

RF EXPOSURE REPORT

Report Number: R15701621-E3a

Applicant: HID Global Corporation

611 Center Ridge Dr Austin, TX 78753 USA

Model: 20V2

FCC ID : JQ6-SIGNO20V2

IC: 2236B-SIGNO20V2

EUT Description: Smartcard Reader

Test Standard(s): FCC Part 1 Subpart I

FCC Part 2 Subpart J RSS 102 ISSUE 6

Date Of Issue: 2025-07-02

Prepared by:

UL LLC

12 Laboratory Dr. Research Triangle Park, NC 27709 U.S.A.

TEL: (919) 549-1400

REPORT NO: R15701621-E3a FCC ID: JQ6-SIGNO20V2

Revision History

Rev.	Issue Date	Revisions	Revised By
V1	2025-06-09	Initial Issue	Noah Bennett
V2	2025-07-02	Revised 13.56 MHz Ratio in Section 7	Charles Moody

DATE: 2025-07-02

IC: 2236B-SIGNO20V2

TABLE OF CONTENTS

1. A	TTESTATION OF TEST RESULTS	4
2. T	EST METHODOLOGY	5
3. R	REFERENCES	5
4. F	ACILITIES AND ACCREDITATION	5
5. D	ECISION RULES AND MEASUREMENT UNCERTAINTY	5
5.1.	METROLOGICAL TRACEABILITY	5
5.2.	DECISION RULES	5
	MAXIMUM PERMISSIBLE EXPOSURE (LIMITS AND EQUATIONS)	
6.1.	FCC RULES	6
6.2.	ISED RULES	7
6.3.	EQUATIONS	8
7 R	PE EXPOSURE RESULTS	10

REPORT NO: R15701621-E3a FCC ID: JQ6-SIGNO20V2

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: HID Global Corporation

611 Center Ridge Dr Austin, TX 78753 USA

EUT DESCRIPTION: Smartcard Reader

MODEL: 20V2

SAMPLE RECEIPT DATE: 2025-03-10

DATE TESTED: 2025-03-10 thru 2025-05-01

APPLICABLE STANDARDS

STANDARD

FCC PART 1 SUBPART I & PART 2 SUBPART J Complies
RSS 102 ISSUE 6 Complies

UL LLC. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL LLC. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC. will constitute fraud and shall nullify the document.

Approved & Released For UL LLC By:

Michael Conte

Michael Antola Senior Staff Engineer Consumer, Medical and IT Segment UL LLC Prepared By:

Noah Bennett Engineer Project Associate Consumer, Medical and IT Segment UL LLC

2 MBert

TEST RESULTS

DATE: 2025-07-02

IC: 2236B-SIGNO20V2

Page 4 of 10

 UL LLC
 FORM NO: 03-EM-F00858

 12 Laboratory Dr., RTP, NC 27709
 TEL: (919) 549-1400

This report shall not be reproduced except in full, without the written approval of UL LLC.

REPORT NO: R15701621-E3a FCC ID: JQ6-SIGNO20V2

2. TEST METHODOLOGY

All calculations were made in accordance with FCC Parts 1.1310, 2.1091, 2.1093, KDB 447498 D01 v06, KDB 447498 D03 V01, IEEE Std C95.1-2005, and IEEE Std C95.3-2002, IC Safety Code 6 and RSS 102 Issue 6.

DATE: 2025-07-02

IC: 2236B-SIGNO20V2

3. REFERENCES

Refer to UL report R15701621-E5a for the 13.56 MHz test results, R15701621-E20a for the 125 kHz test results, and R15701621-E1a for the BLE test results.

4. FACILITIES AND ACCREDITATION

UL LLC is accredited by A2LA, certification # 0751.06, for all testing performed within the scope of this report. Testing was performed at the locations noted below.

	Address	ISED CABID	ISED Company Number	FCC Registration
	Building: 12 Laboratory Dr RTP, NC 27709, U.S.A	US0067	2180C	825374
X	Building: 2800 Perimeter Park Dr. Suite B Morrisville, NC 27560, U.S.A	030007	27265	625374

5. DECISION RULES AND MEASUREMENT UNCERTAINTY

5.1. METROLOGICAL TRACEABILITY

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

5.2. DECISION RULES

For all tests where the applicable $U_{LAB} \le U_{MAX}$ the Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4: 2012 Clause 8.2, where $U_{MAX} = 30\%$ (0.3) for RF Exposure evaluations. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

For all tests where the applicable $U_{LAB} > U_{MAX}$ the Decision Rule is based on Guarded Acceptance in accordance with ISO Guide 98-4: 2012 Clause 8.3.2, with a guard band equal to $(U_{LAB} - U_{MAX})$, where $U_{MAX} = 30\%$ (0.3) for RF Exposure evaluations. (Test results are adjusted by the value of the guard band to determine conformity with a specified requirement.)

