

TEST REPORT

Report number : Z101C-14098 Issue date : October 17, 2014

The device, as described herewith, was tested pursuant to applicable test procedure and complies with the requirements of;

FCC Part 24 Subpart E

The test results are traceable to the international or national standards.

Applicant : KYOCERA Corporation

Equipment under test (EUT) : Mobile Phone

Model number : KYV31

FCC ID : JOYKYV31

Date of test : August 29, September 21, October 10, 2014

Test place : TÜV SÜD Zacta Ltd. Yonezawa Testing Center

4149-7 Hachimanpara 5-chome Yonezawa-shi Yamagata 992-1128 Japan

Phone: +81-238-28-2880 Fax: +81-238-28-2888

Test results : Complied

The results in this report are applicable only to the equipment tested.

This report shall not be re-produced except in full without the written approval of TÜV SÜD Zacta Ltd. This test report must not be used by client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Tested by : Larky Water all

Taiki Watanabe

Eiji Akiba

Deputy General Manager of EMC Technical Department

NVLAP LAB CODE 200306-0

NVLAP LAB CODE 200306-0

Authorized by

Table of contents

	Page
1. Summary of Test	3
1.1 Purpose of test	3
1.2 Standards	3
1.3 List of applied test to the EUT	3
1.4 Modification to the EUT by laboratory	3
2. Equipment Under Test	4
2.1 General Description of equipment	4
2.2 EUT information	
2.3 Variation of the family model(s)	5
2.4 Description of Test mode	5
3. Configuration of equipment	6
3.1 Equipment(s) used	
3.2 System configuration	6
4. Equivalent Isotropic Radiated Power	7
4.1 Measurement procedure	
4.2 Calculation method	7
4.3 Limit	7
4.4 Test data	8
5. Radiated Emissions and Harmonic Emissions	9
5.1 Measurement procedure	9
5.2 Calculation method	9
5.3 Limit	9
5.4 Test data	10
6. Uncertainty of measurement	12
7. Laboratory description	
Appendix A. Test equipment	14

1. Summary of Test

1.1 Purpose of test

It is the original test in order to verify conformance to FCC Part 24 Subpart E.

1.2 Standards

CFR47 FCC Part 24 Subpart E

1.2.1 Test Methods

ANSI/TIA/EIA-603-C-2004

1.2.2 Deviation from standards

None

1.3 List of applied test to the EUT

Test items Section	Test items	Condition	Result
2.1046	Conducted Output Power	Conducted	N/A *
24.232(c)	Effective Radiated Power Equivalent Isotropic Radiated Power	Radiated	PASS
24.232(d)	Peak to Average Ratio	Conducted	N/A *
24.238(a) 2.1049	Occupied Bandwidth	Conducted	N/A *
24.238(a) 2.1051	Band Edge Spurious and Harmonic at Antenna Terminal	Conducted	N/A *
24.238(a) 2.1053	Radiated emissions and Harmonic Emissions	Radiated	PASS
24.235 2.1055	Frequency Stability	Conducted	N/A *

^{*:} Since there is no change in Module from FCC ID: JOYKYY23, only the Radiated test items were performed.

1.3.1 Test set up

Table-Top

1.4 Modification to the EUT by laboratory

None

2. Equipment Under Test

2.1 General Description of equipment

EUT is the Mobile Phone.

2.2 EUT information

Applicant : KYOCERA Corporation

Yokohama Office 2-1-1 Kagahara, Tsuzuki-ku Yokohama-shi, Kanagawa,

Japan

Phone: +81-45-943-6253 Fax: +81-45-943-6314

Equipment under test : Mobile Phone

Trade name : Kyocera

Model number : KYV31

Serial number : N/A

EUT condition : Pre-Production

Power ratings : Battery: DC 3.8V

Size : (W) 70.4 × (D) 9.9 × (H) 141.0 mm

Environment : Indoor and Outdoor use

Terminal limitation : -20°C to 60°C

RF Specification

Frequency of : Up Link

Operation GSM1900: 1850.2-1909.8MHz

WCDMA Band II: 1852.4-1907.6MHz

Down Link

GSM1900: 1930.2-1989.8MHz WCDMA Band II: 1932.4-1987.6MHz

Modulation type : GSM1900: GMSK

WCDMA Band II: QPSK, 16QAM

Output power : GSM1900: 0.309W EIRP (24.9dBm)

