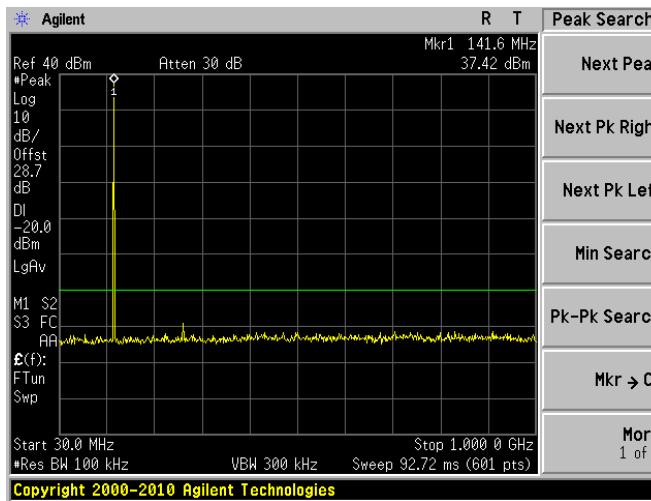
| Manufacturer | Description       | Model  | Serial Number | Calibration Date | Calibration Interval |
|--------------|-------------------|--------|---------------|------------------|----------------------|
| Agilent      | Spectrum Analyzer | E4446A | US44300386    | 2012-08-11       | 1 Year               |

**Statement of Traceability:** *BACL Corp.* attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

### 8.4 Test Environmental Conditions

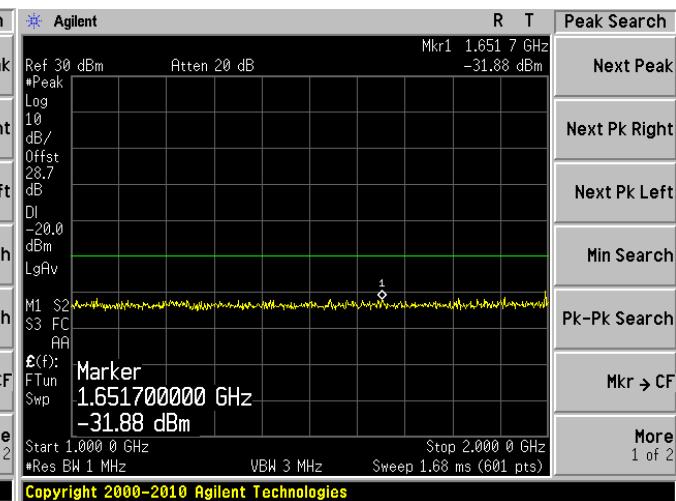
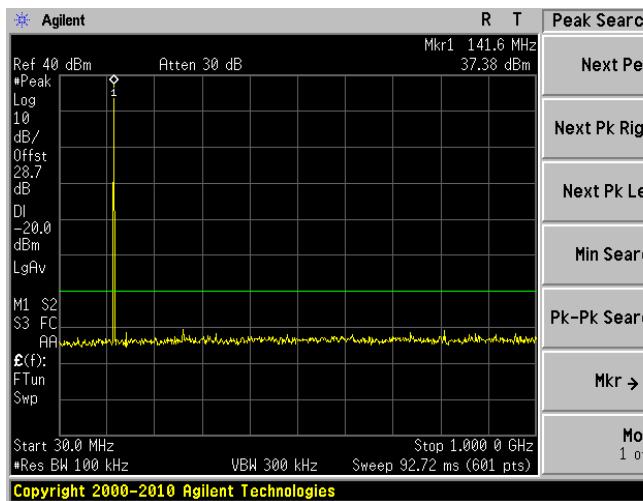
|                           |           |
|---------------------------|-----------|
| <b>Temperature:</b>       | 22 °C     |
| <b>Relative Humidity:</b> | 48 %      |
| <b>ATM Pressure:</b>      | 101.6 kPa |

The testing was performed by Lionel Lara on 2012-08-27 in the RF Site.



