

APPLICATION FOR CERTIFICATION
On Behalf of
Perfect Toys International Co., Ltd.
Toyhouse Cart

Model : 10859A
FCC ID: JHP10859A
FCC Part 15C / Section 15.227
27.145 MHz R/C Car Transmitter

Prepared for : Perfect Toys International Co., Ltd.
2/F., Block 3, Wah Lai Industrial Centre,
10-14 Kwei Tei Street, Fo Tan,
Shatin, New Territories, Hong Kong

Prepared By : Audix Technology (Shenzhen) Co., Ltd.
No. 6 Ke Feng Rd., 52 Block,
Shenzhen Science & Industrial Park,
Nantou, Shenzhen, Guangdong, China

Tel: (0755)663-9496

Report Number • ACS-20F068
Date of Test • Apr. 15~Jun. 02, 2000
Date of Report • Jun. 02, 2000

TABLE OF CONTENTS

Description	Page
Test Report Certification	
1.GENERAL INFORMATION.....	1-1
1.1. Description of Device (EUT)	1-1
1.2. Test Facility	1-2
1.3. Test Uncertainty.....	1-2
2.POWER LINE CONDUCTED MEASUREMENT	2-1
3.RADIATED EMISSION MEASUREMENT.....	3-1
3.1. Test Equipment.....	3-1
3.2. Block Diagram of Test Setup	3-1
3.3. Radiated Emission Limit (Class B)	3-2
3.4. EUT Configuration on Measurement.....	3-2
3.5. Operating Condition of EUT	3-2
3.6. Test Procedure.....	3-3
3.7. Radiated Emission Noise Measurement Result	3-4
4.TEST BANDWIDTH	4-1
5.CALCULATION OF AVERAGE FACTOR	5-1
6.PHOTOGRAPH	6-1
6.1. Photos of Radiated Measurement.....	6-1

APPENDIX I

(6 Pages)

TEST REPORT CERTIFICATION

Applicant : Perfect Toys International Co., Ltd.
Manufacturer : Xian Hao Electric Appliances & Toys Co., Ltd.
Receiver : 8*1.5 DC Batteries, 30cm length antenna built-in
FCC ID : JHP10859A
FCC Rule Part : Part 15C. Section 15.227
EUT Description : Toyhouse Cart / R/C Car Transmitter @ 27.145 MHz
(A) MODEL NO. : 10859A
(B) SERIAL NO. : 2000042301
(C) POWER SUPPLY : +9V DC Battery
40cm length antenna built-in

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C October 1998 & ANSI C63.4-1992

The device described above is tested by AUDIX TECHNOLOGY (SHENZHEN) CO., LTD. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C limits both radiated and conducted emissions.

The measurement results are contained in this test report and AUDIX TECHNOLOGY (SHENZHEN) CO., LTD. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of AUDIX TECHNOLOGY (SHENZHEN) CO., LTD.

Date of Test : Apr. 15~Jun. 02, 2000

Prepared by :

Fanny Yang 6/5/2000
(Assistant: Fanny Yang)

Reviewer :

Martin Lu 6/6
(Deputy Assistant Manager: Martin Lu)

For and on behalf of
AUDIX TECHNOLOGY (SHENZHEN) CO., LTD.

Approved & Authorized Signer :

Alex Deng 6/6/00
Authorized Signature(s)
(Assistant Manager: Alex Deng)

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

FCC ID:	JHP10859A
Description	• Toyhouse R/C Car Transmitter @ 27.145 MHz
Model Number	• 10859A
Applicant	• Perfect Toys International Co., Ltd.
	2/F., Block 3, Wah Lai Industrial Centre, 10-14 Kwei Tei Street, Fo Tan, Shatin, New Territories, Hong Kong
Manufacturer	• Xian Hao Electric Appliances & Toys Co., Ltd.
	Tian Xin Management Zone, Huang Jiang, Dongguan, Guangdong, P. R. C.
Date of Test	• Apr. 15~ Jun. 02, 2000

1.2. Test Facility

Site Description

3m Anechoic Chamber : Certificated by FCC, USA
Aug. 18, 1997

3m & 10m Open Site : Certificated by FCC, USA
Feb. 13, 1998

EMC Lab. : Certificated by VCCI, Japan
Oct. 29, 1998

Certificated by DATech, German
Feb. 02, 1999

Certificated by NVLAP, USA
until Mar. 03, 2001
NVLAP Code: 200372-0

Name of Firm : Audix Technology (Shenzhen) Co., Ltd.

Site Location : No. 6, Ke Feng Rd., 52 Block,
Shenzhen Science & Industrial Park,
Nantou, Shenzhen, Guangdong, China

1.3. Test Uncertainty

Conducted Emission Uncertainty = ±2.66dB

Radiated Emission Uncertainty = ±4.26dB

2. POWER LINE CONDUCTED MEASUREMENT

According to Paragraph (f) of FCC Part 15 Section 15.107, measurement to demonstrate compliance with the conducted emission limits are not required for devices which only employ battery power for operation and which do not operate from AC power lines or contain provisions for operation while connected to AC power lines.

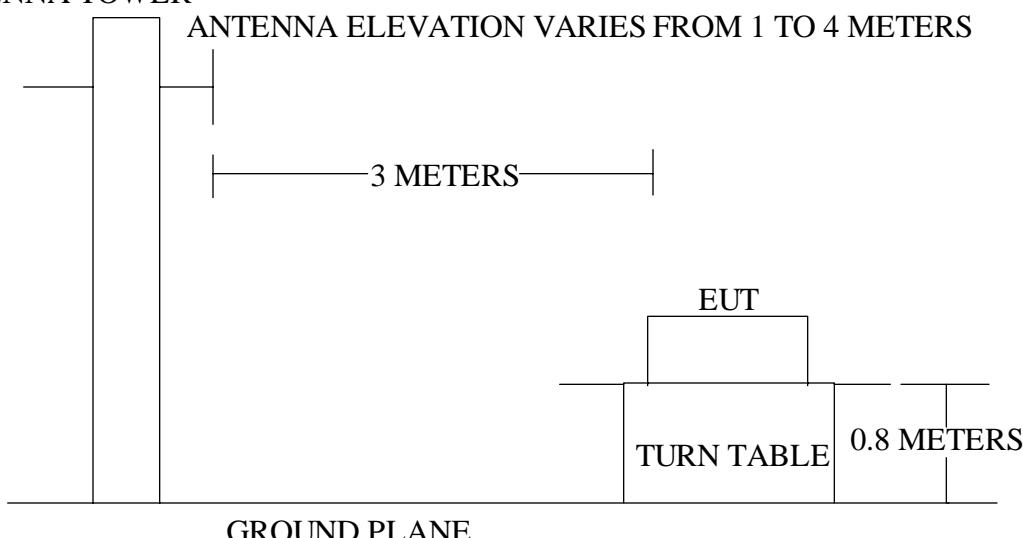
3. RADIATED EMISSION MEASUREMENT

3.1. Test Equipment

3.1.1. For Anechoic Chamber

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	EMI Test Receiver	HP	85422E	3625A00181	Jun. 04, 00	1 Year
2.	Test Receiver	Rohde & Schwarz	ESVS20	830350/005	Jun. 04, 00	1 Year
3.	Amplifier	HP	8447D	2944A07794	Jun. 04, 00	1/2 Year
4.	Bilog Antenna	Chase	CBL6112A	2176	Sep. 26, 99	1 Year
5.	Computer	N/A	N/A	N/A	N/A	N/A
6.	Printer	NEC	P3800	568101448	N/A	N/A
7.	RF Cable	MIYAZAKI	5D-2W	3# Chamber No.1	Feb.10, 00	1/2 Year
8.	RF Cable	MIYAZAKI	5D-2W	3# Chamber No.2	Feb.10, 00	1/2 Year
9.	RF Cable	FUJIKURA	RG-55/U	3# Chamber No.3	Feb.10, 00	1/2 Year
10.	RF Cable	FUJIKURA	RG-55/U	3# Chamber No.4	Feb.10, 00	1/2 Year
11.	Coaxial Switch	Anritsu	MP59B	M74389	Jun. 04, 99	1/2 Year