Page 5 of 10

UL LLC FORM NO: 03-EM-F00858 12 Laboratory Dr., RTP, NC 27709 TEL: (919) 549-1400

6. MAXIMUM PERMISSIBLE EXPOSURE (LIMITS AND EQUATIONS)

6.1. FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

DATE: 2025-07-02

IC: 2236B-SIGNO20V2

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)						
(A) Limits for Occupational/Controlled Exposure										
0.3-3.0	614	1.63	*100	6						
3.0-30	1842/f	4.89/f	*900/f²	6						
30-300	61.4	0.163	1.0	6						
300-1,500			f/300	6						
1,500-100,000			5	6						
	(B) Limits for Gener	al Population/Uncontrolled E	xposure							
0.3-1.34	614	1.63	*100	30						
1.34-30	824/f	2.19/f	*180/f ²	30						
30-300	27.5	0.073	0.2	30						
300-1,500			f/1500	30						
1,500-100,000			1.0	30						

f = frequency in MHz

Notes:

- (1) Occupational/controlled exposure limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when a person is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.
- (2) General population/uncontrolled exposure limits apply in situations in which the general public may be exposed, or in which persons who are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure

Page 6 of 10

UL LLC FORM NO: 03-EM-F00858 12 Laboratory Dr., RTP, NC 27709 TEL: (919) 549-1400

^{* =} Plane-wave equivalent power density

6.2. **ISED RULES**

For the purpose of this standard, Innovation, Science and Economic Development (ISED) has adopted the SAR and RF field strength limits established in Health Canada's RF exposure guideline, Safety Code

Table 7: RF field strength and power density limits for devices used by the general public (uncontrolled environment)

Frequency range (MHz)	Electric field (V _{RMS} /m)	Magnetic field (A _{RMS} /m)	Power density (W/m²)	Reference period (minutes)
10-20	27.46	0.0728	2	6
20-48	58.07 / f ^{0.25}	0.1540 / f ^{0.25}	8.944 / f ^{0.5}	6
48-300	22.06	0.05852	1.291	6
300-6000	3.142 f ^{0.3417}	0.008335 f ^{0.3417}	0.02619 f ^{0.6834}	6
6000-15000	61.4	0.163	10	6
15000-150000	61.4	0.163	10	616000/f ^{1.2}
150000-300000	0.158 f ^{0.5}	4.21×10 ⁻⁴ f ^{0.5}	6.67×10 ⁻⁵ f	616000/f ^{1.2}

Note: f is frequency in MHz.

Table 8: RF field strength and power density limits for controlled-use devices (controlled environment)

Frequency range (MHz)	Electric field (V _{RMS} /m)	Magnetic field (A _{RMS} /m)	Power density (W/m²)	Reference period (minutes)
10-20	61.4	0.163	10	6
20-48	129.8 / f ^{0.25}	0.3444 / f ^{0.25}	44.72 / f ^{0.5}	6
48-100	49.33	0.1309	6.455	6
100-6000	15.60 f ^{0.25}	0.04138 f ^{0.25}	0.6455 f ^{0.5}	6
6000-15000	137	0.364	50	6
15000-150000	137	0.364	50	616000 / f ^{1.2}
150000-300000	0.354 f ^{0.5}	9.40×10 ⁻⁴ f ^{0.5}	3.33×10 ⁻⁴ f	616000 / f ^{1.2}

Note: f is frequency in MHz.

TEL: (919) 549-1400

DATE: 2025-07-02

IC: 2236B-SIGNO20V2

This report shall not be reproduced except in full, without the written approval of UL LLC.

6.3. **EQUATIONS**

POWER DENSITY

Power density is given by:

 $S = EIRP / (4 * Pi * D^2)$

Where

S = Power density in mW/cm² EIRP = Equivalent Isotropic Radiated Power in mW D = Separation distance in cm

Power density in units of mW/cm² is converted to units of W/m² by multiplying by 10.

DISTANCE

Distance is given by:

D = SQRT (EIRP / (4 * Pi * S))

Where

D = Separation distance in cm EIRP = Equivalent Isotropic Radiated Power in mW S = Power density in mW/cm²

SOURCE-BASED DUTY CYCLE

Where applicable (for example, multi-slot cell phone applications) a duty cycle factor may be applied.