### 8.5 Test Results

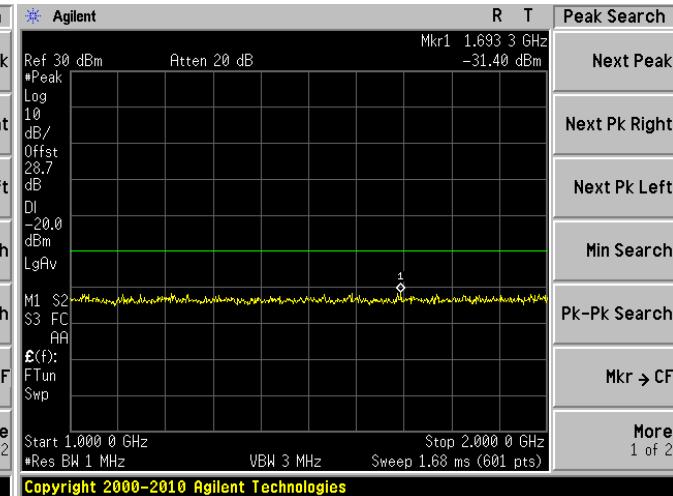
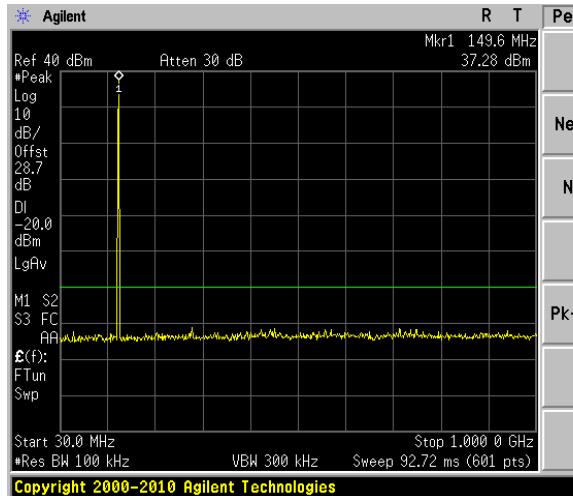
Please refer to the hereinafter plots.

**High Power**



140.985 MHz, Modulation: GMSK with BT = 0.3,  
 Channel Baud Rate: 12600 bps, 12.5 kHz  
 30 MHz to 1 GHz

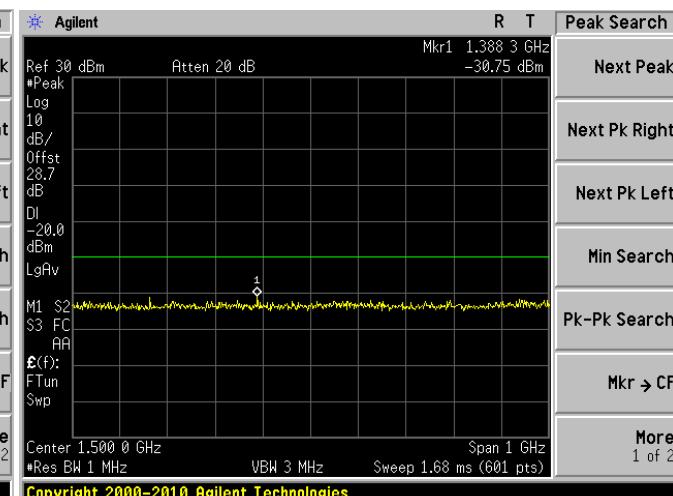
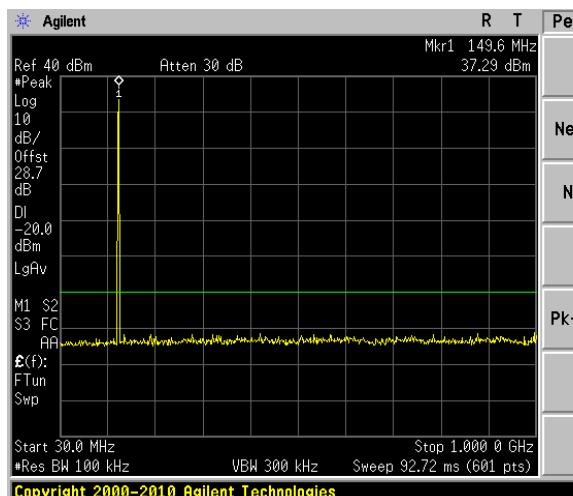
140.985 MHz, Modulation: GMSK with BT = 0.3,  
 Channel Baud Rate: 12600 bps, 12.5 kHz  
 1GHz to 2 GHz