3.2. Block Diagram of Test Setup


3.2.1. diagram of connection between the EUT and simulators

(EUT: Toyhouse Cart)

3.2.2. In Anechoic Chamber 3 Test Setup Diagram

ANTENNA TOWER

3.3. Radiated Emission Limit (Class B)

FREQUENCY MHz	DISTANCE Meters	FIELD STRENGTHS LIMIT	
		$\mu\text{V/m}$	$\text{dB}(\mu\text{V})/\text{m}$
Fundamental Frequency	3	10×10^3	80.0
30 ~ 88	3	100	40.0
88 ~ 216	3	150	43.5
216 ~ 960	3	200	46.0
Above 960	3	500	54.0

Remark • (1) Emission level ($\text{dB}(\mu\text{V})$) = $20 \log_{10}$ Emission level $\mu\text{V}/\text{m}$

- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

3.4. EUT Configuration on Measurement

The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

3.4.1. Toyhouse Cart (EUT)

Model Number : 10859A
 Serial Number : 2000042301
 Receiver : 8*1.5 DC Batteries
 : 30cm length antenna built-in
 Manufacturer : Xian Hao Electric Appliances & Toys Co., Ltd.

3.4.2. Support Equipment : As Tested Supporting System Detail, in Section 1.2.

3.5. Operating Condition of EUT

1. Setup the EUT as shown in Section 3.2..
2. Let the EUT work in test modes (Lie on / Side on / Stand on) and measure it.

3.6. Test Procedure

EUT and its simulators are placed on a turn table, which is 0.8 meter high above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on a antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4-1992 on radiated emission measurement.

The bandwidth of the EMI test receiver (R&S ESVS20) is set at 120KHz in the 30-1000MHz and 1MHz had been set in above 1000MHz Range.

The frequency range from 30MHz to 1000MHz is checked.

The test modes (Lie on/ Stand on/ Side on) are tested in Anechoic Chamber and all the scanning waveforms are attached in Appendix II.

3.7. Radiated Emission Noise Measurement Result

PASS.

3.7.1. For 30MHz to 1000Mhz Test Result

The frequency range from 30MHz to 1000MHz is investigated.

Please see the following pages.

Date of Test :	Apr 15, 2000	Temperature :	26•
EUT :	Toyhouse Cart	Humidity :	60•
Model No. :	10859A	Test Mode :	Lie
Test Engineer:	Philo Zhong		

Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Over Limits	Limits
MHz	dB/m	dB	Horizontal dB μ V	Horizontal dB μ V/m	dB	dB μ V/m
81.450	10.11	2.31	18.50	30.92	-9.08	40.00
135.750	15.21	3.08	18.50	36.79	-6.71	43.50
162.880	14.26	3.35	17.10	34.71	-8.79	43.50

Remark: 1. All readings are Quasi-Peak values.

2. Emission Level = Antenna Factor + Cable Loss + Meter Reading

Date of Test :	Apr. 15, 2000	Temperature :	26•
EUT :	Toyhouse Cart	Humidity :	60•
Model No. :	10859A	Test Mode :	Lie
Test Engineer:	Philo Zhong		

Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Over Limits	Limits
MHz	dB/m	dB	Vertical dB μ V	Vertical dB μ V/m	dB	dB μ V/m
54.300	12.84	1.70	10.20	24.73	-15.27	40.00

Remark: 1. All readings are Quasi-Peak values.

2. Emission Level = Antenna Factor + Cable Loss + Meter Reading

Reviewer :

Markin Lin 6/6

Date of Test :	Apr 15, 2000	Temperature :	26•
EUT :	Toyhouse Cart	Humidity :	60•
Model No. :	10859A	Test Mode :	Stand
Test Engineer:	Philo Zhong		

Frequency MHz	Antenna Factor dB/m	Cable Loss dB	Meter Reading Horizontal dB μ V	Emission Level Horizontal dB μ V/m	Over Limits dB	Limits dB μ V/m
286.030	13.67	4.21	15.33	33.21	-12.79	46.00

Remark: 1. All readings are Quasi-Peak values.

2. Emission Level = Antenna Factor + Cable Loss + Meter Reading

Date of Test :	Apr 15, 2000	Temperature :	26•
EUT :	Toyhouse Cart	Humidity :	60•
Model No. :	10859A	Test Mode :	Stand
Test Engineer:	Philo Zhong		

Frequency MHz	Antenna Factor dB/m	Cable Loss dB	Meter Reading Vertical dB μ V	Emission Level Vertical dB μ V/m	Over Limits dB	Limits dB μ V/m
81.450	13.28	2.31	19.80	35.39	-4.61	40.00
135.750	16.80	3.08	17.60	37.48	-6.02	43.50
162.880	15.44	3.35	18.20	36.99	-6.51	43.50

Remark: 1. All readings are Quasi-Peak values.

2. Emission Level = Antenna Factor + Cable Loss + Meter Reading

Reviewer :

Mark L. 6/6

Date of Test :	Apr. 15, 2000	Temperature :	26•
EUT :	Toyhouse Cart	Humidity :	60•
Model No. :	10859A	Test Mode :	Side
Test Engineer:	Philo Zhong		

Frequency MHz	Antenna Factor dB/m	Cable Loss dB	Meter Reading Horizontal dB μ V	Emission Level Horizontal dB μ V/m	Over Limits dB	Limits dB μ V/m
81.450	10.11	2.31	18.20	30.62	-9.38	40.00
135.750	15.21	3.08	18.10	36.39	-7.11	43.50
162.000	14.28	3.35	19.20	36.83	-6.67	43.50

Remark: 1. All readings are Quasi-Peak values.

2. Emission Level = Antenna Factor + Cable Loss + Meter Reading

Date of Test :	Apr 15, 2000	Temperature :	26•
EUT :	Toyhouse Cart	Humidity :	60•
Model No. :	10859A	Test Mode :	Side
Test Engineer:	Philo Zhong		

Frequency MHz	Antenna Factor dB/m	Cable Loss dB	Meter Reading Vertical dB μ V	Emission Level Vertical dB μ V/m	Over Limits dB	Limits dB μ V/m
54.300	12.84	1.70	16.80	31.33	-8.67	40.00
81.450	13.28	2.31	16.10	31.69	-8.31	40.00

Remark: 1. All readings are Quasi-Peak values.