Source-based time-averaged EIRP = (DC / 100) * EIRP

Where

DC = Duty Cycle in %, as applicable EIRP = Equivalent Isotropic Radiated Power in mW

DISTANCE CORRECTION

Distance correction factor to scale E-field reading from x meters to y meters is as follows:

Correction Factor = $20\log(x/y)$

Where x is the initial measurement distance and y is the desired distance.

Page 8 of 10

TEL: (919) 549-1400

DATE: 2025-07-02

IC: 2236B-SIGNO20V2

This report shall not be reproduced except in full, without the written approval of UL LLC.

MAXIMUM E-FIELD STRENGTH (dBuV/m to V/m)

To convert from dBuV/m to V/m, the following equation was used:

 $V/m = 10^{(dBuv/m - 120) / 20}$.

MIMO AND COLOCATED TRANSMITTERS (IDENTICAL LIMIT FOR ALL TRANSMITTERS)

For multiple chain devices, and colocated transmitters operating simultaneously in frequency bands where the limit is identical, the total power density is calculated using the total EIRP obtained by summing the EIRP (in linear units) of each transmitter.

Total EIRP = (EIRP1) + (EIRP2) + ... + (EIRPn)

where

EIRPx = Source-based time-averaged EIRP of chain x or transmitter x

The total EIRP is then used to calculate the Power Density or the Distance as applicable.

MIMO AND COLOCATED TRANSMITTERS (NON-IDENTICAL LIMIT FOR ALL TRANSMITTERS)

For multiple colocated transmitters operating simultaneously in frequency bands where different limits apply:

The Power Density at the specified separation distance is calculated for each transmitter chain or transmitter.

The fraction of the exposure limit is calculated for each chain or transmitter as (Power Density of chain or transmitter) / (Limit applicable to that chain or transmitter).

The fractions are summed.

Compliance is established if the sum of the fractions is less than or equal to one.

PD Ratio Sample Calculation:

PD Ratio Radio A (%) = (100 * PD Radio A / PD Limit Radio A)
PD Ratio [All Radios] (%) = PD Ratio Radio A + PD Ratio Radio B + PD Ratio Radio c/d/e/etc.

Ex:

BLE FCC PD: 0.00027 mW/cm². BLE FCC PD Limit 1 mW/cm²

BLE FCC PD Ratio (%) = 100 * 0.00027 / 1 = 0.027%

Total PD Radio (%) = 0.027% [BLE] + 3.07 % [125 kHz] + 12.5% [13.56 MHz] = 15.597 %

Page 9 of 10

FORM NO: 03-EM-F00858

DATE: 2025-07-02

IC: 2236B-SIGNO20V2

7. RF EXPOSURE RESULTS

This report contains data provided by the customer which can impact the validity of results. UL LLC is only responsible for the validity of results after the integration of the data provided by the customer.

Below is a list of the data provided by the customer:

- 1.) Antenna gain and type (See section 3)
- 2.) Maximum output power (See section 3)

Single Chain and non-colocated transmitters											
Band	Mode	Separ.	Output	Ant.	EIRP	Duty	EIRP	FCC PD	ISED PD	FCC PD	ISED PD
		Dist.	AVG	Gain		Cycle				Limit	Limit
			Power								
		(cm)	(dBm)	(dBi)	(dBm)	(%)	(mW)	(mW/cm^2)	(W/m^2)	(mW/cm^2)	(W/m^2)
2.4 GHz	BLE	20	0.75	-13.00	-12.25	100.00	0.060	0.0000119	0.000119	1.000	5.350

Multiple chain or colocated transmitters									
Band	Mode	Separ.	FCC PD	ISED PD	FCC PD	ISED PD			
		Dist.	Ratio	Ratio	Limit	Limit			
		(cm)	(%)	(%)	(%)	(%)			
2.4 GHz	BLE		0.001	0.002					
125 kHz	NFC		4.294	8.770					
13.56 MHz	NFC		23.563	51.786					
TER		20	27.858	60.558	100.000	100.000			

Notes:

- Maximum measured E-Field strength at 3 meters was converted to EIRP and compared to the FCC and ISED PD limits for 13.56MHz radios. The calculated PDs for FCC and ISED are significantly below the PD limits.
- 2. EIRP (dBm) = E (dBuV/m) + $20\log(D)$ 104.8 = 65.63 + $20\log(3)$ 104.8 = -29.628
- 3. 100% duty cycle for BLE was used to represent the absolute worst-case.
- 4. Simultaneous transmit was investigated additionally as a worst-case scenario.

END OF TEST REPORT

Page 10 of 10

 UL LLC
 FORM NO: 03-EM-F00858

 12 Laboratory Dr., RTP, NC 27709
 TEL: (919) 549-1400