140.985 MHz, Modulation: GMSK with BT = 0.3,  
 Channel Baud Rate: 4000 bps, 12.5 kHz  
 30 MHz to 1 GHz

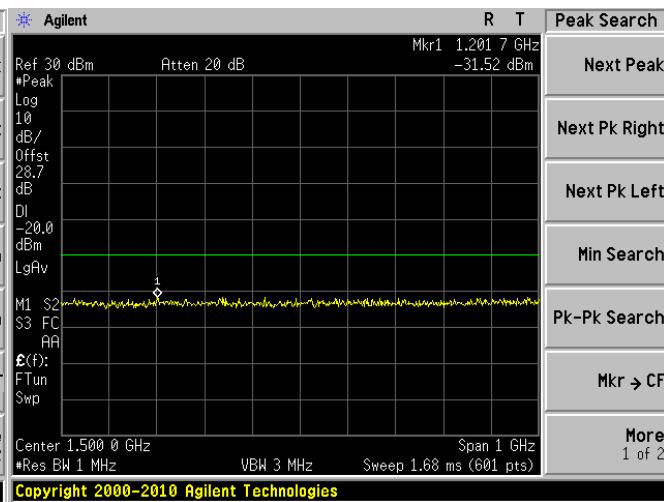
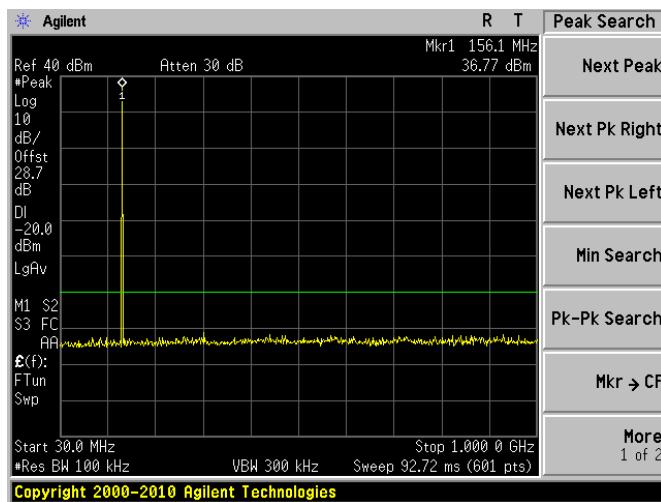
140.985 MHz, Modulation: GMSK with BT = 0.3,  
 Channel Baud Rate: 4000 bps, 12.5 kHz  
 1GHz to 2 GHz