2. Emission Level = Antenna Factor + Cable Loss + Meter Reading

Reviewer :

Martin Lin 6/6

3.7.2. For Fundamental Frequency Test Result

Date of Test :	Jun. 02, 2000	Temperature :	26•
EUT :	Toyhouse Cart	Humidity :	60•
Model No. :	10859A	Test Mode :	Lie
Test Engineer:	Philo Zhong		

Frequency	Antenna Factor	Cable Loss	Meter Reading Horizontal	Emission Level Horizontal	Average Factor	Net Level	Over Limits	Limits
MHz	dB/m	dB	dB μ V	dB μ V/m	dB	dB	dB	dB μ V/m
27.150	20.65	0.79	36.90	58.34	-7.66	50.68	-29.32	80.00

Remark: 1. All readings are Quasi-Peak values.

2. Emission Level = Antenna Factor + Cable Loss + Meter Reading

Date of Test :	Jun. 02, 2000	Temperature :	26•
EUT :	Toyhouse Cart	Humidity :	60•
Model No. :	10859A	Test Mode :	Lie
Test Engineer:	Philo Zhong		

Frequency	Antenna Factor	Cable Loss	Meter Reading Vertical	Emission Level Vertical	Average Factor	Net Level	Over Limits	Limits
MHz	dB/m	dB	dB μ V	dB μ V/m	dB	dB	dB	dB μ V/m
27.150	20.40	0.79	26.96	48.14	-7.66	40.48	-39.52	80.00

Remark: 1. All readings are Quasi-Peak values.

2. Emission Level = Antenna Factor + Cable Loss + Meter Reading

Reviewer :

Markin Lin 6/6

Date of Test : Jun. 02, 2000 Temperature : 26•
 EUT : Toyhouse Cart Humidity : 60•
 Model No. : 10859A Test Mode : Stand
 Test Engineer: Philo Zhong

Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Average Factor	Net Level	Over Limits	Limits
MHz	dB/m	dB	dB μ V	dB μ V/m	dB	dB	dB	dB μ V/m
27.150	20.65	0.79	38.10	59.54	-7.66	51.88	-28.12	80.00

Remark: 1. All readings are Quasi-Peak values.
 2. Emission Level = Antenna Factor + Cable Loss + Meter Reading

Date of Test : Jun. 02, 2000 Temperature : 26•
 EUT : Toyhouse Cart Humidity : 60•
 Model No. : 10859A Test Mode : Stand
 Test Engineer: Philo Zhong

Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Average Factor	Net Level	Over Limits	Limits
MHz	dB/m	dB	Vertical	Vertical	dB	dB	dB	dB μ V/m
27.150	20.40	0.79	55.00	76.19	-7.66	68.53	-11.47	80.00

Remark: 1. All readings are Quasi-Peak values.
 2. Emission Level = Antenna Factor + Cable Loss + Meter Reading

Reviewer :

Martin Li, 6/6

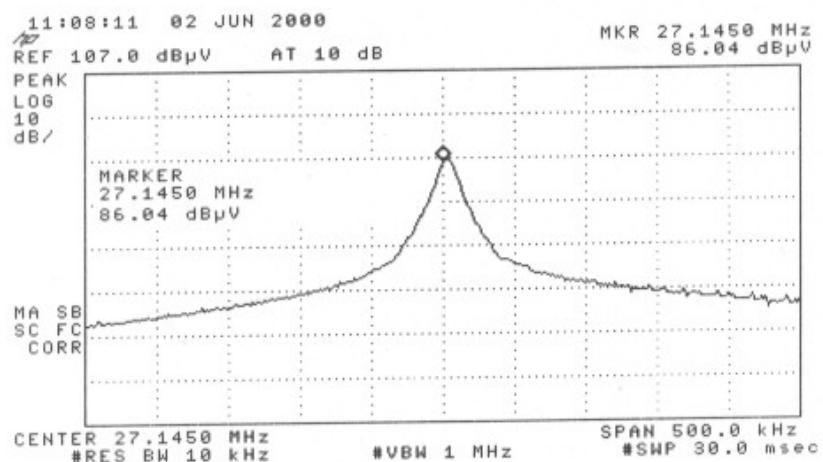
Date of Test : Jun. 02, 2000 Temperature : 26•
 EUT : Toyhouse Cart Humidity : 60•
 Model No. : 10859A Test Mode : Side
 Test Engineer: Philo Zhong

Frequency	Antenna Factor	Cable Loss	Meter Reading Horizontal	Emission Level Horizontal	Average Factor	Net Level	Over Limits	Limits
MHz	dB/m	dB	dB μ V	dB μ V/m	dB	dB	dB	dB μ V/m
27.150	20.65	0.79	36.50	57.94	-7.66	50.28	-29.72	80.00

Remark: 1. All readings are Quasi-Peak values.
 2. Emission Level = Antenna Factor + Cable Loss + Meter Reading

Date of Test : Jun. 02, 2000 Temperature : 26•
 EUT : Toyhouse Cart Humidity : 60•
 Model No. : 10859A Test Mode : Side
 Test Engineer: Philo Zhong

Frequency	Antenna Factor	Cable Loss	Meter Reading Vertical	Emission Level Vertical	Average Factor	Net Level	Over Limits	Limits
MHz	dB/m	dB	dB μ V	dB μ V/m	dB	dB	dB	dB μ V/m
27.150	20.40	0.79	42.50	63.69	-7.66	56.03	-23.97	80.00


Remark: 1. All readings are Quasi-Peak values.
 2. Emission Level = Antenna Factor + Cable Loss + Meter Reading

Reviewer: Mark L. 6/6

4. TEST BANDWIDTH

The plot on the following page shows the fundamental frequency is 27.145MHz when modulated. From the plot the emission is observed within the band 26.96MHz to 27.28MHz. The unit meets the FCC bandwidth requirements.

Please see the attached waveform.

5. CALCULATION OF AVERAGE FACTOR

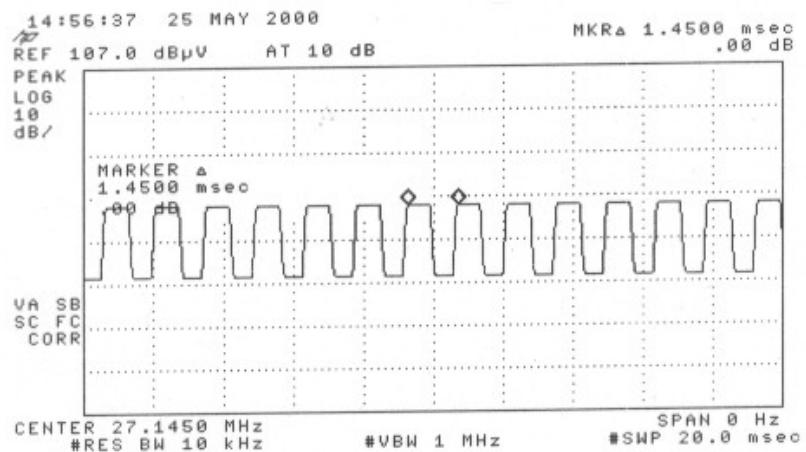
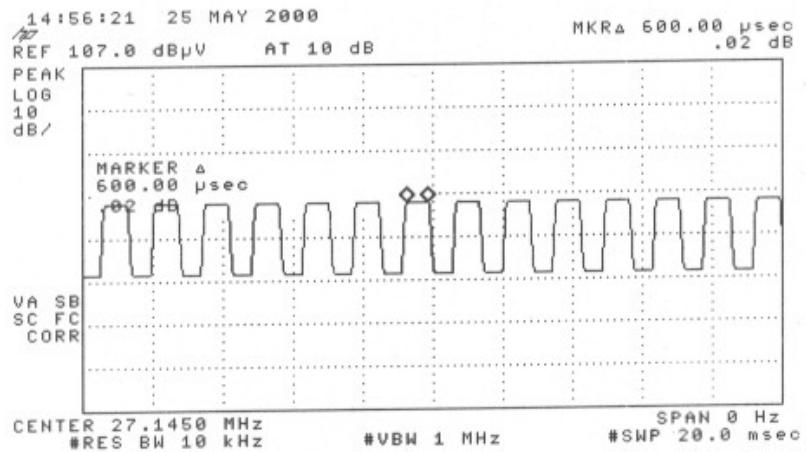
Averaging factor in dB = $20 \log_{10}$ (duty cycle)

The specification for output field strengths in accordance with of the FCC rules specify measurements with an average detector. During testing, a spectrum analyzer incorporating a peak detector was used. Therefore, a reduction factor can be applied to the resultant peak signal level and compared to the limit for measurement instrumentation incorporating an average detector.

