

Page 1 of 17

EMC TEST REPORT

Report No. : TS12040085-EME

Model No. : F21-6S-TX

Issued Date: May 31, 2012

Applicant: Intercontinental Technologies, Ltd.

558-2 Plate Drive, East Dundee IL 60118 USA

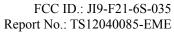
Test Method/ Standard: 47 CFR FCC Part 15.231 & ANSI C63.4 2003

Test By: Intertek Testing Services Taiwan Ltd.

No. 11, Lane 275, Ko-Nan 1 Street, Chia-Tung Li, Shiang-Shan District, Hsinchu City, Taiwan

It may be duplicated completely for legal use with the allowance of the applicant. It shall not be reproduced except in full, without the written approval of Intertek Laboratory. The test result(s) in this report only applies to the tested sample(s).

The test report was prepared by: Sign on File


Julie Wang / Senior Assistant

These measurements were taken by: Sign on File

Terry Hsu / Engineer

The test report was reviewed by:

Name Jimmy Yang Title Engineer

Table of Contents

Summary of Tests	3
1. General information	4
1.1 Identification of the EUT	4
1.2 Additional information about the EUT	4
1.3 Antenna description	5
2. Test specifications	6
2.1 Test standard	6
2.2 Operation mode	6
2.3 Test equipment	6
3. Radiated emission test FCC 15.231 (b)	7
3.1 Operating environment	7
3.2 Test setup & procedure	7
3.3 Radiated emission limit	9
3.3.1 Fundamental and harmonics emission limits	9
3.3.2 General radiated emission limit.	9
3.4 Calculation of Average Factor	10
3.5 Radiated emission test data FCC 15.231	13
3.5.1 Measurement results: Fundamental emission	13
3.5.2 Measurement results: frequencies equal to or less than 1 GHz	14
3.5.3 Measurement results: frequency above 1GHz	15
4. Measured bandwidth FCC 15.231(C)	16
5. Conducted emission FCC 15.207	17

Page 3 of 17

Summary of Tests

Test Item	Reference	Results
Timing requirement of manually operated transmitter	15.231(a)(1)	Pass
Radiated Emission test	15.231(b), 15.209	Pass
Measured bandwidth	15.231(c)	Pass
Conducted Emission test	15.231(b), 15.207	N/A

Page 4 of 17

1. General information

1.1 Identification of the EUT

Product: Industrial Radio Remote Control Transmitter

Model No.: F21-6S-TX
FCC ID.: JI9-F21-6S-035
Frequency Range: 319.1275 MHz
Channel Number: Single channel
Frequency of Each Channel: 319.1275 MHz

Access scheme: AFSK

Power Supply: DC 3 V from battery

Power Cord: N/A

Sample Received: Apr. 03, 2012

Test Date(s): May 12, 2012 ~ May 15, 2012

Note 1: This report is for the exclusive use of Intertek's Client and is

provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an

Intertek certification program.

Note 2: When determining the test conclusion, the Measurement

Uncertainty of test has been considered.

1.2 Additional information about the EUT

The EUT is Industrial Radio Remote Control Transmitter, and was defined as information technology equipment.

For more detail features, please refer to User's manual as file name "Installation guide.pdf"

Page 5 of 17

1.3 Antenna description

The EUT uses a permanently connected antenna.

Antenna Gain : $\leq 1.5 \text{ dBi}$

Antenna Type : Helical antenna

Connector Type : N/A

Page 6 of 17

2. Test specifications

2.1 Test standard

The EUT was performed according to the procedures in FCC Part 2.1053 and the requirement in FCC Part 15 Subpart C Section 15.231.

2.2 Operation mode

The EUT was transmitted continuously during the test.