148.945 MHz, Modulation: GMSK with BT = 0.3,  
 Channel Baud Rate: 12600 bps, 12.5 kHz  
 30 MHz to 1 GHz

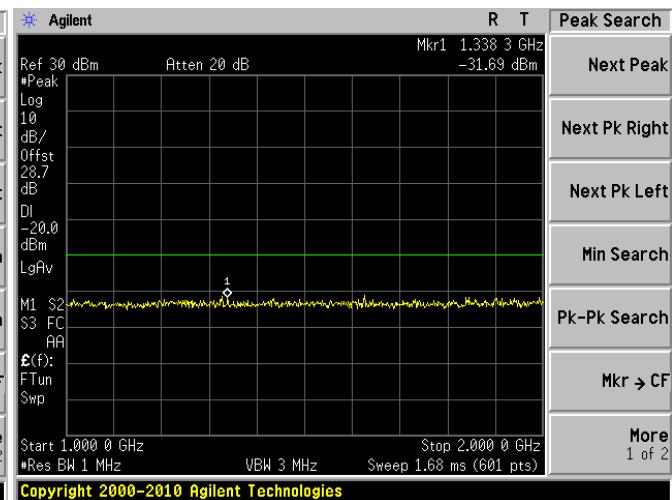
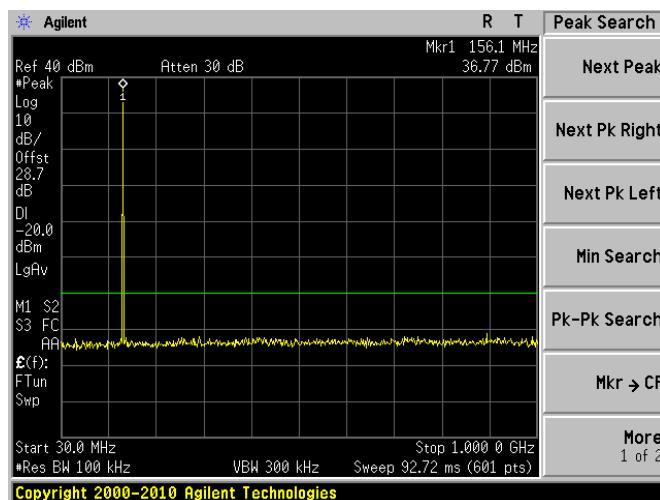
148.945 MHz, Modulation: GMSK with BT = 0.3,  
 Channel Baud Rate: 12600 bps, 12.5 kHz  
 1GHz to 2 GHz





148.945 MHz, Modulation: GMSK with BT = 0.3,  
 Channel Baud Rate: 4000 bps, 12.5 kHz  
 30 MHz to 1 GHz

148.945 MHz, Modulation: GMSK with BT = 0.3,  
 Channel Baud Rate: 4000 bps, 12.5 kHz  
 1GHz to 2 GHz





156.03 MHz, Modulation: GMSK with BT = 0.3,  
Channel Baud Rate: 12600 bps, 12.5 kHz  
30 MHz to 1 GHz

156.03 MHz, Modulation: GMSK with BT = 0.3,  
Channel Baud Rate: 12600 bps, 12.5 kHz  
1GHz to 2 GHz



156.03 MHz, Modulation: GMSK with BT = 0.3,  
Channel Baud Rate: 4000 bps, 12.5 kHz  
30 MHz to 1 GHz

156.03 MHz, Modulation: GMSK with BT = 0.3,  
Channel Baud Rate: 4000 bps, 12.5 kHz  
1GHz to 2 GHz



## 9 FCC §2.1055 (d) & §90.213 - Frequency Stability

### 9.1 Applicable Standard

FCC §2.1055, §90.213

| Minimum Frequency Stability |                         |                           |                              |
|-----------------------------|-------------------------|---------------------------|------------------------------|
|                             |                         | Mobile stations           |                              |
| Frequency range (MHz)       | Fixed and base stations | Over 2 watts output power | 2 watts or less output power |
| Below 25                    | 1,2,3 <sup>100</sup>    | 100                       | 200                          |
| 25–50                       | 20                      | 20                        | 50                           |
| 72–76                       | 5                       |                           | 50                           |
| 150–174                     | 5,11 <sup>15</sup>      | 6 <sup>5</sup>            | 4, <sup>6</sup> 50           |
| 216–220                     | 1.0                     |                           | 1.0                          |
| 220–222 <sup>12</sup>       | 0.1                     | 1.5                       | 1.5                          |
| 421–512                     | 7,11, <sup>14</sup> 2.5 | 8 <sup>5</sup>            | 8 <sup>5</sup>               |
| 806–809                     | 14 <sup>1</sup> 0.1     | 1.5                       | 1.5                          |
| 809–824                     | 14 <sup>1</sup> 5       | 2.5                       | 2.5                          |
| 851–854                     | 1.0                     | 1.5                       | 1.5                          |
| 854–869                     | 1.5                     | 2.5                       | 2.5                          |
| 896–901                     | 14 <sup>0</sup> 1       | 1.5                       | 1.5                          |
| 902–928                     | 2.5                     | 2.5                       | 2.5                          |
| 902–928 <sup>13</sup>       | 2.5                     | 2.5                       | 2.5                          |
| 929–930                     | 1.5                     |                           |                              |
| 935–940                     | 0.1                     | 1.5                       | 1.5                          |
| 1427–1435                   | 9 <sup>3</sup> 00       | 300                       | 300                          |
| Above 2450 <sup>10</sup>    |                         |                           |                              |