The time period over which the duty cycle is measured is 4.2 milliseconds, or the repetition cycle, whichever is a shorter time frame. The worst case (highest percentage on) duty cycle is used for the calculation. The duty cycle is measured by placing the spectrum analyzer in zero scan (receiver mode) and linear mode at maximum bandwidth (3 MHz at 3 dB down).

A plot of the worst-case duty cycle as detected in this manner are included in the following pages.

The duty cycle is simply the on-time divided by the period:



The duration of one cycle = 0.6 ms

Effective period of the cycle = 1.45 ms

DC=0.6ms/1.45ms = 0.41379

Therefore, the averaging factor is found by $20 \log_{10} 0.41379 = -7.6644$ dB

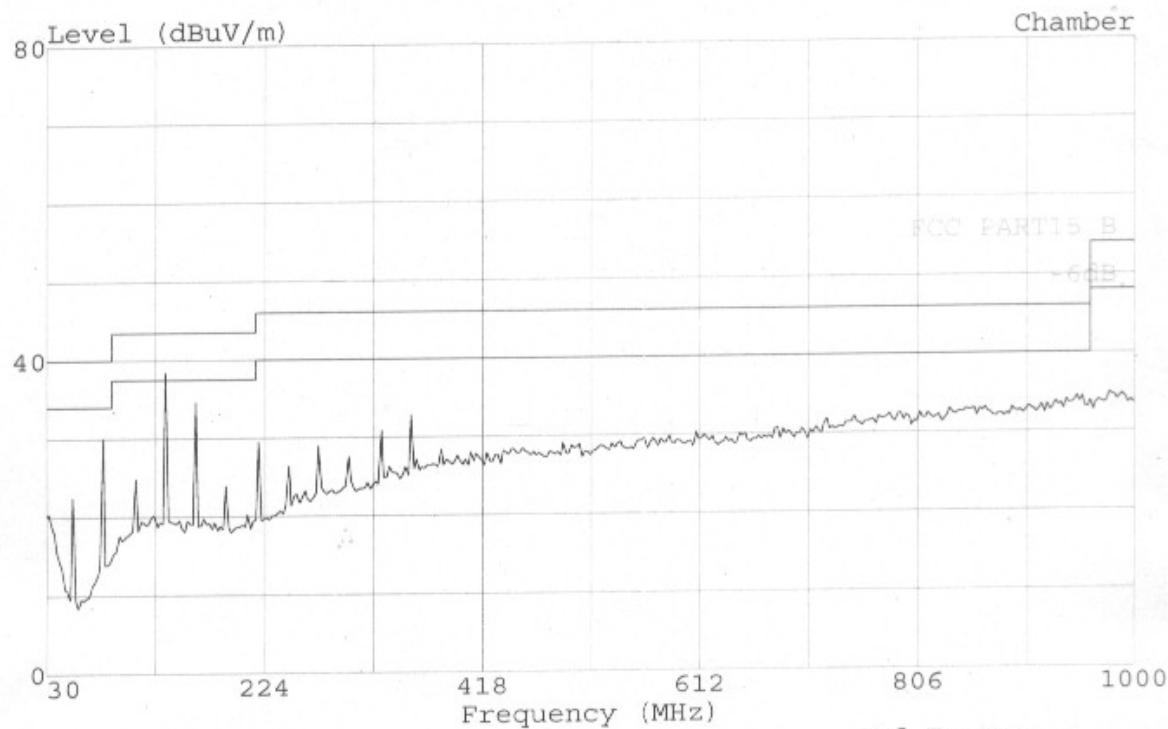
Please see the attached waveform.

6. PHOTOGRAPH

6.1. Photos of Radiated Measurement

FRONT VIEW OF RADIATED MEASUREMENT

APPENDIX I


AUDIX

52 Block
Shenzhen Science & Ind. Park, Guangdong
Tel: 0755-6639495~7 Fax: 0755-6632877

AUDIX TECHNOLOGY (SHENZHEN) CO., LTD.

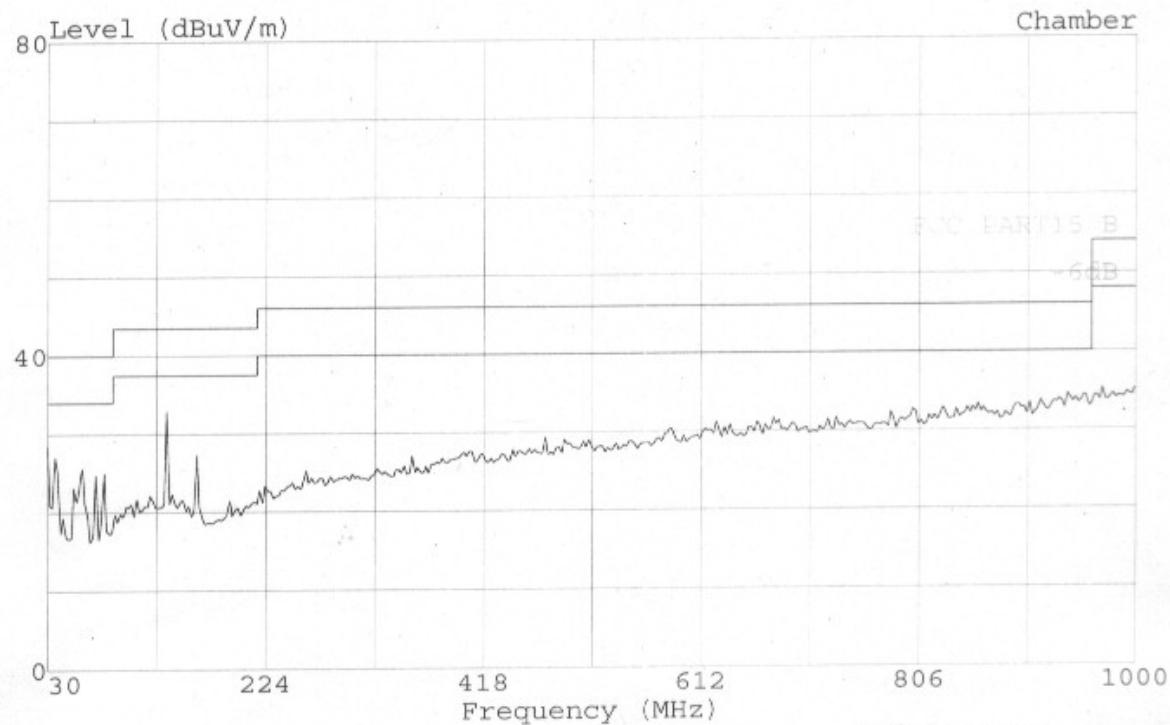
Data#: 20 File#: PERFECT.EMI

Date: 4-15, 2000 Time: 09:31:13

Trace:
Condition: FCC PART15 B 3m 2176FACTOR HORIZONTAL
EUT: : TOYHOUSE CART
POWER: : DC 9V BATTERY
M/N: : 10859A
: TX
: LIE

AUDIX

52 Block


Shenzhen Science & Ind. Park, Guangdong

Tel:0755-6639495~7 Fax:0755-6632877

AUDIX TECHNOLOGY (SHENZHEN) CO., LTD.