WCDMA Band II: 0.537W EIRP (27.3dBm)

Antenna type : Internal antenna

Antenna gain : -0.7dBi

2.3 Variation of the family model(s)

Not applicable

2.4 Description of Test mode

The EUT had been tested under operating condition. There are three channels have been tested as following:

Band	Channel	Frequency		
	512	1850.2MHz		
GSM1900	661	1880.0MHz		
	810	1909.8MHz		
	9262	1852.4MHz		
WCDMA Band II	9400	1880.0MHz		
	9538	1907.6MHz		

The field strength of spurious emissions was measured at each position of all three axis X, Y and Z to compare the level, and the maximum noise.

The worst emission was found in Z axis and the worst case recorded.

3. Configuration of equipment

3.1 Equipment(s) used

No.	Equipment	Company	Model No.	Serial No.	FCC ID / DoC	Comment
1	Mobile Phone	KYOCERA	KYV31	N/A	JOYKYV31	EUT

3.2 System configuration

1. Mobile Phone (EUT)	

Note1: Numbers assigned to equipment or cables on this diagram correspond to the list in "3.1 Equipment(s) used".

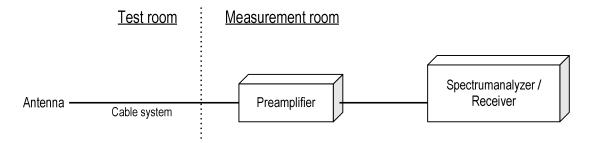
4. Equivalent Isotropic Radiated Power

4.1 Measurement procedure [FCC 24.232(c)]

<Step 1>

The EUT and support equipment are placed on a 1 meter x 1.5 meter surface, 0.8 meter height FRP table. Radiated emission measurements are performed at 3 meter distance with the broadband antenna (double ridged guide antenna). The antenna is positioned both the horizontal and vertical planes of polarization and height is varied 1 to 4 meters and stopped at height producing the maximum emission.

The bandwidth of the spectrum analyzer is set to 1MHz. The turntable is rotated by 360 degrees and stopped at azimuth of producing the maximum emission.


<Step 2>

The substitution antenna is replaced by the transmitter antenna (EUT).

The frequency of the signal generator is adjusted to the measurement frequency.

Level of the signal generator is adjusted to the level that is obtained from step 1, and record the emission level of signal generator.

- Test configuration

4.2 Calculation method

Result (EIRP) = S.G Reading – Cable loss + Antenna Gain Margin = Limit – Result (EIRP)

4.3 Limit

2 W (33dBm)

4.4 Test data

Oct. 10, 2014 Date Test personnel

22.3 [°C] 51.2 [%] Temperature

Humidity Tested by

Test place 3m Semi-anechoic chamber Taiki Watanabe

[GSM1900]

H/V	Frequency [MHz]	S.A Reading [dBm]	S.G Reading [dBm]	Cable loss [dB]	Ant.Gain [dBi]	Result [dBm]	Limit [dBm]	Margin [dB]
V	1850.2	19.2	19.6	1.1	6.0	24.5	33.0	8.5
Н	1880.0	18.8	19.9	1.1	6.2	24.9	33.0	8.1
Н	1909.8	18.5	19.6	1.1	6.3	24.8	33.0	8.2

[WCDMA Band III

[WODNA Band II]								
H/V	Frequency	S.A Reading	S.G Reading	Cable loss	Ant.Gain	Result	Limit	Margin
П/V	[MHz]	[dBm]	[dBm]	[dB]	[dBi]	[dBm]	[dBm]	[dB]
Н	1852.4	15.2	21.4	1.1	6.0	26.3	33.0	6.7
Н	1880.0	14.1	20.5	1.1	6.2	25.5	33.0	7.5
Н	1907.6	16.1	22.2	1.1	6.3	27.3	33.0	5.7

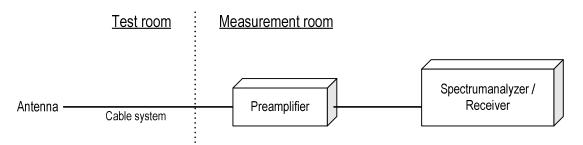
5. Radiated Emissions and Harmonic Emissions

5.1 Measurement procedure [FCC 24.238(a), 2.1053]

<Step 1>

The EUT and support equipment are placed on a 1 meter x 1.5 meter surface, 0.8 meter height FRP table. Radiated emission measurements are performed at 3 meter distance with the broadband antenna (Biconical antenna, Log periodic antenna and double ridged guide antenna). The antenna is positioned both the horizontal and vertical planes of polarization and height is varied 1 to 4 meters and stopped at height producing the maximum emission.

The bandwidth of the spectrum analyzer is set to 1MHz. The turntable is rotated by 360 degrees and stopped at azimuth of producing the maximum emission. The frequency is investigated up to 20GHz.


<Step 2>

The substitution antenna is replaced by the transmitter antenna (EUT).

The frequency of the signal generator is adjusted to the measurement frequency.

Level of the signal generator is adjusted to the level that is obtained from step 1, and record the emission level of signal generator.

- Test configuration

5.2 Calculation method

Result = S.G Reading – Cable loss + Antenna Gain Margin = Limit – Result (EIRP)

5.3 Limit

-13dBm or less

5.4 Test data

Date Aug. 29, 2014 Temperature

22.8 [°C]

Humidity 62.8 [%]

Test place 3m Semi-anechoic chamber Tested by Taiki Watanabe

Test personnel

Test personnel

Test personnel

Date Sep. 21, 2014

Temperature 22.4 [°C]

Humidity 64.3 [%]

Test place 3m Semi-anechoic chamber Tested by Taiki Watanabe

Date Oct .10, 2014

Temperature 22.3 [°C]

Humidity 51.2 [%]

Test place 3m Semi-anechoic chamber Tested by

Taiki Watanabe

[GSM1900] (Channel: 512)

LIA	Frequency	S.A Reading	S.G Reading	Cable loss	Ant.Gain	Result	Limit	Margin
H/V	[MHz] [dBi	[dBm]	[dBm]	[dB]	[dBi]	[dBm]	[dBm]	[dB]
Н	3700.4	-62.9	-67.4	1.6	9.4	-59.6	-13.0	46.6
V	3700.4	-64.9	-76.4	1.6	9.4	-68.6	-13.0	55.6
Н	5550.0	-63.6	-59.1	2.0	11.1	-49.9	-13.0	36.9
V	5550.0	-62.3	-57.4	2.0	11.1	-48.2	-13.0	35.2

(Channel: 661)

H/V	Frequency [MHz]	S.A Reading [dBm]	S.G Reading [dBm]	Cable loss [dB]	Ant.Gain [dBi]	Result [dBm]	Limit [dBm]	Margin [dB]
Н	3760.0	-63.0	-65.2	1.6	9.3	-57.5	-13.0	44.5
V	3760.0	-65.0	-72.1	1.6	9.3	-64.4	-13.0	51.4
V	5640.0	-64.2	-61.8	2.0	11.4	-52.4	-13.0	39.4

(Channel: 810)

	(- 1 1 5 1 1 1 1								
	H/V	Frequency	S.A Reading	S.G Reading	Cable loss	Ant.Gain	Result	Limit	Margin
	П/V	[MHz]	[dBm]	[dBm]	[dB]	[dBi]	[dBm]	[dBm]	[dB]
ĺ	Н	3819.6	-64.0	-67.7	1.6	9.3	-60.0	-13.0	47.0
Ī	V	3819.6	-64.3	-71.1	1.6	9.3	-63.4	-13.0	50.4
Ī	Н	5730.0	-64.9	-59.7	2.0	11.6	-50.0	-13.0	37.0
Ī	V	5730.0	-65.6	-65.7	2.0	11.6	-56.0	-13.0	43.0

[WCDMA Band II] (Channel: 9262)

_ \	Chamel Dece									
	H/V	Frequency	S.A Reading	S.G Reading	Cable loss	Ant.Gain	Result	Limit	Margin	
П/V	[MHz]	[dBm]	[dBm]	[dB]	[dBi]	[dBm]	[dBm]	[dB]		
	Н	3704.8	-66.9	-57.0	1.6	9.4	-49.2	-13.0	36.2	
	٧	3704.8	-66.6	-55.4	1.6	9.4	-47.6	-13.0	34.6	

(Channel: 9400)

H/V	Frequency [MHz]	S.A Reading [dBm]	S.G Reading [dBm]	Cable loss [dB]	Ant.Gain [dBi]	Result [dBm]	Limit [dBm]	Margin [dB]
Н	3760.0	-66.1	-55.6	1.6	9.3	-47.9	-13.0	34.9
V	3760.0	-65.0	-53.7	1.6	9.3	-46.0	-13.0	33.0

(Channel: 9538)

	(Onanii	mamen dedel							
	H/V	Frequency	S.A Reading	S.G Reading	Cable loss	Ant.Gain	Result	Limit	Margin
	П/V	[MHz]	[dBm]	[dBm]	[dB]	[dBi]	[dBm]	[dBm]	[dB]
	Н	3816.0	-57.9	-47.4	1.6	9.3	-39.7	-13.0	26.7
	V	3816.0	-63.1	-51.9	1.6	9.3	-44.2	-13.0	31.2

6. Uncertainty of measurement

Expanded uncertainties stated are calculated with a coverage Factor k=2.

Please note that these results are not taken into account when determining compliance or non-compliance with test result.

Test item	Measurement uncertainty		
Conducted emission at mains port	±3.0dB		
Radiated emission (9kHz – 30MHz)	±4.4dB		
Radiated emission (30MHz – 1000MHz)	±4.5dB		
Radiated emission (1000MHz – 26GHz)	±3.9dB		

7. Laboratory description

1. Location:

TÜV SÜD Zacta Ltd. Yonezawa Testing Center 4149-7 Hachimanpara 5-chome Yonezawa-shi Yamagata 992-1128 Japan

Phone: +81-238-28-2880 Fax: +81-238-28-2888

2. Facility filing information:

1) NVLAP accreditation: NVLAP Lab. code: 200306-0

2) VLAC accreditation: Lab. code: VLAC-013

Site name	Radiated emission	Conducted emission for mains port	Conducted emission for telecom port	Radiated emission (CMAD)	Expiry Date
3m Semi-anechoic chamber				-	
10m Semi-anechoic chamber No.1		VLAC-013		VLAC-013	Jul. 3, 2015
10m Semi-anechoic chamber No.2				VLAC-013	Jul. 3, 2013
Shielded room No.1	- VLAC-013		-		

3) FCC filing:

Site name	Registration Number	Expiry Date		
Site 3	91065	Oct.31, 2014		
3m Semi-anechoic chamber				
10m Semi-anechoic chamber No.1	540072	Feb. 20, 2017		
10m Semi-anechoic chamber No.2	540072			
Shielded room No.1				

4) Industry Canada Oats site filing:

Site name	Sites on file: Oats 3m/10m	Expiry Date	
Site 3	4224A-3		
3m Semi-anechoic chamber	4224A-4	Jan. 23, 2015	
10m Semi-anechoic chamber No.1	4224A-5		
10m Semi-anechoic chamber No.2	4224A-6	Jan. 15, 2017	

5) VCCI site filing:

Site name	Radiated emission	Conducted emission for mains port	Conducted emission for telecom port	Expiry Date	
Site 3	R-138	C-134	T-1222	Nov. 16, 2014 Nov. 28, 2014* (*:Telecom port)	
3m Semi-anechoic chamber				Jul. 3, 2015	
10m Semi-anechoic chamber No.1					
10m Semi-anechoic chamber No.2					
Shielded room No.1	-	A-0			

6) TÜV SÜD PS authorization:

Authorized as an EMC test laboratory

7) TÜV Rheinland authorization:

Authorized as an EMC test laboratory

Appendix A. Test equipment

Radiated emission

Equipment	Company	Model No.	Serial No.	Cal. Due	Cal. Date
EMI Receiver	ROHDE&SCHWARZ	ECSI	100451	Nov. 30, 2014	Nov. 16, 2013
Preamplifier	ANRITSU	MH648A	M96057	Jun. 30, 2015	Jun. 12, 2014
Loop antenna	ROHDE&SCHWARZ	HFH2-Z2	892246/010	Oct. 31, 2014	Oct. 5, 2013
Biconical antenna	Schwarzbeck	VHA9103/BBA9106	2125	May 31, 2015	May 7, 2014
Log periodic antenna	Schwarzbeck	UHALP9108A	0560	May 31, 2015	May 7, 2014
Attenuator	TME	CFA-01NPJ-6	N/A (S275)	Jun. 30, 2015	Jun. 9, 2014
Attenuator	TME	CFA-01NPJ-3	N/A (S272)	Jun. 30, 2015	Jun. 9, 2014
Spectrum analyzer	Agilent Technologies	E4440A	US44302655	May 31, 2015	May 30, 2014
Preamplifier	Agilent Technologies	8449B	3008A1008	Dec. 31, 2014	Dec. 9, 2013
Double ridged guide antenna	EMCO	3115	5205	Dec. 31, 2014	Dec. 10, 2013
Attenuator	Agilent Technologies	8491B	MY39268633	Jan. 31, 2015	Jan. 15, 2014
Broad-Band Horn Antenna	Schwarzbeck	BBHA9170	BBHA9170189	May 31, 2015	May 2, 2013
Preamplifier	TSJ	MLA-1840-B03-35	1240332	May 31, 2015	May 2, 2013
Double ridged guide antenna	EMCO	3115	4328	Jan. 31, 2015	Jan. 21, 2014
Signal generator	ROHDE&SCHWARZ	SMB100A	177525	Feb. 28, 2015	Feb. 18, 2014
Microwave cable	SUHNER	SUCOFELX102/2m	31648/2	Feb. 28, 2015	Feb. 13, 2014
High pass filter	Micro-Tronics	HPM50115	004	Jul. 31, 2015	Jul. 12, 2014
High pass filter	Wainwright	WHKX2.8/18G-6SS	1	Jul. 31, 2015	Jul. 17, 2014
Wideband radio frequency tester	ROHDE&SCHWARZ	CMW500	116338	Mar. 31, 2015	Mar. 7, 2014
		SUCOFLEX104/9m	346316/4	Oct. 31, 2015	Oct. 31, 2014
Microwave cable	SUHNER	SUCOFLEX104/1m	322084/4	Oct. 31, 2015	Oct. 31, 2014
Microwave cable	SURINER	SUCOFLEX104/1.5m	317226/4	Oct. 31, 2015	Oct. 31, 2014
		SUCOFLEX104/7m	41625/6	Oct. 31, 2015	Oct. 31, 2014
PC	DELL	DIMENSION E521	75465BX	N/A	N/A
Software	TOYO Corporation	EP5/RE-AJ	0611193/V5.3.61	N/A	N/A
3m Semi-anechoic chamber	TOKIN	N/A	N/A (9002-NSA)	May 31, 2015	May 6, 2014
3m Semi-anechoic chamber	TOKIN	N/A	N/A (9002-SVSWR)	May 31, 2015	May 6, 2014

^{*:} The calibrations of the above equipment are traceable to NIST or equivalent standards of the reference organizations.