6 In the 150–174 MHz band, mobile stations designed to operate with a 12.5 kHz channel bandwidth or designed to operate on a frequency specifically designated for itinerant use or designed for low-power operation of two watts or less, must have a frequency stability of 5.0 ppm. Mobile stations designed to operate with a 6.25 kHz channel bandwidth must have a frequency stability of 2.0 ppm.

### 9.2 Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to the Spectrum Analyzer via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the Spectrum Analyzer.

Frequency Stability vs. Voltage: An external variable DC power supply Source. The voltage was set to 115% and 85% of the nominal value. The output frequency was recorded for each voltage.

### 9.3 Test Equipment List and Details

| Manufacturer | Description       | Model   | Serial Number | Calibration Date | Calibration Interval |
|--------------|-------------------|---------|---------------|------------------|----------------------|
| Agilent      | Spectrum Analyzer | E4446A  | US44300386    | 2012-08-11       | 1 Year               |
| ESPEC        | Humidity Chamber  | ESL-4CA | 18010         | 2012-02-10       | 1 Year               |

**Statement of Traceability:** **BACL Corp.** attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

### 9.4 Test Environmental Conditions

|                           |           |
|---------------------------|-----------|
| <b>Temperature:</b>       | 21 °C     |
| <b>Relative Humidity:</b> | 51 %      |
| <b>ATM Pressure:</b>      | 101.4 kPa |

The testing was performed by Lionel Lara on 2012-08-29 in the RF Site.

### 9.5 Test Results

CW, 156.03 MHz

| Test Condition        |                  | Reference Frequency (MHz) | Measured Frequency (MHz) | Frequency Error (PPM) | Limit (PPM) |
|-----------------------|------------------|---------------------------|--------------------------|-----------------------|-------------|
| Voltage (Vdc)         | Temperature (°C) | Frequency vs. Temperature |                          |                       |             |
| 13.8                  | 60               | 156.03                    | 156.0299                 | -0.63                 | ± 5         |
| 13.8                  | 50               | 156.03                    | 156.02989                | -0.72                 | ± 5         |
| 13.8                  | 40               | 156.03                    | 156.02991                | -0.58                 | ± 5         |
| 13.8                  | 30               | 156.03                    | 156.02994                | -0.37                 | ± 5         |
| 13.8                  | 20               | 156.03                    | 156.02997                | -0.22                 | ± 5         |
| 13.8                  | 10               | 156.03                    | 156.02999                | -0.06                 | ± 5         |
| 13.8                  | 0                | 156.03                    | 156.02998                | -0.14                 | ± 5         |
| 13.8                  | -10              | 156.03                    | 156.02995                | -0.31                 | ± 5         |
| 13.8                  | -20              | 156.03                    | 156.02996                | -0.26                 | ± 5         |
| 13.8                  | -30              | 156.03                    | 156.03002                | 0.11                  | ± 5         |
| Frequency vs. Voltage |                  |                           |                          |                       |             |
| 24.0                  | 20               | 156.03                    | 156.02997                | -0.18                 | ± 5         |
| 11.7                  | 20               | 156.03                    | 156.02997                | -0.22                 | ± 5         |

## 10 FCC §2.1053 & §90.210 – Field Strength of Spurious Radiation

### 10.1 Applicable Standard

According to FCC §90.210: On any frequency removed from the center of the authorized bandwidth by a displacement frequency ( $f_d$  in kHz) of more than 12.5 kHz: At least  $50 + 10 \log (P)$  dB or 70 dB, whichever is the lesser attenuation.