Data#: 22 File#: PERFECT.EMI

Date: 4-15,2000 Time: 09:38:17

Trace:

Condition: FCC PART15 B 3m 2176FACTOR VERTICAL

EUT: : TOYHOUSE CART

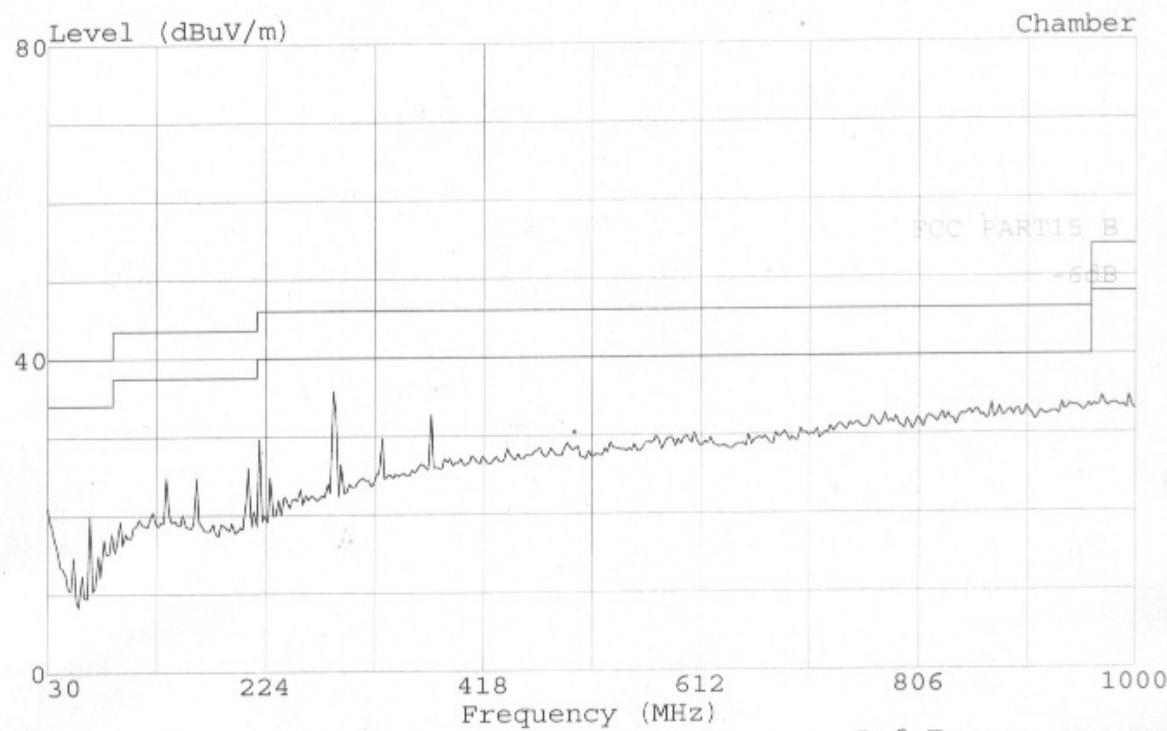
POWER: : DC 9V BATTERY

M/N: : 10859A

: TX

: LIE

Ref Trace:


AUDIX

52 Block
Shenzhen Science & Ind. Park, Guangdong
Tel: 0755-6639495~7 Fax: 0755-6632877

AUDIX TECHNOLOGY (SHENZHEN) CO., LTD.

Data#: 26 File#: PERFECT.EMI

Date: 4-15, 2000 Time: 09:49:13

Trace:

Condition: FCC PART15 B 3m 2176FACTOR HORIZONTAL

EUT: : TOYHOUSE CART

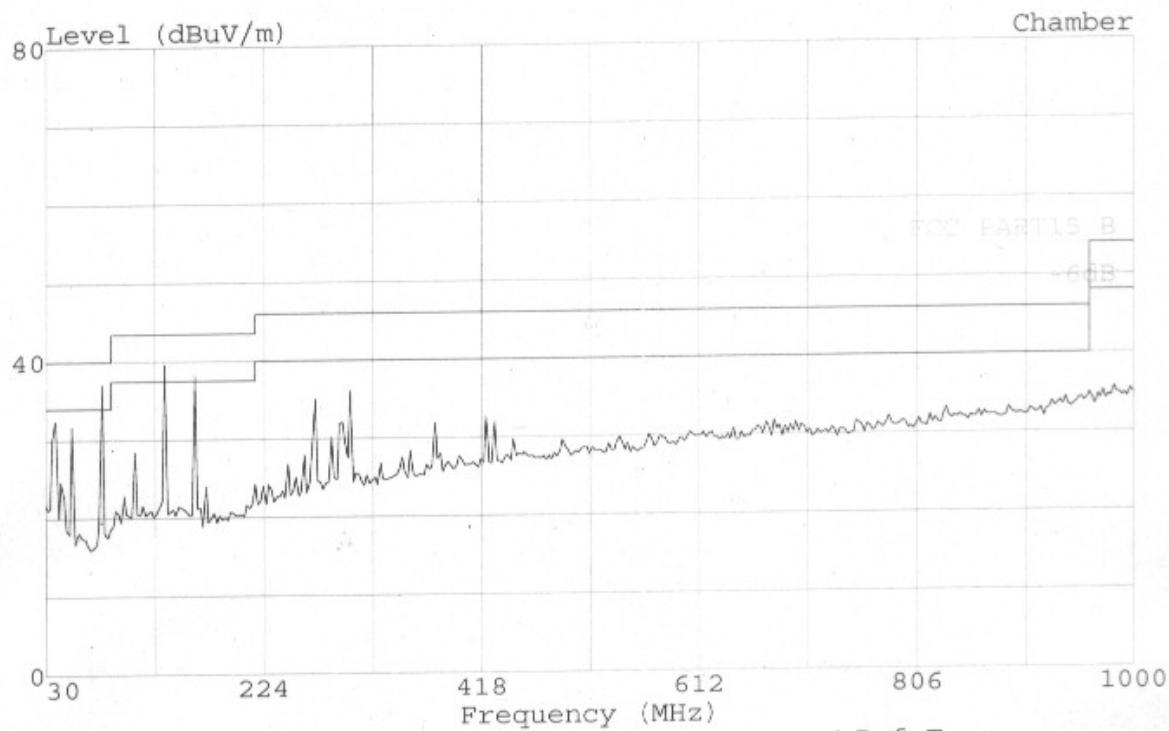
POWER: : DC 9V BATTERY

M/N: : 10859A

: TX

: STAND

Ref Trace:


AUDIX

52 Block
Shenzhen Science & Ind. Park, Guangdong
Tel: 0755-6639495~7 Fax: 0755-6632877

AUDIX TECHNOLOGY (SHENZHEN) CO., LTD.