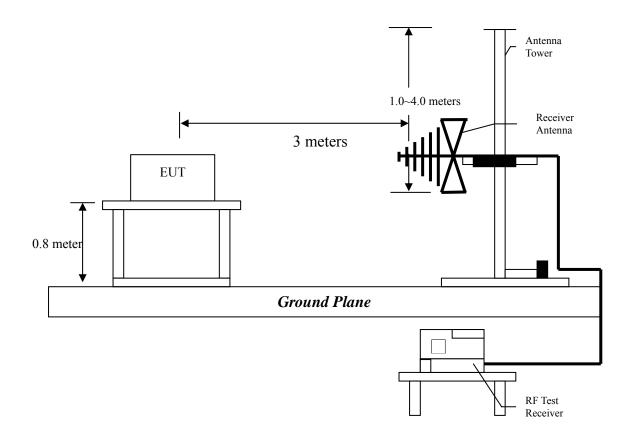
2.3 Test equipment

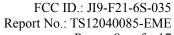
Equipment	Brand	Model No.	Serial No.	Calibration Date	Next Calibration Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100018	2011/12/6	2012/12/4
Spectrum Analyzer	Rohde&schwarz	FSP30	100137	2011/6/29	2012/6/28
Spectrum Analyzer	Rohde&schwarz	FSEK30	100186	2012/2/6	2013/2/5
Horn Antenna (1-18G)	Schwarzbeck	BBHA 9120 D	9120D-456	2010/8/31	2012/8/30
Horn Antenna (14-42G)	SHWARZBECK	BBHA 9170	BBHA9170159	2010/9/3	2012/9/2
Broadband Antenna	SCHWARZBECK	VULB 9168	9168-172	2011/7/26	2013/7/25
Pre-Amplifier	MITEQ	AFS44-00102650 42-10P-44	1495287	2011/10/27	2013/10/26
Pre-Amplifier	MITEQ	JS4-260040002 7-8A	828825	2010/9/8	2012/9/7
Power Meter	Anritsu	ML2495A	0844001	2011/10/13	2012/10/12
Power Senor	Anritsu	MA2411B	0738452	2011/10/13	2012/10/12
Temperature&Hu midity Test Chamber	TERCHY	MHU-225LRU(S A)	950838	2011/6/17	2012/6/16
Two-Line V-Network	Rohde&schwarz	ESH3-Z5	838979/014	2011/10/19	2012/10/18

Note: The above equipments are within the valid calibration period.

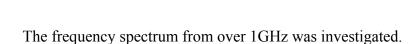
Page 7 of 17

3. Radiated emission test FCC 15.231 (b)

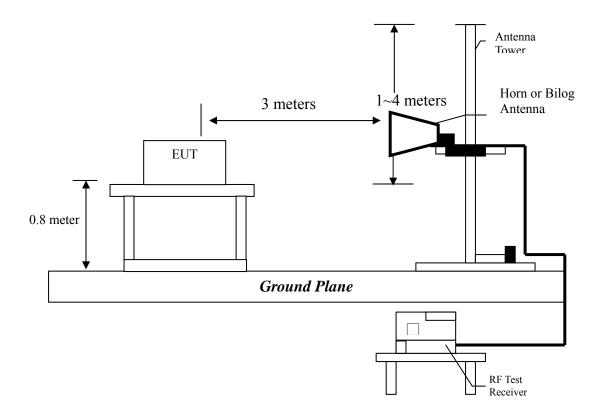

3.1 Operating environment


Temperature: 24 °C Relative Humidity: 55 % Atmospheric Pressure 1008 hPa

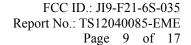
3.2 Test setup & procedure


The Diagram below shows the test setup, which is utilized to make these measurements.

The frequency spectrum from 30MHz to 1000MHz was investigated.



Page 8 of 17


Intertek

The signal is maximized through rotation and placement in the three orthogonal axes. Radiated emission measurements were performed from 30 MHz to 25 GHz. Spectrum Analyzer Resolution Bandwidth is 100 kHz or greater for frequencies 30 MHz to 1 GHz, 1MHz – for frequencies above 1 GHz.

The EUT for testing is arranged on a fiberglass turntable. If some peripherals apply to the EUT, the peripherals will be connected to EUT and the whole system. During the test, all cables were arranged to produce worst-case emissions. The signal is maximized through rotation. The height of antenna and polarization is changing constantly for exploring for maximum signal level. The height of antenna can be up to 4 meters and down to 1 meter.

The measurement for radiated emission will be done at the distance of three meters unless the signal level is too low to measure at that distance. In the case of the reading under noise floor, a pre-amplifier is used and/or the test is conducted at a closer distance. And then all readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance.

The signal is maximized through rotation and placement in the three orthogonal axes.

X axis Y axis Z axis

After verifying three axes, we found the maximum electromagnetic field was occurred at Z axis. The final test data was executed under this configuration.

The EUT configuration please refer to the "Spurious set-up photo.pdf".

3.3 Radiated emission limit

3.3.1 Fundamental and harmonics emission limits

Frequency (MHz)	Field Strength	of Fundamental	Field Strength of Harmonics		
1	(uV/m@3 m)	(dBuV/m@3 m)	(uV/m@3 m)	(dBuV/m@3 m)	
319.1275	62158.4248	95.87	6215.8425	75.87	

3.3.2 General radiated emission limit

The spurious Emission shall test through the 10th harmonic. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Frequency	15.209 Limits
MHz	$(dB\mu V/m@3m)$
30-88	40
88-216	43.5
216-960	46
Above 960	54

Remark:

- 1. In the above table, the tighter limit applies at the band edges.
- 2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system

Page 10 of 17

Measurement uncertainty was calculated in accordance with TR 100 028-1.

Parameter	Uncertainty
Radiated Emission	±5.056 dB
Conducted Emission	±2.786 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k=2.

3.4 Calculation of Average Factor

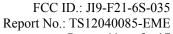
The specification for output field strengths in accordance with the FCC rules specify measurements with an average detector. During testing, a spectrum analyzer incorporating a peak detector was used. Therefore, a reduction factor can be applied to the resultant peak signal level and compared to the limit for measurement instrumentation incorporating an average detector.

The time period over which the duty cycle is measured in 100 ms or the repetition cycle, whichever is a shorter time frame. The duty cycle is measured by placing the spectrum analyzer in zero span mode at 100 resolution bandwidth.

Model: F21-6S-TX

Averaging factor in $dB = 20\log(duty \text{ cycle})$

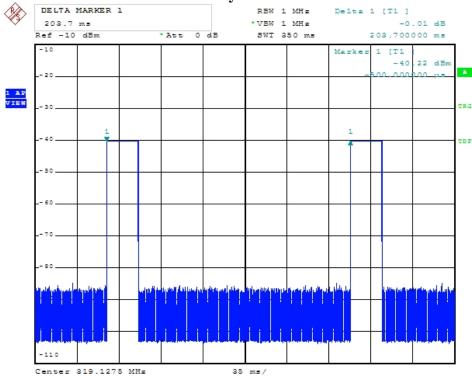
The duty cycle is simply the on-time divided by the period:

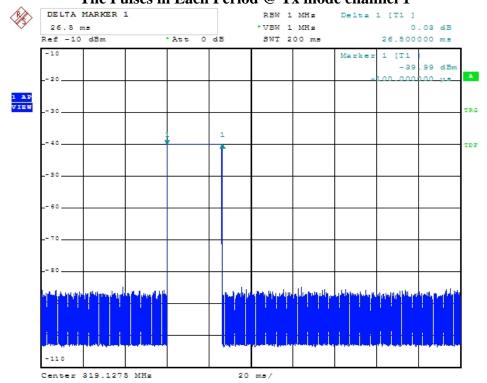

The duration of one cycle = 204.3ms. It is greater than 100ms. Use the 100ms for duration of one cycle.

The pulses in each period = 26.5ms

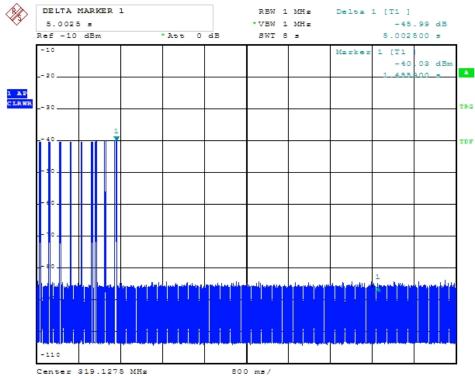
Duty Cycle = 26.5 ms / 100 ms = 0.265

Therefore, the duty cycle correction factor will be $20 \log_{10} 0.265 = -11.54 \text{ dB}$


Please see the plot below.


Page 11 of 17

The Duration of One Cycle @ Tx mode channel 1


The Pulses in Each Period @ Tx mode channel 1

Page 12 of 17

Release Time @ Tx mode channel 1

Page 13 of 17

3.5 Radiated emission test data FCC 15.231

3.5.1 Measurement results: Fundamental emission

EUT : F21-6S-TX

Worst Case : Tx at 319.1275 MHz at Z axis

Polarization	Frequency	Detector	Corr.	Reading	Average	Calculated	Limit	Margin
(circle)	(MHz)		Factor	(dBuV)	Factor	(dBuV/m)	(dBuV/m)	(dB)
			(dB/m)		(dB)			
V	319.1275	PK	14.10	70.49	-	84.59	95.87	-11.28
V	319.1275	AV	14.10	70.49	-11.54	73.05	75.87	-2.82
Н	319.1275	PK	14.32	57.26	-	71.57	95.87	-24.30
Н	319.1275	AV	14.32	57.26	-11.54	60.03	75.87	-15.84