### 10.2 Test Procedure

The transmitter was placed on Styrofoam on the turntable, and it was normal transmitting with 50ohm termination which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB =  $10 \lg (\text{TXpwr in Watts}/0.001)$  – the absolute level

### 10.3 Test Equipment List and Details

| Manufacturer       | Description         | Model     | Serial Number | Calibration Date | Calibration Interval |
|--------------------|---------------------|-----------|---------------|------------------|----------------------|
| Agilent            | Spectrum Analyzer   | E4446A    | US44300386    | 2012-08-11       | 1 Year               |
| Sunol Science Corp | System Controller   | SC99V     | 113005-1      | N/R              | N/A                  |
| Sunol Science Corp | Combination Antenna | JB1       | A013105-3     | 2012-07-24       | 1 Year               |
| EMCO               | Horn antenna        | 3115      | 9511-4627     | 2011-10-03       | 1 Year               |
| Hewlett Packard    | Pre amplifier       | 8447D     | 2944A06639    | 2012-06-09       | 1 Year               |
| Mini-Circuits      | Pre Amplifier       | ZVA-183-S | 570400946     | 2012-05-09       | 1 Year               |

*Statement of Traceability:* BACL attests that all calibrations have been performed per the A2LA requirements, traceable to NIST.

### 10.4 Test Environmental Conditions

|                           |           |
|---------------------------|-----------|
| <b>Temperature:</b>       | 22 °C     |
| <b>Relative Humidity:</b> | 52 %      |
| <b>ATM Pressure:</b>      | 101.1 kPa |

The testing was performed by Lionel Lara on 2012-08-30 in 5 meter chamber 3.

## 10.5 Test Results

Worst Margin: **-29.33 dB at 446.835 MHz** in the **Horizontal** polarization.

Please see following table for detailed results.

High Power, 156.03 MHz

| Indicated      |                | Turntable<br>Azimuth<br>Degrees | Test Antenna   |                | Substituted    |                |                           |                       |                            | Limit<br>(dBm) | Margin<br>(dB) |
|----------------|----------------|---------------------------------|----------------|----------------|----------------|----------------|---------------------------|-----------------------|----------------------------|----------------|----------------|
| Freq.<br>(MHz) | Amp.<br>(dBuV) |                                 | Height<br>(cm) | Polar<br>(H/V) | Freq.<br>(MHz) | Level<br>(dBm) | Antenna<br>Cord.<br>(dBi) | Cable<br>Loss<br>(dB) | Absolute<br>Level<br>(dBm) |                |                |
| 312.06         | 40.75          | 273                             | 171            | H              | 312.06         | -63.72         | 0                         | 0.4                   | -64.12                     | -20            | -44.12         |
| 312.06         | 44.46          | 172                             | 131            | V              | 312.06         | -60.01         | 0                         | 0.4                   | -60.41                     | -20            | -40.41         |
| 468.09         | 54.49          | 106                             | 274            | H              | 468.09         | -48.73         | 0                         | 0.6                   | -49.33                     | -20            | -29.33         |
| 468.09         | 52.68          | 18                              | 159            | V              | 468.09         | -50.54         | 0                         | 0.6                   | -51.14                     | -20            | -31.14         |
| 744.725        | 37.64          | 0                               | 211            | H              | 744.725        | -61.68         | 0                         | 0.8                   | -62.48                     | -20            | -42.48         |
| 744.725        | 34.32          | 0                               | 126            | V              | 744.725        | -65.00         | 0                         | 0.8                   | -65.8                      | -20            | -45.80         |

## 11 FCC §90.214 - Transient Frequency Behavior

### 11.1 Applicable Standard

FCC §90.214: Transmitters designed to operate in the 150–174 MHz and 421–512 MHz frequency bands must maintain transient frequencies within the maximum frequency difference limits during the time intervals indicated:

| Time intervals <sup>1,2</sup>                                                       | Maximum frequency difference <sup>3</sup> | All equipment  |
|-------------------------------------------------------------------------------------|-------------------------------------------|----------------|
|                                                                                     |                                           | 150 to 174 MHz |
| Transient Frequency Behavior for Equipment Designed to Operate on 25 kHz Channels   |                                           |                |
| $t_1$ <sup>4</sup>                                                                  | ± 25.0 kHz                                | 5.0 ms         |
| $t_2$                                                                               | ± 12.5 kHz                                | 20.0 ms        |
| $t_3$ <sup>4</sup>                                                                  | ± 25.0 kHz                                | 5.0 ms         |
| Transient Frequency Behavior for Equipment Designed to Operate on 12.5 kHz Channels |                                           |                |
| $t_1$ <sup>4</sup>                                                                  | ± 12.5 kHz                                | 5.0 ms         |
| $t_2$                                                                               | ± 6.25 kHz                                | 20.0 ms        |
| $t_3$ <sup>4</sup>                                                                  | ± 12.5 kHz                                | 5.0 ms         |

<sup>1</sup> $t_{on}$  is the instant when a 1 kHz test signal is completely suppressed, including any capture time due to phasing.

$t_1$  is the time period immediately following  $t_{on}$ .

$t_2$  is the time period immediately following  $t_1$ .

$t_3$  is the time period from the instant when the transmitter is turned off until  $t_{off}$ .

$t_{off}$  is the instant when the 1 kHz test signal starts to rise.

<sup>2</sup>During the time from the end of  $t_2$  to the beginning of  $t_3$ , the frequency difference must not exceed the limits specified in §90.213.

<sup>3</sup>Difference between the actual transmitter frequency and the assigned transmitter frequency.

<sup>4</sup>If the transmitter carrier output power rating is 6 watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period.

## 11.2 Test Procedure

TIA/EIA-603-C 2.2.19

## 11.3 Test Equipment List and Details

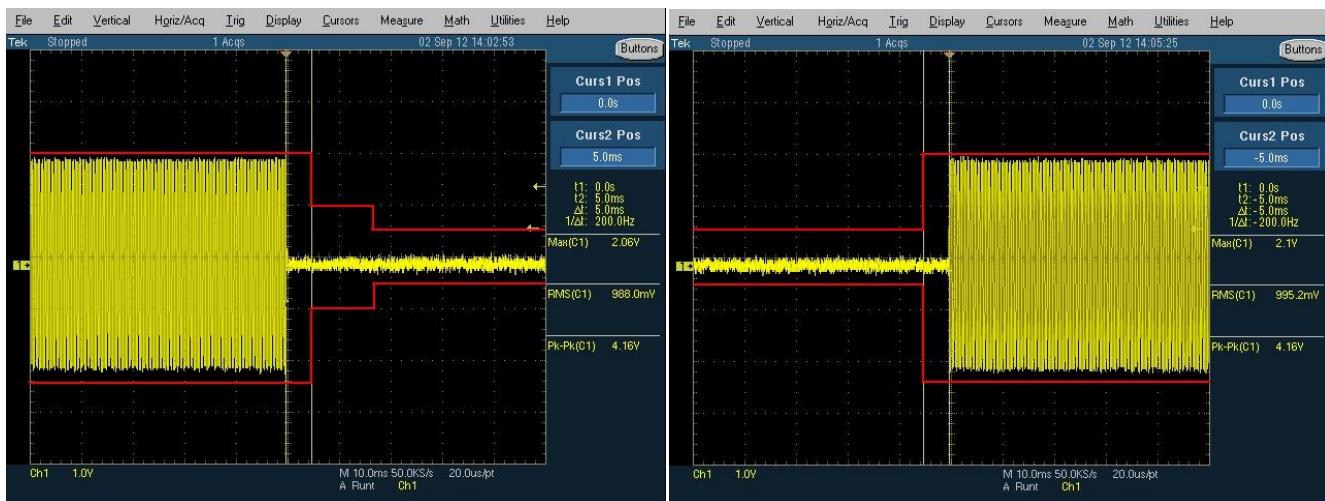
| Manufacturer | Description                   | Model   | Serial Number | Calibration Date | Calibration Interval |
|--------------|-------------------------------|---------|---------------|------------------|----------------------|
| Tektronix    | Digital Phosphor Oscilloscope | TDS7104 | B020557       | 2012-06-12       | 1 Year               |
| Agilent      | Generator, Signal             | E4438C  | MY45091309    | 2012-05-03       | 1 Year               |
| HP           | Modulation Analyzer           | 8901A   | 2026A00847    | 2012-08-08       | 1 Year               |