Data#: 24 File#: PERFECT.EMI

Date: 4-15, 2000 Time: 09:44:18

Trace:

Condition: FCC PART15 B 3m 2176FACTOR VERTICAL

EUT: : TOYHOUSE CART

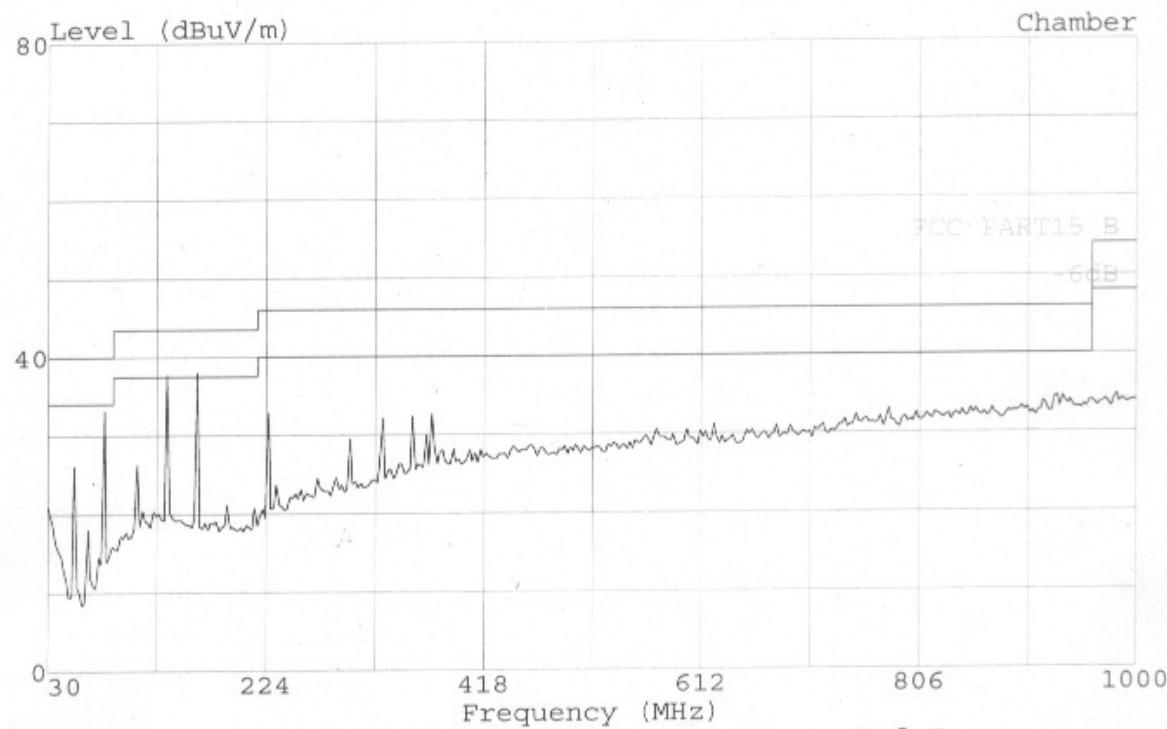
POWER: : DC 9V BATTERY

M/N: : 10859A

: TX

: STAND

Ref Trace:



52 Block
Shenzhen Science & Ind. Park, Guangdong
Tel: 0755-6639495~7 Fax: 0755-6632877

AUDIX TECHNOLOGY (SHENZHEN) CO., LTD.

Data#: 27 File#: PERFECT.EMI

Date: 4-15, 2000 Time: 10:11:19

Trace:

Condition: FCC PART15 B 3m 2176FACTOR HORIZONTAL

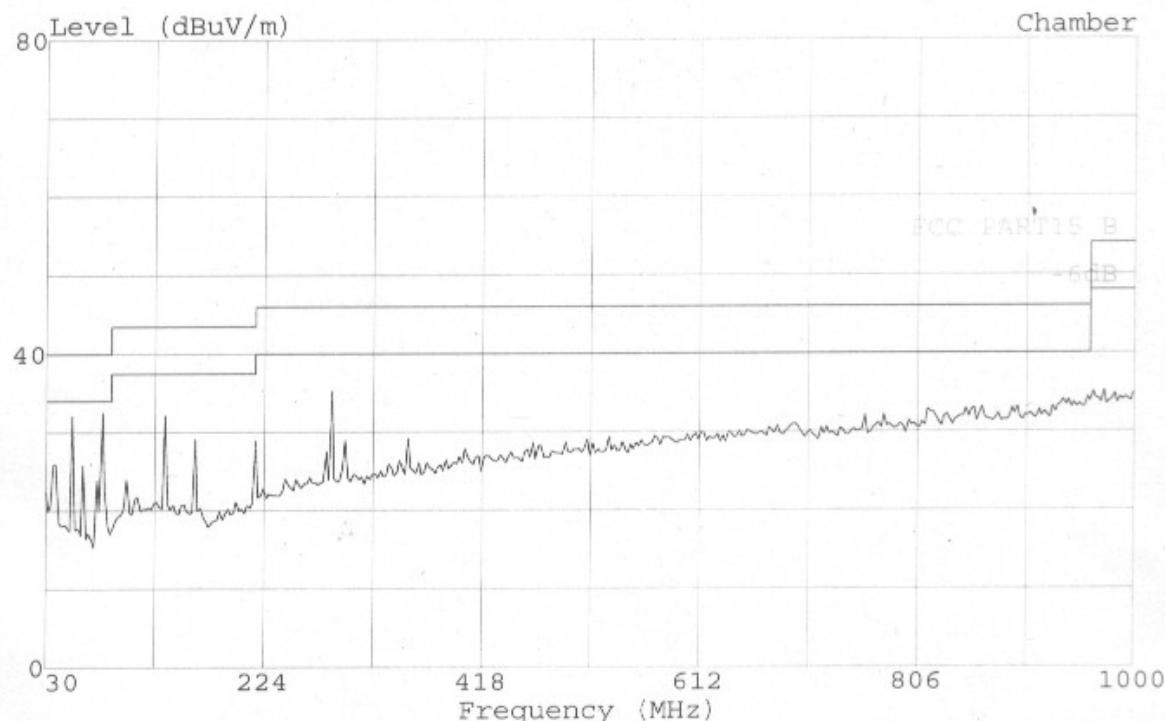
EUT: : TOYHOUSE CART

POWER: : DC 9V BATTERY

M/N: : 10859A

: TX

: SIDE


Ref Trace:

AUDIX

52 Block
Shenzhen Science & Ind. Park, Guangdong
Tel: 0755-6639495~7 Fax: 0755-6632877

AUDIX TECHNOLOGY (SHENZHEN) CO., LTD.

Data#: 29 File#: PERFECT.EMI Date: 4-15, 2000 Time: 10:14:29

Trace:

Condition: FCC PART15 B 3m 2176FACTOR VERTICAL

EUT: : TOYHOUSE CART

POWER:: DC 9V BATTERY

M/N: : 10859A

: TX

: SIDE

Ref Trace:

AUDIX

52 Block
Shenzhen Science & Ind. Park, Guangdong
Tel: 0755-6639495~7 Fax: 0755-6632877

AUDIX TECHNOLOGY (SHENZHEN) CO., LTD.