Remark:

1. Calculated = Reading + Corr. Factor

2. Correction Factor = Antenna Factor + Cable Loss

3. Margin= Calculated – Limit

Page 14 of 17

3.5.2 Measurement results: frequencies equal to or less than 1 GHz

EUT : F21-6S-TX

Worst Case : Tx at 319.1275 MHz at Z axis

Polarization	Frequency	Detector	Corr.	Reading	Average	Calculated	Limit	Margin
(circle)	(MHz)		Factor	(dBuV)	Factor	(dBuV/m)	(dBuV/m)	(dB)
			(dB/m)		(dB)			
V	282.20000	QP	13.70	19.28	-	32.97	46.00	-13.03
V	297.72000	PK	13.95	29.75	1	43.70	75.87	-32.17
V	297.72000	AV	13.95	29.75	-11.54	32.16	55.87	-23.71
V	311.30000	PK	14.32	31.14	ı	45.45	75.87	-30.42
V	311.30000	AV	14.32	31.14	-11.54	33.91	55.87	-21.96
V	322.94000	QP	14.32	17.46	ı	31.77	46.00	-14.23
V	639.16000	PK	21.55	34.53	ı	56.07	75.87	-19.80
V	639.16000	AV	21.55	34.53	-11.54	44.53	55.87	-11.34
V	959.26000	PK	25.34	14.52	ı	39.85	75.87	-36.02
V	959.26000	AV	25.34	14.52	-11.54	28.31	55.87	-27.56
Н	289.96000	PK	13.85	18.30	-	32.14	75.87	-43.73
Н	289.96000	AV	13.85	18.30	-11.54	20.60	55.87	-35.27
Н	303.54000	PK	14.32	29.68	ı	43.99	75.87	-31.88
Н	303.54000	AV	14.32	29.68	-11.54	32.45	55.87	-23.42
Н	313.24000	PK	14.32	31.43	-	45.74	75.87	-30.13
Н	313.24000	AV	14.32	31.43	-11.54	34.20	55.87	-21.67
Н	639.16000	PK	21.55	21.85	-	43.39	75.87	-32.48
Н	639.16000	AV	21.55	21.85	-11.54	31.85	55.87	-24.02

Remark:

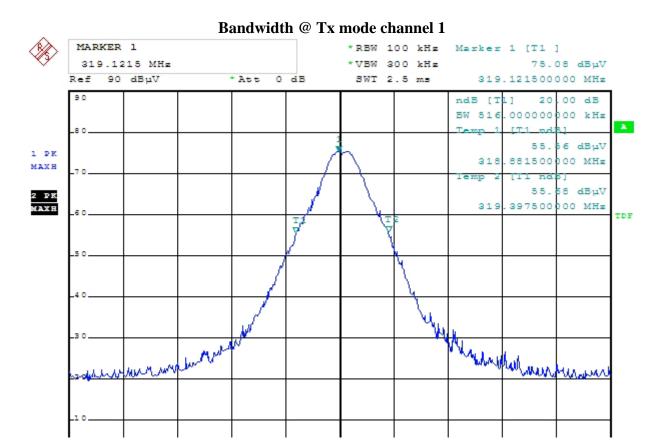
- 1. Calculated = Reading + Corr. Factor Average Factor
- 2. Correction Factor = Antenna Factor + Cable Loss
- 3. Margin= Calculated Limit

Page 15 of 17

3.5.3 Measurement results: frequency above 1GHz

The emissions were very low against the limit in the frequency range above 1 GHz.

Page 16 of 17


4. Measured bandwidth FCC 15.231(C)

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70MHz and below 900MHz. Bandwidth is determined at the points 20dB down from the modulated carrier.

B.W(20dBc) Limit =
$$0.25\% \times f(MHz) = 0.25\% \times 319.1275 \text{ MHz} = 0.7978 \text{ MHz}$$

From the plot, the bandwidth is observed to be 516.00 kHz, at 20dBc where the bandwidth limit is 0.7978 MHz.

Please see the plot below.

Page 17 of 17

5. Conducted emission FCC 15.207

According to FCC 15.207, the EUT only employs battery power for operation and does not operate from the AC power lines. Therefore, the test can be exempted.