**Statement of Traceability:** BACL attests that all calibrations have been performed per the A2LA requirements, traceable to NIST.

## 11.4 Test Environmental Conditions

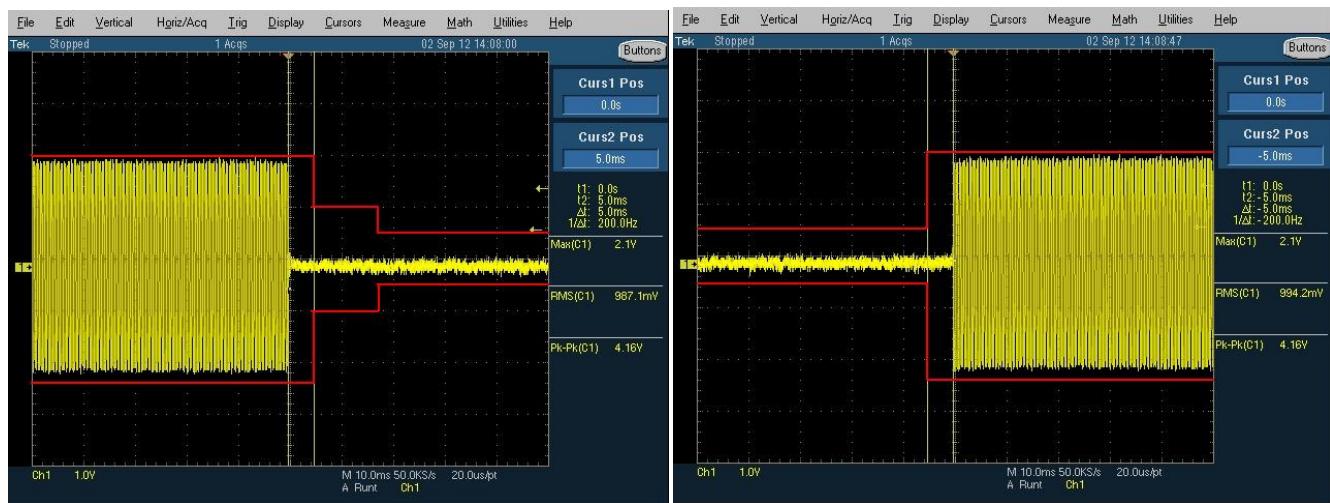
|                           |           |
|---------------------------|-----------|
| <b>Temperature:</b>       | 20 °C     |
| <b>Relative Humidity:</b> | 50 %      |
| <b>ATM Pressure:</b>      | 101.2 kPa |

The testing was performed by Lionel Lara on 2012-09-04 in the RF Site.


## 11.5 Test Results

Please refer to the hereinafter plots.

**Modulation: GMSK 0.3, 12.5 kHz**


Powering Up

Powering Down

**Modulation: GMSK 0.5, 12.5 kHz**

Powering Up

Powering Down