Data#: 72 File#: PERFECT.EMI

Date: 2000-06-02 Time: 15:56:23

Level (dBuV/m)

NO. 3 CHAMBER

40

0

25

26

27

28

29

30

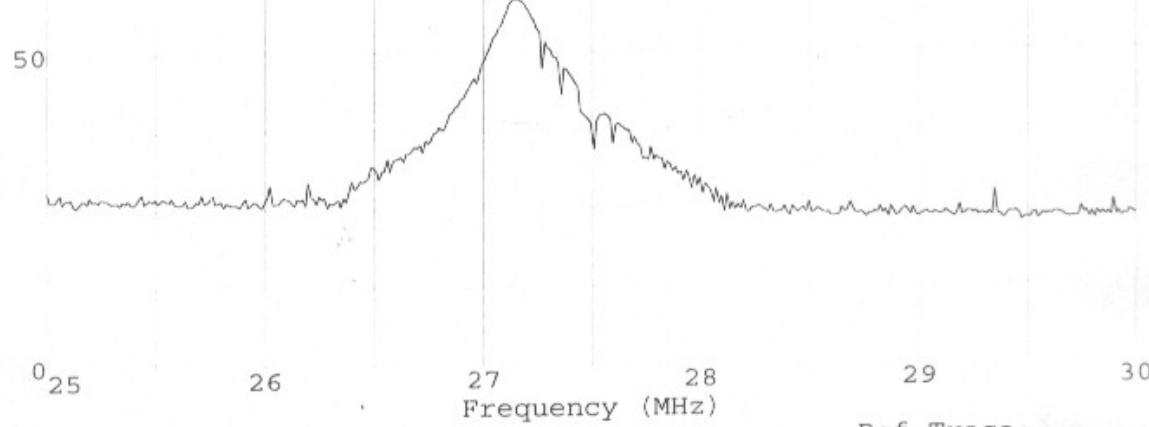
Frequency (MHz)

Ref Trace:

Trace:
Condition: 3m 25-30/2176H HORIZONTAL
EUT: : TOYHOUSE CART
POWER: : DC 9V BATTERY
M/N: : 10859A
: TX
: Lie

AUDIX

52 Block
Shenzhen Science & Ind. Park, Guangdong
Tel: 0755-6639495~7 Fax: 0755-6632877


AUDIX TECHNOLOGY (SHENZHEN) CO., LTD.

Data#: 81 File#: PERFECT.EMI

Date: 2000-06-02 Time: 16:11:11

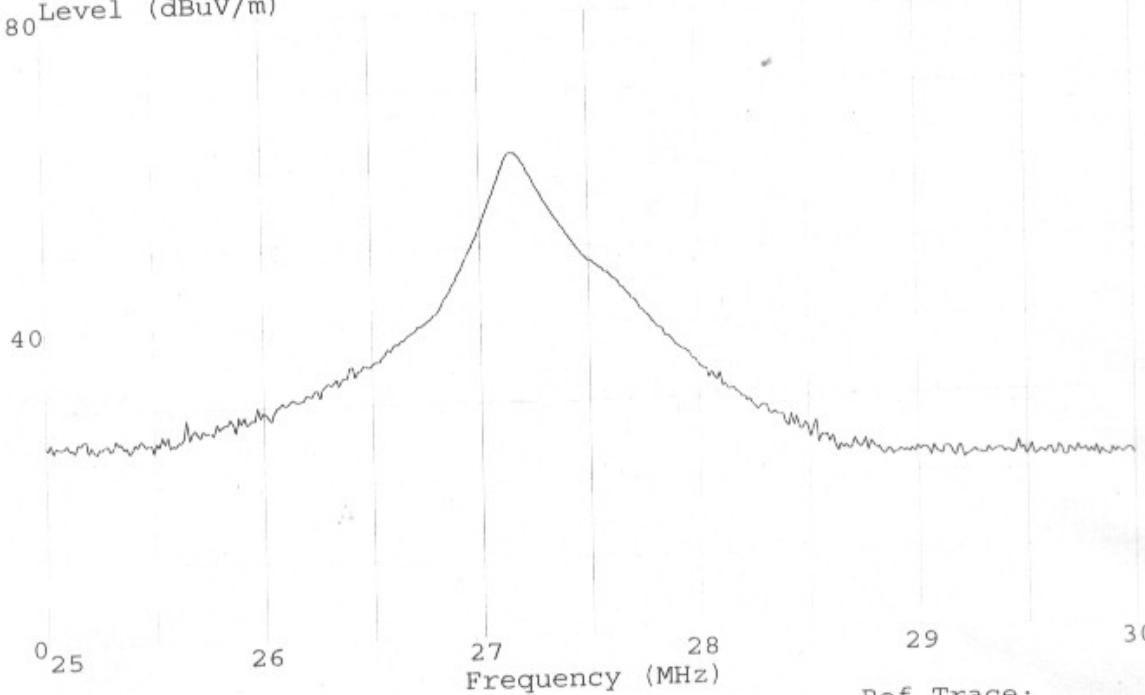
100 Level (dBuV/m)

NO. 3 CHAMBER

Trace:
Condition: 3m 25-30/2176V VERTICAL
EUT: : TOYHOUSE CART
POWER:: DC 9V BATTERY
M/N: : 10859A
: TX
: Lie

Ref Trace:

AUDIX


52 Block
Shenzhen Science & Ind. Park, Guangdong
Tel: 0755-6639495~7 Fax: 0755-6632877

AUDIX TECHNOLOGY (SHENZHEN) CO., LTD.

Data#: 73 File#: PERFECT.EMI Date: 2000-06-02 Time: 15:59:03

NO. 3 CHAMBER

Level (dBuV/m)

Trace:

Condition: 3m 25-30/2176H HORIZONTAL

EUT: : TOYHOUSE CART

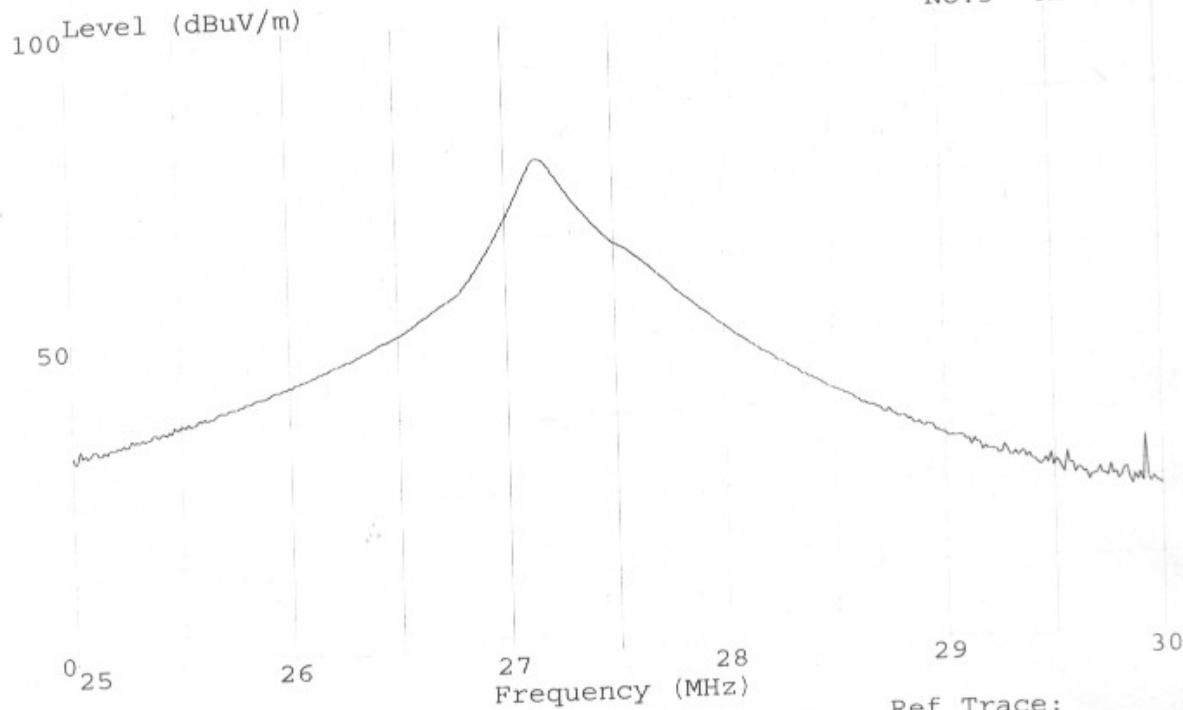
POWER: : DC 9V BATTERY

M/N: : 10859A

: TX

: Stand

Ref Trace:


AUDIX

52 Block
Shenzhen Science & Ind. Park, Guangdong
Tel: 0755-6639495~7 Fax: 0755-6632877

AUDIX TECHNOLOGY (SHENZHEN) CO., LTD.

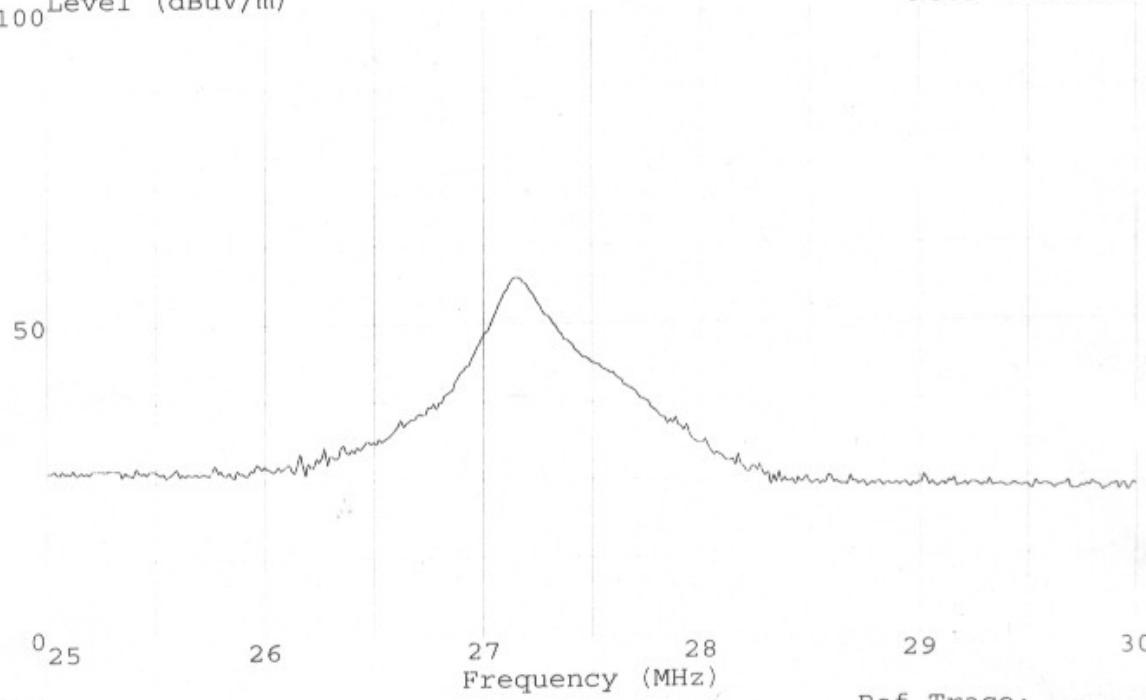
Data#: 75 File#: PERFECT.EMI Date: 2000-06-02 Time: 16:01:11

NO.3 CHAMBER

Trace:
Condition: 3m 25-30/2176V VERTICAL
EUT: : TOYHOUSE CART
POWER:: DC 9V BATTERY
M/N: : 10859A
: TX
: Stand

AUDIX

52 Block
Shenzhen Science & Ind. Park, Guangdong
Tel: 0755-6639495~7 Fax: 0755-6632877


AUDIX TECHNOLOGY (SHENZHEN) CO., LTD.

Data#: 79 File#: PERFECT.EMI

Date: 2000-06-02 Time: 16:05:44

100 Level (dBuV/m)

NO. 3 CHAMBER

Trace:

Condition: 3m 25-30/2176H HORIZONTAL

EUT: : TOYHOUSE CART

POWER: : DC 9V BATTERY

M/N: : 10859A

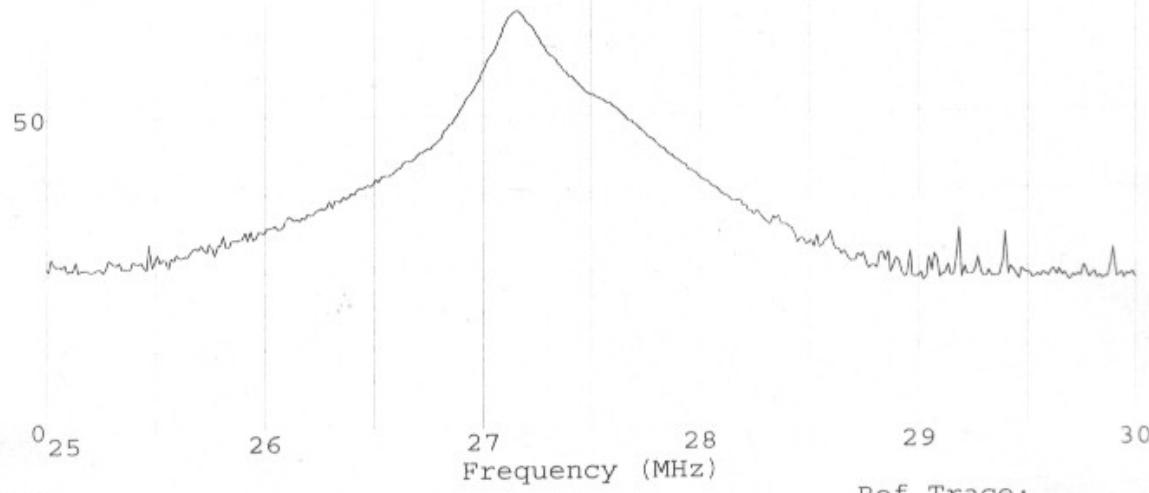
: TX

: Side

Ref Trace:

AUDIX

52 Block
Shenzhen Science & Ind. Park, Guangdong
Tel: 0755-6639495~7 Fax: 0755-6632877


AUDIX TECHNOLOGY (SHENZHEN) CO., LTD.

Data#: 77 File#: PERFECT.EMI

Date: 2000-06-02 Time: 16:03:58

100 Level (dBuV/m)

NO.3 CHAMBER

Trace:

Condition: 3m 25-30/2176V VERTICAL

EUT: : TOYHOUSE CART

POWER: : DC 9V BATTERY

M/N: : 10859A

: TX

: Side

Ref Trace: